CN1210854C - Variable wavelenght output optic fibre laser - Google Patents
Variable wavelenght output optic fibre laser Download PDFInfo
- Publication number
- CN1210854C CN1210854C CNB021022488A CN02102248A CN1210854C CN 1210854 C CN1210854 C CN 1210854C CN B021022488 A CNB021022488 A CN B021022488A CN 02102248 A CN02102248 A CN 02102248A CN 1210854 C CN1210854 C CN 1210854C
- Authority
- CN
- China
- Prior art keywords
- optical
- awg
- wavelength
- light
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 37
- 230000003287 optical effect Effects 0.000 claims abstract description 73
- 230000010287 polarization Effects 0.000 claims abstract description 14
- 239000013307 optical fiber Substances 0.000 claims abstract description 13
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000005855 radiation Effects 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 description 7
- 230000003321 amplification Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 229910052691 Erbium Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 241000272168 Laridae Species 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Lasers (AREA)
- Optical Communication System (AREA)
Abstract
本发明涉及一种可变波长输出光纤激光器,该可变波长输出光纤激光器主要包括:依序连接组成环路的泵浦源、光耦合器、偏振控制器、阵列波导光栅、光分束器。本发明由于巧妙地利用目前已成熟的AWG技术,将AWG串接在带有掺杂光纤的光纤回路中,通过AWG作为腔内光滤波器实现一组共振波长的选择和放大辐射的建立,AWG的复用端经合波后与泵浦光一起通过光纤耦合器耦合进入掺杂光纤,从而实现单泵浦源对可变波长的放大,简化了器件的结构,同时由于AWG的波导集成结构,可以缩小器件的尺寸,提高器件结构的稳定性,并可以方便地通过改变AWG的结构参数实现不同的波长和波长间隔的光源,可靠地实现ITU-T的C-Band和L-Band标准波长和波长间隔。
The invention relates to a variable wavelength output fiber laser, which mainly includes: a pump source, an optical coupler, a polarization controller, an array waveguide grating, and an optical beam splitter connected in sequence to form a loop. Due to the skillful use of the mature AWG technology in the present invention, the AWG is serially connected in the optical fiber circuit with doped optical fibers, and the AWG is used as an intracavity optical filter to realize the selection of a group of resonance wavelengths and the establishment of amplified radiation. The AWG After multiplexing, the multiplexed end and the pump light are coupled into the doped fiber through the fiber coupler, so that the single pump source can amplify the variable wavelength, simplify the structure of the device, and because of the waveguide integrated structure of the AWG, The size of the device can be reduced, the stability of the device structure can be improved, and light sources with different wavelengths and wavelength intervals can be easily realized by changing the structural parameters of the AWG, and the C-Band and L-Band standard wavelengths and wavelengths of ITU-T can be reliably realized. wavelength interval.
Description
技术领域technical field
本发明涉及一种光纤光源,特别是一种具有可变波长输出的光纤光源,适合于使用放大的自发辐射(ASE)光作为辅助泵源。The invention relates to a fiber optic light source, in particular to a fiber optic light source with variable wavelength output, suitable for using amplified spontaneous emission (ASE) light as an auxiliary pump source.
背景技术Background technique
对宽波段光源已经进行了持续研究,原因在于它们具有许多应用,如扩展到陀螺传感器、用于测试光学元件的光源以及用于普通接入网络的调制光谱。特别地利用来自掺杂稀土金属(比如说饵)的光纤的ASE光的光源是比较优良的宽波段光源,原因是它们表现为宽波段、高功率以及低损耗特性,对于这种掺饵光纤(EDF)宽波段光源所作的所有研究努力都是关于从1520到1560纳米波段的即C波段(C-Band)单个波段的,现有大多数的光通讯元件和传统的掺饵光纤放大器EDFA都工作在此波段。然而随着密集波分复用(DWDM--Densed Wavelength Devided Multiples)光传输系统的发展,结构简单、易实现的可变波长输出激光光源有着特别重要的意义,多通道的光源结构不但可以实现可变波长激光的同时输出,而且也可以很容易地通过选择通道达到波长快速可调的目的。但目前还没有比较成熟的多通道可变波长输出结构,普遍的方法是将单波长(DBR--Distributed Bragg Reflector)激光器或光纤激光器做成阵列封装在一起,其存在结构复杂,性能不稳定的问题,且每个波长需要单独的驱动电压或温度控制等。近期基于模式锁定的可调激光器得到了很大的关注,但是这种方法对传输速率有特殊的限制,近几年,阵列波导光栅(AWG Arrayed Waveguide Grating)技术发展很快,其性能、价格已达到了商用化的程度,阵列波导光栅AWG可以用做集成光滤波器阵列,但将阵列波导光栅AWG应于光纤激光器尚未发现。Broadband light sources have been studied continuously due to their many applications such as extension to gyroscopic sensors, light sources for testing optical components, and modulated spectra for general access networks. In particular, light sources utilizing ASE light from optical fibers doped with rare earth metals (such as erbium) are relatively good broadband light sources because they exhibit characteristics of wide band, high power, and low loss. For this erbium-doped optical fiber ( All research efforts made by EDF) broadband light sources are about the single band from 1520 to 1560 nanometers, that is, the C-band (C-Band). Most of the existing optical communication components and the traditional erbium-doped fiber amplifier EDFA work in this band. However, with the development of dense wavelength division multiplexing (DWDM--Densed Wavelength Devided Multiples) optical transmission system, the laser light source with variable wavelength output that is simple in structure and easy to realize is of great significance. The multi-channel light source structure can not only realize the Simultaneous output of variable-wavelength lasers, and the purpose of quickly adjusting the wavelength can be easily achieved by selecting channels. However, there is no relatively mature multi-channel variable wavelength output structure at present. The common method is to make single-wavelength (DBR-Distributed Bragg Reflector) lasers or fiber lasers into an array and package them together, which has complex structures and unstable performance. problem, and each wavelength requires a separate drive voltage or temperature control, etc. Recently, tunable lasers based on mode locking have received a lot of attention, but this method has a special limitation on the transmission rate. In recent years, the technology of arrayed waveguide grating (AWG Arrayed Waveguide Grating) has developed rapidly. At the level of commercialization, arrayed waveguide grating AWG can be used as an integrated optical filter array, but it has not been found to apply arrayed waveguide grating AWG to fiber laser.
发明内容Contents of the invention
本发明的目的是提供一种可有效简化结构、缩小器件尺寸、提高器件结构稳定性的可变波长输出光纤激光器。The object of the invention is to provide a variable wavelength output fiber laser that can effectively simplify the structure, reduce the size of the device and improve the structural stability of the device.
为实现上述发明目的,可变波长输出光纤激光器包括泵浦源、光耦合器、光纤放大器、偏振控制器、光分束器,其特征在于还包括光开关和阵列波导光栅,其中、光耦合器、光纤放大器、偏振控制器、光开关、阵列波导光栅、光分束器依序连接组成环路,且通过光分束器分离出来的一部分光作为光信号输出,一部分光作为反馈返回到环路中作为光输入信号通过光耦合器后被光纤放大器继续放大。In order to realize the purpose of the above invention, the variable wavelength output fiber laser includes a pump source, an optical coupler, a fiber amplifier, a polarization controller, and an optical beam splitter, and is characterized in that it also includes an optical switch and an arrayed waveguide grating, wherein the optical coupler , fiber amplifier, polarization controller, optical switch, arrayed waveguide grating, and optical beam splitter are sequentially connected to form a loop, and part of the light separated by the optical beam splitter is output as an optical signal, and part of the light is returned to the loop as feedback After passing through the optical coupler as an optical input signal, it is continuously amplified by the optical fiber amplifier.
本发明由于巧妙地利用目前已成熟的阵列波导光栅AWG技术,将阵列波导光栅AWG串接在带有掺杂光纤的光纤回路中,通过阵列波导光栅AWG作为腔内光滤波器实现一组共振波长的选择和放大辐射的建立,通过光开关实现所选择波长的环路的连通,经合波后与泵浦光一起通过光纤耦合器耦合进入搀杂光纤,从而实现对该选定波长的光的放大和输出。光开关连通不同波长的通路,就实现了对波长的选择,建立了特定波长的光源输出。同时由于阵列波导光栅AWG的波导集成结构,可以缩小器件的尺寸,提高器件结构的稳定性。而且由于输出的光波长和波长之间的间隔由阵列波导光栅AWG的结构决定,因此可以方便地通过改变阵列波导光栅AWG的结构参数实现不同的波长和波长间隔的多波长可变光源,可靠地实现ITU-T的C-Band和L-Band标准波长和波长间隔,有效扩展本发明的波段应用范围;而且本发明还可以方便地通过调节泵浦光的强度来实现输出光强的调节,以及可根据相应的光路是否连通,方便容易地实现光源的波长选择。Because the present invention skillfully utilizes the currently mature arrayed waveguide grating (AWG) technology, the arrayed waveguide grating (AWG) is serially connected in the optical fiber circuit with doped optical fiber, and a set of resonance wavelengths can be realized by using the arrayed waveguide grating (AWG) as an intracavity optical filter The selection and establishment of amplified radiation, the connection of the loop of the selected wavelength is realized through the optical switch, and after multiplexing, it is coupled with the pump light into the doped fiber through the fiber coupler, so as to realize the amplification of the light of the selected wavelength and output. When the optical switch connects the channels of different wavelengths, the selection of the wavelength is realized, and the output of the light source with a specific wavelength is established. At the same time, due to the waveguide integration structure of the arrayed waveguide grating AWG, the size of the device can be reduced and the stability of the device structure can be improved. Moreover, since the output light wavelength and the interval between wavelengths are determined by the structure of the arrayed waveguide grating AWG, it is convenient to realize multi-wavelength variable light sources with different wavelengths and wavelength intervals by changing the structural parameters of the arrayed waveguide grating AWG, reliably Realize the C-Band and L-Band standard wavelengths and wavelength intervals of ITU-T, effectively expand the application range of the band of the present invention; and the present invention can also easily realize the adjustment of the output light intensity by adjusting the intensity of the pump light, and The wavelength selection of the light source can be conveniently and easily realized according to whether the corresponding optical paths are connected.
以下结合附图和实施例详细描述本发明的基本组成与工作原理:The basic composition and working principle of the present invention are described in detail below in conjunction with accompanying drawing and embodiment:
附图说明Description of drawings
图1是本发明的结构组成示意图;Fig. 1 is a structural composition schematic diagram of the present invention;
图2是本发明的进一步实施方案的结构组成示意图;Fig. 2 is a structural composition schematic diagram of a further embodiment of the present invention;
图3是本发明光开关的结构组成示意图;Fig. 3 is a schematic diagram of the structural composition of the optical switch of the present invention;
图4是本发明在光传输系统中应用的结构示意图;Fig. 4 is a structural schematic diagram of the application of the present invention in an optical transmission system;
具体实施方式Detailed ways
如图1所示,本发明提供的可变波长激光器包括泵浦源、光耦合器1、光纤放大器2、偏振控制器3、光开关4、阵列波导光栅6、和光分束器7。泵浦源产生的泵浦光从光耦合器1的一个端口输入,与从光耦合器1另一端口输入的通过光分束器7分离出来的部分输出光进行耦合,然后输出到光纤放大器进行光放大,再经过偏振控制器(PC--Polarization Controller)3进行偏振调整,经偏振调整的光信号在光开关4的作用下,可以将不同波长的光输出到阵列波导光栅(AWG,Arrayed Waveguide Grating)6的不同通道5中,当某一特定波长输入到AWG,就可以通过AWG的光栅效应实现该特定波长的滤波调谐,完成所选择波长的光的共振放大,最后经分束器7作为输出光输出本激光器。下面再结合附图对可变波长激光器的各部分进行详细说明。As shown in FIG. 1 , the variable wavelength laser provided by the present invention includes a pump source, an optical coupler 1 , a
如图1所示,泵浦源为光耦合器1提供泵浦光Pp,在图1中并未画出泵浦源,只给出泵浦光Pp的图示。光耦合器(FC--FiberCoupler)1连接在泵浦源与光纤放大器2之间,将泵浦源的泵浦光及光输入信号耦合在一起并传输至光纤放大器2;在泵浦源的泵浦光光激励下,光纤放大器2用于产生各种波长和方向的自发辐射光,本实施方案中,光纤放大器2选用掺饵光纤(EDF--Erbium DopedFiber)放大器,即用掺饵光纤EDF作为增益介质;由于掺铒光纤放大器有增益不平坦性,相同泵浦功率下,不同波长输出光功率会有所不同。为了避免在波长切换时输出光功率发生剧变,可通过调节泵浦光功率强度调节输出光功率的强度,也可以在光纤放大器2与偏振控制器3之间另外增加一个如图2所示的增益平坦滤波器GFF(Gain FlatFilter)8,来实现不同波长光的增益均衡,改善光纤放大器2的增益平坦特性。另外,为了使EDF的放大不受反射光的影响,保证光源结构稳定工作,可在光放前后增加隔离器(Isolator),如图1、图2所示。偏振控制器(PC--Polarization Controller)3连接在光纤放大器2后面,用于调整光纤放大器2产生的自发辐射光的偏振态。As shown in FIG. 1 , the pumping source provides pumping light Pp for the optical coupler 1 . The pumping source is not shown in FIG. 1 , but only the illustration of the pumping light Pp is given. The optical coupler (FC--FiberCoupler) 1 is connected between the pump source and the
光开关4,连接在偏振控制器3与阵列波导光栅6之间,光开关4的结构组成如图3所示,由一个1×N和N×1的光开关组成。图3中光开关前后的光端机是为了说明光开关的作用而用来表示光的输入和输出。在本发明,可以对应图1中光开关4之前的光放大器2和之后的阵列波导光栅(AWG--Arrayed Waveguide Grating)6。光开关是将偏振态调整后的自发辐射光的某一特定波长的光作为阵列波导光栅6的输入光连通到阵列波导光栅6的特定波长通道5中;其中光开关器件的实现方法很多,并且还在发展中。一般的实现方法有机械式、热光、电光、声光效应等,可根据对性能的要求选用。传统的机械式开关(例如移动光纤)技术已经比较成熟,但响应速度慢,近期发展起来的微机电系统(MEMS:Micro-electro-michanical sys terns)光开关响应速度比较快,并且插损小,可以作为首选,其基本原理是在一个芯片上集成很多实现镜面反射功能的阵列面,通过调节注入电流可以改变反射面角度,从而改变光的传输方向,将入射光从不同的出口输出,从而实现光信号的开关功能。The optical switch 4 is connected between the polarization controller 3 and the
阵列波导光栅(AWG--Arrayed Waveguide Grating)6适合于作为腔内光阵列滤波器实现一组共振波长的选择和放大辐射的建立,经过光开关选择,AWG(Arrayed Waveguide Grating)6的某一特定波长λ的通道5被连通,从而通过AWG的光栅效应可实现特定波长λ的滤波调谐,完成所选择波长的光的共振放大。可选择的波长和波长间隔由AWG的结构决定。Arrayed Waveguide Grating (AWG--Arrayed Waveguide Grating) 6 is suitable as an intracavity optical array filter to realize the selection of a group of resonance wavelengths and the establishment of amplified radiation. The channel 5 of the wavelength λ is connected, so that the filter tuning of a specific wavelength λ can be realized through the grating effect of the AWG, and the resonance amplification of the light of the selected wavelength can be completed. Selectable wavelengths and wavelength intervals are determined by the structure of the AWG.
光分束器(BS--Beam Splitter)7连接在阵列波导光栅AWG6的输出端,用于将阵列波导光栅AWG6合波后的光分为两部分,一部分光作为光输出信号输出,一部分光作为反馈返回到环路中作为光输入信号通过光纤放大器2继续被放大,其中输出光强和反馈光强的比可以通过调节光分束器的透射比和反射比实现,从而可以选择C-Band或L-Band的掺铒光纤放大器实现单泵浦对C-Band或L-Band的宽带放大,使得调谐波长在C-Band或L-Band范围内可选。The beam splitter (BS--Beam Splitter) 7 is connected to the output end of the arrayed waveguide grating AWG6, and is used to divide the light after the arrayed waveguide grating AWG6 multiplexes into two parts, a part of the light is output as an optical output signal, and a part of the light is output as an optical output signal. Feedback returns to the loop as the optical input signal and continues to be amplified through the
本发明在密集波分复用(Densed Wavdength DevidedMaltipler,DWDM)光纤传输系统中的应用参见图4。图4所示的光传输系统包括复用器MUX、分插复用器(A/DM)和交叉连接(XC)设备等。作为波长可变光源,本发明可用于光传输系统发射端MUX光源和通道波长保护光源,当某一通道激光源出现故障时,可调节可变光源到此波长进行替代。采用本发明方案就不需要为每一个光源配备一个备用光源,因此可节省备用激光光源。同时,本发明可用于光分插复用(OADM--Optical Add and Drop Multiplex)的波长上/下路A/DM(Add/Drop)的上路发端,实现光波长灵活上/下路。此外,本发明也可用在光交叉(OXC--Optical Cross-Connect)连接模块中实现波长转换,解决光交叉中波长阻塞的问题。The application of the present invention in dense wavelength division multiplexing (Densed Wavlength Devided Maltipler, DWDM) optical fiber transmission system is shown in Fig. 4. The optical transmission system shown in FIG. 4 includes a multiplexer MUX, an add-drop multiplexer (A/DM), and a cross-connect (XC) device, etc. As a wavelength-variable light source, the present invention can be used as a MUX light source at the transmitting end of an optical transmission system and a channel wavelength protection light source. When a certain channel laser source fails, the variable light source can be adjusted to this wavelength for replacement. Adopting the scheme of the invention does not need to equip each light source with a spare light source, so the spare laser light source can be saved. At the same time, the present invention can be used for the add origination of wavelength add/drop A/DM (Add/Drop) of Optical Add/Drop Multiplex (OADM--Optical Add and Drop Multiplex), to realize flexible add/drop of optical wavelength. In addition, the present invention can also be used in an optical cross-connect (OXC—Optical Cross-Connect) connection module to realize wavelength conversion and solve the problem of wavelength blocking in optical cross-connect.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021022488A CN1210854C (en) | 2002-01-26 | 2002-01-26 | Variable wavelenght output optic fibre laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021022488A CN1210854C (en) | 2002-01-26 | 2002-01-26 | Variable wavelenght output optic fibre laser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1435922A CN1435922A (en) | 2003-08-13 |
CN1210854C true CN1210854C (en) | 2005-07-13 |
Family
ID=27627499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021022488A Expired - Lifetime CN1210854C (en) | 2002-01-26 | 2002-01-26 | Variable wavelenght output optic fibre laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1210854C (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1295822C (en) * | 2004-06-25 | 2007-01-17 | 南开大学 | Convertible dual-wavelength doping optical fiber laser |
CN103098488A (en) * | 2012-10-29 | 2013-05-08 | 华为技术有限公司 | Wavelength-adjustable laser, reactive optical-network system and device |
CN104038289A (en) * | 2014-06-07 | 2014-09-10 | 吉林大学 | Optical soliton pulse generator formed by erbium-doped-fiber laser |
EP2993743B1 (en) * | 2014-09-02 | 2017-05-10 | Huawei Technologies Co., Ltd. | Tunable laser and method for tuning a lasing mode |
WO2016201650A1 (en) * | 2015-06-17 | 2016-12-22 | 许亮芳 | Polarization-insensitive arrayed waveguide grating module |
CN109286122B (en) * | 2018-12-13 | 2020-04-28 | 华南理工大学 | Multiband Tunable Single Frequency Fiber Laser |
CN113285756B (en) * | 2021-07-22 | 2021-10-22 | 西安奇芯光电科技有限公司 | PLC chip, single-fiber bidirectional optical assembly, optical module and working method |
CN114337837B (en) * | 2021-11-26 | 2023-11-14 | 军事科学院系统工程研究院网络信息研究所 | Wavelength programmable multifunctional microwave photon signal processing method |
-
2002
- 2002-01-26 CN CNB021022488A patent/CN1210854C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CN1435922A (en) | 2003-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6339495B1 (en) | Optical amplifier with power dependent feedback | |
US6529314B1 (en) | Method and apparatus using four wave mixing for optical wavelength conversion | |
US6002513A (en) | Optical modulator providing independent control of attenuation and spectral tilt | |
US7215836B2 (en) | System for amplifying optical signals | |
US8699125B2 (en) | Reconfigurable optical amplifier | |
US6028881A (en) | Wavelength selectable laser source | |
CA2363152C (en) | Wdm transmitter | |
WO2014101427A1 (en) | Multi-wavelength light source device | |
JP4063908B2 (en) | Light source device, optical amplifier, and optical communication system | |
CN1210854C (en) | Variable wavelenght output optic fibre laser | |
CA2357496A1 (en) | Optical amplifier with power dependent feedback | |
CN1194453C (en) | A multi-wavelength output fiber laser | |
US6901085B2 (en) | Multi-wavelength ring laser source | |
US20010050788A1 (en) | Multiple wavelength laser source | |
US12057888B2 (en) | Laser light system with wavelength attenuation | |
Emori et al. | Demonstration of broadband Raman amplifiers: a promising application of high-power pumping unit | |
JP2001117126A (en) | Raman amplifier and optical fiber communication system using the same | |
JP3165090B2 (en) | Light switch | |
Cowle | The state of the art of modern non-SDM amplification technology in agile optical networks: EDFA and Raman amplifiers and circuit packs | |
JP2000124529A (en) | Wide band light amplifier | |
JP2001068772A (en) | Automatic gain control multi-wavelength amplification telecommunication system | |
JPWO2002047217A1 (en) | Wavelength multiplexing light source and wavelength multiplexing device | |
Hashimoto et al. | Tunable erbium-doped fiber ring laser using acousto-optic tunable filter | |
JPH06120605A (en) | Variable wavelength light source | |
JPH11274623A (en) | Optical amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20050713 |
|
CX01 | Expiry of patent term |