CN1216280C - 硬质涂层硬度的测量方法 - Google Patents

硬质涂层硬度的测量方法 Download PDF

Info

Publication number
CN1216280C
CN1216280C CN 02155018 CN02155018A CN1216280C CN 1216280 C CN1216280 C CN 1216280C CN 02155018 CN02155018 CN 02155018 CN 02155018 A CN02155018 A CN 02155018A CN 1216280 C CN1216280 C CN 1216280C
Authority
CN
China
Prior art keywords
hardness
pressed
pressing
pressure head
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 02155018
Other languages
English (en)
Other versions
CN1423115A (zh
Inventor
李戈扬
戴嘉维
张惠娟
顾明元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN 02155018 priority Critical patent/CN1216280C/zh
Publication of CN1423115A publication Critical patent/CN1423115A/zh
Application granted granted Critical
Publication of CN1216280C publication Critical patent/CN1216280C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种硬质涂层硬度的测量方法属于材料性能测试领域。采用微力学探针技术首先对涂层/基体复合体进行足以使压头前端变形区扩展到基材的载荷进行第一步压入检测,计录压入过程中压入载荷与压头压入涂层深度的变化关系,进而通过压入深度的变化,计算出涂层/基材复合体在受载条件下的硬度,并作出涂层/基材复合体受载硬度随压入载荷的变化曲线,从以上曲线中选取高硬度平台区压入载荷进行小载荷第二步压入检测,进而得到不受基体变形影响的涂层硬度值。所述高硬度平台区压入载荷为压头压入时前端形变区仅限于涂层内的压入载荷。本发明可使对硬质涂层的硬度测量不预先知道确切厚度时进行,并具有准确、可靠的特点。

Description

硬质涂层硬度的测量方法
技术领域
本发明涉及的是一种涂层测量方法,特别是一种硬质涂层硬度的测量方法,属于材料性能测试领域。
背景技术
现有技术中在金属材料和硬质合金工模具上镀覆硬质陶瓷涂层可以提高工模具的加工质量和使用寿命,从而在机械加工工业中得到广泛使用。在硬质涂层的质量评价中,准确测量涂层的硬度具有重要意义,但是,由于硬质涂层具有硬度高(大于15GPa)和厚度薄(1μm-10μm)的特点,使对其硬度的测量非常困难,其难点主要体现在硬度测试的压入载荷选择上:过小的压入载荷会因试样表面粗糙度和测量仪器本身的扰动而使所得数据非常分散,而过大的压入载荷则会使压头前端的变形区扩散到硬度较低的基材而使测量值失真。经对文献的检索发现,以往的测量技术是采用预先测量涂层厚度,而后采用控制压入深度小于涂层厚度一定比例的办法来间接控制测量的可靠性。对这一比例,最初作者SundgrenJ.E和Hentzell H.T.G在A review of present state of art in hard coatings grownfrom the vapor phase(气相沉积硬质涂层技术现状综述)J.Vac.Sci.Technol.(A),1986,4(5):2259-2279一文中提出应小于涂层厚度的1/5。而后又有学者提出这一比例应小于1/10和1/15。近期,作者Stan Veprek在The searchfor novel superhard materials(新型超硬材料探索)J.Vac.Sci.Technol.(A),1999,17(5):2401-2420一文中甚至提出这一比值应小于1/20才能保证对硬质涂层测量的准确性。因而,对于采用控制压头对涂层的压入深度以获得可靠硬度值的技术仍不完善,并且采用这一方法还需预先知道涂层的确切厚度。对文献的进一步检索和分析,至今尚没有发现与本发明主题相同或类似的文献报道。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种硬质涂层硬度的测量方法,使本发明的测量方法解决了针对厚度为1μm-10μm硬质涂层的硬度测量,在对硬质涂层的测量不知该涂层确切厚度条件下,准确、可靠地测量涂层的硬度。
本发明是通过以下技术方案实现的,采用微力学探针技术首先对涂层/基体复合体进行足以使压头前端变形区扩展到基材的载荷进行第一步压入检测,并计录压入过程中压入载荷与压头压入涂层深度的变化关系,进而通过压入深度的变化,计算出涂层/基材复合体在受载条件下的硬度,并作出涂层/基材复合体受载硬度随压入载荷的变化曲线。由于在压入过程中,试样在压头前端的变形区从涂层中逐步扩展到基材,因而在涂层受载硬度随压入载荷的曲线中会因高硬度的涂层和较低硬度的基材在硬度上的差异展示出涂层/基材复合体硬度最初形成一个高硬度的平台区,而后硬度值受到基材变形的影响逐步下降。从以上曲线中选取高硬度平台区压入载荷进行小载荷第二步压入检测,进而得到压头前端变形区仅限于的涂层硬度值。
本发明采用的力学探针设备应可以在1mN至至少100mN范围内连续、逐步地加载,并连续记录加载载荷和压头压入试样的深度。压头在压入深度上的分辨率应达到±2nm。压头采用金刚石材料制成,其形状可采用各种现行的硬度压头类型,如维氏压头、努氏压头等。高硬度平台区压入载荷为压头压入时压头前端形变区仅限于涂层内的压入载荷。
涂层和基材在硬度上存在明显差异是采用本发明对硬质涂层进行硬度准确测量的前提条件。考虑到硬质涂层的硬度通常大于15GPa,而基材通常采用各种金属,如高速钢,不锈钢等,其硬度通常小于10GPa,采用本发明的测量方法可以得到涂层硬度的准确值;对于硬度值高达10-20GPa的硬质合金基材上硬质涂层的硬度测量,则要求涂层有更高的硬度,使涂层与基材的硬度差达到5GPa以上,可采用本发明的测量方法。
本发明具有实质性特点和显著进步,发明解决了厚度为1μm-10μm硬质涂层硬度测量的技术难题,在不知该涂层确切厚度条件下,准确、可靠地测量涂层的硬度,可广泛用于涂层硬度高于15Gpa的涂层。本发明可使对硬质涂层的硬度测量不预先知道确切厚度时进行,并具有准确、可靠的特点。
具体实施方式
采用微力学探针技术首先对涂层/基体复合体进行足够大载荷的第一步压入检测,第一步压入采用足以使压头前端变形区扩展到基材的载荷进行,以确保试样在压头前端的变形区扩展到基材范围,这一点可通过涂层/基材复合体在大压入载荷时的硬度降低给予确认。计录压入过程中压入载荷与压头压入涂层深度的变化关系,进而通过压入深度的变化,计算出涂层/基材复合体在受载条件下的硬度,通过力学探针给出的压入载荷与压入深度的加载曲线,计算得到涂层/基材复合体受载硬度随压入载荷的变化曲线,并作出涂层/基材复合体受载硬度随压入载荷的变化曲线,从而可从曲线上的高硬度平台区确定涂层/基材复合体在压头压入时基材不产生变形的压入载荷范围。由于在压入过程中,试样在压头前端的变形区从涂层中逐步扩展到基材,因而在涂层受载硬度随压入载荷的曲线中会因高硬度的涂层和较低硬度的基材在硬度上的差异展示出涂层/基材复合体硬度最初形成一个高硬度的平台区,而后硬度值受到基材变形的影响逐步下降。第二步压入检测选取第一步大载荷压入检测确定的基材不变形的、压头压入时前端形变区仅限于涂层内的压入载荷范围进行,从而按现有技术的测量程序,得到硬质涂层的硬度值。

Claims (3)

1.一种硬质涂层硬度的测量方法,其特征在于,采用微力学探针技术首先对涂层/基体复合体进行足以使压头前端变形区扩展到基材的载荷进行第一步压入检测,计录压入过程中压入载荷与压头压入涂层深度的变化关系,进而通过压入深度的变化,计算出涂层/基材复合体在受载条件下的硬度,并作出涂层/基材复合体受载硬度随压入载荷的变化曲线,从以上曲线中选取高硬度平台区压入载荷进行小载荷第二步压入检测,所述高硬度平台区压入载荷为压头压入时前端形变区仅限于涂层内的压入载荷。
2.根据权利要求1所述的这种硬质涂层硬度的测量方法,其特征是,压头在压入深度上的分辨率为±2nm,压头为金刚石材料。
3.根据权利要求2所述的这种硬质涂层硬度的测量方法,其特征是,压头形状为维氏压头或努氏压头。
CN 02155018 2002-12-19 2002-12-19 硬质涂层硬度的测量方法 Expired - Fee Related CN1216280C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 02155018 CN1216280C (zh) 2002-12-19 2002-12-19 硬质涂层硬度的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 02155018 CN1216280C (zh) 2002-12-19 2002-12-19 硬质涂层硬度的测量方法

Publications (2)

Publication Number Publication Date
CN1423115A CN1423115A (zh) 2003-06-11
CN1216280C true CN1216280C (zh) 2005-08-24

Family

ID=4752539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02155018 Expired - Fee Related CN1216280C (zh) 2002-12-19 2002-12-19 硬质涂层硬度的测量方法

Country Status (1)

Country Link
CN (1) CN1216280C (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142280B (zh) * 2013-10-16 2016-08-10 富耐克超硬材料股份有限公司 一种检测硬质涂层质量的方法
CN104568622A (zh) * 2014-08-15 2015-04-29 南京汉旗新材料科技有限公司 一种粉体硬度的测量方法
CN108240943A (zh) * 2016-12-24 2018-07-03 青海大学 一种用纳米压痕检测冷轧金属薄板法向应变均匀性的方法
CN107607422A (zh) * 2017-08-30 2018-01-19 苏州昌田机械设备制造有限公司 一种金属表面涂层硬度测试仪
CN109115639A (zh) * 2018-08-16 2019-01-01 哈尔滨工业大学 一种考虑压头弹性变形的超硬材料纳米硬度测量方法

Also Published As

Publication number Publication date
CN1423115A (zh) 2003-06-11

Similar Documents

Publication Publication Date Title
Page et al. Using nanoindentation techniques for the characterization of coated systems: a critique
Lee et al. Residual stresses in DLC/Si and Au/Si systems: Application of a stress-relaxation model to the nanoindentation technique
Voevodin et al. Dynamic impact wear of TiCxNy and Ti-DLC composite coatings
Martınez et al. Study of the mechanical properties of tetrahedral amorphous carbon films by nanoindentation and nanowear measurements
Kalin et al. Use of equations for wear volume determination in fretting experiments
Ovcharenko et al. In situ and real-time optical investigation of junction growth in spherical elastic–plastic contact
US8621903B2 (en) Continuous or instrumented indentation device with convex bearing surface and use thereof, particularly for metal sheet indentation
Kim et al. Dissipated energy and fretting damage in CoCrAlY-MoS2 coatings
US6050127A (en) Micro-ball impact tester
CN1216280C (zh) 硬质涂层硬度的测量方法
Zhou et al. Investigation on methods for dealing with pile-up errors in evaluating the mechanical properties of thin metal films at sub-micron scale on hard substrates by nanoindentation technique
Kutilek et al. The procedure of evaluating the practical adhesion strength of new biocompatible nano-and micro-thin films in accordance with international standards.
Randall et al. Nanoindentation as a tool for characterising the mechanical properties of tribological transfer films
Hintermann Characterization of surface coatings by the scratch adhesion test and by indentation measurements
RU2698474C1 (ru) Способ определения твердости покрытия на изделии
Šimůnková et al. Mechanical properties of thin film–substrate systems
Duan et al. Influence of sample deformation and porosity on mechanical properties by instrumented microindentation technique
Heck et al. Analysis of the ductile/brittle transition during a scratch test performed into polymeric film deposited on a PMMA substrate
Revankar Introduction to hardness testing
Armstrong et al. Elastic/plastic effects during very low-load hardness testing of copper
Duan et al. Evaluation of adhesion between coating and substrate by a single pendulum impact scratch test
RU2710392C1 (ru) Способ определения адгезионной прочности тонких твердых покрытий на изделиях
Xie et al. A controlled scratch test for measuring the elastic property, yield stress and contact stress–strain relationship of a surface
Randall et al. Nanoindentation and scanning force microscopy as a novel method for the characterization of tribological transfer films
CN114923798A (zh) 一种通过显微压痕法进行力学测试的压头间距评估方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee