CN1208507C - Far infrared radiating hollow 3-D crimped polyester fiber and its making process - Google Patents

Far infrared radiating hollow 3-D crimped polyester fiber and its making process Download PDF

Info

Publication number
CN1208507C
CN1208507C CN 01108354 CN01108354A CN1208507C CN 1208507 C CN1208507 C CN 1208507C CN 01108354 CN01108354 CN 01108354 CN 01108354 A CN01108354 A CN 01108354A CN 1208507 C CN1208507 C CN 1208507C
Authority
CN
China
Prior art keywords
far infrared
hollow
polyester fiber
fiber
far
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 01108354
Other languages
Chinese (zh)
Other versions
CN1308148A (en
Inventor
俞波
马驿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YIZHENG CHEMICAL FIBRE CO Ltd
Original Assignee
YIZHENG CHEMICAL FIBRE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YIZHENG CHEMICAL FIBRE CO Ltd filed Critical YIZHENG CHEMICAL FIBRE CO Ltd
Priority to CN 01108354 priority Critical patent/CN1208507C/en
Publication of CN1308148A publication Critical patent/CN1308148A/en
Application granted granted Critical
Publication of CN1208507C publication Critical patent/CN1208507C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

The present invention relates to a hollow far infrared radiating 3-D crimped polyester fiber and a making method thereof, which belongs to the field of chemical industry for making polymers and chemical fibers. Composite inorganic far infrared superfine materials of 0.3 to 0.5 micrometer, coupling agents of a titanate class and surface active agents are added to a high speed agitator together to dry the surface; superfine material powder and polyester carriers are mixed in the high speed agitator after the surface of the superfine materials are treated; the obtained mixing powder is conveyed to a double-screw extruder to be mixed together and extruded; the working temperature is 10 to 30 DEG C lower than that of manufacturing the conventional color master batch; the obtained far infrared master batch and a polyester slice are fed and sent to a mixer by a measuring feeder to be mixed; then, the far infrared master batch and the polyester slice are sent to a screw rod spinning machine to be spun, and the screw rod spinning machine manufactures hollow 3-D crimped fibers; finally, obtained finished products are the hollow infrared radiating 3-D crimped polyester fiber of the present invention.

Description

Far infrared radiation hollow 3-D crimped polyester fiber and preparation method thereof
Relate to the field
The present invention relates to the far infrared radiation hollow 3-D crimped polyester fiber in a kind of chemical, polymer, chemical fibre manufacturing field and preparation method thereof.
Background technology
Generally make the far infrared textiles with two kinds of methods: the one, at the surperficial coated far-infrared material of textiles; The 2nd, in the chemical fibre spinning solution, (comprise melt-spun and wet spinning) and mix far-infrared material and make far IR fibre, and then be processed into the far infrared textiles.The former is easy to processing, saves far-infrared material; Latter's wash resistant, feel is relatively good.The factors such as form of the prescription of the power of the heat-preserving health-care function of infrared textiles and selected far-infrared material, consumption, particle diameter, the distribution in fiber and fabric are relevant.The cross section of existing far-infrared polyester fiber is solid, and it has health-care effect, but bulkiness, warmth retention property are relatively poor.And the particle diameter of the used far infrared powder of existing far-infrared polyester fiber is bigger, dispersed relatively poor in polyester, and when making the hollow 3-D crimped polyester fiber with far-infrared polyester fiber, particle diameter and its dispersiveness in master batch and fiber to the far infrared super-fine material powder in the far-infrared polyester fiber have higher requirement, if particle diameter is excessive, or it is dispersed bad, then on the make in the process of empty 3-D crimped polyester fiber, easily cause screen pack to block and the spinneret orifice obstruction, even can't adapt to the production technology that has doughnut now, can not make the three-dimensional crimp doughnut.
Existing hollow 3-D crimped polyester fiber cross section is a hollow, and its bulkiness, warmth retention property are better, are usually used in warming liner, bedding, stuffing etc.Because its special processing conditions and thin hollow wall, difficulty of processing is greater than conventional fibre.And it does not have health care.
Summary of the invention
Purpose of the present invention is exactly in order to address the above problem, it is comprehensive in addition to propose a kind of characteristics with far IR fibre and hollow 3-D crimped polyester fiber, both had good bulkiness, warmth retention property, had far infrared radiation hollow 3-D crimped polyester fiber of great health care function and preparation method thereof again.
Technical solution of the present invention:
A kind of far infrared radiation hollow 3-D crimped polyester fiber is characterized in that its adopts average grain diameter is that the composite inorganic far infrared super-fine material of 0.3-0.5 μ m and additive and polyester slice are made far-infrared matrix, and the percentage by weight of its each composition is:
0.3-0.5 the composite inorganic far infrared super-fine material 20-40% of μ m
Titante coupling agent 1-3%
Surfactant 0.5-1.5%
The polyester support surplus
Above-mentioned far-infrared matrix and polyester slice are made far infrared radiation hollow 3-D crimped polyester fiber, and the percentage by weight of its each composition is:
Far-infrared matrix 8-12%
The polyester slice surplus.
A kind of preparation method of far infrared radiation hollow 3-D crimped polyester fiber, it is characterized in that it mainly is to be made by polyethylene terephthalate, contain in this hollow 3-D crimped polyester fiber by the far infrared radiation additive of at least three kinds of materials through Compound Machining.The particle of the far infrared radiation additive in the fiber has the particle diameter distribution of 0.3-0.5 micron and 0.4 micron average grain diameter.Concrete preparation method is with multiple far infrared inorganic material, its fundamental component is a silica, alundum (Al, titanium dioxide, the mixture of zirconium dioxide, pulverize with superfine jet mill, be crushed to its particle diameter at 0.3-0.5 μ m, far infrared inorganic material powder after pulverizing is placed the high temperature furnace sintering, sintering temperature is 800-1100 ℃, pulverize again after the sintering cooling, make particle diameter still be controlled at 0.3-0.5 μ m, obtain the composite inorganic far infrared super-fine material of 0.3-0.5 μ m, it and iron esters of gallic acid coupling agent and surfactant together joined carry out the dry method surface treatment in the homogenizer, super-fine material powder after the surface treatment mixes in high-speed mixer with polyester support, the mixed powder that obtains is delivered in the double screw extruder blend and is extruded, conventional low 10-30 ℃ of the Masterbatch temperature of making of its operating temperature, do not degrade to guarantee raw material carrier, above-mentioned far-infrared matrix that obtains and polyester slice are mixed through the reinforced blender of delivering to of metered charge device, deliver to the extruder type spinning machine of making the hollow 3-D crimped fiber then and carry out spinning, the finished product that obtains at last is far infrared radiation hollow 3-D crimped polyester fiber of the present invention.
The present invention is in addition comprehensive with the characteristics of far IR fibre and hollow 3-D crimped polyester fiber, has both had fine have bulkiness, warmth retention property, has great health care function again, and produces cooperative effect, and above-mentioned two series products of heat-preserving health-care function ratio are even better.The physical property of product of the present invention meets the certified products test rating of conventional products, and the long radiance of its far infrared all-wave is 0.82-0.84, and the far infrared integrated radiance is 0.84 in its 8-25 mu m waveband, high 1.5-3 ℃ of its infrared thermal image temperature rise ratio general fibre.Product purpose of the present invention is wider, can as bedding, winter coat inner bag, shoes and hats liner etc., also can be used as health treatment as heat insulating material formed, as various protection pads, protect lining etc.Its goods can the auxiliary curing illness relevant with microcirculation disorder, is particularly suitable for person in middle and old age and weak patient.
Description of drawings
Fig. 1 is the cross section enlarged diagram of fiber product of the present invention.
The specific embodiment
It is that the composite inorganic far infrared super-fine material of 0.3-0.5 μ m and additive and polyester slice are made far-infrared matrix that the present invention adopts average grain diameter, and the percentage by weight of its each composition is:
0.3-0.5 the composite inorganic far infrared super-fine material 20-40% of μ m
Iron esters of gallic acid coupling agent 1-3%
Surfactant 0.5-1.5%
The polyester support surplus
Above-mentioned far-infrared matrix and polyester slice are made far infrared radiation hollow 3-D crimped polyester fiber, and the percentage by weight of its each composition is:
Far-infrared matrix 8-12%
The polyester slice surplus.
Concrete grammar is as follows:
With multiple far infrared inorganic material, its fundamental component is the mixture of silica, alundum (Al, titanium dioxide, zirconium dioxide (also can contain di-iron trioxide), pulverize with superfine jet mill, be crushed to its particle diameter at 0.3-0.5 μ m, far infrared inorganic material powder after pulverizing is placed the high temperature furnace sintering, sintering temperature is 800-1100 ℃, pulverizes after the sintering cooling again, makes particle diameter still be controlled at 0.3-0.5 μ m.So promptly obtain the composite inorganic far infrared super-fine material of 0.3-0.5 μ m, with it and additive (containing titanate ester and surfactant-based in the additive of the present invention simultaneously), be titante coupling agent and surfactant, together join and carry out the dry method surface treatment in the homogenizer.Close organic end of titanate ester can be three (dioctylphyrophosphoric acid ester acyl groups), two (dioctyl phosphate acyl groups), three (dodecyl benzenesulfonyls), hard acid, wherein three (dioctylphyrophosphoric acid ester acyl groups) preferably.Surfactant-based can be zinc stearate, calcium stearate, hard ester acid, ethylenebisstearamide, oxidized polyethlene wax, erucyl amide, wherein ethylenebisstearamide preferably.Super-fine material powder after the surface treatment and polyester support (are cut into slices as terephthaldehyde's glycol ester, or mutual-phenenyl two acid bromide two alcohol ester's section etc.) in high-speed mixer, mix, the mixed powder that obtains is delivered in the double screw extruder blend and is extruded, conventional low 10-30 ℃ of the Masterbatch temperature of making of its operating temperature, to guarantee raw material carrier do not degrade (when making far-infrared matrix, the ultrafine particle amount of adding is bigger).
Above-mentioned far-infrared matrix that obtains and polyester slice are mixed through the reinforced blender of delivering to of metered charge device, deliver to the extruder type spinning machine of making the hollow 3-D crimped fiber then and carry out spinning, the finished product that obtains at last is far infrared radiation hollow 3-D crimped polyester fiber of the present invention.The structure of its fiber product is seen Fig. 1, is uniform-distribution with far infrared ultra-fine inorganic particulate 2 in its annular cross section matrix 1.
The present invention has used the particle diameter with 0.3-0.5 μ m to distribute and the far infrared radiation additive of the average grain diameter of 0.4 μ m with preferably getting.Though the far infrared radiation additive is through surface treatment, if do not select the far infrared radiation additive of above-mentioned particle size distribution range then still not reach desirable dispersity.If particle diameter is less than 0.2 μ m, the cohesion between the particle still clearly fracture of wire occurs and filament spinning component pressure raises rapidly, influences steadily carrying out of fiber production process; If particle diameter also can cause the problems referred to above greater than 0.5 μ m, and also bigger to the wearing and tearing of equipment.
Preferably adopted 10-20 purpose alundum (Al filter sand and 200-250 purpose woven wire to filter the polyethylene terephthalate spinning melt that contains the far infrared radiation additive in the manufacture process of fiber of the present invention.If adopt the following woven wire of following filter sand of 10 orders and 200 orders to filter, then filter course is relatively poor to the effect of the filtration of melt and homogenizing, and spinneret orifice easily stops up; If adopt the above woven wire of above filter sand of 20 orders and 250 orders to filter, then filter course easily stops up, and the life cycle of filament spinning component is also shorter; On the other hand, filter sand can be through adopting alundum (Al, extra large sand, bead etc., but extra large sand, bead easily adsorb the cohesion that the far infrared radiation additive causes additive granules, block filter course, cause difficulty in spinning.Therefore preferably adopt the alundum (Al filter sand better.
Preferably adopted up-coiler deflector roll, feeding-wheel and partial draft machine parts pottery or the spraying plating pottery to process fiber of the present invention in the manufacture process of fiber of the present invention.Because there is the far infrared radiation additive granules of high rigidity to exist on the surface of fiber of the present invention, production process mid and far infrared radiation additive causes wearing and tearing with the mantle friction of equipment at a high speed.So, preferably adopted up-coiler deflector roll, feeding-wheel and partial draft machine parts pottery or the spraying plating pottery to process fiber of the present invention in the manufacture process of fiber of the present invention.
Spinning speed in the conventional hollow 3-D crimped polyester fiber manufacture process be about 800-1000 rice/minute.Cause the extension at break of spun filament to increase greatly because of containing the far infrared radiation additive granules in the fiber of the present invention, brought difficulty for road, back drafting process.Spinning speed in the manufacture process of fiber of the present invention should be more than 1150 meters/minute, can obtain to have the spun filament of suitable extension at break.
Embodiment 1:
Getting fundamental component is the multiple far infrared inorganic material of silica (28.5%), alundum (Al (4%), titanium dioxide (61%), zirconium dioxide (6.5%) mixture, being crushed to particle diameter with superfine jet mill is 0.45 μ m, place high temperature furnace at 900 ℃ of sintering temperatures then, pulverize again after the sintering cooling, particle diameter still is controlled at 0.45 μ m, obtains composite inorganic far infrared superfine powder.Get 40 parts of this superfine powders, 3 parts of three (dioctylphyrophosphoric acid base) titanate esters, 1 part of ethylenebisstearamide, get 56 parts in polyethylene terephthalate carrier again, they one are coexisted and mix in the high-speed mixer, the mixed powder that obtains is delivered in the double screw extruder blend and is extruded, pelletizing, and concrete master batch blending technology is as follows:
Screw rod is respectively distinguished temperature ℃ pressure driving screw rotating speed feed screw rotating speed
Worker I II III IV 0.1MPa 135-165rpm 30-32rpm
Plant 206 242 247 247
Bar-210-252-250-253
Part
Get 9.4 parts of the above-mentioned far-infrared matrixs that makes and 90.6 parts of co-blended spinnings of terylene chips.1180 meters/minute of spinning speeds, about 3 times of draw ratio.Finished fiber specification 6.67 dtex * 64MM, 3.01 lis of ox/dtexs of intensity, degree of stretching 36.3%, degree of hollowness 29%.Finished fiber includes far infrared ultrafine inorganic particle 3.8%, and the long radiance of the far infrared all-wave of fiber is 0.82-0.84, and wherein the far infrared integrated radiance is 0.84 in the 8-25 mu m waveband.
Embodiment 2:
With the polyethylene terephthalate melt manufacturing fiber of the present invention that contains the 4% far infrared radiation additive of having an appointment, 16 purpose alundum (Al filter sands and 250 purpose woven wire melt filtration have been adopted, spinning under 1180 meters/minute winding speed, 3.033 times of first break draft.Normal to spinning in 72 hours, the gained fiber is certified products.
Embodiment 3:
The same melt adopts 40 purposes sea sand and 250 purpose woven wires to filter spinning silk winding under the same condition.Spinning is normal during to 36 hours, and the gained fiber is certified products.
Embodiment 4:
The same melt adopts 40 purposes sea sand and 375 purpose woven wires to filter spinning silk winding under the identical conditions.Spinning pressure rises rapidly after 18 hours, fracture of wire occurs.
Embodiment 5:
The same melt adopts 16 purpose alundum (Al filter sands and 250 purpose woven wire melt filtration, spinning under 900 meters/minute winding speed, and the extension at break of the as-spun fibre of gained reaches 3.5 times, brings difficulty for back processing.

Claims (8)

1, a kind of far infrared radiation hollow 3-D crimped polyester fiber is characterized in that its adopts average grain diameter is that the composite inorganic far infrared super-fine material of 0.3-0.5 μ m and additive and polyester slice are made far-infrared matrix, and the percentage by weight of its each composition is:
0.3-0.5 the composite inorganic far infrared super-fine material 20-40% of μ m
Titante coupling agent 1-3%
Surfactant 0.5-1.5%
The polyester support surplus
Above-mentioned far-infrared matrix and polyester slice are made far infrared radiation hollow 3-D crimped polyester fiber, and the percentage by weight of its each composition is:
Far-infrared matrix 8-12%
The polyester slice surplus.
2, a kind of preparation method of far infrared radiation hollow 3-D crimped polyester fiber, it is characterized in that it mainly is to be made by polyethylene terephthalate, contain the far infrared radiation additive of at least three kinds of materials in this hollow 3-D crimped polyester fiber through Compound Machining, be made according to the following steps: with multiple far infrared inorganic material, its fundamental component is a silica, alundum (Al, titanium dioxide, the mixture of zirconium dioxide, pulverize with superfine jet mill, be crushed to its particle diameter at 0.3-0.5 μ m, far infrared inorganic material powder after pulverizing is placed the high temperature furnace sintering, sintering temperature is 800-1100 ℃, pulverize again after the sintering cooling, make particle diameter still be controlled at 0.3-0.5 μ m, obtain the composite inorganic far infrared super-fine material of 0.3-0.5 μ m, it and titante coupling agent and surfactant together joined carry out the dry method surface treatment in the homogenizer, super-fine material powder after the surface treatment mixes in high-speed mixer with polyester support, the mixed powder that obtains is delivered in the double screw extruder blend and is extruded, conventional low 10-30 ℃ of the Masterbatch temperature of making of its operating temperature, do not degrade to guarantee raw material carrier, above-mentioned far-infrared matrix that obtains and polyester slice are mixed through the reinforced blender of delivering to of metered charge device, deliver to the extruder type spinning machine of making the hollow 3-D crimped fiber then and carry out spinning, the finished product that obtains at last is far infrared radiation hollow 3-D crimped polyester fiber of the present invention.
3, the preparation method of far infrared radiation hollow 3-D crimped polyester fiber according to claim 2; the close organic end or three (dioctylphyrophosphoric acid ester acyl group) or two (dioctyl phosphate acyl groups) or three (dodecyl benzenesulfonyl) or the hard acid that it is characterized in that described titante coupling agent, wherein three (dioctylphyrophosphoric acid ester acyl groups) preferably.
4, the preparation method of far infrared radiation hollow 3-D crimped polyester fiber according to claim 2, it is characterized in that described surfactant-based or zinc stearate or calcium stearate or hard ester acid or ethylenebisstearamide or oxidized polyethlene wax or erucyl amide, wherein ethylenebisstearamide preferably.
5, the preparation method of far infrared radiation hollow 3-D crimped polyester fiber according to claim 2 is characterized in that adopting in the manufacture process of this fiber 10-20 purpose alundum (Al particle and 200-250 purpose woven wire melt filtration.
6, the preparation method of far infrared radiation hollow 3-D crimped polyester fiber according to claim 2 is characterized in that adopting in the manufacture process of this fiber up-coiler deflector roll, feeding-wheel and partial draft machine parts pottery or the spraying plating pottery to come processing fiber.
7, the preparation method of far infrared radiation hollow 3-D crimped polyester fiber according to claim 2 is characterized in that adopting in the manufacture process of this fiber the winding speed greater than 1150 meters/minute to come processing fiber.
CN 01108354 2000-03-01 2001-02-27 Far infrared radiating hollow 3-D crimped polyester fiber and its making process Expired - Lifetime CN1208507C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 01108354 CN1208507C (en) 2000-03-01 2001-02-27 Far infrared radiating hollow 3-D crimped polyester fiber and its making process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN00112103.0 2000-03-01
CN00112103 2000-03-01
CN 01108354 CN1208507C (en) 2000-03-01 2001-02-27 Far infrared radiating hollow 3-D crimped polyester fiber and its making process

Publications (2)

Publication Number Publication Date
CN1308148A CN1308148A (en) 2001-08-15
CN1208507C true CN1208507C (en) 2005-06-29

Family

ID=25739370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 01108354 Expired - Lifetime CN1208507C (en) 2000-03-01 2001-02-27 Far infrared radiating hollow 3-D crimped polyester fiber and its making process

Country Status (1)

Country Link
CN (1) CN1208507C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020006693A1 (en) 2018-07-04 2020-01-09 香港纺织及成衣研发中心 Application of profiled fiber in infrared radiation material and textile

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424241C (en) * 2002-07-29 2008-10-08 济南正昊化纤新材料有限公司 Method for preparing hollow functional micropore polyester fibre
CN102277717A (en) * 2011-05-31 2011-12-14 陕西科技大学 Far infrared surface treatment method for linings of warm-keeping shoes
CN102586908B (en) * 2012-03-04 2013-03-13 江苏德赛化纤有限公司 Multifunctional hollow polyester fiber production method
CN102719932B (en) * 2012-06-28 2014-10-22 东华大学 Preparation method of functional polyester fibers
CN103361850B (en) * 2013-08-06 2015-03-18 上海婉静纺织科技有限公司 Pineapple fiber, copper ammonia fiber and dacron blended fabric
CN103938293A (en) * 2014-04-26 2014-07-23 广州市中诚新型材料科技有限公司 Far infrared polyester fiber and preparation method thereof
CN104233501B (en) * 2014-08-29 2016-04-27 广东新会美达锦纶股份有限公司 A kind of preparation method of the far infrared PA6 fiber containing multiple inorganic particle
CN104846467A (en) * 2015-05-20 2015-08-19 江苏腾盛纺织科技集团有限公司 Dacron color silk with photocatalytic degradation function and preparing method thereof
CA3001424A1 (en) 2015-10-27 2017-05-04 Jinan Shengquan Group Share Holding Co., Ltd. Composite polyurethane foam containing graphene, and preparation method and use
WO2017071360A1 (en) 2015-10-27 2017-05-04 济南圣泉集团股份有限公司 Composite polyester material, composite polyester fibre, preparation method therefor and use thereof
CN108239794A (en) * 2016-12-23 2018-07-03 东丽纤维研究所(中国)有限公司 A kind of hollow long fibre of polyester
CN108625009A (en) * 2017-03-24 2018-10-09 瑞德普佳(天津)实业股份有限公司 The flexible good dacron thread of one kind
CN108728983A (en) * 2018-05-31 2018-11-02 江苏康溢臣生命科技有限公司 A kind of fabric and its weaving process with zirconium base shield
CN109137098B (en) * 2018-09-28 2021-01-01 浙江恒澜科技有限公司 Self-crimping far infrared hollow composite filament and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020006693A1 (en) 2018-07-04 2020-01-09 香港纺织及成衣研发中心 Application of profiled fiber in infrared radiation material and textile

Also Published As

Publication number Publication date
CN1308148A (en) 2001-08-15

Similar Documents

Publication Publication Date Title
CN1208507C (en) Far infrared radiating hollow 3-D crimped polyester fiber and its making process
CN108660535B (en) Special fiber forming material for modified ultrahigh molecular weight polyethylene, preparation method thereof and melt spinning fiber forming method
CN105420835B (en) A kind of manufacture method of antibacterial far infrared health care polyester fiber
CN104884687B (en) The preparation method of Multifunctional polyester fiber and the Multifunctional polyester fiber thus prepared
CN101440533B (en) Anti-bacterial bamboo charcoal nano-fiber and production method thereof
CN101481830B (en) Engaging double-screw rod spinning pearl functional fibre and manufacturing process thereof
CN101358387A (en) White composite electric conductive fiber
TWI393730B (en) Conductive masterbatches and conductive monofilaments
CN102586908B (en) Multifunctional hollow polyester fiber production method
CN106948026A (en) A kind of fiber of white bamboo carbon chinlon 6 and its production method
CN102933654A (en) Antibacterial resin composition derived from master batch, antibacterial fiber, antibacterial film, and method for producing antibacterial resin composition derived from master batch
TWI708750B (en) Antibacterial fiber and method for producing antibacterial fiber
CN101363143B (en) Nylon 6/superfine calcium carbonate microparticle complex fiber and preparation method thereof
CN100406517C (en) High solid content anion powder agglomerate preparation method
CN111364121A (en) Antibacterial conductive fiber and preparation method thereof
CN111118657A (en) ES fiber containing mint extract and preparation method thereof
CN101314873A (en) Preparation of polypropylene nano-magnetic fibre
CN109355729A (en) A kind of manufacturing method of Tai Ji stone and polyester fiber composite material
CN109137128A (en) A kind of anion terylene fiber and preparation method thereof
CN1381619A (en) Antibacterial antistatic dyeable fine-denier polypropylkene filament
CN1276445A (en) Process for preparing multifunctional fibres
CN101463505A (en) Negative ion polypropylene hollow air deformation fibre, preparation and use thereof
EP0101650B1 (en) Radio opaque fibres
CN106222787A (en) A kind of regenerative piece of polyester bottle prepares the method for photothermal response chopped fiber
CN101519807B (en) Method for preparing normal-temperature normal-pressure dyeable polyester pearl fiber

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20050629