CN1243040A - Catalyst for synthesizing glycol monoether acetate and diethylene glycol monoether acetate - Google Patents

Catalyst for synthesizing glycol monoether acetate and diethylene glycol monoether acetate Download PDF

Info

Publication number
CN1243040A
CN1243040A CN 98114196 CN98114196A CN1243040A CN 1243040 A CN1243040 A CN 1243040A CN 98114196 CN98114196 CN 98114196 CN 98114196 A CN98114196 A CN 98114196A CN 1243040 A CN1243040 A CN 1243040A
Authority
CN
China
Prior art keywords
catalyst
acetate
diethylene glycol
raw material
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 98114196
Other languages
Chinese (zh)
Other versions
CN1100616C (en
Inventor
王永杰
李文钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN98114196A priority Critical patent/CN1100616C/en
Publication of CN1243040A publication Critical patent/CN1243040A/en
Application granted granted Critical
Publication of CN1100616C publication Critical patent/CN1100616C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention relates to a catalyst for synthesis of glycol monoesters acetate and diglycol monoesters acetate. Said catalyst is layered column-like molecular sieve, its basic structure is Al4Si8O20(OH)4.nH2O; and the basic composition of said catalyst comprises (wt%) SiO2 60-70%, FeSO4 3-4%, Al2O3 1-2%, sulfate of Mg, Sn, Zn, Ca, Na and Mn and/or their metal oxide 0.1-10%, and the rest is water. Said invention can inhibite side reaction production in the course of production, raise selectivity of target product, shorten production period, reduce production equipment investment, at the same time can protect production equipment from corrosion, reduce environmental pollution and reduce energy consumption.

Description

Glycol monoether acetate and diethylene glycol monoether acetate catalyst for synthesizing
The present invention relates to a kind of esterification solid catalyst, particularly relate to the layer column molecular sieve catalyst in a kind of glycol monoether acetate and the diethylene glycol monoether acetate synthetic reaction.
At present, producing glycol monoether acetate and diethylene glycol monoether acetate both at home and abroad all adopts sulfuric acid as esterification catalyst, although this kind reaction system has higher reaction conversion ratio, auxiliary agent chemical plant, Yixing, Jiangsu as the domestic production ethyl cellosolve acetate adopts sulfuric acid as esterification catalyst exactly, its reaction conversion ratio is 94~99%, but also has following problem:
(1) because dehydration, esterification and the oxidation of sulfuric acid cause a series of side reactions in the process of esterification.The existence of small amounts of ether, sulfuric ester, unsaturated compound and carbonyls is arranged in the post reaction mixture, and target product selectivity 95~98% has caused the refining of product and has reclaimed the difficulty of unreacting material;
(2) post processing of product will cause reaction process complexity, the generation three wastes, product to run off through alkali neutralization, washing to remove the sulfuric acid as catalyst;
(3) sulfuric acid severe corrosion equipment causes the equipment regular update, and production cost improves;
(4) owing to use sulfuric acid, it is improper to use in the operation, endangers personal safety easily;
(5) environmental pollution is arranged;
(6) energy consumption height.
The objective of the invention is to select a kind of layer of column molecular sieve solid catalyst, esterification catalyst as a kind of glycol monoether acetate and diethylene glycol monoether acetate in synthetic, the side reaction that suppresses in the production process takes place, improve target product selectivity, shorten the production cycle, reduce investment of production equipment, avoid producing problems such as the environmental pollution of production equipment burn into, energy consumption height simultaneously.
The invention provides a kind of ethylene glycol ester class acetic acid esters and diethylene glycol monoesters class acetic acid esters catalyst for synthesizing, it is characterized in that: this catalyst is layer column molecular sieve, and basic structure is Al 4Si 8O 20(OH) 4NH 2O; Catalyst basic composition is (percentage by weight): SiO 260~70%, FeSO 43~4%, Al 2O 31~2%, the sulfate of Mg, Sn, Zn, Ca, Na, Mn and/or metal oxide 0.1~10%, surplus is a water.Main component SiO wherein 2, FeSO 4, Al 2O 3, in course of reaction, can form stronger B acid site, esterification there is significant catalytic action, other component is a co-catalyst, plays synergy in course of reaction.
This catalyst preferred weight percent is as follows:
SiO 2 65~70%(wt)
FeSO 4 3~4%(wt)
Al 2O 3 0.5~2%(wt)
MgO 2~3%(wt)
SnO 0.2~0.3%(wt)
H 2The O surplus
The Preparation of catalysts method is: be raw material with the calcium-base bentonite, earlier dry its surface moisture 8~20%, screening is to certain fineness, put into activator filled with hot water, add the concentrated sulfuric acid and activate, sulfuric acid concentration is controlled at about 5~10% in the device, activates rinsing then in 2~3 hours under 0.2MPa pressure, vacuum suction filter, the rotary furnace drying, when moisture drying in the material when being lower than 8%, crushing screening to 200 order, flooded 48 hours through dilution heat of sulfuric acid, washing, filter, 100 ℃ of dryings after 36 hours, in 200~500 ℃ of roastings 2~6 hours, crushing screening to 200 order promptly forms layer column molecular sieve solid catalyst.
It is as follows to use this catalyst to carry out the synthetic reaction condition control of glycol monoether acetate and diethylene glycol monoether acetate:
A. material ratio:
The mol ratio of acetate and ethylene glycol mono-ether or diethylene glycol monoether is 1.1~1.8, is preferably 1.1~1.5; Acetate is 0.15~0.3 with the mol ratio of band aqua, be preferably 0.20~0.25, the band aqua can be one or more in benzene,toluene,xylene, benzinum, butyl oxide, n-butyl acetate, carbon tetrachloride, n-hexane or the cyclohexane, the effect of band aqua is to take reactants water out of reaction system, and balance is moved to target product; Catalyst consumption is 1.5%~6.5% of an acetate weight, is preferably 3.5%~4.5%.
B. reaction process process:
The catalyst and the reaction mass that prepare are once added in the conventional esterification container according to material ratio given among the above-mentioned A, be heated to 110~150 ℃ of reaction temperatures, after question response carried out 2.5 hours, the mixture filtering recovering catalyst with in the container promptly got product with filtrate rectifying.
Catalyst provided by the invention can be used for following reaction:
1. be raw material with EGME and acetate, the synthesizing glycol methyl ether acetate;
2. be raw material with ethylene glycol ethyl ether and acetate, synthesizing glycol ether acetic acid esters;
3. be raw material with butyl glycol ether and acetate, the synthesizing butyl cellosolve acetic acid esters;
4. be raw material with diethylene glycol dimethyl ether and acetate, synthetic diethylene glycol dimethyl ether acetic acid esters;
5. be raw material with diethylene glycol ether and acetate, synthetic diethylene glycol ether acetic acid esters;
6. be raw material with diethylene glycol butyl ether and acetate, synthetic diethylene glycol butyl ether acetic acid esters.
Layer column molecular sieve solid catalyst provided by the present invention is 95~99.5% to the conversion ratio of synthetic glycol monoether acetate and diethylene glycol monoether acetate (being target product), reach the effect of sulfuric acid, and have following remarkable result as esterification catalyst:
(1) this catalyst is 100% to the selectivity of target product;
(2) adopt this catalyst to simplify production technology, the production cycle is no more than 3 hours;
(3) adopt this catalyst can reduce with sulfuric acid and make equipment such as the set alkali neutralization of catalyst, washing, shortened process is saved equipment investment 50%;
(4) adopt this catalyst that production equipment is not had corrosiveness;
(5) adopt this catalyst to carry out esterification non-wastewater discharge, non-environmental-pollution;
(6) adopt the reaction of this catalyst institute catalysis can save 30%.
Embodiment 1
Reaction mass is formed (weight ratio):
90 parts of acetate
76 parts of EGMEs
18 parts of benzene
3.8 parts of catalyst
Wherein catalyst consists of atlapulgite (SiO 270%, FeSO 44%, Al 2O 32%, MgO 3%, SnO 0.2%, the oxide of Zn, Ca, Na, Mn accounts for 0.1%, surplus is a water) through 10% dilution heat of sulfuric acid dipping 48 hours, washing, filter, 100 ℃ of dryings 36 hours, in 200 ℃ of roastings 4 hours, crushing screening to 200 order promptly forms layer column molecular sieve solid catalyst.
Various materials are added in the conventional esterification container, be heated to 107~125 ℃ of reaction temperatures, after question response carried out 2.5 hours, the mixture filtering recovering catalyst with in the container promptly got product with filtrate rectifying.Reaction conversion ratio is 99.5%, target product selectivity 100%.
Embodiment 2
Reaction mass is formed (weight ratio):
36 parts of acetate
45 parts of EGMEs
18 parts of benzene
1 part of catalyst
Wherein catalyst consists of atlapulgite (SiO 265%, FeSO 43%, Al 2O 32%, MgO 2%, SnO 0.2%, the oxide of Zn, Ca, Na, Mn accounts for 0.2%, surplus is a water) through 15% dilution heat of sulfuric acid dipping 48 hours, washing, filter, 100 ℃ of dryings 36 hours, in 300 ℃ of roastings 3.5 hours, crushing screening to 200 order promptly forms layer column molecular sieve solid catalyst.
Various materials are added in the conventional esterification container, be heated to 115~140 ℃ of reaction temperatures, after question response carried out 2.5 hours, the mixture filtering recovering catalyst with in the container promptly got product with filtrate rectifying.Reaction conversion ratio is 99.2%, target product selectivity 100%.
Embodiment 3
Reaction mass is formed (weight ratio):
36 parts of acetate
59 parts of EGMEs
18 parts of benzene
1 part of catalyst
Wherein catalyst consists of atlapulgite (SiO 268%, FeSO 43.5%, Al 2O 31.5%, MgO 2%, SnO 0.3%, the oxide of Zn, Ca, Na, Mn accounts for 0.1%, surplus is a water) through 20% dilution heat of sulfuric acid dipping 48 hours, washing, filter, 100 ℃ of dryings 36 hours, in 350 ℃ of roastings 3 hours, crushing screening to 200 order promptly forms layer column molecular sieve solid catalyst.
Various materials are added in the conventional esterification container, be heated to 125~176 ℃ of reaction temperatures, after question response carried out 2.5 hours, the mixture filtering recovering catalyst with in the container promptly got product with filtrate rectifying.Reaction conversion ratio is 95.2%, target product selectivity 100%.
Embodiment 4
Reaction mass is formed (weight ratio):
90 parts of acetate
120 parts of diethylene glycol dimethyl ethers
12 parts of benzene
3.8 parts of catalyst
Wherein catalyst consists of atlapulgite (SiO 266%, FeSO 44%, Al 2O 32%, MgO 5%, SnO 0.5%, the oxide of Zn, Ca, Na, Mn accounts for 0.5%, surplus is a water) through 25% dilution heat of sulfuric acid dipping 48 hours, washing, filter, 100 ℃ of dryings 36 hours, in 500 ℃ of roastings 2 hours, crushing screening to 200 order promptly forms layer column molecular sieve solid catalyst.
Various materials are added in the conventional esterification container, be heated to reaction temperature, after question response carried out 2.5 hours, the mixture filtering recovering catalyst with in the container promptly got product with filtrate rectifying.Reaction conversion ratio is 96.5%, target product selectivity 100%.
Embodiment 5
Reaction mass is formed (weight ratio):
36 parts of acetate
67 parts of diethylene glycol dimethyl ethers
18 parts of benzene
2 parts of catalyst
Wherein catalyst consists of atlapulgite (SiO 270%, FeSO 44%, Al 2O 32%, MgO 7%, SnO 0.1%, the oxide of Zn, Ca, Na, Mn accounts for 0.2%, surplus is a water) through 25% dilution heat of sulfuric acid dipping 48 hours, washing, filter, 100 ℃ of dryings 36 hours, in 200 ℃ of roastings 4 hours, crushing screening to 200 order promptly forms layer column molecular sieve solid catalyst.
Various materials are added in the conventional esterification container, be heated to reaction temperature, after question response carried out 2.5 hours, the mixture filtering recovering catalyst with in the container promptly got product with filtrate rectifying.Reaction conversion ratio is 97.2%, target product selectivity 100%.
Embodiment 6
Reaction mass is formed (weight ratio):
36 parts of acetate
81 parts of diethylene glycol dimethyl ethers
18 parts of benzene
2 parts of catalyst
Wherein catalyst consists of atlapulgite (SiO 267%, FeSO 43.8%, Al 2O 30.5%, MgO6.5%, SnO 0.5%, the oxide of Zn, Ca, Na, Mn accounts for 0.3%, surplus is a water) through 25% dilution heat of sulfuric acid dipping 48 hours, washing, filter, 100 ℃ of dryings 36 hours, in 300 ℃ of roastings 3.5 hours, crushing screening to 200 order promptly forms layer column molecular sieve solid catalyst.
Various materials are added in the conventional esterification container, be heated to reaction temperature, after question response carried out 2.5 hours, the mixture filtering recovering catalyst with in the container promptly got product with filtrate rectifying.Reaction conversion ratio is 95.2%, target product selectivity 100%.

Claims (4)

1. ethylene glycol ester class acetic acid esters and diethylene glycol monoesters class acetic acid esters catalyst for synthesizing, it is characterized in that: this catalyst is a layer column molecular sieve, and basic structure is Al 4Si 8O 20(OH) 4NH 2O; Catalyst basic composition is (percentage by weight): SiO 260~70%, FeSO 43~4%, Al 2O 31~2%, the sulfate of Mg, Sn, Zn, Ca, Na, Mn and/or metal oxide 0.1~10%, surplus is a water.
2. according to the described catalyst of claim 1, it is characterized in that: catalyst is formed (percentage by weight) SiO 265~70%, FeSO 43~4%, Al 2O 30.5~2%, MgO 2~3%, SnO 0.2~0.3%, H 2Surplus.
3. described Preparation of catalysts method of claim 1 is characterized in that: with the calcium-base bentonite raw material, and earlier dry its surface moisture 8~20%, activate with the concentrated sulfuric acid, sulfuric acid concentration is controlled at 5~10%, activates 2~3 hours under 0.1~0.5MPa pressure, rinsing, drying; Through dilute sulfuric acid dipping 24~72 hours, washing, drying, 200~500 ℃ of roastings 2~6 hours.
4. according to the described catalyst of claim 1, be used for following reaction: with EGME and acetate is raw material, the synthesizing glycol methyl ether acetate; With ethylene glycol ethyl ether and acetate is raw material, synthesizing glycol ether acetic acid esters; With butyl glycol ether and acetate is raw material, the synthesizing butyl cellosolve acetic acid esters; With diethylene glycol dimethyl ether and acetate is raw material, synthetic diethylene glycol dimethyl ether acetic acid esters; With diethylene glycol ether and acetate is raw material, synthetic diethylene glycol ether acetic acid esters; With diethylene glycol butyl ether and acetate is raw material, synthetic diethylene glycol butyl ether acetic acid esters.
CN98114196A 1998-07-29 1998-07-29 Catalyst for synthesizing glycol monoether acetate and diethylene glycol monoether acetate Expired - Fee Related CN1100616C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN98114196A CN1100616C (en) 1998-07-29 1998-07-29 Catalyst for synthesizing glycol monoether acetate and diethylene glycol monoether acetate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN98114196A CN1100616C (en) 1998-07-29 1998-07-29 Catalyst for synthesizing glycol monoether acetate and diethylene glycol monoether acetate

Publications (2)

Publication Number Publication Date
CN1243040A true CN1243040A (en) 2000-02-02
CN1100616C CN1100616C (en) 2003-02-05

Family

ID=5223871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98114196A Expired - Fee Related CN1100616C (en) 1998-07-29 1998-07-29 Catalyst for synthesizing glycol monoether acetate and diethylene glycol monoether acetate

Country Status (1)

Country Link
CN (1) CN1100616C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239907B (en) * 2008-02-26 2011-06-29 华东师范大学 Method for preparing glycol methyl ether acetate
CN105646221A (en) * 2014-11-14 2016-06-08 辽宁奥克化学股份有限公司 A preparing method of 2-butoxyethyl acetate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775310B (en) * 2012-08-06 2015-04-08 南京林业大学 Synthesis method of dibasic alcohol bi-benzoate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001936B2 (en) * 1990-06-29 2000-01-24 ポリプラスチックス株式会社 Polyester resin for molding with high melting heat stability and molded article thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239907B (en) * 2008-02-26 2011-06-29 华东师范大学 Method for preparing glycol methyl ether acetate
CN105646221A (en) * 2014-11-14 2016-06-08 辽宁奥克化学股份有限公司 A preparing method of 2-butoxyethyl acetate

Also Published As

Publication number Publication date
CN1100616C (en) 2003-02-05

Similar Documents

Publication Publication Date Title
CN102153465B (en) Method for preparing low acid-value fatty acid methyl ester
CN1928016A (en) Preparation method of biological diesel oil
CN101791575B (en) Preparation method of heterogeneous catalyst of organic coordination compounds of mesoporous structure metals
CN1056299A (en) The method for preparing at least a tertiary olefin by the decomposition of corresponding ether
CN1175920C (en) Catalytic yellow phosphorus tail gas oxidizing and purifying method in fixed bed
CN100344671C (en) Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
CN102304045A (en) Integrated process for synthesizing acetyl tributyl citrate (ATBC) from active carbon solid-carried sulphuric acid catalyst
CN1100614C (en) Solid catalyst for synthesizing glycol monoether acetate
CN1100616C (en) Catalyst for synthesizing glycol monoether acetate and diethylene glycol monoether acetate
CN1120049C (en) Supported type heteropolya cid catalyst in synthesis of ethylene glycol series monoethers acetate
CN1861749A (en) Production process of biological diesel
CN1053598C (en) Zirconium oxide catalyst used in glycol series monoether acetate synthesis
CN1332735A (en) Process to afford gamma butyrolactone and tetrahydrofuran
CN1120050C (en) Supported type heteropolyacid catalyst in synthesis of ethylene lycol series supported monoether and diethylene monoethers
CN1224621C (en) Tetrahydrofuran refining process
CN1526476A (en) Catalyst for direct synthesis of methyl carbonate and its prepn
CN101993353A (en) Method for preparing 3-methyl-3-butene-1-alcohol
CN1133493C (en) Efficient catalyst for synthesizing ammonia and its preparing process
CN1048653C (en) Cerium base solid catalyst in synthesizing glycol series monoether acetate
CN110483286B (en) Method for preparing bio-based polyol by catalyzing unsaturated grease to be oxidized and hydrolyzed by tungsten-based solid acid catalyst
CN101391957B (en) Method for preparing tributyl citrate by using rare-earth salt binary complex type solid acid as catalyst
CN1100970A (en) Zirconium-base solid catalyst for synthetizing of glycol series monoether acetic ether
CN102627561A (en) Preparation process for plasticizer-tributyl citrate
CN1218917C (en) Process for preparing ethylene glycol by ethylene oxide catalytic hydration
CN1079283C (en) Load type laminated zirconium sulfate catalyst and its application in preparation of aliphatic alcohol ether acetate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee