CN1203197C - Method for preparing nickel and aluminium chemical product from catalyst refuse containing nickel and AL2O3 - Google Patents
Method for preparing nickel and aluminium chemical product from catalyst refuse containing nickel and AL2O3 Download PDFInfo
- Publication number
- CN1203197C CN1203197C CNB021330409A CN02133040A CN1203197C CN 1203197 C CN1203197 C CN 1203197C CN B021330409 A CNB021330409 A CN B021330409A CN 02133040 A CN02133040 A CN 02133040A CN 1203197 C CN1203197 C CN 1203197C
- Authority
- CN
- China
- Prior art keywords
- nickel
- catalyst
- residue
- catalyst waste
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 166
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 78
- 239000003054 catalyst Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 26
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 239000000126 substance Substances 0.000 title claims abstract description 19
- 239000004411 aluminium Substances 0.000 title abstract 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 48
- 239000002699 waste material Substances 0.000 claims abstract description 35
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 24
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 239000003513 alkali Substances 0.000 claims abstract description 10
- 238000004064 recycling Methods 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 238000007796 conventional method Methods 0.000 claims abstract description 4
- 230000004927 fusion Effects 0.000 claims abstract 7
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- 229910001388 sodium aluminate Inorganic materials 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 11
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 6
- 239000000047 product Substances 0.000 claims description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 6
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 4
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 239000006227 byproduct Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims 2
- 238000002360 preparation method Methods 0.000 claims 1
- 239000002893 slag Substances 0.000 abstract description 8
- 230000008901 benefit Effects 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 239000003208 petroleum Substances 0.000 abstract description 2
- 238000011084 recovery Methods 0.000 description 15
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 9
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 9
- 238000001816 cooling Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 4
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- -1 alkali metal aluminate Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 150000002816 nickel compounds Chemical class 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Processing Of Solid Wastes (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
The present invention relates to a method for recycling valuable metallic elements from catalyst waste slag, particularly to a method for recycling and reusing nickel and aluminium from catalyst waste slag which contains nickel and Al2O3. The catalyst waste slag is mixed with sodium hydroxide according to the molar ratio of NaOH to Al2O3 of 2 to 4:1. After 10 minutes to 10 hours of reaction at 300 to 800 DEG C, aluminium in the catalyst waste slag is firstly recycled and used by alkali fusion reaction, Al2O3 is further removed, and nickel in the catalyst waste slag is subsequently recycled and used by a conventional method. The recycling and using rate of aluminium is from 97 to 98%, and the recycling and using rate of nickel is also greatly increased to reach 90 to 99%. The present invention has the advantage of simple technical process, environmental protection and considerable economical and social benefits. The method of the present invention can be widely used in the treatment process of catalyst waste slag containing nickel and Al2O3 in petroleum industry, chemical industry, etc.
Description
(I) technical field
The invention relates to a method for recovering valuable metal elements from catalyst waste residue, in particular to a method for recovering valuable metal elements from nickel-containing Al2O3The method for preparing nickel chemicals and aluminum from the catalyst waste residue.
(II) technical background
Metallic nickel or nickel compounds with Al2O3Catalyst composed of carrier, simple substance or compound of nickel and other catalytic elements vanadium, molybdenum and the like, and Al2O3The catalyst composed of the carrier is widely applied to the petrochemical industry, and the catalyst loses activity after being used and is discarded. In recent years, acid-soluble or alkali-soluble methods have been used to recover nickel from catalyst waste residues to produce nickel chemicals such as nickel sulfate, nickel chloride, and nickel carbonate, but the recovery rate is low. For example, the hydrogenation catalyst for hydrogenation of benzene to cyclohexane is prepared from Al-Ni-C-Al2O3The content of nickel is about 20 percent, the recovery rate of chemicals for preparing nickel such as nickel sulfate and the like by recovering nickel by using a general acid-soluble oralkali-soluble method can only reach 70 to 80 percent, and 1 to 5 percent of nickel remained in waste residue cannot be recovered. A catalyst used in petroleum industry contains V13-14%, Mo 4%, Ni 4%, and Al as carrier2O3Vanadium is recovered from the catalyst waste residue, and the residue after molybdenum contains 5 to 6 percent of nickel, which can not be recovered at present.
Disclosure of the invention
The invention aims to solve the technical problem of providing a nickel-containing aluminum alloy2O3The method for recycling the nickel and the aluminum in the catalyst waste residue has the advantages that the recovery rate of the nickel recovered by the method is up to 90-99 percent, and meanwhile, the Al in the catalyst waste residue2O3Recovery of 97-98% was obtained.
The technical scheme adopted is as follows:
one kind of material containing Ni and Al2O3The method for preparing the nickel chemical and the aluminum chemical from the catalyst waste residue has the following principle:
in the presence of nickel and Al2O3In the catalyst slag of (3), Al2O3As its main component, Al2O3The amphoteric oxide can react with strong acid to generate aluminum salt, and can also react with strong base to generate aluminate. Al (Al)2O3Reactivity with strong acids or bases and Al2O3With respect to the crystal structure of (3), Al as a catalyst carrier2O3Generally, the catalyst is roasted at high temperature for a long time to generate crystals with compact structures, so that the reaction activity is greatly reduced, and the crystals cannot be completely dissolved by using common strong acid or strong base, so that the aluminum in the catalyst waste residue cannot be recovered, and more importantly, insoluble Al is obtained2O3The Al is removed first to achieve high nickel recovery rate because the Al and the nickel are remained in the catalyst slag together to influence the recovery rate of the nickel2O3I.e. first from the catalyst slagRecycling aluminum and removing Al therefrom2O3The nickel-containing (nickel is present as metallic nickel, nickel oxide, nickel sulfide, or the like) residue is recovered and reused by a conventional method.
Containing nickel and Al2O3The Al in the catalyst waste residue can be reacted with sodium hydroxide (or other alkali metal hydroxide) in a molten state, and the reaction temperature is controlled to be higher than the alkali melting temperature and lower than the volatilization temperature of nickel, so that the Al in the catalyst waste residue can be enabled2O3Completely reacting with alkali to form water-soluble sodium aluminate (or alkali metal aluminate), while nickel or nickel compound does not react with alkali and remains insoluble in water, thereby completely removing Al2O3The purpose of (1).
The reaction equation is as follows:
one kind of material containing Ni and Al2O3The method for recycling nickel and aluminum from the catalyst waste residue sequentially comprises the following steps:
1. taking nickel and Al2O3The mixing ratio of the waste catalyst residue and the caustic soda is satisfied, so that NaOH and Al are mixed at the beginning of the reaction2O3The molar ratio of (A) to (B) is 2-4: 1. The molar ratio is preferably from 2.4 to 3: 1.
2. Mixing the catalyst waste residue and caustic soda, heating the mixture in a muffle furnace in a crucible made of nickel or iron, or heating the mixture in a box-type or tunnel-type kiln by high-temperature hot air to 800 ℃ for 300-: 。
3. dissolving the reacted blocks in water to prepare a sodium aluminate solution with the concentration of 120-300 g/l.
4. Filtering or naturally settling, centrifugally settling and other solid-liquid separation treatment is carried out on the sodium aluminate solution containing insoluble nickel residues to obtain nickel residues and NaAlO2And (3) solution.
5. And washing and drying the nickel-containing residue to obtain nickel-rich residue.
NaAlO after solid-liquid separation2Evaporating the solution to prepare solid sodium aluminate. The method can also be used for preparing products such as aluminum hydroxide, aluminum oxide and the like by a seed precipitation method or a carbon precipitation method, and simultaneously preparing a byproduct sodium hydroxide or sodium carbonate.
According to the removal of Al2O3The different existing states of nickel in the nickel-rich residue: the metal nickel, nickel sulfide or nickel oxide, etc. are dissolved in sulfuric acid and nitric acid or sulfuric acid alone according to conventional method, and the reaction equation is:
if the nickel existing in the nickel-rich waste residue is metallic nickel, the process for preparing the nickel sulfate is as follows: per kilogramAdding 5kg of 33-35% sulfuric acid into nickel, heating to 80 ℃ in an enamel reaction kettle, dropwise adding 200-300g of 50% concentrated nitric acid, reacting for 4 hours to obtain a crude nickel sulfate solution, neutralizing with a lime milk solution until the pH value is 4.5-5.0, and precipitating and separating out aluminum hydroxide. Separating solid and liquid by natural settling or filtering, removing precipitate, adjusting pH of the clear liquid to 2 with sulfuric acid, adding 27.5% H2O2Solution of Fe in the clear solution2+Complete conversion of impurities into Fe3+Heating to 80 deg.C, slowly adding nickel carbonate, adjusting pH to 4.0-5.0, and then Fe (OH)3And CaCO3Precipitating, reacting for 0.5 hr, cooling, standing for 5 hr, filtering to obtain clear solution with pH of 2-3, heating and concentrating until the specific gravity of the solution is 1.53-1.63g/cm3Naturally cooling and crystallizing, removing the non-crystallized liquid by a centrifugal machine, drying in a sealed container filled with silica gel for 10 hours, and packaging to obtain the finished product of nickel sulfate crystal.
If the nickel in the nickel-rich residue is nickel sulfide or nickel oxide, the crude nickel sulfate solution can be prepared according to the requirement of the reaction equation, and then the impurities such as aluminum, iron and the like are removed by the method to prepare the refined nickel sulfate.
The invention has the following advantages and positive effects:
1. NaAlO obtained by solid-liquid separation2The solution can be directly used as a sodiumaluminate solution product, can also be evaporated to prepare a solid sodium aluminate product, and can also be used for preparing products such as aluminum hydroxide, aluminum oxide and the like by a seed precipitation method or a carbon precipitation method, and simultaneously obtaining a byproduct sodium hydroxide or sodium carbonate. Realizes the purpose of removing nickel and Al2O3The aluminum is recycled from the catalyst waste residue, and the recovery rate can reach 97-98%.
2. The invention recovers the aluminum element in the catalyst waste residue firstly, namely, removes Al firstly2O3The method creates favorable conditions for the subsequent recycling of nickel, makes the recycling of nickel in the catalyst waste residue containing 5 to 6 percent of nickel after extracting useful elements such as vanadium, molybdenum and the like possible, greatly improves the recovery rate of nickel elements and achieves the recovery rate of 90 to 99 percent.
3. The method is simple and convenient, is easy to operate, is beneficial to environmental protection, and has considerable economic and social benefits.
4. The nickel-containing residue obtained after solid-liquid separation is washed and dried to obtain nickel-rich residue, which can be directly sold as a nickel-rich raw material or further processed into nickel chemicals such as nickel sulfate, nickel carbonate, nickel chloride, nickel acetate and the like.
(IV) detailed description of the preferred embodiments
Example one
The main raw materials are as follows: the catalyst waste residue contains 5 percent of nickel and 90 percent of Al according to weight percentage2O3(ii) a Caustic soda solution, concentration 45%.
Mixing 100g of catalyst waste residue and 200g of caustic soda solution in an iron dissolving vessel, heating and evaporating to be thick paste, putting the mixture into a nickel crucible, heating the mixture to 450 ℃ in a muffle furnace at the final temperature of 200 ℃, drying the mixture for 3 hours at the temperature, putting the reactant which is fused into blocks into 5 liters of water, dissolving the reactant, and naturally settling the reactant, wherein the upper layer is transparent colorless clear liquid, and the lower layer is black brown sludge. The upper layer of clear liquid is sodium aluminate solution with the concentration of 200g/l and the recovery rate of aluminum is 97-98%; washing the lower layer of sludge for 5 times, and drying the filtered filter residue in an oven at 100 ℃ for 5 hours to obtain 11g of black brown residue containing 45% of nickel.
Putting the dark brown residue into a three-necked flask, and adding 315g of 35% H2SO4Heating the solution to 80 deg.C, and adding 65g of HNO with concentration of 50%3Adding dropwise the solution within 30-60 min, reacting for 3 hr, cooling to room temperature, adding lime milk solution, adjusting pH to 4.5, filtering, removing precipitate, and adding H2SO4The pH of the filtrate was adjusted to 2 and 21ml of 27.5% H was added2O2Solution of Fe2+To Fe3+Heating to 80 deg.C, slowly adding nickel carbonate while stirring to pH 4.0, cooling, standing for 5 hr, filtering with H2SO4Adjusting pH of the filtrate to 2, heating and concentrating until the specific gravity of the solution is 1.55g/cm3Naturally cooling and crystallizing to obtain sulfur210g of nickel acid crystals were obtained, and the recovery rate was 97%.
Example two
The process of the raw materials and other conditions are basically the same as that of the first embodiment, the alkali-melting reaction temperature in the muffle furnace is changed to 800 ℃, and the reaction time is changed to 15 minutes. As a result: the recovery rate of aluminum is 97-98%, and the recovery rate of nickel is 92%.
EXAMPLE III
The main raw materials are as follows: the nickel-containing catalyst residue after extracting useful elements such as vanadium, molybdenum and the like contains 34 percent of water and 60 percent of Al according to weight percentage2O33.5% nickel.
The catalyst residue 7kg, and 96% solid caustic soda 4.5kg, fully mixed, placed into iron pan, dried in 550 ℃ high temperature hot air box type dryer for 3 hours, taken out and observed, the block has been melted into a block, the block is put into 30 liters of water to dissolve, insoluble substances precipitate, filtration, water washing, drying, 0.5kg of nickel-rich residue is obtained.
The rest of the treatment process is the same as the first example, and sodium metaaluminate, aluminum hydroxide, aluminum oxide and other aluminum chemicals and 1.09kg of nickel sulfate are prepared. As a result: the recovery rate of aluminum is 97-98%, and the recovery rate of nickel is 94%.
Claims (3)
1. From nickel, Al2O3The method for preparing the nickel chemical and the aluminum chemical from the catalyst waste residue is characterized in that the aluminum in the catalyst waste residue is recycled firstly by alkali fusion reaction, and the Al in the catalyst waste residue is removed2O3And then recycling the nickel in the catalyst waste residue, wherein the specific method sequentially comprises the following steps:
a. taking nickel and Al2O3The weight ratio of the waste residue of the catalyst to the caustic soda is that NaOH and Al are in the beginning of the reaction2O3The molar ratio of (A) to (B) is 2-4: 1;
b. mixing the obtained catalyst waste residue with caustic soda, performing alkali fusion reaction in a crucible made of nickel or iron in a muffle furnace, namely heating to 800 ℃ in an alkali fusion reaction container, performing alkali fusion reaction for 10 minutes to 10 hours, and obtaining a reaction formulaThe program is as follows: ;
c. dissolving the reacted lumps in water to prepare a sodium aluminate solution with the concentration of 120-;
d. filtering or naturally settling and centrifugally settling the sodium aluminate solution containing insoluble nickel residue to separate solid from liquid to obtain nickel residue and NaAlO2A solution;
e. NaAlO after solid-liquid separation2Evaporating the solution to prepare sodium aluminate, or preparing aluminum hydroxide and aluminum oxide products by a seed precipitation method or a carbon precipitation method, and simultaneously preparing a byproduct sodium hydroxide or sodium carbonate;
f. washing and drying the nickel-containing residue to obtain a nickel-rich raw material;
g. according to the removal of Al2O3The different existing states of nickel in the nickel-rich residue: the metal nickel, nickel sulfide or nickel oxide, the nickel-rich residue is dissolved by sulfuric acid and nitric acid or sulfuric acid alone according to the conventional method, and the reaction equations are respectively:
2. the alloy of claim 1, comprising nickel, Al2O3The method for preparing nickel chemicals and aluminum chemicals from catalyst waste residue is characterized in that NaOH and Al are recycled when the alkali fusion reaction of aluminum is started2O3The molar ratio of (1) to (2.4-3) to (1), the reaction temperature is 400-600 ℃, and the reaction duration is 1-1.5 hours.
3. The alloy of claim 1, comprising nickel, Al2O3Preparation of nickel from catalyst waste residueA method for producing chemicals and aluminum chemicals, characterized in that the alkali fusion reaction is carried out in a box-type or tunnel-type kiln using high-temperature hot air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021330409A CN1203197C (en) | 2002-09-26 | 2002-09-26 | Method for preparing nickel and aluminium chemical product from catalyst refuse containing nickel and AL2O3 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021330409A CN1203197C (en) | 2002-09-26 | 2002-09-26 | Method for preparing nickel and aluminium chemical product from catalyst refuse containing nickel and AL2O3 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1422967A CN1422967A (en) | 2003-06-11 |
CN1203197C true CN1203197C (en) | 2005-05-25 |
Family
ID=4747035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021330409A Expired - Fee Related CN1203197C (en) | 2002-09-26 | 2002-09-26 | Method for preparing nickel and aluminium chemical product from catalyst refuse containing nickel and AL2O3 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1203197C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100400421C (en) * | 2005-02-22 | 2008-07-09 | 山东铝业公司 | Method for recovering alumina from aluminium base nickel-contained waste slag |
CN103343232A (en) * | 2013-07-11 | 2013-10-09 | 岳阳鼎格云天环保科技有限公司 | Method for recycling Ni from waste FCC (Fluid Catalytic Cracking) catalyst |
CN111233015A (en) * | 2020-03-26 | 2020-06-05 | 辽宁石化职业技术学院 | Deactivated Fe2O3/Ni2O3/Al2O3Method for recycling catalyst |
CN111364060B (en) * | 2020-04-07 | 2021-02-09 | 昆明寰世科技开发有限公司 | Method for producing pure silver and co-producing metal aluminum from waste silver catalyst with alumina as carrier |
-
2002
- 2002-09-26 CN CNB021330409A patent/CN1203197C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1422967A (en) | 2003-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6714226B2 (en) | Method for producing nickel sulfate, manganese sulfate, lithium sulfate, cobalt sulfate and tricobalt tetroxide from battery waste | |
CN1085622C (en) | Process for recovery of alumina and silica | |
CN102002585B (en) | Method for producing vanadium iron with stone-like coal pickle liquor | |
CN109911946B (en) | A method for recycling waste saggars in the preparation process of lithium cobalt oxide battery materials | |
CN1868884A (en) | Method of extracting aluminium oxide from fly ash and simultaneously producing white carbon black | |
CN103342375B (en) | The method of aluminum oxide, silicon-dioxide and other metal ingredient is reclaimed from flyash | |
US4119698A (en) | Reclamation treatment of red mud | |
CN101885498A (en) | Method for preparing high-purity magnesium sulfate | |
CN113371757B (en) | A kind of method for preparing sodium pyroantimonate and mother liquor regeneration and recycling | |
CN104108723A (en) | Hydrothermal synthesis method of 4A molecular sieve from high-iron bauxite tailings | |
US3890426A (en) | Method of treating alunite ore | |
CN105948104A (en) | Method for preparing sodium stannate by using tin anode slime oxygen pressure alkaline leaching | |
CN1057069C (en) | Wet process for preparing industrial pure antimony sulfide by removing load, arsenic, selenium, tin and mercury impurities in antimonic ore | |
CN1203197C (en) | Method for preparing nickel and aluminium chemical product from catalyst refuse containing nickel and AL2O3 | |
CN111137909A (en) | Method for stepwise recovering lithium and magnesium in salt lake brine | |
CN109913652B (en) | Comprehensive treatment method for waste refractory material in preparation process of ternary cathode material | |
CN1084301C (en) | Method for recovering rare earth carbonate by bastnaesite decomposition through ammonium chloride baking process | |
RU2624749C2 (en) | Method of obtaining beryllium oxide and beryllium metal | |
CN112645363A (en) | Method for preparing battery-grade lithium carbonate by taking lepidolite as raw material | |
CN1033280C (en) | Method for recovering lead and zinc from smoke containing iron, manganese, zinc and lead | |
CN117285054A (en) | Method for preparing lithium carbonate from lithium extracted from aluminum electrolyte | |
CN1209290C (en) | Method of preparing anhydrous aluminium chloride | |
CN1824607A (en) | Vanadium extraction technology of high aluminium slag | |
CN1093087C (en) | Process for preparing high-crystallinity X-type zeolite from coal gangue as raw material | |
CN1116609A (en) | Method for producing aluminium fluoride and cryolite with kaoline |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |