CN1222820C - Equalization method and apparatus for long distance transmitting optical power - Google Patents

Equalization method and apparatus for long distance transmitting optical power Download PDF

Info

Publication number
CN1222820C
CN1222820C CNB021250138A CN02125013A CN1222820C CN 1222820 C CN1222820 C CN 1222820C CN B021250138 A CNB021250138 A CN B021250138A CN 02125013 A CN02125013 A CN 02125013A CN 1222820 C CN1222820 C CN 1222820C
Authority
CN
China
Prior art keywords
adjustable damping
wave multiplexer
balanced unit
optical power
gain flattening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB021250138A
Other languages
Chinese (zh)
Other versions
CN1466301A (en
Inventor
谭松
魏海滨
易兴文
余祺琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CNB021250138A priority Critical patent/CN1222820C/en
Publication of CN1466301A publication Critical patent/CN1466301A/en
Application granted granted Critical
Publication of CN1222820C publication Critical patent/CN1222820C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

The present invention relates to a method and a device for equalizing long distance transmission optical power of multiplex communication. The method comprises the procedure that a multilevel transmission link is formed by multilevel linear amplification in a signal transmission circuit. The present invention is characterized in that an adjustable attenuation synthesizer adopted at a signal sending end is connected with a power amplifier to perform pre-equalization on the optical power of all the light sources, and optical power is equalized by an equalizing unit of a gain flattening filter; the gain flattening filter is used in the multilevel transmission link to form the equalizing unit of the gain flattening filter; then, the optical power is equalized by an equalizing unit of the adjustable attenuation synthesizer. The inner part of the equalizing unit of the adjustable attenuation synthesizer is connected with the power amplifier and a monitoring feedback device to sample, analyze and process output signal data and to automatically regulate the attenuation amounts of all the channels. The present invention has the advantages of simplicity, easy operation, favorable performance and high practicability. The present invention is especially suitable for the long distance optical transmission of dense wavelength division multiplexing signals or the extra long distance optical transmission of the dense wavelength division multiplexing signals.

Description

Long distance transmitting optical power equalization methods and device
Technical field
The present invention relates to multiplex communication, relate in particular to a kind of long distance transmitting optical power equalization methods and device.
Background technology
Because Er-doped fiber EDFA, Raman Raman amplifier gain spectrum is not definitely smooth, the excited Raman Raman scattering of the decay spectra unevenness of dispersion compensation module DCM and optical fiber and optical fiber etc., dense wave division multipurpose DWDM signal is along with the increase of transmission range, its power unevenness degree is with cumulative rises, this situation can be ignored in the not limited short-distance and medium-distance dense wave division multipurpose DWDM transmission of Optical Signal To Noise Ratio OSNR, but in long distance even extra long distance transmission, then have to consider, with 100GHz interval C-Band40 Bomi collection wavelength-division multiplex dwdm system is example, under the condition of not carrying out power equalization through 500 kilometers transmission after, power unevenness about 5dB is just arranged, continue the farther luminous power apart from each channel of transmission with uneven, the Optical Signal To Noise Ratio OSNR of local channel will corrupt to the stage that receiving end can't normally receive; For realizing the transmission of longer distance, must carry out light power equalization to system, the sufficiently high channel light power of Optical Signal To Noise Ratio OSNR is suitably regulated, to remedy the luminous power of the serious deterioration channel of Optical Signal To Noise Ratio OSNR, reach the whole balanced effect of each channel light power, thereby guarantee that all channel light signal to noise ratio (S/N ratio) OSNR all can maintain in system's allowed band.
Dense wave division multipurpose DWDM signal is in the short-distance and medium-distance transmission system of hundreds of kilometer, use the method for gain flattening filter GFF slope equilibrium can satisfy short-distance and medium-distance transmission system demand, it has, and Insertion Loss is little, cost is low, uses more extensive in the not limited short-distance and medium-distance transmission system of Optical Signal To Noise Ratio OSNR.
Though it is wider that gain flattening filter GFF uses in the short-distance and medium-distance transmission at present, but, there is inconsistency in the power spectrum of actual balanced unit, in the engineering design of reality, gain flattening filter GFF can not customize one by one, therefore, use the gain flattening filter GFF of same specification to carry out to cause extra power unevenness after the multi-stage equalizing, this is particularly evident under long distance or extra long distance situation, and the dirigibility of this equalization scheme is relatively poor, system configuration upgrading difficulty.
Transmission line uses adjustable damping wave multiplexer VMUX balanced unit system's luminous power unevenness degree can be limited in the very little scope, but adjustable damping wave multiplexer VMUX equal power cost is big, if each adjustable damping wave multiplexer VMUX balanced unit multi-stage cascade can increase the system power budget, the corresponding raising of cost, and, when extra long distance transmits, because the technology of gain flattening filter GFF is made the normalization requirement of precision and gain flattening filter GFF device, after gain flattening filter GFF equilibrium, each gain flattening filter GFF balanced unit still has the luminous power unevenness degree about 2dB, luminous power unevenness degree reaches more than the 5dB behind 4 gain flattening filter GFF balanced units of cascade transmission, part passage Optical Signal To Noise Ratio OSNR has corrupted to and can't normally receive, amplifier meeting deterioration Optical Signal To Noise Ratio OSNR in order to compensation power makes limited transmission distance.
Summary of the invention
The object of the present invention is to provide a kind of dirigibility higher, long distance transmitting optical power equalization methods and device that cost is relatively low.
The method applied in the present invention is: adopt multistage linear amplification in the signal transmission, it is characterized in that:
At first, at signal sending end each light source light power is carried out the pre-emphasis equilibrium; Carry out light power equalization through gain flattening filter GFF balanced unit again; At last, regulate the damping capacity realization light power equalization of each channel by adjustable damping wave multiplexer VMUX balanced unit;
Among the described step C, further access power amplifier PA in described adjustable damping wave multiplexer VMUX balanced unit carries out power back-off to the light signal behind the light power equalization;
Among the described step C, further insert a monitoring feedback assembly in described adjustable damping wave multiplexer VMUX balanced unit, output signal data is carried out sampling analysis, processing, retroactive effect is regulated each fading channel amount automatically in adjustable damping wave multiplexer VMUX.
Realize the long distance transmitting optical power equalizing device of above-mentioned light power equalization method, be included in the multistage linear amplification in the signal transmission line, form multistage transmission link, it is characterized in that: connect adjustable damping wave multiplexer VMUX and power amplifier BA at signal sending end, link to each other successively with at least one gain flattening filter GFF balanced unit (1) and adjustable damping wave multiplexer VMUX balanced unit (2) again; Described gain flattening filter balanced unit (1) comprises described multistage transmission link and gain flattening filter GFF who is made of multistage linear amplifier; Described adjustable damping wave multiplexer VMUX balanced unit (2) comprises channel-splitting filter AWG, adjustable damping wave multiplexer VMUX and monitoring feedback assembly, channel-splitting filter AWG and adjustable damping wave multiplexer VMUX are linked in sequence, the monitoring feedback assembly according to the output data retroactive effect of adjustable damping wave multiplexer VMUX in adjustable damping wave multiplexer VMUX.
The multistage link of gain flattening filter GFF balanced unit constitutes multistage gain flattening filter GFF balanced unit transmission link; The transmission link progression of described gain flattening filter GFF balanced unit is 6; In the adjustable damping wave multiplexer VMUX balanced unit, described adjustable damping wave multiplexer VMUX output further connects power amplifier PA; Adjustable damping wave multiplexer VMUX balanced unit inserts a monitoring feedback assembly, and output signal data is carried out sampling analysis, processing, and retroactive effect is regulated each fading channel amount automatically in adjustable damping wave multiplexer VMUX; The monitoring feedback assembly comprise optical power monitoring OPM and digital signal processor DSP, optical power monitoring OPM carries out sampling analysis, processing to output signal data, by the digital signal processor DSP retroactive effect in adjustable damping wave multiplexer VMUX.
Beneficial effect of the present invention is: in the present invention, at first adopt the equilibrium of light source pre-emphasis, the flatness that enters transmission link dense wave division multipurpose DWDM signal light power spectrum is in the past remained on certain level, reach the effect that suppresses Optical Signal To Noise Ratio OSNR deterioration, the elevator system performance, and then adopt gain flattening filter GFF balanced unit to carry out light power equalization, and give full play to the advantage of gain flattening filter GFF, reduced most possibly and realized balanced cost; Utilize adjustable damping wave multiplexer VMUX come further EQ Gain flat filter GFF equilibrium remaining uneven degree, not only improved portfolio effect, and greatly promoted the dirigibility of system configuration, can well adaptive system the optimization of configuration, upgrading, make whole equalization scheme not only have advantage on the cost, and this scheme is simple, the degree of regulation height, portfolio effect is good, the optimization of energy flexible adaptation system configuration, therefore, with the light source pre-emphasis, gain flattening filter GFF is balanced to combine with adjustable damping wave multiplexer VMUX equilibrium, can realize the transmission of dense wave division multipurpose DWDM light signal over distance smoothly, not only cost is reasonable, and the light power equalization effect is obvious, and system configuration is flexible, and the total system performance index meet the requirement of long haul optical transmission fully, make the present invention simple, functional.
The multistage link of gain flattening filter GFF balanced unit, constitute multistage gain flattening filter GFF balanced unit link, and gain flattening filter GFF balanced unit is in per 6 grades of transmission links, be N=6, use a gain flattening filter GFF, can utilize gain flattening filter GFF to reduce cost largely, simultaneously, the increase of the total system relative cost that makes the extra power unevenness under long distance or extra long distance situation that multistage gain flattening filter GFF balanced unit causes be unlikely to influence the performance of total system or cause has thus improved the practicality of the present invention and the ratio of performance to price; In the adjustable damping wave multiplexer VMUX balanced unit, adjustable damping wave multiplexer VMUX output connects power amplifier PA, can remedy the Insertion Loss of adjustable damping wave multiplexer VMUX balanced unit, as power back-off, improves overall performance; Adjustable damping wave multiplexer VMUX balanced unit inserts a monitoring feedback assembly, output signal data is carried out sampling analysis, processing, retroactive effect is in adjustable damping wave multiplexer VMUX, automatically regulate each fading channel amount, and the monitoring feedback assembly adopts optical power monitoring OPM and digital signal processor DSP that output signal data is carried out sampling analysis, processing, feedback, make the present invention realize the real-time control of robotization, and further improved the adjustment degree of accuracy, improved performance of the present invention and practicality.
In a word, the present invention is simple, functional, practical, is particularly useful for long distance or the transmission of extra long distance dense wave division multipurpose DWDM flashlight.
Description of drawings
Fig. 1 is for adopting the balanced synoptic diagram of adjustable damping wave multiplexer pre-emphasis;
Fig. 2 is a gain flattening filter GFF balanced unit synoptic diagram;
Fig. 3 is an adjustable damping wave multiplexer balanced unit synoptic diagram;
Fig. 4 is a general structure synoptic diagram of the present invention.
Embodiment
With embodiment the present invention is described in further detail with reference to the accompanying drawings below:
According to Fig. 1, Fig. 2, Fig. 3 and Fig. 4, present invention resides in the multistage linear amplification LA in the signal transmission line, form multistage transmission link, as shown in Figure 1 and Figure 4, connect power amplifier BA at signal sending end Tx adjustable damping wave multiplexer VMUX each light source light power is carried out the pre-emphasis equilibrium, adjustable damping wave multiplexer VMUX comprises adjustable attenuator and wave multiplexer, be connected with adjustable attenuator between adjustable damping wave multiplexer VMUX and the power amplifier BA, link to each other successively until receiving end Rx by gain flattening filter GFF balanced unit 1 and adjustable damping wave multiplexer VMUX balanced unit 2 again; Carry out light power equalization through gain flattening filter GFF balanced unit 1, as shown in Figure 2, in 6 grades of transmission links, in transmission link 6 * 80km, promptly in the transmission link of 6 grades of linear amplification LA, use a gain flattening filter GFF, constitute a gain flattening filter GFF balanced unit 1, as shown in Figure 4 in the system, dense wave division multipurpose DWDM signal adopts 100GHz C-Band40 ripple 10Gb/s signal at interval, by over distance 25 * 80km transmission, like this, then can adopt 4 grades of links of gain flattening filter GFF balanced unit 1 in the present embodiment, constitute 4 gain per stage flat filter GFF balanced units, 1 link; Then, carry out light power equalization by adjustable damping wave multiplexer VMUX balanced unit 2, as shown in Figure 3, adjustable damping wave multiplexer VMUX balanced unit 2 is linked in sequence by channel-splitting filter AWG and adjustable damping wave multiplexer VMUX and forms, adjustable damping wave multiplexer VMUX output connects power amplifier PA, adjustable damping wave multiplexer VMUX balanced unit 2 inserts a monitoring feedback assembly, the monitoring feedback assembly comprises optical power monitoring OPM and digital signal processor DSP, optical power monitoring OPM carries out sampling analysis to output signal data, handle, by the digital signal processor DSP retroactive effect in adjustable damping wave multiplexer VMUX, automatically regulating each fading channel amount makes dense wave division multipurpose DWDM luminous power spectrum be tending towards smooth, for improving the dirigibility of monitoring feedback assembly, the sample frequency of optical power monitoring OPM can be controlled by software, and each channel attenuation amount of adjustable damping wave multiplexer VMUX can be set to manual adjustments etc.
In practical operation, by actual luminous power unevenness degree in the test gain flattening filter GFF balanced unit 1, determine the Insertion Loss spectrum of gain flattening filter GFF, the Insertion Loss spectrum of gain flattening filter GFF is fixed, in gain flattening filter GFF is placed on gain flattening filter GFF balanced unit 1 during diverse location, power flatness to final output light signal, Optical Signal To Noise Ratio ONSR flatness has influence to a certain degree, for example, the good dense wave division multipurpose DWDM light source of flatness input gain flat filter GFF balanced unit 1, change the position that gain flattening filter GFF places successively, luminous power spectrum and Optical Signal To Noise Ratio OSNR spectrum at the whole gain flattening filter GFF balanced unit 1 final output-bound wavelength-division multiplex DWDM signal of gain flattening filter GFF balanced unit 1 tag end test, take all factors into consideration power flatness and Optical Signal To Noise Ratio OSNR flatness is optimized, thereby determine the optimum position of gain flattening filter GFF in gain flattening filter GFF balanced unit 1.
At last, can be adjusted to OdB in theory by the balanced later luminous power flatness of adjustable damping wave multiplexer VMUX, but because the cascade stack of the shake of system's luminous power in transmission link, the luminous power flatness can be adjusted to below the 0.5dB by adjustable damping wave multiplexer VMUX in the actual experiment, this has been tending towards perfect condition concerning enter subordinate's transmission link through the later dense wave division multipurpose DWDM signal of adjustable damping wave multiplexer VMUX.
As shown in Figure 4 in the system, transmit by over distance 25 * 80km, per pass adjustable damping wave multiplexer VMUX equalizing device, the luminous power flatness remained on about 4dB after dense wave division multipurpose DWDM signal can transmit 12 * 80km, if do not use gain flattening filter GFF balanced unit 1 in the system, the transmission of 25 * 80km extra long distance needs 2 covers adjustable damping wave multiplexer VMUX power equalization device as shown in Figure 3, will improve the cost of system so greatly.

Claims (8)

1. a long distance transmitting optical power equalization methods adopts multistage linear amplification in the signal transmission, it is characterized in that:
A, at first carries out the pre-emphasis equilibrium at signal sending end to each light source light power;
B, pass through gain flattening filter GFF balanced unit (1) again and carry out light power equalization;
C, last, the damping capacity of regulating each channel by adjustable damping wave multiplexer VMUX balanced unit (2) realizes light power equalization.
2. long distance transmitting optical power equalization methods according to claim 1, it is characterized in that: among the described step C, further access power amplifier PA in described adjustable damping wave multiplexer VMUX balanced unit (2) carries out power back-off to the light signal behind the light power equalization.
3. long distance transmitting optical power equalization methods according to claim 1 and 2, it is characterized in that: among the described step C, further in described adjustable damping wave multiplexer VMUX balanced unit (2), insert a monitoring feedback assembly, output signal data is carried out sampling analysis, processing, retroactive effect is regulated each fading channel amount automatically in adjustable damping wave multiplexer VMUX.
4. long distance transmitting optical power equalizing device of realizing the described light power equalization method of claim 1, be included in the multistage linear amplifier in the signal transmission line, form multistage transmission link, it is characterized in that: connect adjustable damping wave multiplexer VMUX and power amplifier BA at signal sending end, link to each other successively with at least one gain flattening filter GFF balanced unit (1) and adjustable damping wave multiplexer VMUX balanced unit (2) again; Described gain flattening filter balanced unit (1) comprises described multistage transmission link and gain flattening filter GFF who is made of multistage linear amplifier; Described adjustable damping wave multiplexer VMUX balanced unit (2) comprises channel-splitting filter AWG, adjustable damping wave multiplexer VMUX and monitoring feedback assembly, channel-splitting filter AWG and adjustable damping wave multiplexer VMUX are linked in sequence, the monitoring feedback assembly according to the output data retroactive effect of adjustable damping wave multiplexer VMUX in adjustable damping wave multiplexer VMUX.
5. long distance transmitting optical power equalizing device according to claim 4 is characterized in that: the multistage link of described gain flattening filter GFF balanced unit (1) constitutes multistage gain flattening filter GFF balanced unit (1) link.
6. long distance transmitting optical power equalizing device according to claim 4 is characterized in that: described gain flattening filter GFF balanced unit (1) is in per 6 grades of transmission links, that is, N=6 uses a gain flattening filter GFF.
7. long distance transmitting optical power equalizing device according to claim 4 is characterized in that: in the described adjustable damping wave multiplexer VMUX balanced unit (2), adjustable damping wave multiplexer VMUX output connects power amplifier PA.
8. long distance transmitting optical power equalizing device according to claim 4, it is characterized in that: described monitoring feedback assembly comprises optical power monitoring OPM and digital signal processor DSP, optical power monitoring OPM carries out sampling analysis, processing to output signal data, by the digital signal processor DSP retroactive effect in adjustable damping wave multiplexer VMUX.
CNB021250138A 2002-06-22 2002-06-22 Equalization method and apparatus for long distance transmitting optical power Expired - Lifetime CN1222820C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB021250138A CN1222820C (en) 2002-06-22 2002-06-22 Equalization method and apparatus for long distance transmitting optical power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB021250138A CN1222820C (en) 2002-06-22 2002-06-22 Equalization method and apparatus for long distance transmitting optical power

Publications (2)

Publication Number Publication Date
CN1466301A CN1466301A (en) 2004-01-07
CN1222820C true CN1222820C (en) 2005-10-12

Family

ID=34142769

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021250138A Expired - Lifetime CN1222820C (en) 2002-06-22 2002-06-22 Equalization method and apparatus for long distance transmitting optical power

Country Status (1)

Country Link
CN (1) CN1222820C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1225849C (en) 2003-07-18 2005-11-02 大唐移动通信设备有限公司 Method and device for proceeding bidirectional synchronous translate against radio signal
US8078286B2 (en) 2006-11-30 2011-12-13 Biosense Webster, Inc. Techniques for minimizing radiofrequency-induced tissue heating
US8081676B2 (en) * 2007-05-08 2011-12-20 Mediatek Inc. Method and apparatus for data reception
CN103227681B (en) * 2013-05-17 2016-07-06 烽火通信科技股份有限公司 Wave division multiplexing optical transmission system passage dynamic optical power regulating method
CN107688134A (en) * 2017-07-03 2018-02-13 临沂大学 Distribution network failure indicator
CN110926327B (en) * 2019-12-26 2021-07-30 武汉阿格斯科技有限公司 Matching debugging method and device of OCT optical link, controller and medium
CN111327353B (en) * 2020-03-10 2022-04-08 航天恒星科技有限公司 Radio frequency link supporting ultra-long distance transmission, design method and device and storage medium
CN113872568B (en) * 2021-12-02 2022-04-01 南京沁恒微电子股份有限公司 Self-adaptive digital pre-equalization method and system suitable for hundred-mega Ethernet

Also Published As

Publication number Publication date
CN1466301A (en) 2004-01-07

Similar Documents

Publication Publication Date Title
CN1325203A (en) Radiation power balancer
ITMI972715A1 (en) OPTICAL EQUALIZER FOR A MULTIPLE WAVE LENGTH OPTICAL COMMUNICATION SYSTEM
CN101030820A (en) Marine-cable light compensator and compensation
US6377396B1 (en) Optical amplifiers with variable optical attenuation for use in fiber-optic communications systems
CN107294604B (en) A kind of single span long-distance WDM circuit optical fiber Transmission system
CN1220348C (en) Gain balancing system and method in light transmission system
CN1222820C (en) Equalization method and apparatus for long distance transmitting optical power
CN102281110A (en) Methods and devices for regulating optical power
US7233432B2 (en) Pre-emphasized optical communication
CN101588208B (en) Method and device for power management
CN1212713C (en) Dynamic gain balancing method and optical transmission system therewith
CN101141219B (en) Device and method for implementing wavelength division multiplexing system channel power pitch dynamic compensation
CN1198176C (en) Optical amplifier and its method
CN1324829C (en) Method for implementing power equalization of dense wavelength divison multiplex system
EP2104249B1 (en) A self adapting dispersion compensation system and method for optical communication network
US20040091263A1 (en) Wavelength-division multiplexing optical communication system
CN1501597A (en) A remote pump transmission system
CN100492958C (en) Device of line attenuation self adaption and path equilibrium automatic adjustment of light interleave multiplexer
CN1288859C (en) Dynamic gain balance system and method of realizing same
CN1268980C (en) Raman amplifier with controllable gains and control method thereof
US6327075B1 (en) Optical gain equalization unit, optical gain equalization method, and optical fiber transmission line
CN1489324A (en) Channel power controlling method in WDM system
CN110658662B (en) MM-EDFA-based hybrid multimode amplifier and implementation method
CN107359933B (en) A kind of method and device for realizing system receiver optical signal to noise ratio automatic equalization
CN112217561A (en) C + L waveband optical power automatic equalization method and system

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20051012

CX01 Expiry of patent term