CN1220884C - Phased array seismic prospecting method - Google Patents

Phased array seismic prospecting method Download PDF

Info

Publication number
CN1220884C
CN1220884C CN 200410010712 CN200410010712A CN1220884C CN 1220884 C CN1220884 C CN 1220884C CN 200410010712 CN200410010712 CN 200410010712 CN 200410010712 A CN200410010712 A CN 200410010712A CN 1220884 C CN1220884 C CN 1220884C
Authority
CN
China
Prior art keywords
vibroseis
seismic
signal
focus
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200410010712
Other languages
Chinese (zh)
Other versions
CN1560651A (en
Inventor
林君
陈祖宾
姜弢
陈鹏程
张林行
李晓旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN 200410010712 priority Critical patent/CN1220884C/en
Publication of CN1560651A publication Critical patent/CN1560651A/en
Application granted granted Critical
Publication of CN1220884C publication Critical patent/CN1220884C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

The present invention discloses a phased array seismic prospecting method. The present invention adopts a plurality of controlled sources to be arranged in the collinear mode with uniform space; scanning signals emitted from the controlled sources form inphase superposition in a direction to strengthen the vibration signals by controlling the delaying or the phase difference of each controlled source; the orientation of seismic wave beams is realized by changing the delaying and the phase difference of the controlled sources to make orienting seismic prospecting possible. The present invention is adopted to provide an effective method for the seismic prospecting of steep slant substrates, the present invention realizes the orienting seismic prospecting, the present invention can increase the seismic prospecting depth and th eseismic prospecting resolution, and the present invention solves the problem that the combined earthquake does not need too many seismic sources.

Description

The phased array method of seismic prospecting
Technical field:
The present invention relates to a kind of shallow-layer artificial earthquake method of exploration, be particularly suited for the seismic prospecting environment that a plurality of vibroseiss are constructed simultaneously.
Background technology:
Suppose that each focus shakes simultaneously, the vibration signal that each focus produces is independently to underground propagation, owing to have spacing between each focus, in underground any observation station, will inevitably produce wave path-difference, and some regional signal reinforcement, some regional signal are weakened by the phase differential that wave path-difference causes.Existing reflectometry combination seism exploration, the separate unit source pattern little several power outputs arrives together, is modeled to a focus that power output is big, in order to improve the seismic prospecting degree of depth.The combination seism exploration, refer to the starting of oscillation simultaneously of several separate unit focus, though the seismic wave energy that the seismic event that each focus produced can make the vertical and face of land be directed downwards propagation is strengthened, but the seismic wave energy of other directions is generally strengthened, therefore be unsuitable for the tiltedly exploration of plastid of steep dip, more can not directed explore.Moreover the focus platform number that combination seism uses is limited, generally can not surpass 4, and focus platform number too much can make seismic event that the phase mutual interference takes place in communication process, and effect is variation on the contrary.Therefore, by the phase differential between the reasonable control vibroseis, compensation is because the phase differential that causes of wave path-difference, just can make seismic event that each focus produces on a certain direction homophase all the time, makes that seismic signal is farthest strengthened on this direction.
Summary of the invention:
The objective of the invention is shortcoming and defect, provide a kind of focus platform number unrestricted, the shallow seismic exploration method that seismic wave energy can be strengthened on underground three dimensions any direction at existing combination seism.
The present invention realizes in the following manner: this method comprises following order and step, equidistantly place vibroseis 1,2,3......n it is individual, constitute the vibroseis array, wave detector 4,5,6..... being equidistant conllinear, array and vibroseis array arrange, determine track pitch and offset distance according to the reflection shooting method, roughly determine the destination layer degree of depth according to geologic information, according to destination layer depth design phase differential controlled variable or delay parameter, Seismic Source System and receiving system are got in touch by trigger element, the focus of choosing the array center place is the benchmark focus, with the benchmark source signal as the reference signal, with the trigger pip of benchmark focus trigger criteria as receiving system, choose the n vibroseis as seismographic trigger pip, when the vibroseis sweep parameter starts vibroseis after setting completed, by the phase place of each vibroseis control signal being controlled in real time or is made the vibrations of delaying time successively of each vibroseis, the seismic event that makes each focus produce forms the very strong wave beam of vibration signal in underground certain certain direction, the vibration signal of other directions weakens or partial offset, make when the destination layer signal arrives the wave detector array with superimposed, make the signal of wave detector array received stronger, signal to noise ratio (S/N ratio) is higher.Seismograph receives reflected signal, makes relevant treatment with set reference signal, and re-using routinely, the seismic exploration process software can obtain seismic cross-section.
The invention has the beneficial effects as follows: through test, the signal to noise ratio (S/N ratio) of wave detector received signal is improved, and the platform number of vibroseis is unrestricted; But the occurrence of base area plastid, artificial selection seismic event direction, to improve the seismic prospecting effect, especially tiltedly the exploration effects of plastid is better to solving steep dip, and having solved to essence the combination focus can not increase focus platform number arbitrarily and can not survey inclination angle problem such as plastid significantly.
Accompanying drawing and description of drawings
Fig. 1 is that phased array method of seismic prospecting wave beam forms schematic diagram
Description of drawings
1,2,3, n: vibroseis, 4,5,6 wave detectors, 7 geologic bodies, P far field observation station
D vibroseis spacing
Embodiment:
Be described in further detail below in conjunction with accompanying drawing, this method comprises following order and step:
At first, determine focus spacing d, the focus spacing is subjected to multiple conditionality, occurs for avoiding graing lobe, should satisfy d<λ/2; For improving direction coefficient, spacing d should be greatly; Be approximate far field model, spacing d should obtain smaller.Various conditions condition each other, and need take all factors into consideration, and at CN1643891 disclosed " controllable seismic source system for electromagnetic high-power shallow earthquake ", adjacent vibroseis spacing d can be chosen in about 2-4 rice.
Then, equidistantly place vibroseis 1,2,3......n it is individual, constitute the vibroseis array, wave detector 4,5,6...... being equidistant conllinear, array and vibroseis array arrange, determine track pitch and offset distance according to the reflection shooting method, roughly determine the destination layer degree of depth according to geologic information, according to destination layer depth design phase differential controlled variable or delay parameter, Seismic Source System and receiving system are got in touch by trigger element, the focus of choosing the array center place is the benchmark focus, with the benchmark source signal as the reference signal, with the trigger pip of benchmark focus trigger criteria as receiving system, choose the n vibroseis as seismographic trigger pip, when the vibroseis sweep parameter starts vibroseis after setting completed, by the phase place of each vibroseis control signal being controlled in real time or is made the vibrations of delaying time successively of each vibroseis, the seismic event that makes each focus produce forms the very strong wave beam of vibration signal in underground certain certain direction, the vibration signal of other directions weakens or partial offset, make when the destination layer signal arrives the wave detector array with superimposed, seismograph receives reflected signal, make relevant treatment with set reference signal, re-using routinely, the seismic exploration process software can obtain seismic cross-section.
Differ the computing method of controlled variable:
If during the work of phased focus, control between the adjacent focus differ for φ=(the kd Sin θ (formula 1) of 2 π/λ), k be Fig. 1 focus label 1,2 in proper order ... n.
Then the signal that adjacent focus produces on the observation station direction is with superimposed, shake the byest force, and observation station direction θ is beam direction at this moment.The vibration signal that vibroseis sends is a frequency variation signal, according to λ = v f (formula 2), substitution formula 1, then φ = 2 π · f v · d · sin θ (formula 3), v is the seismic event velocity of wave here, and f is the seismic event instantaneous frequency, and d is the focus spacing.As seen, control differs φ and satisfies formula 3, and then θ is a beam direction.
Descend homogeneous media hypothetically, the observation station direction is θ, and it is d Sin θ that then adjacent focus gets wave path-difference, and the phase differential that wave path-difference produces is: φ=(the d Sin θ of 2 π/λ).
Wherein, λ is the wavelength of seismic event in the underground medium, and d is the spacing of adjacent focus.
The computing method of time-delay controlled variable:
Generally speaking, make each source signal arrive wave detector simultaneously by the starting of oscillation time of controlling each focus.According to focus numbering reverse order, No. 1 focus to n focus t that delays time successively k(k=1,2 ... n), kd sin θ=vt wherein k(formula 5), t kBe the starting of oscillation time of k focus, we are called delay time here.Focus array and detection play array determine after, according to the degree of depth of formation at target locations, just can determine beam direction θ such as Fig. 1, tgθ = x 2 h (formula 6), x is the distance of wave detector array center to first focus here, h is the formation at target locations degree of depth.Can calculate delay time t by formula 5,6 k(k=1,2 ... n)
Can form directionally seismic wave bundle by time-delay or real-time phase difference control method, the earthquake beam direction can change arbitrarily in underground 180 ° of scopes, and then realizes the beam scanning effect.Therefore when half-edge layer is surveyed, by the change beam direction, can be so that wave detector received signal effect be best, thus obtain high-quality seismic prospecting sectional view.
When carrying out open-air shallow seismic exploration, equidistantly place the vibroseis array earlier, wave detector array and vibroseis array are that conllinear is arranged, track pitch and offset distance are determined according to the reflection shooting method.Roughly determine the formation at target locations degree of depth according to geologic information, the design of taking this as a foundation differs controlled variable or delay parameter.Because the velocity of wave data in survey district is inaccurate or have error, actual phased parameter also will be finely tuned by experiment.Seismic Source System and receiving system connect by trigger element.Wherein, should select n focus starting of oscillation signal in the array as seismographic trigger pip.When to the sweep parameter of focus after setting completed, start earthquake controllable earthquake focus system work by control system.Seismograph receives reflected signal, does cross correlation process with reference signal, re-uses conventional earthquake process software and can obtain seismic cross-section.

Claims (1)

1, a kind of phased array method of seismic prospecting, it is characterized in that, this method comprises following order and step, equidistantly place vibroseis 1,2,3.....n it is individual, constitute the vibroseis array, wave detector 4,5,6...... being equidistant conllinear, array and vibroseis array arrange, determine track pitch and offset distance according to the reflection shooting method, roughly determine the destination layer degree of depth according to geologic information, according to destination layer depth design phase differential controlled variable or delay parameter, Seismic Source System and receiving system are got in touch by trigger element, the focus of choosing the array center place is the benchmark focus, with the benchmark source signal as the reference signal, with the trigger pip of benchmark focus trigger criteria as receiving system, choose the n vibroseis as seismographic trigger pip, when the vibroseis sweep parameter starts vibroseis after setting completed, by the phase place of each vibroseis control signal being controlled in real time or is made the vibrations of delaying time successively of each vibroseis, the seismic event that makes each focus produce forms the very strong wave beam of vibration signal in underground certain certain direction, the vibration signal of other directions weakens or partial offset, make when the destination layer signal arrives the wave detector array with superimposed, make the signal of wave detector array received stronger, signal to noise ratio (S/N ratio) is higher, seismograph receives reflected signal, make relevant treatment with set reference signal, re-using routinely, the seismic exploration process software can obtain seismic cross-section.
CN 200410010712 2004-03-03 2004-03-03 Phased array seismic prospecting method Expired - Fee Related CN1220884C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410010712 CN1220884C (en) 2004-03-03 2004-03-03 Phased array seismic prospecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410010712 CN1220884C (en) 2004-03-03 2004-03-03 Phased array seismic prospecting method

Publications (2)

Publication Number Publication Date
CN1560651A CN1560651A (en) 2005-01-05
CN1220884C true CN1220884C (en) 2005-09-28

Family

ID=34440008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410010712 Expired - Fee Related CN1220884C (en) 2004-03-03 2004-03-03 Phased array seismic prospecting method

Country Status (1)

Country Link
CN (1) CN1220884C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7886866B2 (en) * 2006-04-17 2011-02-15 Soundblast Technologies, Llc System and method for ignition of a gaseous or dispersed fuel-oxidant mixture
CN101320095B (en) * 2008-07-22 2010-07-21 吉林大学 Single-seismic source directional lighting seismic signal synthesizing method
CN101339252B (en) * 2008-08-08 2010-08-18 吉林大学 Directional lighting seismic exploration method based on single earthquake focus
CN102466812B (en) * 2010-11-10 2013-09-18 中国科学院地质与地球物理研究所 Phased array spark subsource for seismic exploration
CN102798889B (en) * 2012-04-26 2015-03-11 吉林大学 Phased source consistency determining method
CN103984007B (en) * 2014-06-09 2016-07-13 吉林大学 Directionally seismic wave delay parameter Optimization Design
CN106154325B (en) * 2016-06-20 2018-04-06 吉林大学 Relief surface combination source wavefield orientation method based on ray theory
CN111221040B (en) * 2020-02-28 2021-06-22 吉林大学 Stratum inclination angle detection method and system

Also Published As

Publication number Publication date
CN1560651A (en) 2005-01-05

Similar Documents

Publication Publication Date Title
US8867307B2 (en) Method for acoustic imaging of the earth's subsurface using a fixed position sensor array and beam steering
US4964103A (en) Three dimensional before stack depth migration of two dimensional or three dimensional seismic data
US4926393A (en) Multifold vertical seismic profile acquisition method and technique for imaging the flank of a salt dome
BR112013014556B1 (en) SEISMIC EXPLORATION METHOD ABOVE SUBSURFACE REGION
US7724608B2 (en) Passive reflective imaging for visualizing subsurface structures in earth and water
US20100265793A1 (en) Methods for Optimizing Offset Distribution of Cross Spread 3-D Seismic Surveys Using Variable Shot Line Length
US6665618B1 (en) Seismic survey design technique
CN1220884C (en) Phased array seismic prospecting method
CN102282481A (en) data acquisition and prestack migration based on seismic visibility analysis
CN104533396A (en) Remote exploration sound wave processing method
RU2255355C2 (en) Method for processing seismic data for increasing space resolution
US20150226867A1 (en) Beam steered broadband marine survey method and system
GB2387227A (en) Determining statics by using pilot trace defined by CDP, azimuth and offset information
CN101251602B (en) Sea combined controled vibrator short time subsection scanning method
EP3341757B1 (en) Nodal hybrid gather
CN101320095B (en) Single-seismic source directional lighting seismic signal synthesizing method
WO2001075481A2 (en) A seismic source, a marine seismic surveying arrangement, a method of operating a marine seismic source, and a method of de-ghosting seismic data
CN102590861B (en) Seismic wave beam forming method based on receiving array
US5241514A (en) Identifying, characterizing, and mapping of seismic noise
CN103984007A (en) Optimization design method for time delay parameters of directional seismic waves
Dougherty et al. Seismo/acoustic propagation through rough seafloors
US20190120982A1 (en) Tuned seismic source arrays
US20170090055A1 (en) Marine seismic survey pre-plot design
RU2705519C2 (en) Method of producing migrated seismic images of geologic media based on 2d seismic survey data
CN104793243B (en) Directional seismic data processing method based on Nth root stacking

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee