CN118490986A - Wireless communication method, electronic device and storage medium for neurostimulator - Google Patents
Wireless communication method, electronic device and storage medium for neurostimulator Download PDFInfo
- Publication number
- CN118490986A CN118490986A CN202410954683.8A CN202410954683A CN118490986A CN 118490986 A CN118490986 A CN 118490986A CN 202410954683 A CN202410954683 A CN 202410954683A CN 118490986 A CN118490986 A CN 118490986A
- Authority
- CN
- China
- Prior art keywords
- power supply
- time
- neurostimulator
- supply state
- time period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 title claims abstract description 174
- 238000000034 method Methods 0.000 title claims abstract description 70
- 230000000638 stimulation Effects 0.000 claims abstract description 113
- 230000008859 change Effects 0.000 claims abstract description 99
- 230000008569 process Effects 0.000 claims abstract description 17
- 210000005036 nerve Anatomy 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 70
- 238000005070 sampling Methods 0.000 claims description 48
- 238000004590 computer program Methods 0.000 claims description 7
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims 12
- 239000000758 substrate Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 230000001186 cumulative effect Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 208000002193 Pain Diseases 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000001537 neural effect Effects 0.000 description 4
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 208000016285 Movement disease Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000002972 tibial nerve Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37211—Means for communicating with stimulators
- A61N1/37252—Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36142—Control systems for improving safety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37211—Means for communicating with stimulators
- A61N1/37217—Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
Landscapes
- Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Acoustics & Sound (AREA)
- Physics & Mathematics (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
技术领域Technical Field
本说明书涉及无线通讯技术领域,尤其涉及针对神经刺激器的无线通讯方法、电子设备和存储介质。The present invention relates to the field of wireless communication technology, and in particular to a wireless communication method, electronic device and storage medium for a neurostimulator.
背景技术Background Art
神经刺激器是一种用于向特定神经区域传递电信号的设备,其主要目标是通过调节神经元的电活动来实现治疗效果。它们在神经科学和生物医学工程领域中发挥着重要作用,特别是在疼痛管理、运动障碍和癫痫等方面。Neurostimulators are devices used to deliver electrical signals to specific nerve regions, with the primary goal of modulating the electrical activity of neurons to achieve therapeutic effects. They play an important role in the fields of neuroscience and biomedical engineering, particularly in pain management, movement disorders, and epilepsy.
相关技术中,由于神经刺激器经外科手术植入于人体组织,并根据患者病情的需要对肌肉或神经组织进行电刺激,因此神经刺激器的体积要尽可能小以降低手术风险,为了降低神经刺激器的体积,神经刺激器通过调制/解调技术实现在一个接收线圈上同时进行无线供电和无线通讯的方案,以简化神经刺激器内部的储能单元和通讯单元。In the related art, since the neurostimulator is implanted in human tissue through surgery and electrically stimulates the muscle or nerve tissue according to the needs of the patient's condition, the size of the neurostimulator should be as small as possible to reduce the surgical risk. In order to reduce the size of the neurostimulator, the neurostimulator uses modulation/demodulation technology to achieve simultaneous wireless power supply and wireless communication on a receiving coil to simplify the energy storage unit and communication unit inside the neurostimulator.
但该方案也带来了新的技术问题,即调制/解调会影响接收线圈的接收电压的稳定性,尤其是调制深度较大时,会导致接收电压产生明显波动,而神经刺激器内部的工作电路依赖稳定的电源电压来维持正常运行,当接收线圈的接收电压波动时,电源管理模块可能无法完全平滑这些波动,因而神经刺激器的供电电压也会存在波动。而神经刺激器的刺激脉冲生成电路对供电电压非常敏感,供电电压的波动会直接影响脉冲生成电路中的元件(如运算放大器、晶体管等)的工作状态,最终导致输出的刺激脉冲产生波动,从而影响治疗效果。However, this solution also brings new technical problems, namely, modulation/demodulation will affect the stability of the receiving voltage of the receiving coil, especially when the modulation depth is large, which will cause obvious fluctuations in the receiving voltage. The working circuit inside the neurostimulator relies on a stable power supply voltage to maintain normal operation. When the receiving voltage of the receiving coil fluctuates, the power management module may not be able to completely smooth these fluctuations, so the power supply voltage of the neurostimulator will also fluctuate. The stimulation pulse generation circuit of the neurostimulator is very sensitive to the power supply voltage. The fluctuation of the power supply voltage will directly affect the working state of the components in the pulse generation circuit (such as operational amplifiers, transistors, etc.), and ultimately cause the output stimulation pulse to fluctuate, thereby affecting the treatment effect.
发明内容Summary of the invention
为克服相关技术中存在的问题,本说明书提供了针对神经刺激器的无线通讯方法、电子设备和存储介质。In order to overcome the problems existing in the related art, this specification provides a wireless communication method, an electronic device and a storage medium for a neurostimulator.
根据本说明书实施例的第一方面,提供一种针对神经刺激器的无线通讯方法,所述方法应用于控制神经刺激器的程控器,所述神经刺激器配置有一个接收线圈,所述接收线圈同时用于所述神经刺激器与所述程控器之间的无线通讯和无线供电,所述方法包括:According to a first aspect of an embodiment of this specification, a wireless communication method for a neurostimulator is provided, the method being applied to a programmer controlling the neurostimulator, the neurostimulator being provided with a receiving coil, the receiving coil being used for both wireless communication and wireless power supply between the neurostimulator and the programmer, the method comprising:
在所述程控器向所述神经刺激器供电过程中,确定在连续时间段内供电状态 发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻;其中,所述第一变化表明所述神经刺激器在所述结束时刻停止输出电刺激脉冲,所述第二变化表明所述神经刺激器在所述开始时刻开始输出电刺激脉冲;During the process of the programmer supplying power to the neurostimulator, all ending moments of a first change in the power supply state and all starting moments of a second change in the power supply state within a continuous time period are determined; wherein the first change indicates that the neurostimulator stops outputting electrical stimulation pulses at the ending moment, and the second change indicates that the neurostimulator starts outputting electrical stimulation pulses at the starting moment;
基于至少一个结束时刻和至少一个开始时刻确定可用通讯时间段;determining an available communication time period based on at least one end time and at least one start time;
确定需要在所述可用通讯时间段内发送的目标数据,并在所述可用通讯时间段内将所述目标数据发送至所述神经刺激器。Target data that needs to be sent within the available communication time period is determined, and the target data is sent to the neural stimulator within the available communication time period.
根据本说明书实施例的第二方面,提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如第一方面所述的方法的步骤。According to a second aspect of the embodiments of this specification, an electronic device is provided, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, the steps of the method described in the first aspect are implemented.
根据本说明书实施例的第三方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如第一方面所述的方法的步骤。According to a third aspect of the embodiments of this specification, a computer-readable storage medium is provided, on which a computer program is stored, and when the program is executed by a processor, the steps of the method described in the first aspect are implemented.
本说明书的实施例提供的技术方案可以包括以下有益效果:The technical solutions provided by the embodiments of this specification may have the following beneficial effects:
本说明书实施例中,程控器在向神经刺激器供电过程中,通过在连续时间段内确定出的程控器的供电状态发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻,可以预测出神经刺激器不产生电刺激脉冲的可用通讯时间段,并在可用通讯时间段内将目标数据发送至神经刺激器。可见,本方案由程控器根据自身一侧供电状态的特定变化主动确定神经刺激器的输出状态,并据此预测神经刺激器停止输出电刺激脉冲的时间段以作为后续向其发送数据的可用通讯时间段,可用通讯时间段的确定过程无需与神经刺激器进行交互,确定逻辑简单高效。因为程控器仅在神经刺激器不输出电刺激脉冲的时间段内与其进行通讯,而在神经刺激器输出电刺激脉冲的时间段内并不进行任何通讯,从而有效避免了通讯引起的神经刺激器的供电电压波动对电刺激脉冲的稳定性可能造成的负面影响。In the embodiments of the present specification, during the process of supplying power to the neurostimulator, the programmer can predict the available communication time period when the neurostimulator does not generate electrical stimulation pulses by determining all the end moments of the first change in the power supply state of the programmer and all the start moments of the second change in the power supply state within a continuous time period, and send the target data to the neurostimulator within the available communication time period. It can be seen that in this scheme, the programmer actively determines the output state of the neurostimulator according to the specific changes in the power supply state on its own side, and predicts the time period when the neurostimulator stops outputting electrical stimulation pulses as the available communication time period for sending data to it subsequently. The determination process of the available communication time period does not require interaction with the neurostimulator, and the determination logic is simple and efficient. Because the programmer communicates with the neurostimulator only during the time period when the neurostimulator does not output electrical stimulation pulses, and does not perform any communication during the time period when the neurostimulator outputs electrical stimulation pulses, the negative impact that the power supply voltage fluctuation of the neurostimulator caused by communication may have on the stability of the electrical stimulation pulses is effectively avoided.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本说明书。It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present specification.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本说明书的实施例,并与说明书一起用于解释本说明书的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the specification and, together with the description, serve to explain the principles of the specification.
图1是本说明书根据一示例性实施例示出的一种神经刺激器和程控器之间交互的场景示意图。FIG. 1 is a schematic diagram of a scenario of interaction between a neural stimulator and a programmer according to an exemplary embodiment of this specification.
图2是本说明书根据一示例性实施例示出的一种针对神经刺激器的无线通讯方法的流程图。FIG. 2 is a flow chart of a wireless communication method for a neurostimulator according to an exemplary embodiment of this specification.
图3是本说明书根据一示例性实施例示出的一种相关技术的程控器的供电组件的示意图。FIG. 3 is a schematic diagram of a power supply component of a programmer in the related art according to an exemplary embodiment of the present specification.
图4是本说明书根据一示例性实施例示出的一种本申请的程控器的供电组件的示意图。FIG. 4 is a schematic diagram of a power supply component of a programmer of the present application shown in this specification according to an exemplary embodiment.
图5是本说明书根据一示例性实施例示出的另一种本申请的程控器的供电组件的示意图。FIG. 5 is a schematic diagram of another power supply component of the programmer of the present application shown in this specification according to an exemplary embodiment.
图6是本说明书根据一示例性实施例示出的另一种本申请的程控器的供电组件的示意图。FIG. 6 is a schematic diagram of another power supply component of the programmer of the present application shown in this specification according to an exemplary embodiment.
图7是本说明书根据一示例性实施例示出的另一种本申请的程控器的供电组件的示意图。FIG. 7 is a schematic diagram of another power supply component of the programmer of the present application shown in this specification according to an exemplary embodiment.
图8是本说明书根据一示例性实施例示出的有关确定可用通讯时间段的方式的示意图。FIG. 8 is a schematic diagram of a method for determining an available communication time period according to an exemplary embodiment of this specification.
图9是本说明书根据一示例性实施例示出的另一种有关确定可用通讯时间段的方式的示意图。FIG. 9 is a schematic diagram of another method for determining an available communication time period according to an exemplary embodiment of this specification.
图10是本说明书根据一示例性实施例示出的一种有关确定实测时间间隔的方式的示意图。FIG. 10 is a schematic diagram of a method for determining a measured time interval according to an exemplary embodiment of this specification.
图11是本说明书根据一示例性实施例示出的一种电子设备的框图。Fig. 11 is a block diagram of an electronic device according to an exemplary embodiment of this specification.
图12是本说明书根据一示例性实施例示出的一种针对神经刺激器的无线通讯装置的框图。FIG. 12 is a block diagram of a wireless communication device for a neurostimulator according to an exemplary embodiment of this specification.
具体实施方式DETAILED DESCRIPTION
如图1所示,神经刺激器10被医生植入患者体内,其包括电极和脉冲发生器,电极被放置在目标神经附近,通过脉冲发生器向目标神经产生电刺激脉冲。程控器11包括但不限于控制神经刺激器10的参数配置与调整、数据传输和为神经刺激器10提供电能的功能,程控器11可以泛指任何具备上述功能的电子设备,例如,若某一电子设备具备上述功能,则其可以作为本说明书中的程控器11。在实际应用中,程控器11可以调节神经刺激器10的工作参数,如电流强度、频率、脉冲宽度和刺激模式。在神经刺激器10的工作过程中,程控器11也可以接收神经刺激器10发送的反馈信息(如电极电阻变化、内部状态等),以使得程控器11可以根据反馈信息调整程控器10的工作参数。示例性地,所述神经刺激器10包括但不限于脊髓神经刺激器(SCS)、外周神经刺激器(PNS)和胫神经刺激器(TNS)。As shown in FIG1 , the neurostimulator 10 is implanted in the patient's body by a doctor, and includes an electrode and a pulse generator. The electrode is placed near the target nerve, and an electrical stimulation pulse is generated to the target nerve through the pulse generator. The programmer 11 includes but is not limited to the functions of controlling the parameter configuration and adjustment of the neurostimulator 10, data transmission, and providing electrical energy to the neurostimulator 10. The programmer 11 can refer to any electronic device having the above functions. For example, if an electronic device has the above functions, it can be used as the programmer 11 in this specification. In practical applications, the programmer 11 can adjust the working parameters of the neurostimulator 10, such as current intensity, frequency, pulse width, and stimulation mode. During the operation of the neurostimulator 10, the programmer 11 can also receive feedback information (such as electrode resistance change, internal state, etc.) sent by the neurostimulator 10, so that the programmer 11 can adjust the working parameters of the programmer 10 according to the feedback information. Exemplarily, the neurostimulator 10 includes but is not limited to a spinal cord nerve stimulator (SCS), a peripheral nerve stimulator (PNS), and a tibial nerve stimulator (TNS).
神经刺激器10配置有一个接收线圈,该接收线圈同时用于神经刺激器10和程控器11之间的双向无线通讯,以及神经刺激器10通过该接收线圈接收程控器11提供的电能。具体的,程控器11的接收线圈通过高频交流电产生交变磁场,神经刺激器10的接收线圈处于交变磁场中,基于电磁感应原理,在接收线圈中产生感应电流,以向脉冲发生器进行供能。程控器11在发送供电信号的同时,可以在供电信号上叠加调制信号,神经刺激器10的解调电路从接收到的供电信号中提取出调制信号,即程控器11发送的数据,然后将解调出的数据交由神经刺激器10的微处理器进行处理,用于调整神经刺激器10的工作参数。神经刺激器10上应用的调制/解调技术具体可以是ASK/AM调制技术。当使用ASK/AM调制技术进行无线通讯时,调制深度决定了载波信号的振幅变化范围,较大的振幅深度意味着载波信号的振幅变化幅度较大,从而导致整流电路的接收端的电压波动更明显。例如,假设载波信号电压为5V,调制深度为0.6,那么调制后的电压范围为2V到8V之间变化。如果调制深度增加到0.8,则电压范围变为1V到9V,波动更大。由于神经刺激器10的供电电压波动,神经刺激器10输出的电流也会随之波动,这种波动会导致刺激脉冲的幅度变化,从而影响刺激效果。对于其他调制技术,如频率调制(FM)和相位调制(PM),虽然没有AM调制方式对电压的影响大,但同样在神经刺激器10的解调过程中引入电压波动,从而影响刺激效果。因此,在程控器11与神经刺激器10进行通讯的过程中,通讯引起的神经刺激器10的供电电压波动对输出的电刺激脉冲的稳定性可能造成的负面影响。The neurostimulator 10 is equipped with a receiving coil, which is used for two-way wireless communication between the neurostimulator 10 and the programmer 11, and the neurostimulator 10 receives the electrical energy provided by the programmer 11 through the receiving coil. Specifically, the receiving coil of the programmer 11 generates an alternating magnetic field through high-frequency alternating current. The receiving coil of the neurostimulator 10 is in the alternating magnetic field. Based on the principle of electromagnetic induction, an induced current is generated in the receiving coil to supply energy to the pulse generator. While sending a power supply signal, the programmer 11 can superimpose a modulation signal on the power supply signal. The demodulation circuit of the neurostimulator 10 extracts the modulation signal from the received power supply signal, that is, the data sent by the programmer 11, and then the demodulated data is handed over to the microprocessor of the neurostimulator 10 for processing, so as to adjust the working parameters of the neurostimulator 10. The modulation/demodulation technology applied to the neurostimulator 10 can specifically be ASK/AM modulation technology. When using ASK/AM modulation technology for wireless communication, the modulation depth determines the amplitude variation range of the carrier signal. A larger amplitude depth means that the amplitude variation of the carrier signal is larger, which causes the voltage fluctuation at the receiving end of the rectifier circuit to be more obvious. For example, assuming that the carrier signal voltage is 5V and the modulation depth is 0.6, the voltage range after modulation varies between 2V and 8V. If the modulation depth is increased to 0.8, the voltage range becomes 1V to 9V, with greater fluctuations. Due to the fluctuation of the power supply voltage of the neurostimulator 10, the current output by the neurostimulator 10 will also fluctuate. This fluctuation will cause the amplitude of the stimulation pulse to change, thereby affecting the stimulation effect. For other modulation techniques, such as frequency modulation (FM) and phase modulation (PM), although the impact on voltage is not as great as that of AM modulation, voltage fluctuations are also introduced during the demodulation process of the neurostimulator 10, thereby affecting the stimulation effect. Therefore, in the process of communication between the programmer 11 and the neurostimulator 10, the power supply voltage fluctuation of the neurostimulator 10 caused by the communication may have a negative impact on the stability of the output electrical stimulation pulse.
如前述实施例介绍,针对神经刺激器10和程控器11的通讯过程中,由于通讯过程中调制/解调信号导致的神经刺激器10的接收线圈的电压波动,间接导致神经刺激器10输出的电刺激脉冲产生波动的问题。本说明书提出一种全新的无线通讯方案,即只在神经刺激器10不产生电刺激脉冲的时间段内实现神经刺激器10和程控器11之间的通讯,从而避免通讯引起的神经刺激器10端的供电电压波动对电刺激脉冲的稳定性可能造成的负面影响。As described in the above embodiments, during the communication between the neurostimulator 10 and the programmer 11, the voltage fluctuation of the receiving coil of the neurostimulator 10 caused by the modulation/demodulation signal during the communication indirectly causes the fluctuation of the electrical stimulation pulse output by the neurostimulator 10. This specification proposes a new wireless communication solution, that is, the communication between the neurostimulator 10 and the programmer 11 is only realized during the time period when the neurostimulator 10 does not generate electrical stimulation pulses, thereby avoiding the negative impact of the power supply voltage fluctuation at the end of the neurostimulator 10 caused by the communication on the stability of the electrical stimulation pulse.
接下来对本说明书实施例进行详细说明。Next, the embodiments of this specification are described in detail.
如图2所示,图2是本说明书根据一示例性实施例示出的一种针对神经刺激器的无线通讯方法的流程图,该方法应用于图1的程控器11,包括步骤201-203:As shown in FIG. 2 , FIG. 2 is a flow chart of a wireless communication method for a neurostimulator according to an exemplary embodiment of the present specification. The method is applied to the programmer 11 of FIG. 1 , and includes steps 201-203:
步骤201:在所述程控器向所述神经刺激器供电过程中,确定在连续时间段内供电状态发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻。Step 201: During the process of the programmer supplying power to the neurostimulator, all ending moments of a first change in the power supply state and all starting moments of a second change in the power supply state within a continuous time period are determined.
在程控器11向神经刺激器10供电过程中,神经刺激器10相当于程控器11的负载设备,在神经刺激器10工作过程中,程控器11的负载也随之产生相应的变化。神经刺激器10在开始输出电刺激脉冲和停止输出电刺激脉冲的瞬间,程控器11的供电状态也会相应发生特定变化。例如,神经刺激器10在开始输出电刺激脉冲的瞬间,神经刺激器10的总负载突然增加,程控器11的供电模块输出的电流也会相应急剧增加。类似的,神经刺激器10在停止输出电刺激脉冲的瞬间,神经刺激器10的总负载突然减少(神经刺激器10中负责输出电刺激脉冲的模块负载降为0,而其他模块的负载基本不变,因此,总负载减少),程控器11的供电模块输出的电流也会相应急剧减少。因此,可以通过在程控器11向神经刺激器10供电过程中,根据程控器11的供电状态所发生的特定变化(即第一变化和第二变化)的时刻确定神经刺激器10开始输出电刺激脉冲的开始时刻和停止输出电刺激脉冲的停止时刻。In the process of the programmer 11 supplying power to the neurostimulator 10, the neurostimulator 10 is equivalent to the load device of the programmer 11. In the process of the neurostimulator 10 working, the load of the programmer 11 also changes accordingly. At the moment when the neurostimulator 10 starts to output electrical stimulation pulses and stops outputting electrical stimulation pulses, the power supply state of the programmer 11 will also undergo specific changes accordingly. For example, at the moment when the neurostimulator 10 starts to output electrical stimulation pulses, the total load of the neurostimulator 10 suddenly increases, and the current output by the power supply module of the programmer 11 will also increase sharply accordingly. Similarly, at the moment when the neurostimulator 10 stops outputting electrical stimulation pulses, the total load of the neurostimulator 10 suddenly decreases (the load of the module responsible for outputting electrical stimulation pulses in the neurostimulator 10 is reduced to 0, while the load of other modules is basically unchanged, so the total load is reduced), and the current output by the power supply module of the programmer 11 will also decrease sharply accordingly. Therefore, the start time when the neurostimulator 10 starts to output electrical stimulation pulses and the stop time when the neurostimulator 10 stops outputting electrical stimulation pulses can be determined according to the time of specific changes (i.e., the first change and the second change) that occur in the power supply state of the programmer 11 during the process of the programmer 11 supplying power to the neurostimulator 10.
如图3所示,相关技术的程控器中向神经刺激器供电的供电组件包括但不限于供电模块110、逆变电路111和发射线圈112。供电模块110用于提供符合神经刺激器当前电刺激模式的直流电流,并通过逆变电路111将来自供电模块110输出的直流电流转换为高频交流电流,然后发射线圈112通过将高频交流电流转换为无线电磁波,神经刺激器的接收线圈通过电磁感应接收发射线圈112的电磁波并产生高频交流电,经过整流电路将其转换为直流电后供神经刺激器的内部电路使用。As shown in Fig. 3, the power supply components for supplying power to the neurostimulator in the programmer of the related art include but are not limited to a power supply module 110, an inverter circuit 111 and a transmitting coil 112. The power supply module 110 is used to provide a direct current that conforms to the current electrical stimulation mode of the neurostimulator, and converts the direct current output from the power supply module 110 into a high-frequency alternating current through the inverter circuit 111. Then the transmitting coil 112 converts the high-frequency alternating current into a wireless electromagnetic wave. The receiving coil of the neurostimulator receives the electromagnetic wave of the transmitting coil 112 through electromagnetic induction and generates high-frequency alternating current, which is converted into direct current by a rectifier circuit for use by the internal circuit of the neurostimulator.
由于神经刺激器在开始输出电刺激脉冲和停止输出电刺激脉冲的瞬间,供电模块110输出的直流电压或者直流电流,以及逆变电路111输出的交流电流/交流电压均会相应发生特定变化,该特定变化能够反映神经刺激器的电刺激脉冲的输出状态。因此,本方案提出在图3的供电组件的基础上,通过检测程控器的供电状态所发生的特定变化的时刻来确定神经刺激器开始输出电刺激脉冲和停止输出电刺激脉冲的时刻。具体参见下述实施例:Since the DC voltage or DC current output by the power supply module 110 and the AC current/AC voltage output by the inverter circuit 111 will undergo specific changes at the moment when the neurostimulator starts to output electrical stimulation pulses and stops outputting electrical stimulation pulses, the specific changes can reflect the output state of the electrical stimulation pulses of the neurostimulator. Therefore, this solution proposes to determine the moment when the neurostimulator starts to output electrical stimulation pulses and stops outputting electrical stimulation pulses by detecting the moment when the power supply state of the programmer changes based on the power supply component of Figure 3. See the following embodiments for details:
在一示出的实施例中,如图4所示,程控器11的供电模块110的输出端连接至逆变电路111的输入端,逆变电路111的输出端连接至发射线圈112的输入端,发射线圈112的输出端连接至第一包络检波模块410的输入端,第一包络检波模块410的输出端连接至第一供电状态检测模块411的输入端。In an illustrated embodiment, as shown in Figure 4, the output end of the power supply module 110 of the programmer 11 is connected to the input end of the inverter circuit 111, the output end of the inverter circuit 111 is connected to the input end of the transmitting coil 112, the output end of the transmitting coil 112 is connected to the input end of the first envelope detection module 410, and the output end of the first envelope detection module 410 is connected to the input end of the first power supply status detection module 411.
在本实施例中,第一包络检波模块410用于识别发射线圈112的发射波形的包络。第一包络检波模块410具体可以是简单的二极管包络检波器,当然,也可以是在二极管包络检波器的基础上,加上放大器等元件以提高检波的灵敏度和精度。第一供电状态检测模块411基于第一包络检波模块410输出的包络信号检测供电状态的变化。第一供电状态检测模块411具体可以包括电压采样子模块和检测子模块,电压采样子模块的输入端连接至第一包络检波模块410的输入端以采集包络检波后的电压波形,电压采样子模块的输出端连接至检测子模块,以根据电压采样子模块采集到的电压波形确定供电状态的变化。电压采样子模块具体可以是模数转换器,用于将包络检波后的模拟电压波形转换为数字信号,以便于检测子模块进行分析处理。In this embodiment, the first envelope detection module 410 is used to identify the envelope of the transmission waveform of the transmitting coil 112. The first envelope detection module 410 can be a simple diode envelope detector. Of course, it can also be based on the diode envelope detector, and add components such as amplifiers to improve the sensitivity and accuracy of detection. The first power supply state detection module 411 detects the change of the power supply state based on the envelope signal output by the first envelope detection module 410. The first power supply state detection module 411 can specifically include a voltage sampling submodule and a detection submodule. The input end of the voltage sampling submodule is connected to the input end of the first envelope detection module 410 to collect the voltage waveform after envelope detection, and the output end of the voltage sampling submodule is connected to the detection submodule to determine the change of the power supply state according to the voltage waveform collected by the voltage sampling submodule. The voltage sampling submodule can be specifically an analog-to-digital converter, which is used to convert the analog voltage waveform after envelope detection into a digital signal, so that the detection submodule can analyze and process it.
例如,当神经刺激器10开始输出电刺激脉冲的瞬间,负载突然增加,发射线圈112的发射信号的幅度开始下降,从而导致发射波形的包络也随之变化,具体表现为第一包络检测电路113从发射波形中识别出的包络电压的瞬间下降,电压采样子模块将采集到的包络电压信号转换为数字信号,检测子模块通过分析电压数据的变化特征,来确定当前时刻的供电状态发生的变化是否表明神经刺激器10开始输出电刺激脉冲。For example, at the moment when the neurostimulator 10 starts to output electrical stimulation pulses, the load suddenly increases, and the amplitude of the transmission signal of the transmitting coil 112 begins to decrease, causing the envelope of the transmission waveform to change accordingly. This is specifically manifested as the first envelope detection circuit 113 identifying an instantaneous drop in the envelope voltage from the transmission waveform. The voltage sampling submodule converts the collected envelope voltage signal into a digital signal, and the detection submodule determines whether the change in the power supply status at the current moment indicates that the neurostimulator 10 has started to output electrical stimulation pulses by analyzing the changing characteristics of the voltage data.
又例如,当神经刺激器10停止输出电刺激脉冲的瞬间,负载突然减少,发射线圈112的发射信号的幅度开始上升,从而导致发射波形的包络也随之变化,具体表现为第一包络检测电路113从发射波形中识别出的包络电压的瞬间上升,电压采样子模块将采集到的包络电压信号转换为数字信号,检测子模块通过分析电压数据的变化特征,来确定当前时刻的供电状态发生的变化是否表明神经刺激器10停止输出电刺激脉冲。For another example, at the moment when the neurostimulator 10 stops outputting electrical stimulation pulses, the load suddenly decreases, and the amplitude of the transmitting signal of the transmitting coil 112 begins to rise, causing the envelope of the transmitting waveform to change accordingly. This is specifically manifested as the instantaneous rise of the envelope voltage identified by the first envelope detection circuit 113 from the transmitting waveform. The voltage sampling submodule converts the collected envelope voltage signal into a digital signal, and the detection submodule determines whether the change in the power supply status at the current moment indicates that the neurostimulator 10 has stopped outputting electrical stimulation pulses by analyzing the changing characteristics of the voltage data.
在另一示出的实施例中,如图5所示,程控器11的供电模块110的输出端连接至逆变电路111的输入端,逆变电路111的输出端连接至第一电流采样模块510的输入端,第一电流采样模块510的输出端连接至发射线圈112的输入端,第二包络检波模块511的输入端连接至第一电流采样模块510的输出端,第二包络检波模块511的输出端连接至第二供电状态检测模块512的输入端。In another illustrated embodiment, as shown in Figure 5, the output end of the power supply module 110 of the programmer 11 is connected to the input end of the inverter circuit 111, the output end of the inverter circuit 111 is connected to the input end of the first current sampling module 510, the output end of the first current sampling module 510 is connected to the input end of the transmitting coil 112, the input end of the second envelope detection module 511 is connected to the output end of the first current sampling module 510, and the output end of the second envelope detection module 511 is connected to the input end of the second power supply status detection module 512.
第一电流采样模块510用于采样逆变电路111输出的交变电流并将其转换为易于处理的电压信号。第二包络检波模块511用于识别交变电流波形的包络。第二供电状态检测模块512基于第二包络检波模块511输出的包络检测供电状态的变化。第二包络检波模块511用于识别第一电流采样模块510输出的交变电流波形的包络,第二包络检波模块511具体可以是简单的二极管包络检波器,当然,也可以是在二极管包络检波器的基础上,加上放大器等元件以提高检波的灵敏度和精度。第二供电状态检测模块512具体可以包括电压采样子模块和检测子模块,电压采样子模块的输入端连接至第二包络检波模块511的输入端以采集包络检波后的电压波形,电压采样子模块的输出端连接至检测子模块,以根据电压采样子模块采集到的电压波形确定供电状态的变化。电压采样子模块具体可以是模数转换器。The first current sampling module 510 is used to sample the alternating current output by the inverter circuit 111 and convert it into a voltage signal that is easy to process. The second envelope detection module 511 is used to identify the envelope of the alternating current waveform. The second power supply state detection module 512 detects the change of the power supply state based on the envelope output by the second envelope detection module 511. The second envelope detection module 511 is used to identify the envelope of the alternating current waveform output by the first current sampling module 510. The second envelope detection module 511 can be a simple diode envelope detector. Of course, it can also be based on the diode envelope detector, and add amplifiers and other components to improve the sensitivity and accuracy of detection. The second power supply state detection module 512 can specifically include a voltage sampling submodule and a detection submodule. The input end of the voltage sampling submodule is connected to the input end of the second envelope detection module 511 to collect the voltage waveform after envelope detection, and the output end of the voltage sampling submodule is connected to the detection submodule to determine the change of the power supply state according to the voltage waveform collected by the voltage sampling submodule. The voltage sampling submodule can be an analog-to-digital converter.
例如,当神经刺激器10开始输出电刺激脉冲的瞬间,负载突然增加,逆变电路111输出的交变电流突然提高,从而导致电流波形的包络也随之变化,具体表现为第二包络检测电路411从电流波形中识别出的包络边沿的瞬间上升,电压采样子模块将采集到的包络电压信号转换为数字信号,检测子模块通过分析电压数据的变化特征,来确定当前时刻的供电状态发生的变化是否表明神经刺激器10开始输出电刺激脉冲。For example, at the moment when the neurostimulator 10 starts to output electrical stimulation pulses, the load suddenly increases, and the alternating current output by the inverter circuit 111 suddenly increases, causing the envelope of the current waveform to change accordingly. This is specifically manifested as the instantaneous rise of the envelope edge identified by the second envelope detection circuit 411 from the current waveform. The voltage sampling submodule converts the collected envelope voltage signal into a digital signal, and the detection submodule determines whether the change in the power supply status at the current moment indicates that the neurostimulator 10 has started to output electrical stimulation pulses by analyzing the changing characteristics of the voltage data.
又例如,当神经刺激器10停止输出电刺激脉冲的瞬间,负载突然减少,逆变电路111输出的交变电流突然降低,从而导致电流波形的包络也随之变化,具体表现为第二包络检测电路411从电流波形中识别出的包络边沿的瞬间下降,电压采样子模块将采集到的包络电压信号转换为数字信号,检测子模块通过分析电压数据的变化特征,来确定当前时刻的供电状态发生的变化是否表明神经刺激器10停止输出电刺激脉冲。For another example, at the moment when the neurostimulator 10 stops outputting electrical stimulation pulses, the load suddenly decreases, and the alternating current output by the inverter circuit 111 suddenly decreases, causing the envelope of the current waveform to change accordingly. This is specifically manifested as the instantaneous drop of the envelope edge identified by the second envelope detection circuit 411 from the current waveform. The voltage sampling submodule converts the collected envelope voltage signal into a digital signal, and the detection submodule determines whether the change in the power supply status at the current moment indicates that the neurostimulator 10 has stopped outputting electrical stimulation pulses by analyzing the changing characteristics of the voltage data.
在另一示出的实施例中,如图6所示,程控器11的供电模块110的第一输出端连接至逆变电路111的输入端,逆变电路111的输出端连接至发射线圈112的输入端,供电模块110的第二输出端连接至第三供电状态检测模块610,以由第三供电状态检测模块610基于供电模块110输出的直流电压检测供电状态。In another illustrated embodiment, as shown in Figure 6, the first output end of the power supply module 110 of the programmer 11 is connected to the input end of the inverter circuit 111, the output end of the inverter circuit 111 is connected to the input end of the transmitting coil 112, and the second output end of the power supply module 110 is connected to the third power supply status detection module 610, so that the third power supply status detection module 610 detects the power supply status based on the DC voltage output by the power supply module 110.
第三供电状态检测模块610具体可以包括电压采样子模块和检测子模块,电压采样子模块的输入端连接至供电模块110的输入端以采集供电模块110输出的直流电压,电压采样子模块的输出端连接至检测子模块,以根据电压采样子模块采集到的直流电压确定供电状态的变化。电压采样子模块具体可以是模数转换器。The third power supply state detection module 610 may specifically include a voltage sampling submodule and a detection submodule, wherein the input end of the voltage sampling submodule is connected to the input end of the power supply module 110 to collect the DC voltage output by the power supply module 110, and the output end of the voltage sampling submodule is connected to the detection submodule to determine the change of the power supply state according to the DC voltage collected by the voltage sampling submodule. The voltage sampling submodule may specifically be an analog-to-digital converter.
例如,当神经刺激器10开始输出电刺激脉冲的瞬间,负载突然增加,供电模块110输出的直流电压突然降低,电压采样子模块将采集到的直流电压信号转换为数字信号,检测子模块通过分析电压数据的变化特征,来确定当前时刻的供电状态发生的变化是否表明神经刺激器10开始输出电刺激脉冲。For example, at the moment when the neurostimulator 10 starts to output electrical stimulation pulses, the load suddenly increases, and the DC voltage output by the power supply module 110 suddenly decreases. The voltage sampling submodule converts the collected DC voltage signal into a digital signal, and the detection submodule determines whether the change in the power supply status at the current moment indicates that the neurostimulator 10 starts to output electrical stimulation pulses by analyzing the changing characteristics of the voltage data.
又例如,当神经刺激器10停止输出电刺激脉冲的瞬间,负载突然减少,供电模块110输出的直流电压突然提高,电压采样子模块将采集到的直流电压信号转换为数字信号,检测子模块通过分析电压数据的变化特征,来确定当前时刻的供电状态发生的变化是否表明神经刺激器10停止输出电刺激脉冲。For another example, at the moment when the neurostimulator 10 stops outputting electrical stimulation pulses, the load suddenly decreases, and the DC voltage output by the power supply module 110 suddenly increases. The voltage sampling submodule converts the collected DC voltage signal into a digital signal, and the detection submodule determines whether the change in the power supply status at the current moment indicates that the neurostimulator 10 has stopped outputting electrical stimulation pulses by analyzing the changing characteristics of the voltage data.
在另一示出的实施例中,如图7所示,程控器11的供电模块110的输出端连接至第二电流采样模块710的输入端,第二电流采样模块710的第一输出端连接至逆变电路111的输入端,逆变电路111的输出端连接至发射线圈112的输入端,第二电流采样模块710的第二输出端连接至第四供电状态检测模块711。In another illustrated embodiment, as shown in Figure 7, the output end of the power supply module 110 of the programmer 11 is connected to the input end of the second current sampling module 710, the first output end of the second current sampling module 710 is connected to the input end of the inverter circuit 111, the output end of the inverter circuit 111 is connected to the input end of the transmitting coil 112, and the second output end of the second current sampling module 710 is connected to the fourth power supply state detection module 711.
第二电流采样模块710用于采样供电模块110输出的直流电流,并将直流电流信号转换为易于处理的电压信号。第四供电状态检测模块711具体可以包括电压采样子模块和检测子模块,电压采样子模块的输入端连接至第二电流采样模块710的第二输出端,电压采样子模块的输出端连接至检测子模块,以根据电压采样子模块采集到的直流电压确定供电状态的变化。电压采样子模块具体可以是模数转换器。The second current sampling module 710 is used to sample the DC current output by the power supply module 110 and convert the DC current signal into a voltage signal that is easy to process. The fourth power supply state detection module 711 may specifically include a voltage sampling submodule and a detection submodule, wherein the input end of the voltage sampling submodule is connected to the second output end of the second current sampling module 710, and the output end of the voltage sampling submodule is connected to the detection submodule to determine the change of the power supply state according to the DC voltage collected by the voltage sampling submodule. The voltage sampling submodule may specifically be an analog-to-digital converter.
例如,当神经刺激器10开始输出电刺激脉冲的瞬间,负载突然增加,供电模块110输出的直流电流突然增加,第二电流采样模块710采样供电模块110输出的直流电流,并将直流电流信号转换为易于处理的电压信号,电压采样子模块将采集到的直流电压信号转换为数字信号,检测子模块通过分析电压数据的变化特征,来确定当前时刻的供电状态发生的变化是否表明神经刺激器10开始输出电刺激脉冲。For example, at the moment when the neurostimulator 10 starts to output electrical stimulation pulses, the load suddenly increases, and the DC current output by the power supply module 110 suddenly increases. The second current sampling module 710 samples the DC current output by the power supply module 110 and converts the DC current signal into an easy-to-process voltage signal. The voltage sampling submodule converts the collected DC voltage signal into a digital signal. The detection submodule determines whether the change in the power supply status at the current moment indicates that the neurostimulator 10 has started to output electrical stimulation pulses by analyzing the changing characteristics of the voltage data.
又例如,当神经刺激器10停止输出电刺激脉冲的瞬间,负载突然减少,供电模块110输出的直流电流突然减少,第二电流采样模块710采样供电模块110输出的直流电流,并将直流电流信号转换为易于处理的电压信号,电压采样子模块将采集到的直流电压信号转换为数字信号,检测子模块通过分析电压数据的变化特征,来确定当前时刻的供电状态发生的变化是否表明神经刺激器10停止输出电刺激脉冲。For another example, at the moment when the neurostimulator 10 stops outputting electrical stimulation pulses, the load suddenly decreases, and the DC current output by the power supply module 110 suddenly decreases. The second current sampling module 710 samples the DC current output by the power supply module 110 and converts the DC current signal into an easy-to-process voltage signal. The voltage sampling submodule converts the collected DC voltage signal into a digital signal. The detection submodule determines whether the change in the power supply status at the current moment indicates that the neurostimulator 10 has stopped outputting electrical stimulation pulses by analyzing the changing characteristics of the voltage data.
在上述实施例中,可以根据检测出的程控器11的供电状态发生第一变化的时刻,确定其为神经刺激器10停止输出电刺激脉冲的结束时刻;根据检测出的程控器11的供电状态发生第二变化的时刻,确定其为神经刺激器10开始输出电刺激脉冲的开始时刻。可见,本方案不需要神经刺激器10通过发送提示信号以告知程控器11其电刺激脉冲的输出状态,而是根据检测出的程控器11侧的供电状态的特定变化的时刻来确定神经刺激器10的电刺激脉冲输出状态的切换时刻,从而简化了确定神经刺激器10侧的电刺激脉冲的输出状态的切换时刻的方式。In the above embodiment, the moment when the power supply state of the programmer 11 undergoes a first change can be determined as the end moment when the neurostimulator 10 stops outputting electrical stimulation pulses; the moment when the power supply state of the programmer 11 undergoes a second change can be determined as the start moment when the neurostimulator 10 starts outputting electrical stimulation pulses. It can be seen that this solution does not require the neurostimulator 10 to send a prompt signal to inform the programmer 11 of the output state of its electrical stimulation pulses, but determines the switching moment of the output state of the electrical stimulation pulses of the neurostimulator 10 based on the moment of the specific change of the power supply state on the programmer 11 side, thereby simplifying the method of determining the switching moment of the output state of the electrical stimulation pulses on the neurostimulator 10 side.
关于确定开始时刻和结束时刻的时机,在一示出的实施例中,在程控器11需要与神经刺激器10进行通讯的情况下,在通讯前的连续时间段内确定供电状态发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻。Regarding the timing of determining the start time and the end time, in an illustrated embodiment, when the programmer 11 needs to communicate with the neurostimulator 10, all end times of the first change in the power supply state and all start times of the second change in the power supply state are determined within a continuous time period before the communication.
在另一示出的实施例中,可以在程控器11开始向神经刺激器10供电时,在供电开始后的连续时间段内确定供电状态发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻。在本实施例中,可以在程控器11开始供电时就准备好所有结束时刻和所有开始时刻的数据,以基于至少一个结束时刻和至少一个开始时刻确定未来的所有可用通讯时间段,从而避免每次通讯前都需要重复确定一次可用通讯时间段,以降低确定可用通讯时间段的工作量。In another illustrated embodiment, when the programmer 11 starts to supply power to the neurostimulator 10, all the end times of the first change in the power supply state and all the start times of the second change in the power supply state can be determined within a continuous time period after the start of power supply. In this embodiment, data of all the end times and all the start times can be prepared when the programmer 11 starts to supply power, so as to determine all the future available communication time periods based on at least one end time and at least one start time, thereby avoiding the need to repeatedly determine the available communication time period before each communication, so as to reduce the workload of determining the available communication time period.
步骤202:基于至少一个结束时刻和至少一个开始时刻确定可用通讯时间段。Step 202: Determine an available communication time period based on at least one end time and at least one start time.
在步骤201完成后,可以基于步骤201确定出的至少一个结束时刻和至少一个开始时刻确定可用通讯时间段,其中,神经刺激器10在可用通讯时间段内不产生电刺激脉冲。After step 201 is completed, an available communication time period may be determined based on at least one end time and at least one start time determined in step 201 , wherein the neurostimulator 10 does not generate an electrical stimulation pulse within the available communication time period.
在一示出的实施例中,如图8所示,假设基于在第一结束时刻至第二结束时刻之间的连续时间段(实线部分)内确定出的供电状态发生的第一变化和第二变化的时刻,预测第二结束时刻之后(虚线部分)的至少一个可用通讯时间段。在连续时间段内程控器11在第一结束时刻确定供电状态发生第一变化,在第一开始时刻确定供电状态发生第二变化,以及在第二结束时刻确定供电状态发生第一变化。第一结束时刻至第二结束时刻之间的时长为神经刺激器10的一个完整的脉冲周期的时长,第一结束时刻至第一开始时刻之间的时间段表明神经刺激器10在此时间段内中止输出电刺激脉冲,第一开始时刻至第二结束时刻表明神经刺激器10在此时间段内持续输出电刺激脉冲。基于依次相邻的第一结束时刻、第一开始时刻和第二结束时刻可以确定出神经刺激器10在当前电刺激模式下的实测脉冲周期和实测脉宽,其中,脉宽为神经刺激器在一个脉冲周期内持续输出电刺激脉冲的持续时长。由于同一电刺激模式下,神经刺激器10是按照固定的脉冲周期和脉冲宽度参数进行输出电刺激脉冲,因此,可以根据确定出的第二结束时刻、实测脉冲周期和实测脉宽,预测在第二结束时刻之后的所有可用通讯时间段。例如,实测脉冲周期减去实测脉宽后为实测间隔时长,基于第二结束时刻、实测脉冲周期和实测脉宽,可以预测出第一个可用通讯时间段为第二结束时刻至距离实测间隔时长之后的第二开始时刻之间的时间段。同样的,第二个可用通讯时间段的开始时刻为第二结束时刻加上一个实测脉冲周期后的第三结束时刻,第二个可用通讯时间段的结束时刻为第二结束时刻加上一个实测脉冲周期以及一个实测间隔时长后的第三开始时刻。同理,可以基于第二结束时刻、实测脉冲周期和实测脉宽,预测出第三个可用通讯时间段、第四个可用通讯时间段等。In an illustrated embodiment, as shown in FIG8 , it is assumed that based on the first change and the second change of the power supply state determined in the continuous time period (solid line portion) between the first end time and the second end time, at least one available communication time period after the second end time (dashed line portion) is predicted. In the continuous time period, the programmer 11 determines that the power supply state has a first change at the first end time, determines that the power supply state has a second change at the first start time, and determines that the power supply state has a first change at the second end time. The duration between the first end time and the second end time is the duration of a complete pulse cycle of the neurostimulator 10, the time period between the first end time and the first start time indicates that the neurostimulator 10 stops outputting electrical stimulation pulses in this time period, and the first start time to the second end time indicates that the neurostimulator 10 continues to output electrical stimulation pulses in this time period. Based on the first end time, the first start time, and the second end time that are adjacent in sequence, the measured pulse cycle and the measured pulse width of the neurostimulator 10 in the current electrical stimulation mode can be determined, wherein the pulse width is the duration of the neurostimulator continuously outputting electrical stimulation pulses in one pulse cycle. Since the neurostimulator 10 outputs electrical stimulation pulses according to fixed pulse period and pulse width parameters in the same electrical stimulation mode, all available communication time periods after the second end time can be predicted based on the determined second end time, the measured pulse period and the measured pulse width. For example, the measured pulse period minus the measured pulse width is the measured interval duration. Based on the second end time, the measured pulse period and the measured pulse width, it can be predicted that the first available communication time period is the time period between the second end time and the second start time after the measured interval duration. Similarly, the start time of the second available communication time period is the third end time after the second end time plus a measured pulse period, and the end time of the second available communication time period is the third start time after the second end time plus a measured pulse period and a measured interval duration. Similarly, the third available communication time period, the fourth available communication time period, etc. can be predicted based on the second end time, the measured pulse period and the measured pulse width.
在另一示出的实施例中,假设在连续时间段内程控器11在第二开始时刻确定供电状态发生第二变化,在第三结束时刻确定供电状态发生第一变化,以及在第三开始时刻确定供电状态发生第二变化。基于依次相邻的第二开始时刻、第三结束时刻和第三开始时刻可以确定神经刺激器在当前电刺激模式下的实测脉冲周期和实测脉宽,并根据第三开始时刻、实测脉冲周期和实测脉宽,确定位于第三开始时刻之后的结束时刻及其相邻的开始时刻,对于确定出的结束时刻及其相邻的开始时刻,将其中每一结束时刻与其之后的首个开始时刻之间的时间段确定为该结束时刻对应的可用通讯时间段。由于本实施例确定可用通讯时间段的方式与图8类似,具体可参见前一实施例,本说明书在此不再赘述。In another illustrated embodiment, it is assumed that within a continuous time period, the programmer 11 determines that a second change in the power supply state occurs at a second start time, determines that a first change in the power supply state occurs at a third end time, and determines that a second change in the power supply state occurs at a third start time. Based on the sequentially adjacent second start time, third end time, and third start time, the measured pulse period and measured pulse width of the neurostimulator in the current electrical stimulation mode can be determined, and based on the third start time, the measured pulse period, and the measured pulse width, the end time after the third start time and its adjacent start time are determined, and for the determined end time and its adjacent start time, the time period between each end time and the first start time thereafter is determined as the available communication time period corresponding to the end time. Since the method of determining the available communication time period in this embodiment is similar to that in FIG. 8 , please refer to the previous embodiment for details, and this specification will not be repeated here.
在前述两个实施例中,可以根据在连续时间段内检测到的供电状态发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻,一次性预测出未来所有的可用通讯时间段(第一个可用通讯时间段、第二个可用通讯时间段等),使得程控器11可以基于预测出的所有可用通讯时间段合理安排需要在任一可用通讯时间段内发送的目标数据,并控制程控器11在可用通讯时间段内将目标数据发送至神经刺激器10。In the aforementioned two embodiments, all available communication time periods in the future (the first available communication time period, the second available communication time period, etc.) can be predicted at one time based on all end moments of the first change in the power supply status and all start moments of the second change in the power supply status detected in a continuous time period, so that the programmer 11 can reasonably arrange the target data that needs to be sent in any available communication time period based on all predicted available communication time periods, and control the programmer 11 to send the target data to the neurostimulator 10 within the available communication time period.
若程控器11和神经刺激器10使用了不同类型的时钟振荡器,其频率和稳定性可能有所不同,这会导致两者在运行一段时间后出现时钟漂移,随着时间的推移,程控器11的第一时钟和神经刺激器10的第二时钟之间的累计误差越来越大,会导致第一时钟确定的越靠后的可用通讯时间段的实际开始时刻与神经刺激器10停止输出电刺激脉冲的实际结束时刻的误差越大(理想状态下实际开始时刻和实际结束时刻应该相同)。例如,如图8所示,第一时钟确定出的第一个可用通讯时间段的实际开始时刻(即第二结束时刻)与神经刺激器10停止输出电刺激脉冲的实际结束时刻的误差可能为0.01us,而第一时钟确定出的第二个可用通讯时间段的实际开始时刻(即第三结束时刻)与神经刺激器10停止输出电刺激脉冲的实际结束时刻的误差可能增加为0.02us。因此,在累计误差超出误差阈值时,可能会导致预测出的可用通讯时间段与神经刺激器停止输出电刺激脉冲的实际时间段不一致,换言之,有部分数据可能会在神经刺激器10输出电刺激脉冲的时间段内进行通讯。If the programmer 11 and the neurostimulator 10 use different types of clock oscillators, their frequencies and stabilities may be different, which will cause clock drift after the two have been running for a period of time. As time goes by, the cumulative error between the first clock of the programmer 11 and the second clock of the neurostimulator 10 becomes larger and larger, which will cause the error between the actual start time of the later available communication time period determined by the first clock and the actual end time when the neurostimulator 10 stops outputting electrical stimulation pulses to be larger (ideally, the actual start time and the actual end time should be the same). For example, as shown in FIG8, the error between the actual start time (i.e., the second end time) of the first available communication time period determined by the first clock and the actual end time when the neurostimulator 10 stops outputting electrical stimulation pulses may be 0.01us, while the error between the actual start time (i.e., the third end time) of the second available communication time period determined by the first clock and the actual end time when the neurostimulator 10 stops outputting electrical stimulation pulses may increase to 0.02us. Therefore, when the cumulative error exceeds the error threshold, the predicted available communication time period may be inconsistent with the actual time period when the neurostimulator stops outputting electrical stimulation pulses. In other words, some data may be communicated during the time period when the neurostimulator 10 outputs electrical stimulation pulses.
因此,在一示出的实施例中,在利用前述两个实施例的方式确定可用通讯时间段之后,可以计算程控器的第一时钟和神经刺激器的第二时钟之间的累计误差,若累计误差超出误差阈值,则校正第一时钟以使得第一时钟和第二时钟保持同步,并重新确定可用通讯时间段。示例性的,在神经刺激器10和程控器11出厂前,可以从一批样本设备中确定神经刺激器10和程控器11在单位时长内的最大时钟漂移,然后以该最大时钟偏移作为误差标准计算程控器11的第一时钟与神经刺激器10的第二时钟之间随着时间推移后的累计误差,并在累计误差超出误差阈值时,校正第一时钟以使第一时钟和第二时钟保持同步,并重新确定可用通讯时间段。例如,在确定累计误差超出误差阈值的当前时刻,可以基于距离当前时刻最近的发生第一变化的结束时刻或者发生第二变化的开始时刻,以及之前确定出的实测脉冲周期和实测脉宽,重新确定可用通讯时间段。Therefore, in an illustrated embodiment, after determining the available communication time period using the methods of the above two embodiments, the cumulative error between the first clock of the programmer and the second clock of the neurostimulator can be calculated. If the cumulative error exceeds the error threshold, the first clock is corrected so that the first clock and the second clock are synchronized, and the available communication time period is re-determined. Exemplarily, before the neurostimulator 10 and the programmer 11 are shipped out of the factory, the maximum clock drift of the neurostimulator 10 and the programmer 11 within a unit time length can be determined from a batch of sample devices, and then the cumulative error between the first clock of the programmer 11 and the second clock of the neurostimulator 10 over time is calculated using the maximum clock offset as an error standard, and when the cumulative error exceeds the error threshold, the first clock is corrected so that the first clock and the second clock are synchronized, and the available communication time period is re-determined. For example, at the current moment when it is determined that the cumulative error exceeds the error threshold, the available communication time period can be re-determined based on the end moment of the first change or the start moment of the second change that is closest to the current moment, as well as the previously determined measured pulse period and measured pulse width.
在本实施例中,在程控器11的第一时钟与神经刺激器10的第二时钟之间的累计误差超出误差阈值的情况下,通过重新预测可用通讯时间段,可以使得每次预测出的可用通讯时间段与神经刺激器10停止输出电刺激脉冲的时间段的时钟误差始终保持在误差阈值的范围内,从而尽最大可能避免通讯引起的神经刺激器10的供电电压波动对电刺激脉冲的稳定性可能造成的负面影响。In this embodiment, when the cumulative error between the first clock of the programmer 11 and the second clock of the neurostimulator 10 exceeds the error threshold, the available communication time period can be re-predicted so that the clock error between each predicted available communication time period and the time period when the neurostimulator 10 stops outputting electrical stimulation pulses can always be kept within the error threshold, thereby avoiding as much as possible the negative impact that the power supply voltage fluctuation of the neurostimulator 10 caused by communication may have on the stability of the electrical stimulation pulses.
除了上述确定可用通讯时间段的方式,本说明书还提供另一种确定可用通讯时间段的方式,具体参见下述实施例:In addition to the above method for determining the available communication time period, this specification also provides another method for determining the available communication time period, see the following embodiment for details:
确定在连续时间段内供电状态发生第一变化的结束时刻及其之后供电状态首次发生第二变化的开始时刻;确定供电状态发生第一变化的通讯时刻以及结束时刻和开始时刻之间的实测间隔时长,并将通讯时刻和与通讯时刻相距实测间隔时长的时刻之间的时间段作为可用通讯时间段。Determine the end time of the first change in the power supply status within the continuous time period and the start time of the first second change in the power supply status thereafter; determine the communication time when the first change in the power supply status occurs and the measured interval length between the end time and the start time, and use the time period between the communication time and the time with the measured interval length from the communication time as the available communication time period.
例如,如图9所示,假设在连续时间段内程控器11在第一结束时刻确定供电状态发生第一变化,在第一开始时刻确定供电状态发生第二变化。第一开始时刻和第一结束时刻之间的时间段为神经刺激器停止输出电刺激脉冲的时间段,基于第一开始时刻和第一结束时刻可以计算出实测间隔时长,该实测间隔时长为神经刺激器10在脉冲周期内停止输出电刺激脉冲的时间间隔。然后,未来在第一通讯时刻检测出程控器11的供电状态发生第一变化时,可以将第一通讯时刻与第一通讯时刻相距实测间隔时长的第二开始时刻之间的时间段作为第一个可用通讯时间段;类似的,未来在第二通讯时刻检测出程控器11的供电状态发生第一变化时,可以将第二通讯时刻与第二通讯时刻相距实测间隔时长的第三开始时刻之间的时间段作为第二个可用通讯时间段。同理,可以在每次检测出程控器11的供电状态发生第一变化的其他通讯时刻,基于之前计算出的实测间隔时长,确定该通讯时刻对应的其他可用通讯时间段。For example, as shown in FIG9 , it is assumed that the programmer 11 determines that the power supply state has undergone a first change at the first end time and that the power supply state has undergone a second change at the first start time in a continuous time period. The time period between the first start time and the first end time is the time period in which the neurostimulator stops outputting electrical stimulation pulses. Based on the first start time and the first end time, the measured interval duration can be calculated, and the measured interval duration is the time interval in which the neurostimulator 10 stops outputting electrical stimulation pulses within the pulse cycle. Then, in the future, when the power supply state of the programmer 11 is detected to have undergone a first change at the first communication time, the time period between the first communication time and the second start time of the measured interval duration from the first communication time can be used as the first available communication time period; similarly, in the future, when the power supply state of the programmer 11 is detected to have undergone a first change at the second communication time, the time period between the second communication time and the third start time of the measured interval duration from the second communication time can be used as the second available communication time period. Similarly, at each other communication time at which the power supply state of the programmer 11 undergoes a first change, other available communication time periods corresponding to the communication time can be determined based on the previously calculated measured interval duration.
在本实施例中,与之前的两个确定可用通讯时间段的实施方式相比,由于确定出的可用通讯时间段的开始时刻(即通讯时刻)是通过实时检测程控器11的供电状态所发生的第一变化确定出的,而不是预测的结果,因此不会受到时钟误差的影响,而可用通讯时间段的结束时刻为通讯时刻相距实测间隔时长的时刻,在通讯时刻准确的情况下,同样不会受到时钟误差的影响。因此,基于本实施例确定可用通讯时间段的方式可以不受时钟误差的影响,从而也不需要在时钟累计误差大于误差阈值时重新确定可用通讯时间段。In this embodiment, compared with the previous two implementation methods for determining the available communication time period, since the start time of the available communication time period (i.e., the communication time) is determined by real-time detection of the first change in the power supply state of the program controller 11, rather than a predicted result, it will not be affected by the clock error, and the end time of the available communication time period is the time when the communication time is separated from the actual measured interval, and when the communication time is accurate, it will not be affected by the clock error. Therefore, the method for determining the available communication time period based on this embodiment can be unaffected by the clock error, and there is no need to redetermine the available communication time period when the accumulated clock error is greater than the error threshold.
在程控器11存在外部干扰的情况下,外部干扰可能会影响程控器11确定在连续时间段内供电状态发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻的准确性,继而影响基于至少一个结束时刻和至少一个开始时刻确定可用通讯时间段的准确性。例如,电磁干扰会影响程控器11内部的时钟精度,进而导致对供电状态发生第一变化的结束时刻和发生第二变化的开始时刻的计时出现偏差。或者电磁干扰也会影响程控器11的供电状态,进而导致程控器11无法准确检测出供电状态发生的特定变化。因此,在存在外部干扰的情况下,很难确定出准确的结束时刻和开始时刻,继而基于不准确的结束时刻和开始时刻也无法确定出准确的可用通讯时间段。In the case of external interference in the programmer 11, the external interference may affect the accuracy of the programmer 11 in determining all the end moments of the first change in the power supply state and all the start moments of the second change in the power supply state within a continuous time period, and then affect the accuracy of determining the available communication time period based on at least one end moment and at least one start moment. For example, electromagnetic interference may affect the clock accuracy inside the programmer 11, resulting in a deviation in the timing of the end moment of the first change in the power supply state and the start moment of the second change. Or electromagnetic interference may also affect the power supply state of the programmer 11, resulting in the programmer 11 being unable to accurately detect specific changes in the power supply state. Therefore, in the presence of external interference, it is difficult to determine the exact end moment and start moment, and then the accurate available communication time period cannot be determined based on the inaccurate end moment and start moment.
因此,本说明书提出在确定在连续时间段内供电状态发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻的时候,可以增加一种验证机制,以判断当前确定的所有开始时刻和结束时刻是否准确,即程控器11是否受到外部干扰。可以在判断当前确定的所有开始时刻和结束时刻准确的情况下,再基于确定出的至少一个结束时刻和至少一个开始时刻确定可用通讯时间段。具体参见下述实施例:Therefore, this specification proposes that when determining all the end times of the first change in the power supply state and all the start times of the second change in the power supply state within a continuous time period, a verification mechanism can be added to determine whether all the currently determined start times and end times are accurate, that is, whether the program controller 11 is subject to external interference. If it is determined that all the currently determined start times and end times are accurate, the available communication time period can be determined based on at least one determined end time and at least one determined start time. See the following embodiments for details:
在一示出的实施例中,确定在连续时间段内任一结束时刻和其之后首个开始时刻之间的实测时间间隔;获取程控器11中的当前电刺激模式的预置脉冲周期和预置脉宽,若实测时间间隔与预置脉冲周期减去预置脉宽后的预置时间间隔之间的误差超过误差阈值,则不基于在连续时间段内确定的所有结束时刻和所有开始时刻确定可用通讯时间段。In an illustrated embodiment, the measured time interval between any end moment and the first start moment thereafter in a continuous time period is determined; the preset pulse period and preset pulse width of the current electrical stimulation mode in the programmer 11 are obtained, and if the error between the measured time interval and the preset time interval obtained by subtracting the preset pulse width from the preset pulse period exceeds an error threshold, the available communication time period is not determined based on all the end moments and all the start moments determined in the continuous time period.
例如,从确定出的在连续时间段内供电状态发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻中随机选择任一结束时刻和其之后首个开始时刻,并确定该结束时刻和开始时刻的实测时间间隔。然后,获取程控器11中存储的当前电刺激模式的预置脉冲周期和预置脉宽参数,并计算预置脉冲周期减去预置脉宽后的预置时间间隔。通过将实测时间间隔与预置时间间隔进行比较,若两者的误差超过5%,则说明此时程控器11可能受到外部干扰,会影响程控器11确定供电状态发生特定变化的时刻的准确性,因此,可以不基于在当前连续时间段内确定的所有结束时刻和所有开始时刻确定可用通讯时间段。可以在预设时长之后,基于上述方式重新确定供电状态是否受到外部干扰,若两者的误差没有超过5%,则说明此时程控器11没有受到外部干扰,可以基于在连续时间段内确定的所有结束时刻和所有开始时刻确定可用通讯时间段;若两者的误差仍超过5%,则可以在预设时长之后,基于上述方式再次确定外部干扰是否还存在,直至确定外部干扰不存在的情况下,才基于在连续时间段内确定的所有结束时刻和所有开始时刻确定可用通讯时间段。For example, any end time and the first start time after it are randomly selected from all the end times at which the power supply state undergoes a first change and all the start times at which the power supply state undergoes a second change in a continuous time period, and the measured time interval between the end time and the start time is determined. Then, the preset pulse period and preset pulse width parameters of the current electrical stimulation mode stored in the programmer 11 are obtained, and the preset time interval after the preset pulse width is subtracted from the preset pulse period is calculated. By comparing the measured time interval with the preset time interval, if the error between the two exceeds 5%, it means that the programmer 11 may be subject to external interference at this time, which will affect the accuracy of the programmer 11 in determining the moment when a specific change in the power supply state occurs. Therefore, the available communication time period may not be determined based on all the end times and all the start times determined in the current continuous time period. After a preset period of time, it is possible to re-determine whether the power supply status is subject to external interference based on the above method. If the error between the two does not exceed 5%, it means that the programmable controller 11 is not subject to external interference at this time, and the available communication time period can be determined based on all end times and all start times determined in the continuous time period; if the error between the two still exceeds 5%, it is possible to determine whether the external interference still exists again based on the above method after the preset period of time. Until it is determined that the external interference does not exist, the available communication time period is determined based on all end times and all start times determined in the continuous time period.
若产生的外部干扰是断断续续的,即仅在某些时间段内产生,且上述实施例选取的实测时间间隔所处的时间段恰恰在外部干扰暂停阶段的时间范围内,则也无法基于上述方式识别出外部干扰。因此,针对该问题,本说明书提出另一种改进的实施例:If the external interference is intermittent, that is, it is generated only in certain time periods, and the time period of the measured time interval selected in the above embodiment is exactly within the time range of the external interference suspension phase, then the external interference cannot be identified based on the above method. Therefore, in response to this problem, this specification proposes another improved embodiment:
在另一示出的实施例中,从确定出的连续时间段内的所有结束时刻和所有开始时刻中确定预设数量的结束时刻和其之后首个开始时刻之间的各个实测时间间隔;获取程控器中的当前电刺激模式的预置脉冲周期和预置脉宽,若任一实测时间间隔与预置脉冲周期减去预置脉宽后的预置时间间隔之间的误差超过误差阈值,则不基于在连续时间段内确定的结束时刻和开始时刻确定可用通讯时间段。In another illustrated embodiment, each measured time interval between a preset number of end moments and the first start moment thereafter is determined from all end moments and all start moments within the determined continuous time period; the preset pulse period and preset pulse width of the current electrical stimulation mode in the programmer are obtained, and if the error between any measured time interval and the preset time interval obtained by subtracting the preset pulse width from the preset pulse period exceeds an error threshold, the available communication time period is not determined based on the end moment and start moment determined within the continuous time period.
例如,如图10所示,确定出的连续时间段内的所有结束时刻和所有开始时刻为第一结束时刻、第一开始时刻、第二结束时刻、第二开始时刻、第三结束时刻、第三开始时刻和第四结束时刻,并确定出预设数量为3个的实测时间间隔,分别为第一结束时刻和第一开始时刻之间的第一实测时间间隔、第二结束时刻和第二开始时刻之间的第二实测时间间隔以及第三结束时刻和第三开始时刻之间的第三实测时间间隔。获取程控器11中存储的当前电刺激模式的预置脉冲周期和预置脉宽参数,并计算预置脉冲周期减去预置脉宽后的预置时间间隔。通过将各个实测时间间隔与预置时间间隔进行比较,若两者的误差超过5%,则说明此时程控器11可能在该实测时间间隔所处的时间段受到外部干扰,则不基于在所述连续时间段内确定的所有结束时刻和所有开始时刻确定可用通讯时间段。可以在预设时长之后,基于上述方式重新确定供电状态是否受到外部干扰。若任一实测时间间隔与预置时间间隔的误差均没有超过5%,则说明此时程控器11没有受到外部干扰,可以基于在连续时间段内确定的所有结束时刻和所有开始时刻确定可用通讯时间段;若两者的误差仍超过5%,则可以在预设时长之后,基于上述方式再次确定外部干扰是否还存在,直至确定外部干扰不存在的情况下,才基于在连续时间段内确定的所有结束时刻和所有开始时刻确定可用通讯时间段。For example, as shown in FIG10 , all the end moments and all the start moments in the continuous time period are determined to be the first end moment, the first start moment, the second end moment, the second start moment, the third end moment, the third start moment and the fourth end moment, and a preset number of three measured time intervals are determined, which are the first measured time interval between the first end moment and the first start moment, the second measured time interval between the second end moment and the second start moment, and the third measured time interval between the third end moment and the third start moment. The preset pulse period and preset pulse width parameters of the current electrical stimulation mode stored in the programmer 11 are obtained, and the preset time interval after the preset pulse width is subtracted from the preset pulse period is calculated. By comparing each measured time interval with the preset time interval, if the error between the two exceeds 5%, it means that the programmer 11 may be subject to external interference in the time period of the measured time interval, and the available communication time period is not determined based on all the end moments and all the start moments determined in the continuous time period. After the preset time length, it can be re-determined whether the power supply state is subject to external interference based on the above method. If the error between any measured time interval and the preset time interval does not exceed 5%, it means that the programmable controller 11 is not affected by external interference at this time, and the available communication time period can be determined based on all end times and all start times determined in the continuous time period; if the error between the two still exceeds 5%, it can be determined again after the preset time period whether the external interference still exists based on the above method. Until it is determined that the external interference does not exist, the available communication time period is determined based on all end times and all start times determined in the continuous time period.
在本实施例中,基于上述方式不仅可以有效识别出连续出现的外部干扰,也可以有效识别出断断续续产生的外部干扰,从而提高识别外部干扰的准确性。In this embodiment, based on the above method, not only the continuously occurring external interference can be effectively identified, but also the intermittently occurring external interference can be effectively identified, thereby improving the accuracy of identifying the external interference.
需要说明的是,当确定连续时间段内的多个实测时间间隔时,相邻两个实测时间间隔可以是不相邻电刺激脉冲周期的时间间隔,也可以是相邻电刺激脉冲周期的时间间隔,本说明书并不对此进行任何限制。It should be noted that when determining multiple measured time intervals within a continuous time period, two adjacent measured time intervals may be time intervals of non-adjacent electrical stimulation pulse cycles or time intervals of adjacent electrical stimulation pulse cycles, and this specification does not impose any restrictions on this.
并且,除了上述通过比较实测时间间隔与预置时间间隔之间的误差来判断程控器11是否受到外部干扰的方式外,还可以通过比较实测脉冲周期和/或实测脉宽与程控器11中的预置脉冲周期和/或预置脉宽参数之间的误差来判断程控器11是否受到外部干扰,本说明书并不对此进行任何限制。Furthermore, in addition to the above-mentioned method of determining whether the program controller 11 is subject to external interference by comparing the error between the actual measured time interval and the preset time interval, it is also possible to determine whether the program controller 11 is subject to external interference by comparing the error between the actual measured pulse period and/or the actual measured pulse width and the preset pulse period and/or preset pulse width parameters in the program controller 11. This manual does not impose any restrictions on this.
神经刺激器10的电刺激模式指神经刺激器10用来激发神经系统的各种电参数配置,不仅包括脉冲周期和脉冲宽度,还包括刺激的电压强度、电流强度和刺激频率等不同电刺激参数。神经刺激器10并不是一直以某一固定的电刺激模式进行工作,而是根据病情需求调整不同的电刺激模式。例如,一名慢性疼痛患者在白天活动时感到疼痛加剧,此时可以从低频刺激模式切换到高频刺激模式,以快速缓解疼痛。在夜间休息时,再切换回低频模式进行长效管理。在神经刺激器10的电刺激模式发生切换后,神经刺激器10工作所使用的脉冲周期和脉冲宽度等参数也发生改变,将会导致之前基于供电状态发生的特定变化推理出的切换前的神经刺激模式的实测脉冲周期和脉冲宽度不可用,从而基于切换前确定的实测脉冲周期和脉冲宽度确定出的可用通讯时间段也不可用。The electrical stimulation mode of the neurostimulator 10 refers to the various electrical parameter configurations used by the neurostimulator 10 to stimulate the nervous system, including not only the pulse period and pulse width, but also different electrical stimulation parameters such as the stimulation voltage intensity, current intensity and stimulation frequency. The neurostimulator 10 does not always work in a fixed electrical stimulation mode, but adjusts different electrical stimulation modes according to the needs of the disease. For example, a chronic pain patient feels that the pain is aggravated during daytime activities. At this time, he can switch from a low-frequency stimulation mode to a high-frequency stimulation mode to quickly relieve the pain. At night, when resting, switch back to the low-frequency mode for long-term management. After the electrical stimulation mode of the neurostimulator 10 is switched, the parameters such as the pulse period and pulse width used by the neurostimulator 10 also change, which will cause the measured pulse period and pulse width of the neurostimulation mode before the switch, which were previously inferred based on the specific changes in the power supply state, to be unavailable, and thus the available communication time period determined based on the measured pulse period and pulse width determined before the switch is also unavailable.
因此,在一示出的实施例中,在神经刺激器10的电刺激模式发生切换的情况下,重新确定在连续时间段内供电状态发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻,并基于重新确定的至少一个结束时刻和至少一个开始时刻确定可用通讯时间段。Therefore, in an illustrated embodiment, when the electrical stimulation mode of the neurostimulator 10 is switched, all end moments of a first change in the power supply state and all start moments of a second change in the power supply state within a continuous time period are redetermined, and an available communication time period is determined based on at least one redetermined end moment and at least one start moment.
在本实施例中,在神经刺激器10的电刺激模式发生改变的情况下,通过及时重新确定可用通讯时间段,可以保证重新确定的可用通讯时间段能够自适应电刺激模式的改变,使得程控器11在正确的可用通讯时间段与神经刺激器10进行通讯。In this embodiment, when the electrical stimulation mode of the neurostimulator 10 changes, by timely redetermining the available communication time period, it can be ensured that the redetermined available communication time period can adapt to the change of the electrical stimulation mode, so that the programmer 11 can communicate with the neurostimulator 10 in the correct available communication time period.
步骤203:确定需要在所述可用通讯时间段内发送的目标数据,并在所述可用通讯时间段内将所述目标数据发送至所述神经刺激器。Step 203: Determine target data that needs to be sent within the available communication time period, and send the target data to the neural stimulator within the available communication time period.
在本实施例中,本方案只在神经刺激器10不产生电刺激脉冲的可用通讯时间段进行通讯,而在神经刺激器10输出电刺激脉冲的时间段内并不进行任何通讯,从而有效避免了通讯引起的神经刺激器10的供电电压波动对电刺激脉冲的稳定性可能造成的负面影响。In this embodiment, this scheme only communicates during the available communication time period when the neurostimulator 10 does not generate electrical stimulation pulses, and does not perform any communication during the time period when the neurostimulator 10 outputs electrical stimulation pulses, thereby effectively avoiding the negative impact that the power supply voltage fluctuation of the neurostimulator 10 caused by communication may have on the stability of the electrical stimulation pulses.
关于目标数据的含义,在本方案中分为两种情况:Regarding the meaning of target data, this solution is divided into two cases:
第一种情况是目标数据是完整的待发送数据,且该待发送数据的数据量小于或等于第一可通讯时间段内与神经刺激器10完成通讯的最大数据量。则可以在可用通讯时间段内将完整的待发送数据发送至神经刺激器10。The first case is that the target data is complete data to be sent, and the amount of the data to be sent is less than or equal to the maximum amount of data that can be communicated with the neurostimulator 10 within the first communication time period. Then the complete data to be sent can be sent to the neurostimulator 10 within the available communication time period.
第二种情况是待发送数据的数据量大于可用通讯时间段内与神经刺激器10完成通讯的最大数据量,即在可用通讯时间段内无法将完整的待发送数据全部发送至神经刺激器10。此时,可以确定程控器11在可用通讯时间段内能够与神经刺激器10完成通讯的最大数据量,然后,将待发送数据中大小为最大数据量的部分数据作为目标数据发送至神经刺激器10,以保证目标数据能够在可用通讯时间段内发送至神经刺激器10。对于当前待发送数据中未发送的剩余数据,则可以在下一电刺激脉冲周期的可用通讯时间段继续发送,直至待发送数据全部发送完成。例如,不妨假设每一电刺激脉冲周期的可用通讯时间段内能够与神经刺激器10完成通讯的最大数据量为30字节,此时,若待发送数据的数据量大小为50字节,则在当前电刺激脉冲周期内,可以按照预设的发送顺序将待发送数据中30字节的部分数据先发送至神经刺激器10;待到下一电刺激脉冲周期,再将20字节的剩余数据发送至神经刺激器10。相应的,神经刺激器10在接收到(所述待发送数据的)所有报文后,可以解析报文并恢复得到完整数据,即完整的所述待发送数据(当然,此时该数据已经完成发送)。The second situation is that the amount of data to be sent is greater than the maximum amount of data that can be used to complete communication with the neurostimulator 10 within the available communication time period, that is, the complete data to be sent cannot be sent to the neurostimulator 10 within the available communication time period. At this time, the maximum amount of data that the programmer 11 can use to complete communication with the neurostimulator 10 within the available communication time period can be determined, and then the portion of the data to be sent that is the maximum amount of data is sent to the neurostimulator 10 as the target data to ensure that the target data can be sent to the neurostimulator 10 within the available communication time period. For the remaining data that has not been sent in the current data to be sent, it can continue to be sent in the available communication time period of the next electrical stimulation pulse cycle until all the data to be sent are sent. For example, let's assume that the maximum amount of data that can be communicated with the neurostimulator 10 within the available communication time period of each electrical stimulation pulse cycle is 30 bytes. At this time, if the amount of data to be sent is 50 bytes, then within the current electrical stimulation pulse cycle, 30 bytes of the data to be sent can be sent to the neurostimulator 10 in accordance with the preset sending order; and the remaining 20 bytes of data can be sent to the neurostimulator 10 in the next electrical stimulation pulse cycle. Accordingly, after receiving all the messages (of the data to be sent), the neurostimulator 10 can parse the messages and recover the complete data, that is, the complete data to be sent (of course, the data has been sent at this time).
需要说明的是,目标数据是指可用通讯时间段内程控器11决定发送的数据。当待发送数据量小于或等于最大通讯数据量时,目标数据是待发送的完整数据。当待发送数据量大于最大通讯数据量时,目标数据是待发送数据中符合最大通讯数据量的部分数据。It should be noted that the target data refers to the data that the program controller 11 decides to send within the available communication time period. When the amount of data to be sent is less than or equal to the maximum communication data amount, the target data is the complete data to be sent. When the amount of data to be sent is greater than the maximum communication data amount, the target data is the partial data of the data to be sent that meets the maximum communication data amount.
在一实施例中,在确定可用通讯时间段内与神经刺激器10完成通讯的最大数据量的方式上,可以确定程控器11向神经刺激器10传输单个码元的传输时长,例如,可以根据程控器11和神经刺激器10之间的理论传输速率(如波特率),则单个码元的传输时长为1秒除于理论传输速率。在不考虑环境干扰(如电磁干扰)和其他因素(重传机制、协议开销等)的情况下,可以粗略计算出单个码元的传输时长,从而将可用通讯时间段的时长与传输时长之比进行取整后确定为最大数据量。传输单个码元的传输时长只需要计算一次。In one embodiment, in determining the maximum amount of data that can be communicated with the neurostimulator 10 within the available communication time period, the transmission time length of a single code element transmitted by the programmer 11 to the neurostimulator 10 can be determined. For example, based on the theoretical transmission rate (such as baud rate) between the programmer 11 and the neurostimulator 10, the transmission time length of a single code element can be 1 second divided by the theoretical transmission rate. Without considering environmental interference (such as electromagnetic interference) and other factors (retransmission mechanism, protocol overhead, etc.), the transmission time length of a single code element can be roughly calculated, so that the ratio of the duration of the available communication time period to the transmission time length is rounded off and determined as the maximum amount of data. The transmission time length of transmitting a single code element only needs to be calculated once.
与前述方法的实施例相对应,本说明书还提供了装置及其所应用的终端的实施例。Corresponding to the embodiments of the aforementioned method, this specification also provides embodiments of a device and a terminal to which it is applied.
如图11所示,图11是本说明书根据一示例性实施例示出的一种电子设备1100的结构示意图。在硬件层面,该设备包括处理器1102、内部总线1104、网络接口1106、内存1108以及非易失性存储器1110,当然还可能包括其他业务所需要的硬件。本说明书一个或多个实施例可以基于软件方式来实现,比如由处理器1102从非易失性存储器1110中读取对应的计算机程序到内存1108中然后运行。当然,除了软件实现方式之外,本说明书一个或多个实施例并不排除其他实现方式,比如逻辑器件抑或软硬件结合的方式等等,也就是说以下处理流程的执行主体并不限定于各个逻辑模块,也可以是硬件或逻辑器件。As shown in Figure 11, Figure 11 is a schematic diagram of the structure of an electronic device 1100 shown in this specification according to an exemplary embodiment. At the hardware level, the device includes a processor 1102, an internal bus 1104, a network interface 1106, a memory 1108 and a non-volatile memory 1110, and of course may also include hardware required for other services. One or more embodiments of this specification can be implemented based on software, such as the processor 1102 reading the corresponding computer program from the non-volatile memory 1110 into the memory 1108 and then running it. Of course, in addition to the software implementation, one or more embodiments of this specification do not exclude other implementations, such as logic devices or a combination of software and hardware, etc., that is, the execution subject of the following processing flow is not limited to each logic module, but can also be hardware or logic devices.
如图12所示,图12是本说明书根据一示例性实施例示出的一种无线通讯装置。该装置可以应用于如图11所示的电子设备1100中,以实现本说明书的技术方案。所述电子设备1100可以是控制神经刺激器的程控器,所述神经刺激器配置有一个接收线圈,所述接收线圈同时用于所述神经刺激器与所述程控器之间的无线通讯和无线供电。所述装置包括:As shown in FIG. 12 , FIG. 12 is a wireless communication device shown in this specification according to an exemplary embodiment. The device can be applied to an electronic device 1100 as shown in FIG. 11 to implement the technical solution of this specification. The electronic device 1100 can be a programmer for controlling a neurostimulator, and the neurostimulator is equipped with a receiving coil, and the receiving coil is used for wireless communication and wireless power supply between the neurostimulator and the programmer. The device includes:
时刻确定模块1202,用于在所述程控器向所述神经刺激器供电过程中,确定在连续时间段内供电状态 发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻;其中,所述第一变化表明所述神经刺激器在所述结束时刻停止输出电刺激脉冲,所述第二变化表明所述神经刺激器在所述开始时刻开始输出电刺激脉冲。The time determination module 1202 is used to determine all end times of a first change in the power supply state and all start times of a second change in the power supply state within a continuous time period during the process of the programmer supplying power to the neurostimulator; wherein the first change indicates that the neurostimulator stops outputting electrical stimulation pulses at the end time, and the second change indicates that the neurostimulator starts outputting electrical stimulation pulses at the start time.
可用通讯时间段确定模块1204,用于基于至少一个结束时刻和至少一个开始时刻确定可用通讯时间段,其中,所述神经刺激器在所述可用通讯时间段内不产生电刺激脉冲。The available communication time period determination module 1204 is used to determine an available communication time period based on at least one end time and at least one start time, wherein the neurostimulator does not generate an electrical stimulation pulse during the available communication time period.
目标数据发送模块1206,用于确定需要在所述可用通讯时间段内发送的目标数据,并在所述可用通讯时间段内将所述目标数据发送至所述神经刺激器。The target data sending module 1206 is used to determine the target data that needs to be sent within the available communication time period, and send the target data to the neural stimulator within the available communication time period.
可选的,所述时刻确定模块1202,具体用于在所述程控器开始向所述神经刺激器供电时,在供电开始后的连续时间段内确定供电状态发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻;或者,在所述程控器需要与所述神经刺激器进行通讯的情况下,在通讯前的连续时间段内确定供电状态发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻。Optionally, the moment determination module 1202 is specifically used to determine all end moments of a first change in the power supply state and all start moments of a second change in the power supply state within a continuous time period after the start of power supply when the programmer starts to supply power to the neurostimulator; or, when the programmer needs to communicate with the neurostimulator, determine all end moments of the first change in the power supply state and all start moments of the second change in the power supply state within a continuous time period before communication.
可选的,所述装置还包括第一可用通讯时间段重新确定模块1208,用于在所述神经刺激器的电刺激模式发生切换的情况下,重新确定在连续时间段内供电状态发生第一变化的所有结束时刻以及供电状态发生第二变化的所有开始时刻,并基于重新确定的至少一个结束时刻和至少一个开始时刻确定可用通讯时间段。Optionally, the device also includes a first available communication time period redetermining module 1208, which is used to redetermine all end moments of a first change in the power supply state and all start moments of a second change in the power supply state within a continuous time period when the electrical stimulation mode of the neurostimulator is switched, and determine the available communication time period based on at least one redetermined end moment and at least one start moment.
可选的,所述可用通讯时间段确定模块1204,具体用于基于依次相邻的第一结束时刻、第一开始时刻和第二结束时刻确定所述神经刺激器在当前电刺激模式下的实测脉冲周期和实测脉宽,并根据所述第二结束时刻、所述实测脉冲周期和所述实测脉宽,确定位于所述第二结束时刻之后的结束时刻及其相邻的开始时刻;或者,基于依次相邻的第二开始时刻、第三结束时刻和第三开始时刻确定所述神经刺激器在当前电刺激模式下的实测脉冲周期和实测脉宽,并根据所述第三开始时刻、所述实测脉冲周期和所述实测脉宽,确定位于所述第三开始时刻之后的结束时刻及其相邻的开始时刻;对于确定出的结束时刻及其相邻的开始时刻,将其中每一结束时刻与其之后的首个开始时刻之间的时间段确定为该结束时刻对应的可用通讯时间段。Optionally, the available communication time period determination module 1204 is specifically used to determine the measured pulse period and measured pulse width of the neurostimulator in the current electrical stimulation mode based on the first end time, the first start time and the second end time that are adjacent in sequence, and determine the end time and its adjacent start time after the second end time based on the second end time, the measured pulse period and the measured pulse width; or, determine the measured pulse period and measured pulse width of the neurostimulator in the current electrical stimulation mode based on the second start time, the third end time and the third start time that are adjacent in sequence, and determine the end time and its adjacent start time after the third start time based on the third start time, the measured pulse period and the measured pulse width; for the determined end time and its adjacent start time, determine the time period between each end time and the first start time thereafter as the available communication time period corresponding to the end time.
可选的,所述第二可用通讯时间段重新确定模块1210,具体用于在确定所述可用通讯时间段之后,计算所述程控器的第一时钟与所述神经刺激器的第二时钟之间的累计误差;若所述累计误差超出误差阈值,则校正所述第一时钟以使所述第一时钟和所述第二时钟保持同步,并重新确定可用通讯时间段。Optionally, the second available communication time period redetermining module 1210 is specifically used to calculate the cumulative error between the first clock of the programmer and the second clock of the neurostimulator after determining the available communication time period; if the cumulative error exceeds an error threshold, correct the first clock so that the first clock and the second clock are synchronized, and redetermine the available communication time period.
可选的,所述时刻确定模块1202,具体用于确定在连续时间段内供电状态发生第一变化的结束时刻及其之后供电状态首次发生第二变化的开始时刻。所述可用通讯时间段确定模块1204,具体用于确定所述供电状态发生第一变化的通讯时刻以及所述结束时刻和所述开始时刻之间的实测间隔时长,并将所述通讯时刻和与所述通讯时刻相距所述实测间隔时长的时刻之间的时间段作为可用通讯时间段。Optionally, the time determination module 1202 is specifically used to determine the end time of the first change in the power supply state within a continuous time period and the start time of the first second change in the power supply state thereafter. The available communication time period determination module 1204 is specifically used to determine the communication time of the first change in the power supply state and the measured interval length between the end time and the start time, and use the time period between the communication time and the time separated from the communication time by the measured interval length as the available communication time period.
可选的,所述装置还包括外部干扰确定模块1212,用于确定在所述连续时间段内任一结束时刻和其之后首个开始时刻之间的实测时间间隔;获取程控器中的当前电刺激模式的预置脉冲周期和预置脉宽,若所述实测时间间隔与所述预置脉冲周期减去所述预置脉宽后的预置时间间隔之间的误差超过误差阈值,则不基于在所述连续时间段内确定的所有结束时刻和所有开始时刻确定可用通讯时间段;或者,从确定出的所述连续时间段内的所有结束时刻和所有开始时刻中确定预设数量的结束时刻和其之后首个开始时刻之间的各个实测时间间隔;获取程控器中的当前电刺激模式的预置脉冲周期和预置脉宽,若任一实测时间间隔与所述预置脉冲周期减去所述预置脉宽后的预置时间间隔之间的误差超过误差阈值,则不基于在所述连续时间段内确定的所有结束时刻和所有开始时刻确定可用通讯时间段。Optionally, the device also includes an external interference determination module 1212, which is used to determine the measured time interval between any end moment and the first start moment thereafter within the continuous time period; obtain the preset pulse period and preset pulse width of the current electrical stimulation mode in the programmer, and if the error between the measured time interval and the preset time interval obtained by subtracting the preset pulse width from the preset pulse period exceeds the error threshold, then the available communication time period is not determined based on all the end moments and all the start moments determined within the continuous time period; or, determine each measured time interval between a preset number of end moments and the first start moment thereafter from all the end moments and all the start moments determined within the continuous time period; obtain the preset pulse period and preset pulse width of the current electrical stimulation mode in the programmer, and if the error between any measured time interval and the preset time interval obtained by subtracting the preset pulse width from the preset pulse period exceeds the error threshold, then the available communication time period is not determined based on all the end moments and all the start moments determined within the continuous time period.
上述装置中各个模块的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。The implementation process of the functions and effects of each module in the above-mentioned device is specifically described in the implementation process of the corresponding steps in the above-mentioned method, which will not be repeated here.
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本说明书方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。For the device embodiment, since it basically corresponds to the method embodiment, the relevant parts can refer to the partial description of the method embodiment. The device embodiment described above is only schematic, wherein the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed on multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this specification. A person of ordinary skill in the art can understand and implement it without paying creative labor.
本说明书还提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现本申请提供的前述任一种无线通讯方法的步骤。The present specification also provides a computer-readable storage medium having a computer program stored thereon, and when the program is executed by a processor, the steps of any of the aforementioned wireless communication methods provided in the present application are implemented.
具体的,适合于存储计算机程序指令和数据的计算机可读介质包括所有形式的非易失性存储器、媒介和存储器设备,例如包括半导体存储器设备(例如EPROM、EEPROM和闪存设备)、磁盘(例如内部硬盘或可移动盘)、磁光盘以及CD ROM和DVD-ROM盘。Specifically, computer-readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including, for example, semiconductor memory devices (such as EPROM, EEPROM and flash memory devices), magnetic disks (such as internal hard disks or removable disks), magneto-optical disks, and CD ROM and DVD-ROM disks.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410954683.8A CN118490986B (en) | 2024-07-16 | 2024-07-16 | Wireless communication method, electronic device and storage medium for neurostimulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410954683.8A CN118490986B (en) | 2024-07-16 | 2024-07-16 | Wireless communication method, electronic device and storage medium for neurostimulator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118490986A true CN118490986A (en) | 2024-08-16 |
CN118490986B CN118490986B (en) | 2024-11-12 |
Family
ID=92229836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410954683.8A Active CN118490986B (en) | 2024-07-16 | 2024-07-16 | Wireless communication method, electronic device and storage medium for neurostimulator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118490986B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118750763A (en) * | 2024-09-05 | 2024-10-11 | 杭州神络医疗科技有限公司 | Implantable electric pulse stimulator and voltage control method for electric pulse stimulation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120330384A1 (en) * | 2011-01-28 | 2012-12-27 | Stimwave Technologies Incorporated | Remote control of power or polarity selection for a neural stimulator |
CN107875516A (en) * | 2017-10-31 | 2018-04-06 | 乐普医学电子仪器股份有限公司 | A kind of wireless communications method between implantable medical devices and vitro program controlled device |
CN108463163A (en) * | 2015-10-21 | 2018-08-28 | 诺伊斯佩拉医疗有限公司 | Devices, systems, and methods for stimulation therapy |
CN110548233A (en) * | 2019-09-30 | 2019-12-10 | 上海交通大学 | Portable double-channel transcranial ultrasonic stimulation device for nerve regulation |
CN116210135A (en) * | 2020-11-04 | 2023-06-02 | 三星电子株式会社 | Radio power station and control method thereof |
CN116470660A (en) * | 2022-01-12 | 2023-07-21 | 三星电子株式会社 | Electronic device and method of operation thereof |
-
2024
- 2024-07-16 CN CN202410954683.8A patent/CN118490986B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120330384A1 (en) * | 2011-01-28 | 2012-12-27 | Stimwave Technologies Incorporated | Remote control of power or polarity selection for a neural stimulator |
CN108463163A (en) * | 2015-10-21 | 2018-08-28 | 诺伊斯佩拉医疗有限公司 | Devices, systems, and methods for stimulation therapy |
CN107875516A (en) * | 2017-10-31 | 2018-04-06 | 乐普医学电子仪器股份有限公司 | A kind of wireless communications method between implantable medical devices and vitro program controlled device |
CN110548233A (en) * | 2019-09-30 | 2019-12-10 | 上海交通大学 | Portable double-channel transcranial ultrasonic stimulation device for nerve regulation |
CN116210135A (en) * | 2020-11-04 | 2023-06-02 | 三星电子株式会社 | Radio power station and control method thereof |
CN116470660A (en) * | 2022-01-12 | 2023-07-21 | 三星电子株式会社 | Electronic device and method of operation thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118750763A (en) * | 2024-09-05 | 2024-10-11 | 杭州神络医疗科技有限公司 | Implantable electric pulse stimulator and voltage control method for electric pulse stimulation |
Also Published As
Publication number | Publication date |
---|---|
CN118490986B (en) | 2024-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8594785B2 (en) | Neurostimulation system and method for measuring patient activity | |
JP6190828B2 (en) | Safety features for use in medical devices | |
US5405365A (en) | Implantable medical device having means for stimulating tissue contractions with adjustable stimulation intensity and a method for the operation of such a device | |
US7024246B2 (en) | Automatic waveform output adjustment for an implantable medical device | |
JP5065042B2 (en) | System and method for coordinating wireless communication between implantable medical devices | |
US4979507A (en) | Energy saving cardiac pacemaker | |
US7483748B2 (en) | Programmable waveform pulses for an implantable medical device | |
US9014813B2 (en) | Apparatus for energy efficient stimulation | |
JP6781865B2 (en) | Microprocessor controlled E-class driver | |
US8428745B2 (en) | Telemetry protocol for ultra low error rates useable in implantable medical devices | |
US20030208244A1 (en) | Voltage/current regulator improvements for an implantable medical device | |
US20030204221A1 (en) | Wave shaping for an implantable medical device | |
US20100179618A1 (en) | Signaling Error Conditions in an Implantable Medical Device System Using Simple Charging Coil Telemetry | |
WO2017136552A1 (en) | High-frequency low duty cycle patterns for neural regulation | |
JP2009519771A (en) | Techniques for sensing and adjusting the compliance voltage of implantable stimulators | |
WO2003090850A1 (en) | Independent therapy programs in an implantable medical device | |
US20120197356A1 (en) | Waveforms for Remote Electrical Stimulation Therapy | |
CN107480414B (en) | Medical equipment for treating arrhythmia and ventricular threshold search method thereof | |
CN118490986A (en) | Wireless communication method, electronic device and storage medium for neurostimulator | |
US10716945B2 (en) | External unit for an implantable neuro stimulator system | |
US20030204222A1 (en) | Recharge delay for an implantable medical device | |
CN118490987B (en) | Wireless communication method and device for nerve stimulator and electronic equipment | |
WO2011097164A1 (en) | Stimulation mode switching based on tissue impedance stability | |
US20070219599A1 (en) | Composite Waveform Based Method and Apparatus for Animal Tissue Stimulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |