CN1238213C - Power output changing-over method and control system for power assembly of mixed powder car - Google Patents
Power output changing-over method and control system for power assembly of mixed powder car Download PDFInfo
- Publication number
- CN1238213C CN1238213C CNB2003101004660A CN200310100466A CN1238213C CN 1238213 C CN1238213 C CN 1238213C CN B2003101004660 A CNB2003101004660 A CN B2003101004660A CN 200310100466 A CN200310100466 A CN 200310100466A CN 1238213 C CN1238213 C CN 1238213C
- Authority
- CN
- China
- Prior art keywords
- engine
- control system
- power
- value
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000011812 mixed powder Substances 0.000 title abstract 4
- 238000007726 management method Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims 4
- 230000033001 locomotion Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 13
- 238000013480 data collection Methods 0.000 abstract description 9
- 239000000446 fuel Substances 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 230000003750 conditioning effect Effects 0.000 description 27
- 238000002955 isolation Methods 0.000 description 11
- 238000004886 process control Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000009347 mechanical transmission Effects 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004092 self-diagnosis Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Images
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
Description
技术领域technical field
本发明属于混合动力轿车动力总成控制技术领域,特别涉及一种混合动力轿车动力总成的动力输出切换方法及多能源动力总成控制系统。The invention belongs to the technical field of hybrid car power assembly control, and in particular relates to a power output switching method of a hybrid electric car power assembly and a multi-energy power assembly control system.
背景技术Background technique
混合动力轿车以其低能耗、低排放等优点,已成为未来汽车技术研究的热点。混合动力电动汽车的动力总成控制系统的研究在国内尚处于起步阶段,仍无成熟技术出现。混合动力轿车的多能源控制系统是一个较为复杂的系统,需要协调处理作为动力源的发动机与电池电机系统之间的关系,同时还要根据需要与AMT(电子控制机械式变速器)控制系统通讯提供换档控制所需的信号以及控制变速箱离合器的结合与分离,众多的传感器信号也加大了多能源控制系统的复杂性。此外,混合动力汽车上存在300多伏的强电系统,多能源控制系统必须能在系统出现故障时,切断强电的供给,保证汽车各部件的安全。现有混合动力轿车的动力传动系统一般采用行星变速机构与电机构成无级变速或采用CVT(无级变速器),其成本较高。采用MT(手动变速器)型式的变速机构,不能实现自动换档,加大了驾驶员的劳动强度。With its advantages of low energy consumption and low emission, the hybrid car has become a hot spot in the research of future automobile technology. The research on the powertrain control system of hybrid electric vehicles is still in its infancy in China, and there is still no mature technology. The multi-energy control system of a hybrid car is a relatively complex system, which needs to coordinate the relationship between the engine as the power source and the battery motor system, and also communicate with the AMT (electronically controlled mechanical transmission) control system to provide The signals required for gear shift control and the combination and disengagement of the control gearbox clutch, and numerous sensor signals also increase the complexity of the multi-energy control system. In addition, there are more than 300 volts of strong power systems on hybrid vehicles, and the multi-energy control system must be able to cut off the supply of strong power when the system fails to ensure the safety of all parts of the car. The power transmission system of the existing hybrid car generally adopts a planetary transmission mechanism and a motor to form a continuously variable speed or adopts a CVT (continuously variable transmission), and its cost is relatively high. Adopting the transmission mechanism of MT (manual transmission) type cannot realize automatic gear shifting, which increases the labor intensity of the driver.
发明内容Contents of the invention
为了实现混合动力轿车动力系统的优化动力输出切换,降低成本。减小轿车排放量,降低油耗,本发明提供了一种混合动力轿车动力总成的动力输出切换方法,其特征在于该方法包括如下步骤:In order to realize the optimal power output switching of the hybrid car power system and reduce the cost. To reduce car emissions and reduce fuel consumption, the invention provides a power output switching method for a hybrid car powertrain, which is characterized in that the method includes the following steps:
1)利用动力总成控制系统采集加速踏板开关和开度、制动踏板开关和开度、发动机转速、电机转速、车速、蓄电池的SOC(State of Charge,充电状态)、电压和电流,以及混合动力轿车系统中各控制单元的故障信息;1) Use the powertrain control system to collect accelerator pedal switch and opening, brake pedal switch and opening, engine speed, motor speed, vehicle speed, battery SOC (State of Charge), voltage and current, and hybrid Fault information of each control unit in the power car system;
2)根据上述故障信息判断是否有故障,如有故障进行如下处理:置电机油门=0%、置发动机油门=0%、关闭ISG(启动发电一体机)、向配电系统发出断电请求并显示故障信息;2) Judging whether there is a fault according to the above fault information, if there is a fault, proceed as follows: set the motor throttle = 0%, set the engine throttle = 0%, close the ISG (integrated starter and generator), send a power-off request to the power distribution system and Display fault information;
3)如采集到AMT的换挡请求,动力总成控制系统减小发动机的油门开度,使换档平缓并给电机发送转速控制命令使AMT输入轴和输出轴达到转速同步;3) If the gear shift request of the AMT is collected, the powertrain control system reduces the throttle opening of the engine to make the gear shift smooth and sends a speed control command to the motor to make the AMT input shaft and output shaft achieve speed synchronization;
4)动力总成控制系统根据车速与加速踏板开度计算驾驶员的扭矩需求;4) The powertrain control system calculates the driver's torque demand according to the vehicle speed and the opening of the accelerator pedal;
5)确定状态转换值,即根据发动机的外特性线性插值计算发动机最大扭矩值,根据发动机20%油门的扭矩特性线性插值计算发动机关闭的最小扭矩值,并将电机额定功率单独驱动下的车速作为最小车速值;5) Determine the state transition value, that is, calculate the maximum torque value of the engine according to the linear interpolation of the external characteristics of the engine, calculate the minimum torque value of the engine off according to the linear interpolation of the torque characteristic of the engine 20% throttle, and use the motor speed under the rated power of the motor alone as minimum speed value;
6)根据所述的状态转换值、蓄电池SOC的上下限值和采集到的制动踏板开关状态进行如下判断,6) According to the state transition value, the upper and lower limit values of the battery SOC and the collected brake pedal switch state, the following judgments are made,
如果制动踏板开关接通,动力总成控制系统进行回收制动能量;如果制动踏板开关未接通,而当前蓄电池SOC值小于SOC下限值,则执行发动机对蓄电池充电,直到蓄电池SOC值大于SOC上限值;如果当前蓄电池SOC值大于SOC的下限值,则If the brake pedal switch is turned on, the powertrain control system will recover braking energy; if the brake pedal switch is not turned on, and the current battery SOC value is less than the SOC lower limit value, the engine will charge the battery until the battery SOC value greater than the SOC upper limit; if the current battery SOC value is greater than the SOC lower limit, then
判断充电过程是否结束,如果未结束,则判断驾驶员的扭矩需求是否大于发动机最大扭矩值,如所述扭矩需求大于发动机最大扭矩值,则进行混合驱动,否则执行发动机对蓄电池充电;Judging whether the charging process is over, if not, then judging whether the driver's torque demand is greater than the maximum torque value of the engine, if the torque demand is greater than the maximum torque value of the engine, perform hybrid driving, otherwise execute the engine to charge the battery;
如果充电过程结束,那么If the charging process ends, then
如果驾驶员的扭矩需求小于发动机关闭的最小扭矩值或车速小于发动机关闭的最小车速值,则动力总成控制系统进行电动驱动;否则If the driver's torque demand is less than the minimum torque value of the engine off or the vehicle speed is less than the minimum vehicle speed value of the engine off, the powertrain control system performs electric drive; otherwise
如果驾驶员的扭矩需求小于发动机最大扭矩值但大于发动机关闭的最小扭矩需求值且车速大于发动机关闭的最小车速值,则动力总成控制系统进行发动机驱动;If the driver's torque demand is less than the maximum engine torque value but greater than the minimum torque demand value for engine shutdown and the vehicle speed is greater than the minimum vehicle speed value for engine shutdown, the powertrain control system performs engine drive;
如果驾驶员的扭矩需求大于发动机最大扭矩值,则动力总成控制系统进行混合驱动;If the driver's torque demand is greater than the maximum torque value of the engine, the powertrain control system performs hybrid driving;
完成状态判断处理后返回步骤1)。Return to step 1) after completing the state judgment process.
第3)步中所述的换档过程控制方法中减小发动机的油门开度至8%。3) Decrease the throttle opening of the engine to 8% in the shift process control method described in the step.
所述蓄电池SOC下限值的范围为(40~50)%;蓄电池SOC上限值的范围为(60~70)%。The range of the battery SOC lower limit is (40-50)%; the range of the battery SOC upper limit is (60-70)%.
第6)步中所述的混合驱动方法为让发动机以100%油门工作,扭矩需求超出发动机最大扭矩值的部分由电机提供。The hybrid drive method described in step 6) is to allow the engine to work with 100% throttle, and the part where the torque demand exceeds the maximum torque value of the engine is provided by the electric motor.
所述的发动机对蓄电池充电的方法为发动机油门在扭矩需求对应的油门开度的基础上增加15%的油门开度用于发电。The method for the engine to charge the storage battery is to increase the throttle opening of the engine by 15% on the basis of the throttle opening corresponding to the torque demand for power generation.
回收制动能量时,电机的发电油门为20%。When recuperating braking energy, the electric motor's generative throttle is 20%.
本发明还提供了一种混合动力轿车动力总成控制系统,其特征在于:该动力总成控制系统包括存储控制程序的主芯片、与所述主芯片的输入口连接的采集AMT控制系统、配电系统、点火开关、加速踏板、制动踏板开关信号的开关量调理电路、与主芯片的A/D口连接的采集加速踏板、制动踏板、电控节气门、蓄电池管理系统模拟信号的模拟量调理电路、与主芯片的PAI(输入脉冲输入捕捉或脉冲累加器)口连接的采集发动机、电机、AMT控制系统脉冲信号的脉冲信号调理电路、与主芯片的电源口连接的电源管理电路、与主芯片的时钟线连接的时钟电路、与主芯片的PWM(脉宽调制输出)口连接的功率驱动、与主芯片的输出口连接的驱动隔离电路、与主芯片的SPI口连接的DA转换电路、与主芯片的SCI口分别连接的串行通讯转换电路和AMT(电子控制机械式变速器)、与主芯片的CAN控制器连接的CAN总线驱动电路、与主芯片的BDM(背景调试)口连接的调试接口,以及与所述开关量调理电路、模拟量调理电路、脉冲信号调理电路连接的抗干扰电路。The present invention also provides a hybrid car powertrain control system, characterized in that: the powertrain control system includes a main chip for storing control programs, an acquisition AMT control system connected to the input port of the main chip, a Electrical system, ignition switch, accelerator pedal, brake pedal switch signal switching value conditioning circuit, connected to the A/D port of the main chip to collect accelerator pedal, brake pedal, electronically controlled throttle, and simulation of battery management system analog signals Quantity conditioning circuit, a pulse signal conditioning circuit connected to the PAI (input pulse input capture or pulse accumulator) port of the main chip to collect the pulse signal of the engine, motor, and AMT control system, a power management circuit connected to the power port of the main chip, The clock circuit connected to the clock line of the main chip, the power drive connected to the PWM (pulse width modulation output) port of the main chip, the drive isolation circuit connected to the output port of the main chip, and the DA conversion connected to the SPI port of the main chip Circuit, serial communication conversion circuit and AMT (electronically controlled mechanical transmission) respectively connected to the SCI port of the main chip, CAN bus driver circuit connected to the CAN controller of the main chip, and BDM (background debugging) port of the main chip The connected debugging interface, and the anti-jamming circuit connected with the switching value conditioning circuit, the analog quantity conditioning circuit, and the pulse signal conditioning circuit.
所述的主芯片采用16位单片机MC68HC12DG128A。The main chip adopts 16-bit single-chip microcomputer MC68HC12DG128A.
采用本发明提供的混合动力轿车动力总成的动力输出切换方法及其控制系统使可大大减小混合动力轿车的排放量,降低轿车的油耗。The power output switching method and the control system of the hybrid car power assembly provided by the invention can greatly reduce the emission of the hybrid car and reduce the fuel consumption of the car.
附图说明Description of drawings
图1是混合动力轿车动力总成系统示意图。Figure 1 is a schematic diagram of the powertrain system of a hybrid car.
图2是动力总成控制系统原理框图。Figure 2 is a block diagram of the powertrain control system.
图3是动力总成控制系统的控制策略流程图。Fig. 3 is a control strategy flow chart of the powertrain control system.
图4是数据采集流程图。Figure 4 is a flow chart of data collection.
图5是故障处理流程图。Figure 5 is a flow chart of fault handling.
图6是换档过程控制流程图。Fig. 6 is a flow chart of shift process control.
图7是回收制动能量流程图。Fig. 7 is a flow chart of recovering braking energy.
图8是发动机对蓄电池充电流程图。Fig. 8 is a flowchart of charging the battery by the engine.
图9是混合驱动流程图。Fig. 9 is a hybrid drive flow chart.
图10是电动驱动流程图。Fig. 10 is a flow chart of electric drive.
图11是发动机驱动流程图。Fig. 11 is a flowchart of engine driving.
具体实施方式Detailed ways
下面结合实施例参照附图进行详细说明,以便对本发明的目的,特征及优点进行更深入的理解。The following detailed description will be given with reference to the accompanying drawings in conjunction with the embodiments, so as to have a deeper understanding of the purpose, features and advantages of the present invention.
混合动力轿车动力总成系统示意图如图1所示,点火开关1、换档手柄2、加速踏板3、制动踏板4、空调7、配电系统19、AMT(电子控制机械式变速器)控制系统11、蓄电池管理系统10、电机控制系统9、发动机控制系统8、电控节气门6、ISG13与动力总成控制系统5具有弱电连接。此外,发动机控制系统8与发动机15之间有弱电连接;电机控制系统9与电动机/发电机17、蓄电池12、配电系统19之间有强电连接;蓄电池管理系统10与蓄电池12有强电连接;AMT控制系统11与AMT18、离合器16有弱电连接;ISG13与蓄电池12有强电连接;发动机15与离合器16之间是机械连接;发电机/电动机17与AMT18之间有机械连接;AMT18与车轮之间有机械连接;以上的连接关系构成了混合动力总成系统。The schematic diagram of the powertrain system of a hybrid car is shown in Figure 1, the
如图2所示,主芯片型号为Motorola公司的16位单片机MC68HC12DG128A,它集成度高,无需进行任何外部扩展,只需在主芯片的基础上加上信号调理电路和输出驱动电路等即可构成完整的控制系统,这就有效地减小了元件数量和连线数目,提高了系统可靠性,减小了体积,便于安装。隔离驱动电路采用集成的低端驱动电路,具有自诊断功能,可靠性高。来自电机控制系统、AMT控制系统、配电系统、加速踏板、制动踏板、点火开关的开关信号经过开关量调理电路37与主芯片41的I/O口连接,开关量调理电路37采用带上拉的RC滤波电路,可以接受不同类型的开关量输入形式,并具有最高电压限定功能,具有较好的灵活性和安全性。来自加速踏板、制动踏板、电控节气门、蓄电池管理系统的模拟信号经过模拟量调理电路36与主芯片41的A/D口连接,模拟量调理电路36采用带电压限定功能的RC滤波电路,具有良好的抗干扰性与安全性。来自发动机控制系统、电机控制系统、AMT控制系统的脉冲信号经过脉冲信号调理电路35与主芯片41的PAI(输入脉冲输入捕捉或脉冲累加器)连接,脉冲信号调理电路35采用光电隔离方式,抗干扰性能好。调试接口38与主芯片41的BDM(背景调试)口连接,电源管理电路39与主芯片41的电源口连接,采用82C250芯片的CAN总线驱动电路40与主芯片41的CAN控制器连接,采用MAX232芯片的串行通讯转换电路43与主芯片41的一个SCI口连接,串行通讯转换电路43可与标定用PC机连接,可进行状态监控和参数标定,主芯片41的另一个SCI口用于与AMT连接,时钟电路44与主芯片41的时钟线连接。采用MAX5250芯片的DA转换电路46与主芯片41的SPI口连接,采用MOTOROLA具备自我保护功能且集成度高的Smart MOS智能功率器件MC33385的驱动隔离电路47主芯片41的输出口连接,采用MOTOROLA具备自我保护功能且集成度高的Smart MOS H桥智能功率器件MC33186的功率驱动48与主芯片41的PWM(脉宽调制输出)口连接,功率驱动电路采用集成的H桥驱动芯片,性能可靠,抗干扰性能好,并具有诊断接口。抗干扰电路49与开关量调理电路37、模拟量调理电路36、脉冲信号调理电路35连接。As shown in Figure 2, the model of the main chip is Motorola's 16-bit single-chip microcomputer MC68HC12DG128A, which has a high degree of integration and does not need any external expansion. It only needs to add signal conditioning circuits and output drive circuits on the basis of the main chip. Complete control system, which effectively reduces the number of components and connections, improves system reliability, reduces volume, and facilitates installation. The isolated drive circuit adopts an integrated low-end drive circuit with self-diagnosis function and high reliability. The switch signals from the motor control system, AMT control system, power distribution system, accelerator pedal, brake pedal, and ignition switch are connected to the I/O port of the
如图3所示,主芯片41接收到动力总成系统的状态量输入信号后进行信号的采集与变换(步骤60)。所述的动力总成系统的状态量包括加速踏板开度、加速踏板开关、制动踏板开度、制动踏板开关、发动机转速、电机转速、车速、蓄电池SOC、蓄电池电压、蓄电池电流及系统中各个控制单元的故障信息等。As shown in FIG. 3 , the
数据采集与变换流程如图4所示,依次通过开关量调理电路37采集加速踏板开关信号(步骤101),通过模拟量调理电路36采集加速踏板开度信号(步骤102),通过开关量调理电路37采集制动踏板开关信号(步骤103),通过模拟量调理电路36采集制动踏板开度信号(步骤104),通过模拟量调理电路36采集节气门开度信号(步骤105),通过脉冲信号调理电路35采集车速信号,通过脉冲信号调理电路35采集发动机转速信号,通过脉冲信号调理电路35采集电机转速信号(步骤106),通过模拟量调理电路36采集蓄电池电压信号、蓄电池电流信号和蓄电池SOC信号(步骤107),通过开关量调理电路37采集电机控制系统、蓄电池管理系统、AMT控制系统、配电系统的故障信号(步骤108),为使数据采集可靠,以上数据循环采集10ms(步骤109),返回主流程(步骤110)。The data collection and conversion process is shown in Figure 4, the accelerator pedal switch signal is collected sequentially through the switching value conditioning circuit 37 (step 101), the accelerator pedal opening degree signal is collected through the analog quantity conditioning circuit 36 (step 102), and the accelerator pedal opening signal is collected through the switching value conditioning circuit 37 (step 102). 37 gather brake pedal switch signal (step 103), gather brake pedal opening signal (step 104) by analog quantity conditioning circuit 36, gather throttle opening signal (step 105) by analog quantity conditioning circuit 36, pass pulse signal The
根据经过处理的采集到的信号,首先判断系统中的零部件是否有故障(步骤61),如果系统出现故障(步骤61),则转向故障处理程序(步骤62)。故障处理流程如图5所示,依次通过DA转换电路46给电机控制系统9发送信号置电机油门为0%(步骤151),通过功率驱动48置发动机15油门为0%(步骤152),通过隔离驱动电路47给ISG(启动-发电-体机)13发送信号关闭ISG13(步骤153),通过隔离驱动电路47向配电系统19发出断电请求(步骤154)。According to the collected signal after processing, at first judge whether the components in the system have faults (step 61), if the system breaks down (step 61), then turn to the fault processing program (step 62). Troubleshooting process as shown in Figure 5, by DA
如果系统没有故障(步骤61),程序接着判断AMT18是否有换档请求(步骤63),如果AMT18有换档请求(步骤63),则主芯片41执行换档过程控制(步骤64)。换档过程控制流程如图6所示,动力总成控制系统5通过SCI串行通讯接口143采集AMT控制系统11的信号,采集到AMT控制的发动机油门开度,以及电机转速同步信号(步骤201),通过隔离驱动电路47给电机控制系统9发送开关量信号使电机17执行转速控制命令使AMT输入轴和输出轴达到转速同步(步骤202),动力总成控制系统5根据采集到AMT控制的发动机油门开度减小发动机8的油门开度使换档平缓无冲击(步骤203)。接着判断AMT18是否撤销了换档请求(步骤204),如果AMT18没有撤销换档请求(步骤204),则继续步骤201、步骤202、步骤203,如果AMT18撤销换档请求(步骤204),则返回主流程(步骤205)。如果AMT18没有换档请求(步骤63),则主芯片41根据经过采集到的加速踏板开度和车速信号计算扭矩需求(步骤65),主芯片41接着计算状态转换分界值(步骤66),状态转换分界值包括:发动机关闭的最小车速值、发动机关闭的最小扭矩值和发动机最大扭矩值。动力总成控制系统把状态转换分界值、加速踏板开度、车速、制动踏板开关、蓄电池SOC值作为控制多能源动力总成状态切换的依据。主芯片41在计算状态转换分界值后判断制动踏板开关信号(步骤67),如果制动踏板踩下(步骤67),则主芯片41执行制动能量回收(步骤68)。If system does not have fault (step 61), program then judges whether AMT18 has shift request (step 63), if AMT18 has shift request (step 63), then
回收制动能量流程如图7所示,首先通过功率驱动48置发动机15油门开度为0%(步骤301),通过隔离驱动电路47给发动机控制系统8发送信号使发动机15断油(步骤302),然后判断车速是否大于5km/h(步骤303),如果车速是大于5km/h(步骤303),通过DA转换电路46给电机控制系统9发送信号置电机油门为20%,并通过隔离驱动电路47给电机控制系统9发送信号置电机17为发电状态(步骤305),如果车速是小于5km/h(步骤303),通过DA转换电路46给电机控制系统9发送信号置电机油门为0%,并通过隔离驱动电路47给电机控制系统9发送信号置电机17为空转状态(步骤304),然后返回到数据采集(步骤306);如果制动踏板没有踩下(步骤67),主芯片41继续判断蓄电池SOC是否小于SOC的下限值(步骤69),如果通过模拟量调理电路36采集到的电池SOC值小于SOC的下限值(步骤69),则主芯片41执行发动机15对蓄电池12充电(步骤70)。Recover braking energy flow process as shown in Figure 7, at first set engine 15 throttle openings to be 0% (step 301) by power drive 48, send signal to engine control system 8 by isolation drive circuit 47 and make engine 15 cut off oil (step 302 ), then judge whether the speed of a vehicle is greater than 5km/h (step 303), if the speed of a vehicle is greater than 5km/h (step 303), send a signal to motor control system 9 by DA conversion circuit 46 and set the motor throttle as 20%, and drive through isolation Circuit 47 sends signal to motor control system 9 and puts motor 17 in the power generation state (step 305), if the vehicle speed is less than 5km/h (step 303), sends signal to motor control system 9 by DA conversion circuit 46 and puts motor throttle as 0% , and send signal to motor control system 9 by isolation drive circuit 47 and set motor 17 as idling state (step 304), then return to data acquisition (step 306); if brake pedal is not stepped on (step 67), main chip 41 Continue to judge whether the storage battery SOC is less than the lower limit value of SOC (step 69), if the battery SOC value gathered by the analog quantity conditioning circuit 36 is less than the lower limit value of SOC (step 69), then main chip 41 executes motor 15 to accumulator 12 Charging (step 70).
发动机15对蓄电池12充电流程如图8所示,首先判断发动机15是否已经启动(步骤401),如果发动机15没有启动(步骤401),则主芯片41通过功率驱动48给ISG13发送信号以启动发动机15(步骤402),如果发动机15已经启动(步骤401),则主芯片41通过功率驱动48给AMT控制系统11发送结合离合器命令以结合离合器(步骤403),然后置发动机油门为在加速踏板开度的基础上增加10%(步骤404),接着主芯片41通过DA转换电路46给电机控制器9发送信号置电机油门为10%,并置电机17为发电状态(步骤405),最后将充电标志置1(步骤406),程序接着判断如果蓄电池SOC是否大于SOC的上限值(步骤407),如果蓄电池SOC大于SOC的上限值(步骤407),则程序清除充电标志(步骤408),退出发动机15对蓄电池12充电过程并返回数据采集(步骤409),如果蓄电池SOC小于SOC的上限值(步骤407),则退出发动机15对蓄电池12充电过程(步骤409),再返回数据采集(步骤60)。如果蓄电池SOC大于SOC的下限值(步骤69),程序判断充电标志是否有效以判断充电过程是否结束(步骤71),如果充电过程未结束(步骤71),则程序判断驾驶员的扭矩需求是否大于发动机最大扭矩值,即程序判断驾驶员扭矩需求是否在混合驱动区域(步骤72),如驾驶员的扭矩需求小于发动机最大扭矩值,则驾驶员扭矩需求不是在混合驱动区域(步骤72),则需要继续对蓄电池12充电,转向发动机15对蓄电池12充电流程(步骤70),如驾驶员的扭矩需求大于发动机最大扭矩值,则驾驶员扭矩需求是在混合驱动区域(步骤72),则程序转向混合驱动处理过程(步骤77)。Engine 15 charges battery 12 flow process as shown in Figure 8, at first judge whether engine 15 has started (step 401), if engine 15 does not start (step 401), then main chip 41 sends signal to ISG13 by power drive 48 to start engine 15 (step 402), if the engine 15 has started (step 401), then the main chip 41 sends the combined clutch command to the AMT control system 11 through the power drive 48 to combine the clutch (step 403), and then set the engine throttle to open the accelerator pedal Increase 10% (step 404) on the basis of speed, then the main chip 41 sends a signal to the motor controller 9 through the DA conversion circuit 46 to set the motor throttle to 10%, and the juxtaposed motor 17 is in the power generation state (step 405), and finally the charging Flag puts 1 (step 406), and program then judges whether accumulator SOC is greater than the upper limit of SOC (step 407), if accumulator SOC is greater than the upper limit of SOC (step 407), then program clears charging sign (step 408), Exit engine 15 and return to data collection (step 409) to storage battery 12 charging process, if storage battery SOC is less than the upper limit value (step 407) of SOC, then exit engine 15 to storage battery 12 charging process (step 409), return to data collection (step 409) again Step 60). If the battery SOC is greater than the lower limit of SOC (step 69), the program judges whether the charging sign is effective to judge whether the charging process ends (step 71), if the charging process does not end (step 71), then the program judges whether the driver's torque demand is Greater than the maximum engine torque value, that is, the program judges whether the driver's torque demand is in the hybrid driving area (step 72), as the driver's torque demand is less than the engine maximum torque value, then the driver's torque demand is not in the hybrid driving area (step 72), Then need to continue charging
混合驱动流程如图9所示,首先判断发动机15是否已经启动(步骤501),如果发动机15没有启动(步骤501),则主芯片41通过功率驱动48启动ISG13以启动发动机15(步骤502),如果发动机15已经启动(步骤501),则主芯片41通过功率驱动48给AMT控制系统11发送结合离合器命令以结合离合器(步骤503),然后程序通过功率驱动48给发动机控制系统8发送信号置发动机15油门为100%(步骤504),接着计算电机油门,并置电机17为驱动状态(步骤505),完成混合驱动控制后退出并返回数据采集(步骤506)。如果充电过程结束(步骤71),程序接着判断驾驶员的扭矩需求是否小于发动机关闭的最小扭矩需求值且车速小于发动机关闭的最小车速值,即判断驾驶员扭矩需求是否处于电动驱动区域(步骤73),如果扭矩需求处于电动驱动区域(步骤73),程序转入电动驱动处理过程(步骤76)。Hybrid drive process as shown in Figure 9, first judge whether
电动驱动流程如图10所示。电动驱动首先通过隔离驱动电路47给发动机控制系统8发送信号使发动机15断油(步骤601),接着通过功率驱动48给AMT控制系统11发送结合离合器命令以结合离合器(步骤602),然后计算电机油门开度(步骤603),并通过隔离驱动电路47给电机控制系统9发送信号置电机17为驱动状态(步骤604),再退出电动驱动状态并返回数据采集(步骤506)。如果驾驶员扭矩需求不处于电动驱动区域,即驾驶员的扭矩需求大于发动机关闭的最小扭矩需求值或车速大于发动机关闭的最小车速值(步骤73),程序继续判断驾驶员扭矩需求是否处于发动机驱动区域,即是否驾驶员的扭矩需求小于发动机最大扭矩值(步骤75),如果驾驶员扭矩需求不处于发动机驱动区域,即驾驶员的扭矩需求大于发动机最大扭矩值(步骤75),则执行混合驱动处理程序(步骤77),然后返回数据采集(步骤60)。如果驾驶员扭矩需求处于发动机驱动区域,即驾驶员的扭矩需求小于发动机最大扭矩值(步骤75),则执行发动机驱动处理程序(步骤76)。The electric drive process is shown in Figure 10. The electric drive first sends a signal to the
发动机驱动处理程序如图11所示,首先判断发动机15是否已经启动(步骤801),如果发动机15没有启动(步骤801),则主芯片41通过功率驱动48启动ISG13以启动发动机15(步骤802),如果发动机15已经启动(步骤801),则主芯片41通过功率驱动48给电机控制器9发送信号,使电机17处于空转状态(步骤803),然后主芯片41通过功率驱动48给AMT控制系统11发送结合离合器命令以结合离合器(步骤804),接着程序计算发动机节气门开度,并通过功率驱动48给发动机控制系统8发送信号设置发动机15油门,再退出发动机驱动并返回数据采集(步骤806)。Engine drive processing program as shown in Figure 11, at first judge whether
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2003101004660A CN1238213C (en) | 2003-10-17 | 2003-10-17 | Power output changing-over method and control system for power assembly of mixed powder car |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2003101004660A CN1238213C (en) | 2003-10-17 | 2003-10-17 | Power output changing-over method and control system for power assembly of mixed powder car |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1528612A CN1528612A (en) | 2004-09-15 |
CN1238213C true CN1238213C (en) | 2006-01-25 |
Family
ID=34304050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2003101004660A Expired - Fee Related CN1238213C (en) | 2003-10-17 | 2003-10-17 | Power output changing-over method and control system for power assembly of mixed powder car |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1238213C (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101774372A (en) * | 2010-02-24 | 2010-07-14 | 清华大学 | Driving anti-skid control system of hybrid electric vehicle and control method thereof |
CN101695912B (en) * | 2009-10-26 | 2012-09-12 | 纽贝耳汽车(杭州)有限公司 | Entire electric car control method |
CN101875335B (en) * | 2009-04-30 | 2013-03-13 | 比亚迪股份有限公司 | Vehicle-mounted assistant system of hybrid power vehicle and control method as well as vehicle containing system |
CN101875336B (en) * | 2009-04-30 | 2014-05-28 | 比亚迪股份有限公司 | Vehicular assistant system, control method and vehicle provided with system |
CN104648379A (en) * | 2015-02-11 | 2015-05-27 | 浙江大学 | Hybrid bus online self-learning energy management method |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7559387B2 (en) * | 2004-12-20 | 2009-07-14 | Gm Global Technology Operations, Inc. | Deceleration rate based engine spin control and engine off functionality |
DE102005018437A1 (en) * | 2005-04-21 | 2006-10-26 | Robert Bosch Gmbh | Method for operating a vehicle drive and apparatus for carrying out the method |
CN100425966C (en) * | 2005-05-18 | 2008-10-15 | 奇瑞汽车股份有限公司 | Power assembly experimental apparatus for hybrid power automobile |
JP4215043B2 (en) * | 2005-11-17 | 2009-01-28 | トヨタ自動車株式会社 | POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE |
US7206687B1 (en) * | 2006-04-06 | 2007-04-17 | General Motors Corporation | Method for controlling a hybrid electric vehicle |
US7693625B2 (en) * | 2007-01-09 | 2010-04-06 | Gm Global Technology Operations, Inc. | State of health monitoring and reset methods and systems for on-board device driver integrated circuits |
CN101066674B (en) * | 2007-02-09 | 2013-11-06 | 联合汽车电子有限公司 | Architecture and system of safe torque monitor for mixed power automobile |
CN101323302B (en) * | 2007-07-31 | 2011-06-22 | 北京理工大学 | A clutchless shift control method and control system for a pure electric vehicle |
CN101357633B (en) * | 2007-07-31 | 2011-05-18 | 比亚迪股份有限公司 | Driving method and system of tandem type hybrid vehicle |
US7774109B2 (en) * | 2007-09-19 | 2010-08-10 | Gm Global Technology Operations, Inc. | Method and apparatus for managing torque inputs to an electro-mechanical transmission |
CN101918259B (en) * | 2007-09-21 | 2012-12-19 | 桂林星辰电力电子有限公司 | An economic operation method of an engine having servo control system |
US8121766B2 (en) * | 2007-11-04 | 2012-02-21 | GM Global Technology Operations LLC | Method for operating an internal combustion engine to transmit power to a driveline |
US8214120B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Method to manage a high voltage system in a hybrid powertrain system |
US8013554B2 (en) * | 2007-11-08 | 2011-09-06 | GM Global Technology Operations LLC | Shutdown path performance test for permanent magnet AC motor in hybrid powertrain |
CN101259845A (en) | 2007-12-05 | 2008-09-10 | 奇瑞汽车股份有限公司 | Mixed power motor torsional moment smoothness processing controlling system |
CN101264734B (en) * | 2007-12-29 | 2010-11-10 | 奇瑞汽车股份有限公司 | System protection control method for hybrid power automobile |
CN101235786B (en) * | 2008-01-08 | 2010-06-02 | 华夏龙晖(北京)汽车电子科技有限公司 | Engine electric control unit |
CN101577444B (en) * | 2009-04-14 | 2011-07-13 | 奇瑞汽车股份有限公司 | Electric quantity controlling method of high-voltage battery of pluggable hybrid-power vehicle in series |
JP5655067B2 (en) * | 2010-05-12 | 2015-01-14 | 本田技研工業株式会社 | Control device for hybrid vehicle |
CN101913326B (en) * | 2010-07-13 | 2012-05-23 | 北京理工大学 | Regenerative braking energy feedback circuit system for dual motor drive hybrid track-laying vehicle |
CN101947939B (en) * | 2010-09-30 | 2012-05-02 | 重庆长安汽车股份有限公司 | Method for diagnosing and processing faults of accelerator pedal of medium hybrid electric vehicle |
CN102029888B (en) * | 2010-11-26 | 2013-07-10 | 北京工业大学 | Power system for mechanical-electrical-liquid hybrid-driven vehicle and control method thereof |
CN102030005B (en) * | 2010-12-10 | 2013-07-03 | 上海中科深江电动车辆有限公司 | Automatic mechanical transmission control method in inertia sliding state of electric automobile |
CN102529945B (en) * | 2010-12-29 | 2015-06-17 | 上海汽车集团股份有限公司 | Halt control method and system of hybrid power vehicle |
CN102529948B (en) * | 2010-12-31 | 2015-06-17 | 上海汽车集团股份有限公司 | Fuel cut sliding gear-shifting control method of hybrid power vehicle |
CN102126496B (en) * | 2011-01-24 | 2013-01-16 | 浙江大学 | Parallel hybrid management control system and management control method thereof |
JP5520250B2 (en) * | 2011-04-05 | 2014-06-11 | 富士重工業株式会社 | Hybrid vehicle control system |
CN102267459B (en) * | 2011-05-17 | 2013-07-10 | 清华大学 | Driving antiskid adjustment and control method for motor-driven vehicle |
CN102263428B (en) * | 2011-06-22 | 2013-07-24 | 武汉理工大学 | Distributed battery management system (BMS) based on three-layer CAN (controller area network) network and self-powered characteristic |
CN103091633A (en) * | 2011-10-27 | 2013-05-08 | 北京航天发射技术研究所 | Estimating device and method of lead-acid storage battery level |
CN103158695B (en) * | 2011-12-16 | 2016-01-13 | 北汽福田汽车股份有限公司 | The control method that hybrid electric vehicle power distributes |
CN102529972B (en) * | 2012-01-11 | 2015-11-25 | 重庆长安汽车股份有限公司 | A kind of mixing dynamical vehicle torsional moment control method for coordinating and system |
CN102829912B (en) * | 2012-08-30 | 2014-04-09 | 清华大学 | DC power measurement loading system |
CN104071147B (en) * | 2013-03-26 | 2016-09-07 | 北汽福田汽车股份有限公司 | Hybrid vehicle and torque control method and device |
CN104417523B (en) * | 2013-09-09 | 2017-07-21 | 比亚迪股份有限公司 | The control system and control method of hybrid vehicle |
CN104417344B (en) | 2013-09-09 | 2017-03-15 | 比亚迪股份有限公司 | Hybrid vehicle and its drive control method |
CN104417347B (en) | 2013-09-09 | 2017-08-04 | 比亚迪股份有限公司 | The control system and control method of hybrid vehicle |
CN104417557B (en) | 2013-09-09 | 2017-07-04 | 比亚迪股份有限公司 | A kind of vehicle slides feedback control system and its control method |
CN104417346B (en) | 2013-09-09 | 2017-04-12 | 比亚迪股份有限公司 | Control system and control method of hybrid electrical vehicle (HEV) |
CN104417544B (en) | 2013-09-09 | 2017-08-22 | 比亚迪股份有限公司 | The control system and control method of hybrid vehicle |
CN104417543B (en) | 2013-09-09 | 2017-08-22 | 比亚迪股份有限公司 | The control system and control method of hybrid vehicle |
CN104417345B (en) * | 2013-09-09 | 2017-08-04 | 比亚迪股份有限公司 | The control system and control method of hybrid vehicle |
CN104417554B (en) | 2013-09-09 | 2018-03-13 | 比亚迪股份有限公司 | Hybrid vehicle and its cruise control method |
CN104632425B (en) * | 2013-11-12 | 2017-06-23 | 陕西国力信息技术有限公司 | A kind of control system of electronic throttle valve based on A MT systems |
KR101534731B1 (en) * | 2013-12-26 | 2015-07-27 | 현대자동차 주식회사 | Regenerative Brake Apparatus of Hybrid Vehicle and Method Thereof |
CN103726933B (en) * | 2014-01-13 | 2017-02-01 | 东风汽车公司 | Hybrid power gasoline engine air damper control method |
CN103997109A (en) * | 2014-05-05 | 2014-08-20 | 顾唯一 | Generator controller work method of gasoline-electric mixing electric vehicle and related controller thereof |
CN107117159B (en) * | 2017-05-12 | 2018-02-27 | 吉林大学 | A kind of CVT parallel hybrid electrics operator demand's torque estimation method |
CN108973978A (en) * | 2018-07-25 | 2018-12-11 | 合肥市智信汽车科技有限公司 | A kind of mixed power automobile control system |
CN113460026B (en) * | 2021-07-02 | 2024-01-19 | 北京汽车集团越野车有限公司 | Power distribution method, device, equipment and automobile |
CN113911097B (en) * | 2021-10-12 | 2023-04-07 | 东风越野车有限公司 | Control system and control method of hybrid vehicle with single ISG motor |
CN115571111B (en) * | 2022-11-23 | 2023-03-24 | 中国第一汽车股份有限公司 | Mode switching control method for ISG hybrid vehicle power system, vehicle and storage medium |
-
2003
- 2003-10-17 CN CNB2003101004660A patent/CN1238213C/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101875335B (en) * | 2009-04-30 | 2013-03-13 | 比亚迪股份有限公司 | Vehicle-mounted assistant system of hybrid power vehicle and control method as well as vehicle containing system |
CN101875336B (en) * | 2009-04-30 | 2014-05-28 | 比亚迪股份有限公司 | Vehicular assistant system, control method and vehicle provided with system |
CN101695912B (en) * | 2009-10-26 | 2012-09-12 | 纽贝耳汽车(杭州)有限公司 | Entire electric car control method |
CN101774372A (en) * | 2010-02-24 | 2010-07-14 | 清华大学 | Driving anti-skid control system of hybrid electric vehicle and control method thereof |
CN101774372B (en) * | 2010-02-24 | 2012-11-21 | 清华大学 | Driving anti-skid control system of hybrid electric vehicle and control method thereof |
CN104648379A (en) * | 2015-02-11 | 2015-05-27 | 浙江大学 | Hybrid bus online self-learning energy management method |
Also Published As
Publication number | Publication date |
---|---|
CN1528612A (en) | 2004-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1238213C (en) | Power output changing-over method and control system for power assembly of mixed powder car | |
CN101419433B (en) | Multi-energy integrated hybrid platform system | |
US6334079B1 (en) | Determination method and apparatus for permitting deceleration regeneration or charge of hybrid vehicle | |
WO2004052672A1 (en) | Power system for dual-motor-generators hybrid electric vehicle | |
CN110539745B (en) | A mode selection control method and device for electromechanical coupling gearbox | |
CN105691182A (en) | Hybrid power system based on AMT and control method of hybrid power system | |
CN101219665A (en) | A hybrid electric vehicle energy management method based on integrated energy flow | |
CN101244721A (en) | Multi-power-operated control method and system for hybrid power vehicle | |
CN1919632A (en) | Double generator series-parallel mixing dynamic assembly | |
CN103660913A (en) | Energy distribution method for single-shaft parallel-connection hybrid electric bus | |
CN104554241A (en) | Multi-mode relatively independent oil-electric hybrid power system and control method thereof | |
CN205326789U (en) | Hybrid power device based on AMT | |
KR102672892B1 (en) | Apparatus for controlling hybrid vehciel having electric supercharger and method using the same | |
CN1465491A (en) | Parallel hybrid electric vehicle multi-energy powertrain controller | |
CN111267832B (en) | Hybrid transmission control system and hybrid vehicle | |
CN104960408A (en) | Transmission system of series-parallel hybrid oil-electric vehicle | |
CN1438137A (en) | Gear-shifting control method for parallel mixed powder system | |
CN200971055Y (en) | Wind generating and electric mixed power drive device | |
EP1651461A1 (en) | A method and an apparatus for controlling a diesel hybrid vehicle | |
CN102529949B (en) | Process control method of hybrid system | |
CN111845318B (en) | Control method of extended-range driving system | |
CN113459791A (en) | Hybrid electric vehicle and energy management control method applying same | |
CN201371736Y (en) | Series-parallel PLUG-IN hybrid power system based on electromechanical coupled structure | |
CN200974464Y (en) | Electric power hydraulic transmission automobile | |
CN115891611A (en) | Driving system, control system and control method of a hybrid electric vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060125 |