CN1190262C - Material for removing impurity in inert gas and its use method - Google Patents

Material for removing impurity in inert gas and its use method Download PDF

Info

Publication number
CN1190262C
CN1190262C CNB011451238A CN01145123A CN1190262C CN 1190262 C CN1190262 C CN 1190262C CN B011451238 A CNB011451238 A CN B011451238A CN 01145123 A CN01145123 A CN 01145123A CN 1190262 C CN1190262 C CN 1190262C
Authority
CN
China
Prior art keywords
inert gas
gas
impurity
content
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB011451238A
Other languages
Chinese (zh)
Other versions
CN1429658A (en
Inventor
胡小敏
陈雨田
熊贤信
陈文宇
杨江喜
田明勇
路家兵
陈光明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Tejin Vacuum Electronic Technology Co Ltd
Oxygen Co Ltd Wuhan Iron & Steel Group
Original Assignee
Beijing Tejin Vacuum Electronic Technology Co Ltd
Oxygen Co Ltd Wuhan Iron & Steel Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Tejin Vacuum Electronic Technology Co Ltd, Oxygen Co Ltd Wuhan Iron & Steel Group filed Critical Beijing Tejin Vacuum Electronic Technology Co Ltd
Priority to CNB011451238A priority Critical patent/CN1190262C/en
Publication of CN1429658A publication Critical patent/CN1429658A/en
Application granted granted Critical
Publication of CN1190262C publication Critical patent/CN1190262C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Drying Of Semiconductors (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

The present invention discloses material for removing impurities in inert gas and a use method thereof, and relates to material for removing fluorocarbon impurities in inert gas of xenon and krypton and the use method thereof. The present invention is characterized in that the weight percentage of the alloy is composed of 10% to 25% of aluminium, 1% to 2% of hafnium, 0.4% to 5% of lanthanon rare earth, 1% to 3% of nickel, and surplus zirconium and unavoidable impurities. The use process of the use method comprises activating treatment for 2 to 3 hours at 700 DEG C to 960 DEG C, and the gas purifying process of adsorbed gas impurities at 400 DEG C to 960 DEG C; gas flow is controlled from 0.5m#+[3]/h to 10m#+[3]/h; working pressure is from 0.3MPa to 1.5MPa. The material for purifying the inert gas does not absorb the inert gas and especially has special performance such as the removal of fluorocarbon (CF4 and C2F4), etc. The purity of purified inert gas is larger than 99.9999%; O2 is smaller than 0.5 ppm; the content of the fluorocarbon is smaller than 3 ppm.

Description

A kind of material and using method thereof of removing impurity in the inert gas
(1) technical field
A kind of material and using method thereof of removing impurity in the inert gas, relate to a kind of removal and be used for the inert gas xenon that is filled with in semiconductor, high pure metal industry, chemical analysis analysis and various particular electrical light source, Laser Devices, the electro-optical device, particularly high-power illumination lamp, the material and the using method thereof of the fluorocarbons impurities in the krypton.
(2) background technology
High purity inert gas is carrier and protective atmosphere and the important source material that semiconductor, high pure metal industry, chemical analysis analysis, various particular electrical light source, Laser Devices and multiple high pure raw material and technical process must adopt, and occupies important status in modern science and technology and industrial development.The method that is used for high purity inert gas production at present has multiple, and the purification process of gas has air separating method, absorption process and absorption method etc.Can remove the O of active gases in this way effectively 2, N 2, CO, H 2Impurity such as O satisfy certain industrial use.But usually not really desirable for containing the fluorocarbons removal effect in the gas, the fluorocarbons content in the inert gas after the processing is higher than 50ppm, is difficult to satisfy the industrial use high to the indifferent gas purity requirement, as particular electrical light source etc. to the inert gas requirement.Because the influence of purity inert gas, present vaporificly in high-power illumination lamp inside, the filament blackout has influenced product quality.To the inert gas of specific use, the height of purity is unusual important index.In present existing gas purification technology, in inert gas, the CF in krypton gas, the xenon particularly 4With C 2F 6The removal method does not also have highly effective method.
(3) summary of the invention
The objective of the invention is the deficiency that exists at above-mentioned prior art, provide a kind of in the removal inert gas that can effectively remove fluorocarbons the material and the using method thereof of impurity.
The objective of the invention is to be achieved through the following technical solutions.
A kind of material of removing impurity in the inert gas, it is characterized in that this material is a kind of zircaloy, the percentage by weight of this alloy consists of: contain aluminium 10%-25%, contain hafnium 1%-2%, lanthanide rare 0.4%-5%, nickel 1%-3%, surplus is zirconium and unavoidable impurities, its material is the 0.05mm-2.5mm particle.
A kind of material of removing impurity in the inert gas of the present invention also can be the voluminous powder sintered body.
Contain the Titanium element that percentage by weight is 1%-4% in a kind of zircaloy of removing the material of impurity in the inert gas of the present invention.
A kind of using method of removing the material of impurity in the inert gas is characterized in that its use is:
The material that a. will be used for removing inert gas impurity is packed in the rustless steel container of the Purge gas that has the gateway, after vacuumizing and exhausting to vacuum is 10-3Pa, charge into inert gas, 700 ℃ of-960 ℃ of temperature of intensification, be incubated 2-3 hour, will carry out activation processing;
B. the inert gas that desire is purified feeds and is equipped with in the degasification container of material, carries out the gas purification process of absorbing gaseous impurities under 400 ℃ of-960 ℃ of temperature, and the control gas flow is 0.5m 3/ h-10m 3/ h, operating pressure is 0.3MPa-1.5MPa.
Inert gas purge material of the present invention does not absorb inert gas.This material has can remove fluorocarbons (CF effectively 4, C 2F 4) etc. special nature.Purity inert gas is greater than 99.9999% behind the purifying, and fluorocarbons content is less than 3ppm.When purifying krypton, xenon-133 gas through method of the present invention, the C in krypton, the xenon-133 gas 2F and C 2F 4Content is all reduced to 0.5ppm from 10ppm, and the gas loss rate is being lower than 5%, and effect is extremely remarkable.
(4) specific embodiment
A kind of material of removing impurity in the inert gas, this material are a kind of zirconium alloy, and its percentage by weight consists of: contain aluminium 10%-25%, contain hafnium 1%-2%, lanthanide rare 0.4%-5%, nickel 1%-3%, surplus is zirconium and unavoidable impurities, and its material is the particle of 0.05mm-2.5mm.
A kind of material of removing impurity in the inert gas of the present invention also can be the voluminous powder sintered body.
Also contain the Titanium element that percentage by weight is 1%-4% in a kind of zircaloy of removing the material of impurity in the inert gas of the present invention.
A kind of using method of removing the material of impurity in the inert gas at first will be removed the material of impurity in the inert gas, and in the rustless steel container of the Purge gas that has the gateway of packing into, vacuumizing and exhausting to vacuum is 10 -3Behind the Pa, charge into inert gas, 700 ℃ of-960 ℃ of temperature of intensification, be incubated 2-3 hour, carry out activation processing; The inert gas feeding that desire purifies is equipped with in the degasification container of material, carries out the gas purification of absorbing gaseous impurities under 400 ℃ of-960 ℃ of temperature, the control gas flow is 0.5m/h, and operating pressure is 0.3MPa-1.5MPa.Usually zirconium-base alloy and fluorocarbon gases impurity have the enough reaction time to take place under certain pressure and temperature, fluorocarbon gases impurity in the inert gas is absorbed, air-breathing reaction takes place, generate stable zirconium carbon compound and zirconium fluorine compounds, originally these compounds are created in the zirconium-base alloy particle surface, along with the carrying out of air-breathing reaction constantly spread to granule interior.Because this compound does not decompose under the temperature that air-breathing reaction takes place, remove the stable reaction of fluorocarbons in the inert gas such as xenon krypton and continue thereby make.
The material of impurity has added elements such as aluminium, hafnium, lanthanide rare, titanium in the removal inert gas of the present invention in zirconium-base alloy, these elements also can react with the impurity in the inert gas under certain condition, generate stable compound, and because the degasification performance of the alloy that these elements and zirconium form is more remarkable, improve the reaction speed of zirconium and gaseous impurity, removed the gaseous impurity of fluorocarbons.
The present invention is further illustrated below in conjunction with example.
Embodiment 1
The composition of inert gas purge material contains hafnium 2% for containing aluminium 11%, lanthanide rare 5%, nickel 2%, surplus were zirconium and unavoidable impurities, 720 ℃ of following activation processing 2.5 hours, the operating temperature of Purge gas process is 450 ℃, and operating pressure is 0.5MPa, gas flow 0.5m 3/ h is for purifying the active gaseous impurities content 35ppm in the gas of back, C in the gas 2F 6, CF 4Impurity content≤3ppm.
Embodiment 2
The composition of inert gas purge material contains hafnium 1.5% for containing aluminium 15%, lanthanide rare 3%, nickel 1%, surplus were zirconium and unavoidable impurities, 950 ℃ of following activation processing 2 hours, the operating temperature of Purge gas process is 600 ℃, and operating pressure is 1MPa, gas flow 5m 3/ h is for purifying the active gaseous impurities content 45ppm in the gas of back, C in the gas 2F 6, CF 4Impurity content≤3ppm.
Embodiment 3
The composition of inert gas purge material contains hafnium 2% for containing aluminium 12%, lanthanide rare 4%, 21%, titaniferous 4%, surplus were zirconium and unavoidable impurities, 800 ℃ of following activation processing 1.5 hours, the operating temperature of Purge gas process is 680 ℃, and operating pressure is 1.5MPa, gas flow 9m 3/ h is for purifying the active gaseous impurities content 47ppm in the gas of back, C in the gas 2F 6, CF 4Impurity content≤3ppm.
Embodiment 4
The composition of inert gas purge material contains hafnium 1% for containing aluminium 25%, lanthanide rare 0.5%, nickel 1%, surplus were zirconium and unavoidable impurities, 700 ℃ of following activation processing 3 hours, the operating temperature of Purge gas process is 720 ℃, and operating pressure is 1.5MPa, gas flow 7m 3/ h is for purifying the active gaseous impurities content 38ppm in the gas of back, C in the gas 2F 6, CF 4Impurity content≤3ppm.
Embodiment 5
The composition of inert gas purge material contains hafnium 1% for containing aluminium 10%, lanthanide rare 4%, nickel 2%, Ti content 1%, surplus were zirconium and unavoidable impurities, 880 ℃ of following activation processing 2.5 hours, the operating temperature of Purge gas process is 720 ℃, and operating pressure is 1.5MPa, gas flow 7m 3/ h is for purifying the active gaseous impurities content 36ppm in the gas of back, C in the gas 2F 6, CF 4Impurity content≤3ppm.
Embodiment 6
The composition of inert gas purge material contains hafnium 1% for containing aluminium 13%, lanthanide rare 3%, nickel 2%, Ti content 1%, surplus were zirconium and unavoidable impurities, 880 ℃ of following activation processing 2.5 hours, the operating temperature of Purge gas process is 470 ℃, and operating pressure is 1.5MPa, gas flow 7m 3/ h is for purifying the active gaseous impurities content 42ppm in the gas of back, C in the gas 2F 6, CF 4Impurity content≤3ppm.
Embodiment 7
The composition of inert gas purge material contains hafnium 1% for containing aluminium 16%, lanthanide rare 0.5%, nickel 2%, Ti content 1%, surplus were zirconium and unavoidable impurities, 880 ℃ of following activation processing 2.5 hours, the operating temperature of Purge gas process is 700 ℃, and operating pressure is 1.0MPa, gas flow 6m 3/ h is for purifying the active gaseous impurities content 38ppm in the gas of back, C in the gas 2F 6, CF 4Impurity content≤3ppm.
Embodiment 8
The composition of inert gas purge material is for containing aluminium 20%, contain hafnium 1%, lanthanide rare 0.4%, nickel 2%, Ti content 1%, surplus is zirconium and unavoidable impurities, 880 ℃ of following activation processing 2.5 hours, the operating temperature of Purge gas process is 930 ℃, and operating pressure is 0.9MPa, gas flow 1.2m 3/ h is for purifying the active gaseous impurities content 38ppm in the gas of back, C in the gas 2F 6, CF 4Impurity content≤3ppm.
Embodiment 9
The composition of inert gas purge material contains hafnium 1% for containing aluminium 10%, lanthanide rare 5%, nickel 3%, Ti content 3%, surplus were zirconium and unavoidable impurities, 880 ℃ of following activation processing 2.5 hours, the operating temperature of Purge gas process is 520 ℃, and operating pressure is 1.5MPa, gas flow 0.6m 3/ h is for purifying the active gaseous impurities content 38ppm in the gas of back, C in the gas 2F 6, CF 4Impurity content≤3ppm.
Embodiment 10
The composition of inert gas purge material contains hafnium 1.5% for containing aluminium 13%, lanthanide rare 4%, nickel 2%, Ti content 2%, surplus were zirconium and unavoidable impurities, 880 ℃ of following activation processing 2.5 hours, the operating temperature of Purge gas process is 720 ℃, and operating pressure is 1.3MPa, gas flow 7m 3/ h is for purifying the active gaseous impurities content 48ppm in the gas of back; C in the gas 2F 6, CF 4Impurity content≤3ppm.
Embodiment 11
The composition of inert gas purge material contains hafnium 1% for containing aluminium 17%, and group of the lanthanides is rare last 2%, nickel 1%, Ti content 1%, surplus were zirconium and unavoidable impurities, 880 ℃ of following activation processing 2.5 hours, the operating temperature of Purge gas process is 720 ℃, and operating pressure is 1.5MPa, gas flow 10m 3/ h is for purifying the active gaseous impurities content 48ppm in the gas of back, C in the gas 2F 6, CF 4Impurity content≤3ppm.
Embodiment 12
The composition of inert gas purge material contains hafnium 1% for containing aluminium 19%, lanthanide rare 5%, nickel 1%, Ti content 4%, surplus were zirconium and unavoidable impurities, 880 ℃ of following activation processing 2.5 hours, the operating temperature of Purge gas process is 860 ℃, and operating pressure is 1.5MPa, gas flow 14m 3/ h is for purifying the active gaseous impurities content 41ppm in the gas of back, C in the gas 2F 6, CF 4Impurity content≤3ppm.

Claims (4)

1. material of removing impurity in the inert gas, it is characterized in that this material is a kind of zircaloy, the percentage by weight of this alloy consists of: contain aluminium 10%-25%, contain hafnium 1%-2%, lanthanide rare 0.4%-5%, nickel 1%-3%, surplus is zirconium and unavoidable impurities, its material is the particle of 0.05mm-2.5mm.
2. a kind of material of removing impurity in the inert gas according to claim 1 is characterized in that its material is the voluminous powder sintered body.
3. a kind of material of removing impurity in the inert gas according to claim 1 is characterized in that containing in its zircaloy the Titanium element that percentage by weight is 1%-4%.
4. the described a kind of using method of removing the material of impurity in the inert gas of claim 1 is characterized in that its use is:
The material that a. will be used for removing inert gas impurity is packed in the rustless steel container of the Purge gas that has the gateway, and vacuumizing and exhausting to vacuum is 10 -3Behind the Pa, charge into inert gas, 700 ℃ of-960 ℃ of temperature of intensification, be incubated 2-3 hour, will carry out activation processing;
B. the inert gas that desire is purified feeds and is equipped with in the degasification container of material, carries out the gas purification process of absorbing gaseous impurities under 400 ℃ of-960 ℃ of temperature, and the control gas flow is 0.5m 3/ h-10m 3/ h, operating pressure is 0.3MPa-1.5MPa.
CNB011451238A 2001-12-30 2001-12-30 Material for removing impurity in inert gas and its use method Expired - Fee Related CN1190262C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB011451238A CN1190262C (en) 2001-12-30 2001-12-30 Material for removing impurity in inert gas and its use method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB011451238A CN1190262C (en) 2001-12-30 2001-12-30 Material for removing impurity in inert gas and its use method

Publications (2)

Publication Number Publication Date
CN1429658A CN1429658A (en) 2003-07-16
CN1190262C true CN1190262C (en) 2005-02-23

Family

ID=4678034

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011451238A Expired - Fee Related CN1190262C (en) 2001-12-30 2001-12-30 Material for removing impurity in inert gas and its use method

Country Status (1)

Country Link
CN (1) CN1190262C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101185826B (en) * 2006-10-05 2012-07-04 日本派欧尼株式会社 Immobile gas processing method and refining method and gas processing bucket

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990380B (en) * 2005-12-30 2010-10-13 天津环煜电子材料科技有限公司 Technique for purifying and recovering argon gas by rare earth lanthanide series radical alloy degasser in single-crystal silicon preparation
JP5202836B2 (en) * 2006-12-01 2013-06-05 日本エア・リキード株式会社 Xenon recovery system and recovery device
CN102100999B (en) * 2009-12-16 2013-05-15 贵阳铝镁设计研究院有限公司 Method for purifying inert gases and purifying device
CN101880796B (en) * 2010-07-15 2012-06-13 南京信息工程大学 Zirconium-nickel alloy and preparation method thereof
CN104307461B (en) * 2014-10-24 2016-06-29 武汉钢铁(集团)公司 Krypton, xenon purification getter and preparation method thereof
CN106512702A (en) * 2016-12-08 2017-03-22 天津工业大学 Online purification method for inert gases based on titanium metallic chemical properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101185826B (en) * 2006-10-05 2012-07-04 日本派欧尼株式会社 Immobile gas processing method and refining method and gas processing bucket

Also Published As

Publication number Publication date
CN1429658A (en) 2003-07-16

Similar Documents

Publication Publication Date Title
CA2046772A1 (en) Carbon dioxide production from combustion exhaust gases with nitrogen and argon by-product recovery
CN1190262C (en) Material for removing impurity in inert gas and its use method
JP2004515344A (en) Methods and materials for purifying hydride, inert and non-reactive gases
TWI542705B (en) Production method of high purity calcium
CN1218065C (en) Process for purification of organometallic compounds or heteroatomic getter alloys
KR20150016167A (en) Method and apparatus for recovering iodine heptafluoride-derived iodine fluoride compound
EP0484301B1 (en) Process for the purification of ammonia
TW200642954A (en) Method for purification of disilicon hexachloride and high purity disilicon hexachloride
US20100178225A1 (en) Method for treatment of a gas stream containing silicon tetrafluoride and hydrogen chloride
EP1541218B1 (en) Process for removing water from ammonia
JP2018184348A (en) Method for producing high-purity acetylene gas
EP1533272A1 (en) Removal of sulfur-containing impurities from volatile metal hydrides
US6790419B1 (en) Purification of gaseous inorganic halide
EP1409400A1 (en) Purification of gaseous inorganic halide
CN108069407B (en) Dehydration and deoxidization method for oxygen-isolated gas
CN1022097C (en) Zirconium base alloy for purifying hydrogen
JP2848947B2 (en) Purification method of nitrogen trifluoride gas
JPH07330318A (en) Production of high-purity anhydrous hydrazine
JPH0417890B2 (en)
JP2651611B2 (en) Hydride gas purification method
EP0493347B1 (en) Process for the purification of methane
JP3260826B2 (en) Purification method of nitrous oxide
CN117358001A (en) Nitric oxide adsorption purifier
KR20030046085A (en) Method for Refining Nitrogen Trifluoride Gas
EP0592998B1 (en) Method for the preparation of pellets of metal halide

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050223

Termination date: 20201230