CN1212907C - Casting method of metal substrate cooling wall - Google Patents

Casting method of metal substrate cooling wall Download PDF

Info

Publication number
CN1212907C
CN1212907C CN 03113465 CN03113465A CN1212907C CN 1212907 C CN1212907 C CN 1212907C CN 03113465 CN03113465 CN 03113465 CN 03113465 A CN03113465 A CN 03113465A CN 1212907 C CN1212907 C CN 1212907C
Authority
CN
China
Prior art keywords
cooling
cast
steel
powder
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 03113465
Other languages
Chinese (zh)
Other versions
CN1513622A (en
Inventor
朱童斌
李小静
苏允隆
何云
石玮
王黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maanshan Iron and Steel Co Ltd
Original Assignee
Maanshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maanshan Iron and Steel Co Ltd filed Critical Maanshan Iron and Steel Co Ltd
Priority to CN 03113465 priority Critical patent/CN1212907C/en
Publication of CN1513622A publication Critical patent/CN1513622A/en
Application granted granted Critical
Publication of CN1212907C publication Critical patent/CN1212907C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

The present invention discloses a casting method of cooling walls using high melting metal steel as basal bodies, namely that a cooling medium is filled fully in a cooling pipeline. The cooling medium mainly comprises power formed by mixing alundum powder, iron powder and electrode powder which form the weight proportion that the alundum powder to the iron powder to the electrode powder is equal to 1 to 0.14-0.21 to 0.04-0.10. Compared with the existing cooling medium used for making the cooling walls, the solid cooling medium has the advantages of large heat storage capacity, strong cooling action, small thermal expansion coefficient, favorable heat stability, no chemical reaction, no gas, no melting state, no pipe wall adhesion and easy cleaning under normal temperature. The present invention overcomes the defect that the cooling pipeline is easily deformed and burned through in the casting process.

Description

A kind of casting method of metallic matrix cooling wall
Technical field:
The claimed technical scheme of the present invention belongs to the Casting Technology field, specifically for being the casting method of the cooling wall of matrix with the refractory metal steel.
Background technology:
A large amount of cooling walls that use are just built in the equipment such as steel-making blast furnace, chute.Cast steel cooling wall as blast furnace cooling stave of new generation is compared with the ductile iron cooling stave that generally adopts at present, has the percentage elongation height, tensile strength height, fusing point height, thermal-shock resistance and overall thermal conductivity can wait advantage well, and cast steel cooling wall matrix and cooling pipe combine together, eliminated the gap between the matrix and cooling tube in the ductile iron cooling stave, reduced thermal resistance, thereby improved the service life of blast furnace.The basic material of cast steel cooling wall is the very high low-carbon alloy steel of fusing point, generally all selects for use the mild steel hot rolled seamless steel tube identical or close with basic material as cooling pipe, to obtain good heat-conducting effect.Because the shape of cooling pipe often is designed to complicated irregular shape according to the concrete use occasion of cooling wall, so generally can only adopt casting technique production, yet in casting process, even adopt air cooling commonly used, the types of cooling such as oil cooling reduce the cooling pipe temperature, but because the cast steel liquid steel temperature is very high, still be easy to cooling pipe be deformed and burn through, particularly may in casting process, have little time to discharge the danger that sets off an explosion because of the thermal current that sharply expands, this casting difficult problem never obtains fine solution for a long time, the cast steel cooling wall of some cooling pipe shape more complicated even can't produce.
Summary of the invention:
Technical problem to be solved by this invention just provides a kind of method of producing the high casting-cooling wall of metallic matrix fusing point such as cast steel cooling wall, in order to overcome the disadvantage of the yielding and burn through of cooling pipe in the prior art.
Technical scheme of the present invention is such: a kind of casting method of metallic matrix cooling wall, cooling wall matrix are mild steel or low-carbon alloy steel, as cooling pipe, fill full cooling medium with the mild steel hot finished steel pipe in cooling pipe, it is characterized in that:
(1) cooling medium is by comprising schmigel, iron powder, the composite powder of electrode powder, and the part by weight between them is a schmigel: iron powder: electrode powder=1: 0.14~0.21: 0.04~0.10;
(2) mild steel or low-carbon alloy steel adopt oxidizing process to smelt in the cast molten steel process, and the content of oxidation aim carbon is controlled in the 0.08-0.12% scope, and the decarburized amount that guarantees molten steel is more than 0.30%;
(3) pouring temperature is controlled between 1560-1580 ℃;
(4) open at a slow speed earlier and water,, strengthen cast, allow molten steel wrap up cooling water pipe fast when molten steel during near the cooling water pipe position; When the molten steel liquid level surpassed cooling water pipe, cast at a slow speed again when molten steel enters riser height 2/3, changed by the rising head after-teeming and finishes up to cast.
Above solid cooling medium has possessed following combination property in process of production: 1, heat storage capacity is big, and the effect of extremely strong rapid cooling is arranged; 2, thermal coefficient of expansion is little, Heat stability is good, and 3, do not produce chemical reaction, do not generate gas; 4, do not melt, adhesion tube wall, normal temperature be cleaning easily down, so have simple, stable, reliable, safe characteristics.Mild steel or low-carbon alloy steel adopt oxidizing process to smelt in the cast molten steel process, control the molten steel chemical composition well, the content of oxidation aim carbon particularly controlled well is the key of smelting operation, so that carbon-oxygen sufficient reacting, boiling evenly reduces field trash and gas content in the molten steel to greatest extent.Pouring temperature and speed are one of key factors that influences by cooling water pipe " molten and do not change ".Pouring temperature is too high, and the molten steel heat is big, easily with wall pipe burn through; Pouring temperature is low excessively, and the molten steel heat is little, and the wall pipe does not fuse or fuses insufficient.Through test pouring temperature is controlled between 1560-1580 ℃, can guarantees that the fusion of wall pipe is good.Poring rate should follow " earlier slow, after soon, slow again " principle, and corresponding with the process of tube wall " crystallization-fusing-crystallization again ".
Cooling medium of the present invention is a schmigel: iron powder: electrode powder=1: 0.17~0.19: 0.05~0.07 o'clock is good.
The present invention adopts the rising pouring unchoked running system, and end, cast gate opposite is provided with insulated feeder, and casting mold is horizontal during cast, after cast finishes, immediately with rising head end bed hedgehopping, to strengthen the feeding of rising head to foundry goods.Casting on flat technology can make each position of cooling water pipe bear identical ferrostatic pressure and high temperature corrode simultaneously in the same duration of pouring.Therefore, cooling water pipe can not be out of shape or burn through because of hot-spot.The inclination pouring technology has strengthened the feeding capacity of rising head to foundry goods, but the cooling water pipe of bottom is out of shape or burn through because of soak the corrosion overlong time in molten steel.This technology has been taken into account the advantage of casting on flat technology and inclination technology.
The present invention is by filling above-mentioned cooling medium in cooling pipe, the potting syrup that can make high-melting-point such as molten steel is along being solidified to the direction in the wall body outside by cooling pipe.Can guarantee cooling pipe in cast such as molten steel, process of setting, be issued to the critical condition of " molten and do not change " 1600 ℃ of conditions of high temperature, promptly manage the fusion of outer wall and potting syrup and be one, eliminate thermal resistance, the while inwall does not melt, and is indeformable.But use the cast steel cooling wall of the various structures of this manufacturing technology suitability for industrialized production, thereby provide assurance for cast steel cooling wall replaces cast-iron cooling wall fully, can increase substantially the life of the blast furnace, reduced the blast furnace overhaul cost thus, guarantee smooth operation of furnace, improve usage factor.Can make various yield rates up to the cast steel cooling wall more than 95% by designing requirement with the method.
Description of drawings:
Fig. 1 dissects schematic diagram for the cast steel cooling wall structure of each embodiment cast.
Fig. 2 is a cast steel cooling wall pouring type schematic diagram.
The specific embodiment
Cooling medium prescription such as the following table of each embodiment: (weight portion ratio)
The embodiment numbering 1 2 3 4 5 6 7 8 9 10
Schmigel 1 1 1 1 1 1 1 1 1 1
Iron powder 0.14 0.15 0.16 0.17 0.17 0.18 0.19 0.19 0.20 0.21
The electrode powder 0.04 0.09 0.08 0.07 0.05 0.06 0.07 0.05 0.10 0.04
More than the iron powder that adopts in the prescription meets the GB/4136-1984 requirement, and electrode powder model is GB/T3518-1983, and the schmigel model is GB/T2479-1996.
Measure the thermal conductivity factor of cooling medium according to the requirement of GB/T3651-1983, it is as follows to record each embodiment result:
Numbering Thermal conductivity factor w/mk Linear expansion coefficient % Specific heat capacity J/kg.k Heat storage coefficient J/m 2ks
25 ℃ 800 ℃ 1200 ℃ 25 ℃ 800 ℃ 1200 ℃ 25 ℃ 800 ℃ 1200 ℃ 25 ℃ 800 ℃ 1200 ℃
1 5.09 6.16 9.00 0.23 0.70 1.12 0.60 1.02 1.18 3.00 4.10 4.88
2 5.11 6.24 9.13 0.23 0.70 1.12 0.63 1.10 1.24 3.06 4.14 4.93
3 5.11 6.29 9.18 0.24 0.71 1.12 0.67 1.14 1.28 3.07 4.18 4.98
4 5.21 6.42 9.36 0.24 0.71 1.12 0.73 1.18 1.37 3.15 4.26 5.06
5 5.22 6.42 9.36 0.25 0.74 1.13 0.72 1.16 1.34 3.14 4.25 5.03
6 5.22 6.42 9.36 0.24 0.72 1.12 0.73 1.18 1.38 3.15 4.26 5.06
7 5.23 6.42 9.36 0.25 0.72 1.12 0.73 1.18 1.38 3.15 4.26 5.06
8 5.23 6.42 9.37 0.25 0.73 1.13 0.71 1.15 1.36 3.14 4.26 5.04
9 5.25 6.44 9.37 0.29 0.78 1.20 0.73 1.19 1.39 3.16 4.28 5.07
10 5.23 6.43 9.37 0.28 0.77 1.18 0.73 1.18 1.39 3.15 4.26 5.06
Last table shows that each embodiment 1, heat storage capacity are big, have the effect of extremely strong rapid cooling; 2, thermal coefficient of expansion is little, Heat stability is good, and 3, do not produce chemical reaction, do not generate gas; And experimental results show that all and do not melt adhesion tube wall, the better effects if of embodiment 4-8.
Get embodiment 4-8 and pour into a mould cast steel cooling wall by following casting and pouring technical process:
The pouring technology flow process is: at first make wooden model, simultaneously according to designing requirement with 20 #The clod wash of mild steel hot rolled seamless steel tube is made snakelike cooling water pipe and is handled through derusting by sandblasting, assemble in aggregates after, follow mould assembling, be full of cooling medium in the cooling water pipe, utilize 25 of electric furnace smelting #Mild steel molten steel moulding by casting, the back sand removal that finishes is heat-treated at last.
In above-mentioned process, adopt rising pouring unchoked running system 7 as shown in Figure 2, the cast gate of running gate system 7 places between the cooling water pipe 1, directly washes away cooling water pipe 1 to avoid high-temperature molten steel, and end, cast gate opposite is provided with insulated feeder 6.Insulated feeder 6 adopts macropore to go out stream, the mode of steadily filling type.Casting mold is horizontal during cast, after cast finishes, immediately with rising head end bed hedgehopping.
The content of oxidation aim carbon was controlled in the 0.08-0.12% scope during the electric furnace oxidizing process was smelted, and went into stove by fine fodder, improved liquid steel temperature, strengthened the decarburization operation, and the decarburized amount that guarantees molten steel is on 0.30%.Pouring temperature is controlled between 1560-1580 ℃.Open at a slow speed earlier and waters,, strengthen cast, allow molten steel wrap up cooling water pipe fast when molten steel during near the cooling water pipe position; When the molten steel liquid level surpassed cooling water pipe, cast at a slow speed again when molten steel enters riser height 2/3, changed by the rising head after-teeming and finishes up to cast.In order to give full play to the potentiality of low-carbon microalloyed cast steel, must carry out suitable heat treatment.After the cooling wall cast, through the 24h insulation, eliminate the casting internal stress, thinning microstructure further improves the invigoration effect of microalloying to matrix, improves hot yield strength, thermal fatigue resistance and the non-oxidizability of steel.
The cooling wall that cast is good carries out following experiment respectively.Cooling water pipe 1, bolt hole 2, cooling water pipe sample position 3, core sample sample position 4, matrix 5 among Fig. 1.
Experiment one: attached casting test block experiment:
Three test blocks of attached casting on the every cooling wall, the position of attached casting test block is placed on the centre of cooling wall side with reference to the regulation of GB1348-88; The preparation of attached casting test block is with reference to the regulation of 4.1.2 among the GB1348-88, and the test block shape and size are with reference to the regulation of table 7 among the GB1348-88; Attached casting test block mechanical performance should reach; Tensile strength sigma b〉=400N/mm 2 Percentage elongation δ 5 〉=20%.
The gained result is as follows:
σ b, δ 5Be the arithmetic mean of instantaneous value that each embodiment gets three cooling walls.
The embodiment numbering Embodiment 4 Embodiment 5 Embodiment 6 Embodiment 7 Embodiment 8
σ b(N/mm 2) 501 495 499 490 495
δ 5(%) 25 26 24 25 24
Experiment two: anatomy experiment
The cooling wall of casting is dissected shown in Fig. 1 dotted line.Get the inner steel pipe of the long foundry goods of 20mm at 3 places, cooling water pipe sample position, corresponding foundry goods is also got the long steel pipe of 20mm outward.Center along the cooling wall short transverse quartering is that a sample is respectively got at 4 places, core sample sample position.Get 3 samples altogether.Specimen size is that the result of 180*40*40mm dissection check should reach following requirement: 1, tensile strength sigma b〉=370N/mm 22, the percentage elongation δ of three test blocks of 4 taking-ups from core sample sample position 5On average be not less than 18%, the minimum percentage elongation of arbitrary test block must not be lower than 16%; 3, cooling water pipe can not be by burn through, and cast steel inside does not have defective; 4, the pipe displacement should be less than 5mm.Experimental result is as follows:
The mechanical property of core sample such as following table:
Numbering Index Casting-cooling wall 1 Casting-cooling wall 2 Casting-cooling wall 3
Embodiment 4 σb(N/mm 2) 431 442 440
δ5(%) 20 21 19
Minimum percentage elongation (%) 18 19 17
Embodiment 5 σb(N/mm 2) 435 432 437
δ5(%) 20 21 20
Minimum percentage elongation (%) 19 19 20
Embodiment 6 σb(N/mm 2) 440 438 439
δ5(%) 19 20 20
Minimum percentage elongation (%) 18 17 19
Embodiment 7 σb(N/mm 2) 435 430 435
δ5(%) 20 20 20
Minimum percentage elongation (%) 19 18 18
Embodiment 8 σb(N/mm 2) 430 425 430
δ5(%) 20 21 21
Minimum percentage elongation (%) 20 19 20
Casting-cooling wall 1, casting-cooling wall 2, casting-cooling wall 3 are meant the three block casting steel cooling walls of casting respectively as cooling medium with embodiment 4-8 in this table, and minimum percentage elongation is meant the numerical value of the percentage elongation minimum that records in three core samples that take out in the every casting-cooling wall.
Each embodiment is through perusal and Metallographic Analysis, and every cooling pipe outer wall and wall body fuse into one, and inwall is excellent, the inner flawless of foundry goods, and defectives such as sand holes, shrinkage cavity, pipe does not have and burns.The pipe metallographic structure should not have obvious variation from inside to outside, no carburized layer.
The pipe maximum displacement is 1.5mm among the embodiment 4-8.
Experiment three: through ball test and bulge test
Cooling wall carries out through ball test and bulge test after making and finishing, and logical bulb diameter is 0.7-0.75 a times of water pipe, bulge test hydraulic pressure is 1.0Mpa, knocks each position of cooling wall with the 0.75kg hand hammer, and cooling wall does not have the phenomenon of sweating of leaking, after 30 minutes, pressure falls and is not more than 3% just for qualified.
Now the steel ball of logical 0.75 times of caliber in the cooling wall pipe that each embodiment is made is all unblocked, through the 2Mpa hydrostatic test, pressurize 2 hours, all ne-leakage knocks each position of cooling wall with the 0.75kg hand hammer, cooling wall does not all have the phenomenon of sweating of leaking, and after 30 minutes, pressure all reduces to 0%.
Experiment four: cooling wall surface quality testing:
The cooling wall inboard does not allow any type of defective, as sand holes, pitted skin, pore, crackle etc.; On the face in the cooling wall outside, the casting flaw degree of depth is no more than 5mm, and the diameter of individual defect is not more than 10mm, at 100*100mm 2Interior no more than 2 places, defect area is no more than 3% of its place area.
Check the cooling wall pipe cooling wall that each embodiment makes, inboard all zero defects; On the face in the cooling wall outside, the casting flaw degree of depth is 2mm to the maximum, and the diameter of the maximum individual defect of diameter is 2mm, at 100*100mm 2What interior defects count was maximum is 1 place, the defect area maximum be 0.5% of its place area.

Claims (3)

1, a kind of casting method of metallic matrix cooling wall, cooling wall matrix are mild steel or low-carbon alloy steel, as cooling pipe, fill full cooling medium with the mild steel hot finished steel pipe in cooling pipe, it is characterized in that:
(1) cooling medium is by comprising schmigel, iron powder, the composite powder of electrode powder, and the part by weight between them is a schmigel: iron powder: electrode powder=1: 0.14~0.21: 0.04~0.10;
(2) mild steel or low-carbon alloy steel adopt oxidizing process to smelt in the cast molten steel process, and the content of oxidation aim carbon is controlled in the 0.08-0.12% scope, and the decarburized amount that guarantees molten steel is more than 0.30%;
(3) pouring temperature is controlled between 1560-1580 ℃;
(4) open at a slow speed earlier and water,, strengthen cast, allow molten steel wrap up cooling water pipe fast when molten steel during near the cooling water pipe position; When the molten steel liquid level surpassed cooling water pipe, cast at a slow speed again when molten steel enters riser height 2/3, changed by the rising head after-teeming and finishes up to cast.
2, the casting method of a kind of metallic matrix cooling wall according to claim 1 is characterized in that: cooling medium is a schmigel: iron powder: electrode powder=1: 0.17~0.19: 0.05~0.07.
3, the casting method of a kind of metallic matrix cooling wall according to claim 1, it is characterized in that: adopt the rising pouring unchoked running system, end, cast gate opposite is provided with insulated feeder, and casting mold is horizontal during cast, after cast finishes, immediately with rising head end bed hedgehopping.
CN 03113465 2003-05-12 2003-05-12 Casting method of metal substrate cooling wall Expired - Fee Related CN1212907C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03113465 CN1212907C (en) 2003-05-12 2003-05-12 Casting method of metal substrate cooling wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03113465 CN1212907C (en) 2003-05-12 2003-05-12 Casting method of metal substrate cooling wall

Publications (2)

Publication Number Publication Date
CN1513622A CN1513622A (en) 2004-07-21
CN1212907C true CN1212907C (en) 2005-08-03

Family

ID=34239298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03113465 Expired - Fee Related CN1212907C (en) 2003-05-12 2003-05-12 Casting method of metal substrate cooling wall

Country Status (1)

Country Link
CN (1) CN1212907C (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104293994B (en) * 2014-10-29 2016-08-24 马鞍山市润通冶金材料有限公司 A kind of casting steel cooling wall in blast furnace and manufacture method thereof
CN104531929B (en) * 2014-12-11 2016-11-09 马鞍山华盛冶金科技发展有限公司 A kind of preparation method of the solid packing of cast steel cooling wall casting
CN104388616B (en) * 2014-12-11 2016-07-13 马鞍山华盛冶金科技发展有限公司 A kind of solid cooling medium cast
CN104480242B (en) * 2014-12-11 2016-09-07 马鞍山华盛冶金科技发展有限公司 A kind of high temperature-proof molten steel punctures with the antiseize lubricant of filler
CN104388615B (en) * 2014-12-11 2016-06-29 马鞍山华盛冶金科技发展有限公司 A kind of using method of the solid cooling medium cast
CN104531927B (en) * 2014-12-11 2016-08-24 马鞍山华盛冶金科技发展有限公司 A kind of solid packing of cast steel cooling wall casting
CN108941515A (en) * 2018-09-13 2018-12-07 南通华东油压科技有限公司 A kind of casting method of the mechanical-hydraulic valve body with seamless steel pipe
CN110586923A (en) * 2019-09-16 2019-12-20 四川省金镭重工有限公司 Casting system and casting method of metallurgical blanking port
CN112517862B (en) * 2020-11-20 2022-01-14 中国科学院金属研究所 Secondary hole shrinkage control method for large-size high-temperature alloy master alloy cast ingot

Also Published As

Publication number Publication date
CN1513622A (en) 2004-07-21

Similar Documents

Publication Publication Date Title
CN108531803B (en) A kind of casting method of spheroidal graphite cast-iron valve body
CN106077507A (en) The casting die of a kind of automobile water-cooling motor casing foundry goods and casting technique
CN101407015B (en) Method for manufacturing vermicular cast iron trolley body
CN110695311B (en) Casting process of gearbox shell
CN101342579B (en) Non-chill, non-flash groove cast process for high-power wind-driven generator low-temperature spheroidal iron base plate
CN1212907C (en) Casting method of metal substrate cooling wall
CN1217012C (en) Furnace-wall cooling block
CN104174819B (en) The climb casting technique of machine third-level planetary frame of a kind of ocean platform
CN101342575B (en) Manufacturing process for high-power motor pig machine base
CN111910118A (en) Method for forming nodular cast iron flywheel for high-power diesel engine
CN108284202B (en) Casting method for improving structure and performance of nodular cast iron material and cast part cast by casting method
JP3993152B2 (en) Casting mold and ingot manufacturing method
CN101481769A (en) High nickel austenite ductile iron valve stem nut and manufacturing method thereof
CN102181782A (en) Method for manufacturing high-nickel austenitic ductile cast iron valve rod nut
CN104630611A (en) Crucible for die-casting machine and casting technology of crucible for die-casting machine
KR20040072726A (en) Cooling plate for a metallurgical furnace and method for manufacturing such a cooling plate
CN208991713U (en) A kind of cast steel ingot mould
CN101028647A (en) Method for casting super-large composite-material caststeel bearing roller above 100 ton
CN105798271A (en) Automobile mold casting cast by compounding ductile iron and gray iron, gating system and casting method
CN113118381B (en) Method for molding large-section nodular cast iron shielding hemispherical casting
CN104550714A (en) Processing mold of cast iron and steel composite material and manufacturing process of processing mold
CN105268926B (en) Utilize the method for composite sand mould cast steel anode template die
CN110877095B (en) Processing technology of engineering machinery end cover casting
CN109277526B (en) Casting method of die casting machine template for thick and large-section ductile iron
CA2511141C (en) Cooling element, in particular for furnaces, and method for producing a cooling element

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050803

Termination date: 20130512