CN1206442C - 制备受控粒度的微凝胶的方法和其应用 - Google Patents

制备受控粒度的微凝胶的方法和其应用 Download PDF

Info

Publication number
CN1206442C
CN1206442C CN00128843.1A CN00128843A CN1206442C CN 1206442 C CN1206442 C CN 1206442C CN 00128843 A CN00128843 A CN 00128843A CN 1206442 C CN1206442 C CN 1206442C
Authority
CN
China
Prior art keywords
microgel
polymer
porous media
granularity
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN00128843.1A
Other languages
English (en)
Other versions
CN1290804A (zh
Inventor
G·肖韦埃泰奥
R·塔巴里
M·勒纳德
A·奥马里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of CN1290804A publication Critical patent/CN1290804A/zh
Application granted granted Critical
Publication of CN1206442C publication Critical patent/CN1206442C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/887Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/56Compositions for consolidating loose sand or the like around wells without excessively decreasing the permeability thereof
    • C09K8/57Compositions based on water or polar solvents
    • C09K8/575Compositions based on water or polar solvents containing organic compounds
    • C09K8/5751Macromolecular compounds
    • C09K8/5756Macromolecular compounds containing cross-linking agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/903Crosslinked resin or polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Silicon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种制备受控粒度的微凝胶的方法。按该方法,将包含聚合物和用于该聚合物的交联添加剂的凝胶组合物注入多孔和可渗透的介质中,在出口处回收粒度基本上恒定的微凝胶的单一分散的溶液。本发明也涉及一种降低储油岩石类(reservior rock type)结构渗透和多孔渗透性的方法的应用。

Description

制备受控粒度的微凝胶的方法和其应用
技术领域
本发明的目的是一种制备受控粒度(controlled size)的微凝胶的方法,它是对主要由聚合物和交联剂的溶液组成的组合物施加应力达一段指定的时间。
背景技术
在产油或产气的井中水的急剧产生对石油工作者来说是一个始终存在的主要问题:
-用于水分离和处理的设备要求昂贵的投资,尤其是在海面上生产的区域,
-在油井中产生的水限制了开发烃储油层(hgdrocarbon reservior)的收益,
-对控制排放物的严格规定,尤其是工业水,要求该问题在储油层(reservior)中得到解决而非仅限于表面上的治理。
已知的防止烃储油层中水流入的解决办法绝大部分通常是基于通过注入聚合物溶液来对储油岩石(reservior rock)进行处理的非选择性注入法。
该处理的效果与被吸收聚合物层的厚度与被处理层中的平均气孔半径之比直接相关。
在低至中等渗透性的范围内,可以通过调节所用聚合物的分子量来控制被吸收层的厚度。
对较高渗透性的结构的处理需要较厚的吸收层,而这是聚合物单独所无法达到的。
与使用胶凝体系所冒的风险相比,单独使用聚合物的主要优点在于油井发生阻塞的危险小。然而,保持这种良好效果的程度是有限的,因为它仅仅受到在储油层的水中聚合物分子的渗透膨胀的约束。
用胶凝剂来交联聚合物最常用方法是用来改进聚合物注入效率来达到减少水的流入。在严峻环境(例如高盐度,高温)下,交联聚合物通常比单独聚合物更稳定。然而,该方法由于交联过程无法控制好而是不可靠的,这将导致产油量下降并且甚至使全部或部分油井发生阻塞的高度危险。
事实上,胶凝试验通常是在静态条件下进行的,所得的结果按视觉标准通常限于凝胶强度的分级,这一结果与在动态条件(即通过油井注入结构的条件)下的体系的特性有很大的差异。
对含有聚合物/交联剂体系的储油层结构的选择性处理(相对渗透性改进)的目的是降低水在岩石中的流动性,而不降低油的流动性,从而可以连续地生产烃。
现给出粗略的估计,在层的渗透性范围在如2达西至50毫达西的情况下,厚度分别在5μm至1μm范围内的层必将在有气孔的表面上形成,以使渗透性降至所允许的限度,而层不会有由于滞留现象而损坏的风险。
这种层的厚度只可通过吸附粒度受控的聚集体或微凝胶而达到。
发明内容
这样,本发明涉及一种制备受控粒度的单一分散的微凝胶的方法。将包含聚合物和聚合物交联添加剂的凝胶组合物注入多孔和可渗透的介质中,在出口处回收基本上粒度规则的微凝胶溶液。
让聚合物和交联添加剂在多孔介质的进口处相接触。可以把该混合物加到一起(在预混合后)或分开地加到介质中,在这种情况下,在多孔介质中进行混合。
考虑到介质的孔隙度和渗透性,可以确定组合物在多孔介质中通过的流速和时间,以便在出口处获得给定粒度的微凝胶。
多孔介质可以由诸如沙之类的颗粒状材料块组成,其粒度在50-2000μm的范围内。
多孔介质可以由滤布如过滤盒组成。
在微凝胶溶液通过多孔介质时通过去除可能大量的交联添加剂而使其稳定化。
凝胶组合物可以由用金属锆离子配位化合物交联的聚丙烯酰胺组成。
可以采用至少一种下述步骤来稳定微凝胶溶液:-稀释溶液,-提高pH值,-加入用于交联添加剂的配位剂。
本发明也涉及这种方法的应用,其中将微凝胶溶液注入地下的岩石状结构中,以改进其渗透性。具体来说,本发明涉及一种改进地下岩石状结构的渗透性的方法,其中将本发明上述方法制得的微凝胶注入所述结构中。该应用更特别地可用于防止水的流入,从而降低相应的水的渗透性。
具体实施方式
在题为《用锆阻止水就地控制聚丙烯酰胺胶凝的方法》-对石油化工的SPE国际讨论会-Houston,Texas,1999年2月16-19日(SPE 50,752)的文件中描述了一种理论交联模式,该模式已在外部交联剂:金属锆离子配位化合物存在下用于聚丙烯酰胺体系。这种模式能用来更好地理解在剪切条件下分子的聚集机理。所得的结果在其它凝胶体系,如在石油工业中广泛应用的乙酸铬存在下的聚丙烯酰胺中已得到证实。由于受环境的制约,基于IV族金属化合物的交联剂由于其没有毒性(Ti、Zr、Hf)是适宜的。宜使用乳酸锆。也可以使用其它含氧酸的盐:苹果酸盐、酒石酸盐、甘醇酸盐、柠檬酸盐...。金属配位化合物的稳定性,也就是其反应性取决于其特性。类似地,可以使用金属链烷醇胺(胺OH-金属)或多羟基-羧酸配位化合物,以及其它类型的胶凝剂:-金属化合物(柠檬酸铝、硫酸铝,...);-有机化合物(乙二醛、苯酚、甲醛、聚乙烯亚胺,...)。
本发明并不局限于本文描述部分所述的凝胶体系。聚合物难以穷尽例如可以是:-中性、水解(阴离子型)或阳离子型聚丙烯酰胺,-硬葡聚糖(scleroglucane),-黄原胶,-聚半乳甘露聚糖,...
作为举例给出的聚丙烯酰胺-锆体系,凝胶过程随混合物流变学性能的演变而发展。
凝胶动力学取决于各种参数,如与下述因素有关的参数:
-体系本身的化学物质,即分子量、水解比、聚合物浓度、交联剂和交联添加剂的可能配位剂的特性和浓度;
-周围的物理-化学条件:pH值、温度、盐度;
-施加在组合物上的流体动力学:剪切速率。
聚合物溶液是在溶剂中膨胀形成气泡的线型链的3D采集样本。这些链的交联会形成大块支化大分子的聚集体。支化度和分子量随交联过程的进行而提高。
在静态条件下,体系发展成一组多分散体,它们缠结在一起形成“溶液”相。在交联过程中,当聚集体的粒度达到其所处空间的尺寸时,随后就会出现“凝胶”相并且体系的粘度发生偏差并趋于无穷大。
在剪切条件下,所有粒度达到某一临界粒度的聚集体都发生破裂,而较小的聚集体继续生长并最终达到临界粒度而破裂。这种随后发生破裂的形成过程会获得一种浸在初始聚合物溶液中(若交联剂浓度非常低)或仅浸在溶剂中(存在交联剂过量时)的单一分散的聚集体溶液。
事实上,这种过程是一种平衡的状态,其中变形使聚集体相互接触,从而可能形成较大的聚集体。当这些聚集体超过临界粒度时,这些聚集体就破裂。
这些聚集体中的每一个都包含在半径为Ra的等球体内。在这种球体内,所构成的气泡在空间上分形(fractally)排列,并且有下述公式:
                           t=Ra df
-t是从聚合物与交联剂接触时开始计数的时间,它与聚集体的质量成比例,
-df代表物体的分形维数。
对聚集体施加粘性应力ηp*γ,ηp是初始聚合物溶液的粘度。这种应力产生一个粘性扭矩Γ,只要扭矩保持低于某一临界值Γc,聚集体就一直维持着。破裂标准表示如下:
Γ = η p * γ * R a 3 ≅ Γ c
Γc与粘合强度成正比,上述标准表明聚集体的半径以象Ra≈γ-1/3的梯度变化。
而且,当记录在聚集体和周围介质之间的界面上的连续的扭矩时,我们得出下述公式:
                        ηa≈γp*(Ra/Rp)3
ηa和ηp分别是体系和初始聚合物溶液的粘度。当结合最后的关系式时,体系的粘度以γ-1(扩散方式)变化。
在上述条件下,交联剂是过量的,而组分留在存在聚集体的溶液中。这种组分很可能导致分子内部的键合的生成,这种键合会导致半径较小的聚集体的密集。
在各种剪切速率下获得的凝胶结果表明了这种方法的有效性。通过拟弹性光散射进行的粒度测量和从产生聚集体的气泡的弛豫时间的拟瞬间测定而进行的粒度计算确证了上述结果。
本发明的方法在于对注入化学惰性、吸附能力低并且能经受磨损和压力的过滤(剪切)介质中的组分A(聚合物)溶液和组分B(交联剂)溶液施加受控的剪切。
过滤介质可以是颗粒状的过滤块,在这种情况下,它是一种粗粒沙(颗粒直径相当于100-500μm),或可以是一组滤布(过滤盒)。事实上滤布较昂贵并且较脆,因此必须用较耐用的金属线网栅支承。
按操作条件(分子量,粘度,浓度,pH值,...),流过过滤介质的流速和时间,决定通过过滤器的聚集体或实体的粒度。
组分A和B大体上宜同时注入过滤介质中。
在上述设备中的停留时间将取决于操作条件。
经剪切限定粒度的在通过“过滤”介质时收集起来的聚集体通过下述检查方法加以稳定化,即核查在过程结束时没有更多过量的交联剂,或者通过采用以下各种方法来停止反应如稀释混合物,提高pH值(在锆或铬的情况下),或加入用于交联添加剂的配位剂(如在锆的情况下加入乳酸钠)。
从给定聚合物和给定交联剂进行的试验结果表明聚集体可以达到初始聚合物分子粒度10倍的尺寸。
然后将稳定的聚集体溶液调理成用于工业应用,或直接注入待处理的结构中(在油井中的生产剖面控制(production profile control))。在这种情况下,就单独聚合物而言,按照矿物表面上聚集体的吸附性的原理来控制渗透性。吸附层的厚度直接取决于聚集体的粒度。这样可以通过控制注入的聚集体的粒度来对减小渗透性进行调节。

Claims (11)

1.一种制备受控粒度的微凝胶的方法,其特征在于将包含聚合物和用于所述聚合物的交联添加剂的凝胶组合物注入多孔和可渗透的介质中,在所述介质的出口处回收基本上粒度规则的微凝胶溶液。
2.如权利要求1所述的方法,其中聚合物和交联添加剂在多孔介质的进口处相接触。
3.如上述权利要求中任一项所述的方法,其中考虑到所述介质的孔隙度和渗透性,确定所述组合物在多孔介质中通过的流速和时间,以便获得给定粒度的微凝胶。
4.如权利要求3所述的方法,其中所述多孔介质由颗粒状材料块组成,其粒度在50-2000μm的范围内。
5.如权利要求4所述的方法,其中所述颗粒状材料块是沙。
6.如权利要求3所述的方法,其中所述多孔介质由滤布组成。
7.如权利要求6所述的方法,其中所述滤布是过滤盒。
8.如权利要求1或2所述的方法,其中在所述微凝胶溶液通过多孔介质时通过去除可能过量的交联添加剂而使其稳定化。
9.如权利要求1或2所述的方法,其中所述凝胶组合物由用金属锆离子配位化合物交联的聚丙烯酰胺组成。
10.如权利要求9所述的方法,其中采用下述至少一种步骤来稳定所述微凝胶溶液:-稀释溶液,-提高pH值,-加入用于交联添加剂的配位剂。
11.一种改进地下岩石状结构的渗透性的方法,其特征在于将权利要求1所述方法制得的微凝胶注入所述结构中。
CN00128843.1A 1999-09-21 2000-09-21 制备受控粒度的微凝胶的方法和其应用 Expired - Fee Related CN1206442C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9911862 1999-09-21
FR9911862A FR2798664B1 (fr) 1999-09-21 1999-09-21 Methode de preparation de microgels de taille controlee

Publications (2)

Publication Number Publication Date
CN1290804A CN1290804A (zh) 2001-04-11
CN1206442C true CN1206442C (zh) 2005-06-15

Family

ID=9550144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00128843.1A Expired - Fee Related CN1206442C (zh) 1999-09-21 2000-09-21 制备受控粒度的微凝胶的方法和其应用

Country Status (6)

Country Link
US (1) US6579909B1 (zh)
EP (1) EP1086976B1 (zh)
CN (1) CN1206442C (zh)
FR (1) FR2798664B1 (zh)
NO (1) NO325328B1 (zh)
RU (1) RU2256678C2 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356034C (zh) * 2003-09-19 2007-12-19 刘恒 石油开采聚驱过程中存留聚合物的改性处理方法
US7013973B2 (en) * 2003-11-11 2006-03-21 Schlumberger Technology Corporation Method of completing poorly consolidated formations
FR2874617B1 (fr) * 2004-08-25 2006-10-27 Inst Francais Du Petrole Methode de traitement de formations ou de cavites souterraines par des microgels
BRPI0504019B1 (pt) * 2005-08-04 2017-05-09 Petroleo Brasileiro S A - Petrobras processo de redução seletiva e controlada da permeabilidade relativa à água em formações petrolíferas de alta permeabilidade
GB2443824B (en) * 2006-11-08 2012-03-07 Petra Leo Brasileiro S A Petrobras Process for the selective controlled reduction of the relative water permeability in high permeability oil-bearing subterranean formations
US8006760B2 (en) 2008-04-10 2011-08-30 Halliburton Energy Services, Inc. Clean fluid systems for partial monolayer fracturing
US7814980B2 (en) * 2008-04-10 2010-10-19 Halliburton Energy Services, Inc. Micro-crosslinked gels and associated methods
FR2994977B1 (fr) 2012-09-03 2016-01-22 Poweltec Utilisation de polymères thermo épaississants dans l'industrie d'exploitation gazière et pétrolière
CN104610950B (zh) * 2014-12-31 2017-12-01 中国石油天然气股份有限公司 一种悬浮凝胶颗粒调堵剂及其应用
CN105043943A (zh) * 2015-06-29 2015-11-11 中国石油大学(华东) 一种动态测量预交联凝胶颗粒在多孔介质中粒径分布的实验装置及其测量方法
AR106771A1 (es) * 2015-11-23 2018-02-14 Ecolab Usa Inc Sistema de gel débil para recuperación de petróleo mejorada química
WO2018053395A1 (en) 2016-09-17 2018-03-22 Firestone Industrial Products Company, Llc Elastomeric articles with improved fire protection properties
EA039360B1 (ru) * 2020-01-09 2022-01-18 Научно-Исследовательский И Проектный Институт Нефти И Газа (Нипинг) Способ разработки неоднородного нефтяного пласта
CN113004901A (zh) * 2021-01-29 2021-06-22 西南大学 一种调控多孔材料保水能力的方法及其产品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172066A (en) * 1974-06-21 1979-10-23 The Dow Chemical Company Cross-linked, water-swellable polymer microgels
US4182417A (en) * 1977-07-08 1980-01-08 The Dow Chemical Company Method for controlling permeability of subterranean formations
US4670165A (en) * 1985-11-13 1987-06-02 Halliburton Company Method of recovering hydrocarbons from subterranean formations
US5569364A (en) * 1992-11-05 1996-10-29 Soane Biosciences, Inc. Separation media for electrophoresis
US5478802A (en) * 1992-12-29 1995-12-26 Phillips Petroleum Company Gelling compositions useful for oil field applications
US5547025A (en) * 1995-04-14 1996-08-20 Phillips Petroleum Company Process for treating oil-bearing formation

Also Published As

Publication number Publication date
NO325328B1 (no) 2008-03-31
NO20004700D0 (no) 2000-09-20
EP1086976B1 (fr) 2005-04-27
FR2798664A1 (fr) 2001-03-23
RU2256678C2 (ru) 2005-07-20
EP1086976A1 (fr) 2001-03-28
FR2798664B1 (fr) 2002-01-11
NO20004700L (no) 2001-03-22
US6579909B1 (en) 2003-06-17
CN1290804A (zh) 2001-04-11

Similar Documents

Publication Publication Date Title
CN1206442C (zh) 制备受控粒度的微凝胶的方法和其应用
US10822921B2 (en) Methods of using superabsorbent polymers for fracturing and sand control applications
EP0251421B1 (en) Sand consolidation method employing rubber
CA3074499C (en) Well treatment fluid having an acidic nanoparticle based dispersion and a polyamine
RU2726079C2 (ru) Малопрочные гелевые системы для повышения нефтеотдачи с помощью химических реагентов
US7458424B2 (en) Tight formation water shut off method with silica gel
AU2018216890B2 (en) Nanosilica dispersion lost circulation material (LCM)
CN105504158A (zh) 在地层条件下可再交联的智能凝胶颗粒及其制备方法与应用
BRPI0504019B1 (pt) processo de redução seletiva e controlada da permeabilidade relativa à água em formações petrolíferas de alta permeabilidade
CN1878927A (zh) 完善固结差的地层的方法
CN1884346A (zh) 一种用于封堵油层大孔道的纤维复合凝胶的制备方法
EP3676347A1 (en) Loss circulation material composition having an acidic nanoparticle based dispersion and polyamine
CN114026197A (zh) 用于处理地下地层中含水区的聚合物凝胶组合物和处理含水区的方法
US4718491A (en) Process for preventing water inflow in an oil- and/or gas-producing well
US4095651A (en) Process for selectively plugging areas in the vicinity of oil or gas producing wells in order to reduce water penetration
EA032091B1 (ru) Приводимый в действие материал для борьбы с потерей циркуляции и способ его применения
CN1042163C (zh) 一种减少置换剂滞留的方法
RU2396419C1 (ru) Способ изоляции водопритока к добывающим нефтяным скважинам
WO2002097235A1 (en) Process for reducing the production of water in oil wells
RU2382187C1 (ru) Способ разработки неоднородных нефтяных пластов
CN115109571B (zh) 一种温控相变堵水剂及其制备方法
Bulchaev et al. Flow Diversion Technologies and Water Restriction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050615

Termination date: 20110921