CN118444204B - Contact net grounding equipment, loop continuity monitoring device and method - Google Patents

Contact net grounding equipment, loop continuity monitoring device and method Download PDF

Info

Publication number
CN118444204B
CN118444204B CN202410903173.8A CN202410903173A CN118444204B CN 118444204 B CN118444204 B CN 118444204B CN 202410903173 A CN202410903173 A CN 202410903173A CN 118444204 B CN118444204 B CN 118444204B
Authority
CN
China
Prior art keywords
monitoring
contact network
current
loop
return rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410903173.8A
Other languages
Chinese (zh)
Other versions
CN118444204A (en
Inventor
黄珂
王恕恒
黎兴源
杨元志
高燕敏
梅峰
何云丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Zhonggong Electric Engineering Co ltd
Original Assignee
Chengdu Zhonggong Electric Engineering Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Zhonggong Electric Engineering Co ltd filed Critical Chengdu Zhonggong Electric Engineering Co ltd
Priority to CN202410903173.8A priority Critical patent/CN118444204B/en
Publication of CN118444204A publication Critical patent/CN118444204A/en
Application granted granted Critical
Publication of CN118444204B publication Critical patent/CN118444204B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本申请提供的接触网接地设备、回路连续性监测装置及方法,涉及接触网技术领域。在本申请中,接触网接地设备包括接触网接地装置和回路连续性监测装置,接触网接地装置包括接触网线路、接地刀闸和回流轨线路,接触网线路包括第一接触网线路和第二接触网线路,构成第一测试回路,回流轨线路包括第一回流轨线路和第二回流轨线路,构成第二测试回路。回路连续性监测装置包括第一监测模块、第二监测模块,用于对第一测试回路和第二测试回路的回路连续性进行监测。基于上述内容,可以改善现有技术中存在的对接触网接地装置进行监测的可靠度不高的问题。

The contact network grounding equipment, loop continuity monitoring device and method provided in the present application relate to the field of contact network technology. In the present application, the contact network grounding equipment includes a contact network grounding device and a loop continuity monitoring device, the contact network grounding device includes a contact network line, a grounding knife switch and a return rail line, the contact network line includes a first contact network line and a second contact network line, constituting a first test loop, and the return rail line includes a first return rail line and a second return rail line, constituting a second test loop. The loop continuity monitoring device includes a first monitoring module and a second monitoring module, which are used to monitor the loop continuity of the first test loop and the second test loop. Based on the above content, the problem of low reliability in monitoring the contact network grounding device in the prior art can be improved.

Description

接触网接地设备、回路连续性监测装置及方法Contact network grounding equipment, loop continuity monitoring device and method

技术领域Technical Field

本申请涉及接触网技术领域,具体而言,涉及一种接触网接地设备、回路连续性监测装置及方法。The present application relates to the field of contact network technology, and in particular to a contact network grounding device, a loop continuity monitoring device and a method.

背景技术Background Art

接触网(如地铁接触网等)相关检修过程中,需在作业区间装设临时接地线,传统的挂接地线方式为,在检修作业前,由工作人员携带接地线和验电器到达现场,人工验电、挂接地线,检修完成后,再拆除接地线。传统的作业方式存在带电挂接地线的风险,存在带接地线送电的隐患,完全依赖人工,任务重,时间长,工效低,挤压正常检修作业时间。During the maintenance of overhead contact networks (such as subway overhead contact networks, etc.), temporary grounding wires need to be installed in the operation area. The traditional method of hanging grounding wires is that before the maintenance work, the staff will bring grounding wires and electric testers to the site, manually test the electricity, hang the grounding wires, and remove the grounding wires after the maintenance is completed. The traditional operation method has the risk of hanging grounding wires with power on, and there are hidden dangers of power transmission with grounding wires. It is completely dependent on manual labor, with heavy tasks, long time, low efficiency, and squeezed normal maintenance operation time.

目前,接触网接地装置已经广泛用于城市轨道交通正线或车辆段、停车场的接触网(接触轨)等,可减少操作时间、提高检修效率、确保工作人员的人身安全,达到运营安全、可靠、经济的目的。接触网接地装置的应用可防止接触网(轨)带电挂地线、带地线送电情况发生,实现以技术保安全、以设备保安全,弥补传统以制度保安全的不足,在保证安全的同时大幅降低挂/拆地线时长占比,释放更多实际检修时长,提升检修效率。At present, the contact network grounding device has been widely used in the contact network (contact rail) of urban rail transit main line or vehicle depot, parking lot, etc., which can reduce operation time, improve maintenance efficiency, ensure the personal safety of workers, and achieve the purpose of safe, reliable and economical operation. The application of the contact network grounding device can prevent the contact network (rail) from being energized and hanging the ground wire, and transmitting power with the ground wire, so as to ensure safety with technology and equipment, make up for the shortcomings of traditional safety with system, and greatly reduce the proportion of hanging/removing the ground wire while ensuring safety, release more actual maintenance time, and improve maintenance efficiency.

基于此,为了保障接触网接地装置能够进行有效的接地,就需要对接触网接地装置进行监测。但是,经发明人研究发现,存在着对接触网接地装置进行监测的可靠度相对不高的问题。Based on this, in order to ensure that the contact network grounding device can be effectively grounded, it is necessary to monitor the contact network grounding device. However, the inventors have found through research that there is a problem that the reliability of monitoring the contact network grounding device is relatively low.

发明内容Summary of the invention

有鉴于此,本申请的目的在于提供一种接触网接地设备、回路连续性监测装置及方法,以改善现有技术中存在的对接触网接地装置进行监测的可靠度相对不高的问题。In view of this, the purpose of the present application is to provide a contact network grounding device, a loop continuity monitoring device and a method to improve the problem of relatively low reliability in monitoring the contact network grounding device in the prior art.

为实现上述目的,本申请采用如下技术方案:To achieve the above purpose, this application adopts the following technical solutions:

一种接触网接地设备,包括接触网接地装置和回路连续性监测装置,所述接触网接地装置包括接触网线路、接地刀闸和回流轨线路,所述接触网线路、所述接地刀闸和所述回流轨线路串联在接触网和回流轨之间,用于对所述接触网和所述回流轨进行接地管控;A contact network grounding device, comprising a contact network grounding device and a loop continuity monitoring device, wherein the contact network grounding device comprises a contact network line, a grounding knife switch and a return rail line, wherein the contact network line, the grounding knife switch and the return rail line are connected in series between the contact network and the return rail, and are used to perform grounding control on the contact network and the return rail;

所述接触网线路包括第一接触网线路和第二接触网线路,和/或,所述回流轨线路包括第一回流轨线路和第二回流轨线路;The contact network line includes a first contact network line and a second contact network line, and/or the return rail line includes a first return rail line and a second return rail line;

在所述接触网线路包括所述第一接触网线路和所述第二接触网线路时,所述第一接触网线路和所述第二接触网线路并联在所述接地刀闸的第一端与所述接触网之间,以构成包括所述第一接触网线路、所述第二接触网线路和所述接触网的第一测试回路;When the overhead contact network line includes the first overhead contact network line and the second overhead contact network line, the first overhead contact network line and the second overhead contact network line are connected in parallel between the first end of the grounding knife switch and the overhead contact network to form a first test loop including the first overhead contact network line, the second overhead contact network line and the overhead contact network;

在所述回流轨线路包括所述第一回流轨线路和所述第二回流轨线路时,所述第一回流轨线路和所述第二回流轨线路并联在所述接地刀闸的第二端与所述回流轨之间,以构成包括所述第一回流轨线路、所述第二回流轨线路和所述回流轨的第二测试回路;When the return rail circuit includes the first return rail circuit and the second return rail circuit, the first return rail circuit and the second return rail circuit are connected in parallel between the second end of the grounding knife switch and the return rail to form a second test loop including the first return rail circuit, the second return rail circuit and the return rail;

所述回路连续性监测装置包括第一监测模块和/或第二监测模块,所述第一监测模块与所述第一测试回路配合设置,所述第一监测模块用于对所述第一测试回路的回路连续性进行监测;所述第二监测模块与所述第二测试回路配合设置,所述第二监测模块用于对所述第二测试回路的回路连续性进行监测。The loop continuity monitoring device includes a first monitoring module and/or a second monitoring module. The first monitoring module is arranged in conjunction with the first test loop, and the first monitoring module is used to monitor the loop continuity of the first test loop; the second monitoring module is arranged in conjunction with the second test loop, and the second monitoring module is used to monitor the loop continuity of the second test loop.

在本申请较佳的选择中,在上述接触网接地设备中,所述回路连续性监测装置还包括处理器,且所述第一监测模块包括第一激励电流互感器和第一监测电流互感器,所述第一激励电流互感器和所述第一监测电流互感器分别设置于所述第一测试回路;In a preferred option of the present application, in the above-mentioned overhead line grounding device, the loop continuity monitoring device further includes a processor, and the first monitoring module includes a first excitation current transformer and a first monitoring current transformer, and the first excitation current transformer and the first monitoring current transformer are respectively arranged in the first test loop;

其中,所述处理器在控制外部电源向所述第一激励电流互感器提供第一电流之后,若所述第一监测电流互感器有输出第二电流,则确定所述第一测试回路处于闭合连接状态,若所述第一监测电流互感器没有输出第二电流,则确定所述第一测试回路未处于闭合连接状态;wherein, after the processor controls the external power supply to provide the first excitation current transformer with the first current, if the first monitoring current transformer outputs the second current, it is determined that the first test loop is in a closed connection state; if the first monitoring current transformer does not output the second current, it is determined that the first test loop is not in a closed connection state;

并且,所述第一激励电流互感器响应于所述第一电流,在处于闭合连接状态的所述第一测试回路中产生第一感应电流,所述第一监测电流互感器响应于所述第一感应电流输出所述第二电流。Furthermore, the first excitation current transformer generates a first induced current in the first test loop in a closed connection state in response to the first current, and the first monitoring current transformer outputs the second current in response to the first induced current.

在本申请较佳的选择中,在上述接触网接地设备中,所述回路连续性监测装置还包括处理器,且所述第二监测模块包括第二激励电流互感器和第二监测电流互感器,所述第二激励电流互感器和所述第二监测电流互感器分别设置于所述第二测试回路;In a preferred option of the present application, in the above-mentioned overhead line grounding device, the loop continuity monitoring device further includes a processor, and the second monitoring module includes a second excitation current transformer and a second monitoring current transformer, and the second excitation current transformer and the second monitoring current transformer are respectively arranged in the second test loop;

其中,所述处理器在控制外部电源向所述第二激励电流互感器提供第三电流之后,若所述第二监测电流互感器有输出第四电流,则确定所述第二测试回路处于闭合连接状态,若所述第二监测电流互感器没有输出第四电流,则确定所述第二测试回路未处于闭合连接状态;wherein, after the processor controls the external power supply to provide the third current to the second excitation current transformer, if the second monitoring current transformer outputs the fourth current, it is determined that the second test loop is in a closed connection state; if the second monitoring current transformer does not output the fourth current, it is determined that the second test loop is not in a closed connection state;

并且,所述第二激励电流互感器响应于所述第三电流,在处于闭合连接状态的所述第二测试回路中产生第二感应电流,所述第二监测电流互感器响应于所述第二感应电流输出所述第四电流。Furthermore, the second excitation current transformer generates a second induced current in the second test loop in a closed connection state in response to the third current, and the second monitoring current transformer outputs the fourth current in response to the second induced current.

在本申请较佳的选择中,在上述接触网接地设备中,所述回路连续性监测装置还包括第三监测模块,其中,所述第三监测模块与所述接地刀闸配合设置,用于对所述接地刀闸的回路连续性进行监测。In a preferred option of the present application, in the above-mentioned contact network grounding equipment, the loop continuity monitoring device also includes a third monitoring module, wherein the third monitoring module is arranged in cooperation with the grounding switch to monitor the loop continuity of the grounding switch.

在本申请较佳的选择中,在上述接触网接地设备中,所述回路连续性监测装置还包括处理器,所述第三监测模块包括:In a preferred embodiment of the present application, in the above-mentioned overhead line grounding device, the loop continuity monitoring device further includes a processor, and the third monitoring module includes:

第一高耐压单元,其中,所述第一高耐压单元的第一端与所述接地刀闸的第一端连接;A first high voltage withstand unit, wherein a first end of the first high voltage withstand unit is connected to a first end of the grounding switch;

限流电阻,其中,所述限流电阻的第一端与所述第一高耐压单元的第二端连接;A current limiting resistor, wherein a first end of the current limiting resistor is connected to a second end of the first high withstand voltage unit;

试验信号控制单元,其中,所述试验信号控制单元的第一端与所述限流电阻的第二端连接,所述试验信号控制单元的第二端与所述处理器连接;A test signal control unit, wherein a first end of the test signal control unit is connected to a second end of the current limiting resistor, and a second end of the test signal control unit is connected to the processor;

信号发生器,其中,所述信号发生器的第一端与所述试验信号控制单元的第三端连接,所述信号发生器的第二端与所述处理器连接;A signal generator, wherein a first end of the signal generator is connected to a third end of the test signal control unit, and a second end of the signal generator is connected to the processor;

电流测量单元,其中,所述电流测量单元的第一端与所述信号发生器的第三端连接,所述电流测量单元的第二端与所述处理器连接;a current measuring unit, wherein a first terminal of the current measuring unit is connected to a third terminal of the signal generator, and a second terminal of the current measuring unit is connected to the processor;

第二高耐压单元,其中,所述第二高耐压单元的第一端与所述接地刀闸的第二端连接,所述第二高耐压单元的第二端与所述电流测量单元的第三端连接;A second high-voltage withstand unit, wherein a first end of the second high-voltage withstand unit is connected to a second end of the grounding switch, and a second end of the second high-voltage withstand unit is connected to a third end of the current measuring unit;

电压测量单元,其中,所述电压测量单元的第一端与所述第一高耐压单元的第二端连接,所述电压测量单元的第二端与所述第二高耐压单元的第二端连接,所述电压测量单元的第三端与所述处理器连接。A voltage measuring unit, wherein a first end of the voltage measuring unit is connected to a second end of the first high withstand voltage unit, a second end of the voltage measuring unit is connected to a second end of the second high withstand voltage unit, and a third end of the voltage measuring unit is connected to the processor.

在本申请较佳的选择中,在上述接触网接地设备中,所述第三监测模块还包括:In a preferred embodiment of the present application, in the above-mentioned contact network grounding device, the third monitoring module further includes:

感应电压防止单元,其中,所述感应电压防止单元的第一端与所述第一高耐压单元的第二端连接,所述感应电压防止单元的第二端与所述第二高耐压单元的第二端连接,所述感应电压防止单元用于对所述第三监测模块进行高压保护。An induced voltage prevention unit, wherein the first end of the induced voltage prevention unit is connected to the second end of the first high voltage withstand unit, the second end of the induced voltage prevention unit is connected to the second end of the second high voltage withstand unit, and the induced voltage prevention unit is used to perform high voltage protection on the third monitoring module.

本申请还提供了一种回路连续性监测装置,用于对接触网接地装置进行监测,所述接触网接地装置包括接触网线路、接地刀闸和回流轨线路,所述接触网线路包括第一接触网线路和第二接触网线路,和/或,所述回流轨线路包括第一回流轨线路和第二回流轨线路;The present application also provides a loop continuity monitoring device for monitoring a contact network grounding device, wherein the contact network grounding device comprises a contact network line, a grounding switch and a return rail line, wherein the contact network line comprises a first contact network line and a second contact network line, and/or the return rail line comprises a first return rail line and a second return rail line;

在所述接触网线路包括所述第一接触网线路和所述第二接触网线路时,所述第一接触网线路和所述第二接触网线路并联在所述接地刀闸的第一端与接触网之间,以构成包括所述第一接触网线路、所述第二接触网线路和所述接触网的第一测试回路;When the overhead contact network line includes the first overhead contact network line and the second overhead contact network line, the first overhead contact network line and the second overhead contact network line are connected in parallel between the first end of the grounding knife switch and the overhead contact network to form a first test loop including the first overhead contact network line, the second overhead contact network line and the overhead contact network;

在所述回流轨线路包括所述第一回流轨线路和所述第二回流轨线路时,所述第一回流轨线路和所述第二回流轨线路并联在所述接地刀闸的第二端与回流轨之间,以构成包括所述第一回流轨线路、所述第二回流轨线路和所述回流轨的第二测试回路;When the return rail circuit includes the first return rail circuit and the second return rail circuit, the first return rail circuit and the second return rail circuit are connected in parallel between the second end of the grounding knife switch and the return rail to form a second test loop including the first return rail circuit, the second return rail circuit and the return rail;

其中,所述回路连续性监测装置包括第一监测模块和/或第二监测模块,所述第一监测模块与所述第一测试回路配合设置,所述第一监测模块用于对所述第一测试回路的回路连续性进行监测;所述第二监测模块与所述第二测试回路配合设置,所述第二监测模块用于对所述第二测试回路的回路连续性进行监测。Among them, the loop continuity monitoring device includes a first monitoring module and/or a second monitoring module, the first monitoring module is arranged in conjunction with the first test loop, and the first monitoring module is used to monitor the loop continuity of the first test loop; the second monitoring module is arranged in conjunction with the second test loop, and the second monitoring module is used to monitor the loop continuity of the second test loop.

本申请还提供了一种回路连续性监测方法,应用于回路连续性监测装置,以对接触网接地装置进行监测;The present application also provides a loop continuity monitoring method, which is applied to a loop continuity monitoring device to monitor a contact network grounding device;

所述接触网接地装置包括接触网线路、接地刀闸和回流轨线路,所述接触网线路包括第一接触网线路和第二接触网线路,和/或,所述回流轨线路包括第一回流轨线路和第二回流轨线路;The contact network grounding device comprises a contact network line, a grounding switch and a return rail line, the contact network line comprises a first contact network line and a second contact network line, and/or the return rail line comprises a first return rail line and a second return rail line;

在所述接触网线路包括所述第一接触网线路和所述第二接触网线路时,所述第一接触网线路和所述第二接触网线路并联在所述接地刀闸的第一端与接触网之间,以构成包括所述第一接触网线路、所述第二接触网线路和所述接触网的第一测试回路,在所述回流轨线路包括所述第一回流轨线路和所述第二回流轨线路时,所述第一回流轨线路和所述第二回流轨线路并联在所述接地刀闸的第二端与回流轨之间,以构成包括所述第一回流轨线路、所述第二回流轨线路和所述回流轨的第二测试回路;When the overhead contact network line includes the first overhead contact network line and the second overhead contact network line, the first overhead contact network line and the second overhead contact network line are connected in parallel between the first end of the earthing knife switch and the overhead contact network to form a first test loop including the first overhead contact network line, the second overhead contact network line and the overhead contact network; when the return rail line includes the first return rail line and the second return rail line, the first return rail line and the second return rail line are connected in parallel between the second end of the earthing knife switch and the return rail to form a second test loop including the first return rail line, the second return rail line and the return rail;

其中,所述回路连续性监测装置包括第一监测模块和/或第二监测模块,所述第一监测模块与所述第一测试回路配合设置,所述第二监测模块与所述第二测试回路配合设置;Wherein, the loop continuity monitoring device includes a first monitoring module and/or a second monitoring module, the first monitoring module is arranged in cooperation with the first test loop, and the second monitoring module is arranged in cooperation with the second test loop;

其中,所述回路连续性监测方法包括:Wherein, the loop continuity monitoring method comprises:

利用所述第一监测模块,对所述第一测试回路的回路连续性进行监测,得到对应的第一测试回路连续性监测结果;和/或Using the first monitoring module, monitoring the loop continuity of the first test loop to obtain a corresponding first test loop continuity monitoring result; and/or

利用所述第二监测模块,对所述第二测试回路的回路连续性进行监测,得到对应的第二测试回路连续性监测结果。The loop continuity of the second test loop is monitored by utilizing the second monitoring module to obtain a corresponding second test loop continuity monitoring result.

在本申请较佳的选择中,在上述回路连续性监测方法中,所述回路连续性监测装置还包括处理器,且所述第一监测模块包括第一激励电流互感器和第一监测电流互感器,所述第一激励电流互感器和所述第一监测电流互感器分别设置于所述第一测试回路,所述第一激励电流互感器响应于输入的第一电流在处于闭合连接状态的第一测试回路中产生第一感应电流,所述第一监测电流互感器响应于所述第一感应电流输出第二电流;所述第二监测模块包括第二激励电流互感器和第二监测电流互感器,所述第二激励电流互感器和所述第二监测电流互感器分别设置于所述第二测试回路,所述第二激励电流互感器响应于输入的第三电流在处于闭合连接状态的第二测试回路中产生第二感应电流,所述第二监测电流互感器响应于所述第二感应电流输出第四电流;In a preferred selection of the present application, in the above-mentioned loop continuity monitoring method, the loop continuity monitoring device also includes a processor, and the first monitoring module includes a first excitation current transformer and a first monitoring current transformer, the first excitation current transformer and the first monitoring current transformer are respectively arranged in the first test loop, the first excitation current transformer generates a first induced current in the first test loop in response to the input first current in a closed connection state, and the first monitoring current transformer outputs a second current in response to the first induced current; the second monitoring module includes a second excitation current transformer and a second monitoring current transformer, the second excitation current transformer and the second monitoring current transformer are respectively arranged in the second test loop, the second excitation current transformer generates a second induced current in the second test loop in response to the input third current in a closed connection state, and the second monitoring current transformer outputs a fourth current in response to the second induced current;

其中,所述利用所述第一监测模块,对所述第一测试回路的回路连续性进行监测,得到对应的第一测试回路连续性监测结果的步骤,包括:The step of using the first monitoring module to monitor the loop continuity of the first test loop to obtain the corresponding first test loop continuity monitoring result includes:

所述处理器控制外部电源向所述第一激励电流互感器提供第一电流,并监测所述第一监测电流互感器是否有输出第二电流;The processor controls the external power supply to provide the first excitation current transformer with a first current, and monitors whether the first monitoring current transformer outputs a second current;

所述处理器在监测到所述第一监测电流互感器有输出所述第二电流时,输出用于表征所述第一测试回路处于闭合连接状态的第一测试回路连续性监测结果,所述处理器在监测到所述第一监测电流互感器没有输出所述第二电流时,输出用于表征所述第一测试回路未处于闭合连接状态的第一测试回路连续性监测结果;When the processor detects that the first monitoring current transformer outputs the second current, the processor outputs a first test loop continuity monitoring result for indicating that the first test loop is in a closed connection state; when the processor detects that the first monitoring current transformer does not output the second current, the processor outputs a first test loop continuity monitoring result for indicating that the first test loop is not in a closed connection state;

其中,所述利用所述第二监测模块,对所述第二测试回路的回路连续性进行监测,得到对应的第二测试回路连续性监测结果的步骤,包括:The step of using the second monitoring module to monitor the loop continuity of the second test loop to obtain the corresponding second test loop continuity monitoring result includes:

所述处理器控制外部电源向所述第二激励电流互感器提供第三电流,并监测所述第二监测电流互感器是否有输出第四电流;The processor controls the external power supply to provide the third current to the second excitation current transformer, and monitors whether the second monitoring current transformer outputs the fourth current;

所述处理器在监测到所述第二监测电流互感器有输出所述第四电流时,输出用于表征所述第二测试回路处于闭合连接状态的第二测试回路连续性监测结果,所述处理器在监测到所述第二监测电流互感器没有输出所述第四电流时,输出用于表征所述第二测试回路未处于闭合连接状态的第二测试回路连续性监测结果。When the processor detects that the second monitoring current transformer outputs the fourth current, the processor outputs a second test loop continuity monitoring result for characterizing that the second test loop is in a closed connection state. When the processor detects that the second monitoring current transformer does not output the fourth current, the processor outputs a second test loop continuity monitoring result for characterizing that the second test loop is not in a closed connection state.

在本申请较佳的选择中,在上述回路连续性监测方法中,所述回路连续性监测装置还包括处理器和第三监测模块;In a preferred option of the present application, in the above loop continuity monitoring method, the loop continuity monitoring device further includes a processor and a third monitoring module;

所述第三监测模块包括第一高耐压单元、限流电阻、试验信号控制单元、信号发生器、电流测量单元、第二高耐压单元和电压测量单元,所述第一高耐压单元的第一端与所述接地刀闸的第一端连接,所述限流电阻的第一端与所述第一高耐压单元的第二端连接,所述试验信号控制单元的第一端与所述限流电阻的第二端连接,所述试验信号控制单元的第二端与所述处理器连接,所述信号发生器的第一端与所述试验信号控制单元的第三端连接,所述信号发生器的第二端与所述处理器连接,所述电流测量单元的第一端与所述信号发生器的第三端连接,所述电流测量单元的第二端与所述处理器连接,所述第二高耐压单元的第一端与所述接地刀闸的第二端连接,所述第二高耐压单元的第二端与所述电流测量单元的第三端连接,所述电压测量单元的第一端与所述第一高耐压单元的第二端连接,所述电压测量单元的第二端与所述第二高耐压单元的第二端连接,所述电压测量单元的第三端与所述处理器连接;The third monitoring module includes a first high withstand voltage unit, a current limiting resistor, a test signal control unit, a signal generator, a current measuring unit, a second high withstand voltage unit and a voltage measuring unit, wherein the first end of the first high withstand voltage unit is connected to the first end of the grounding switch, the first end of the current limiting resistor is connected to the second end of the first high withstand voltage unit, the first end of the test signal control unit is connected to the second end of the current limiting resistor, the second end of the test signal control unit is connected to the processor, the first end of the signal generator is connected to the third end of the test signal control unit, the second end of the signal generator is connected to the processor, the first end of the current measuring unit is connected to the third end of the signal generator, the second end of the current measuring unit is connected to the processor, the first end of the second high withstand voltage unit is connected to the second end of the grounding switch, the second end of the second high withstand voltage unit is connected to the third end of the current measuring unit, the first end of the voltage measuring unit is connected to the second end of the first high withstand voltage unit, the second end of the voltage measuring unit is connected to the second end of the second high withstand voltage unit, and the third end of the voltage measuring unit is connected to the processor;

其中,所述回路连续性监测方法还包括:Wherein, the loop continuity monitoring method further includes:

在所述接地刀闸闭合、所述第一高耐压单元闭合、所述第二高耐压单元闭合后,所述处理器控制所述电压测量单元对所述第一高耐压单元的第二端和所述第二高耐压单元的第二端之间的电压进行测量,得到第一电压;After the grounding switch is closed, the first high-voltage withstand unit is closed, and the second high-voltage withstand unit is closed, the processor controls the voltage measuring unit to measure the voltage between the second end of the first high-voltage withstand unit and the second end of the second high-voltage withstand unit to obtain a first voltage;

在得到所述第一电压之后,所述处理器控制所述信号发生器通过所述试验信号控制单元和所述限流电阻,输出测试电流,且控制所述电压测量单元对所述第一高耐压单元的第二端和所述第二高耐压单元的第二端之间的电压进行测量,得到第二电压,并控制所述电流测量单元对所述测试电流进行测量;After obtaining the first voltage, the processor controls the signal generator to output a test current through the test signal control unit and the current limiting resistor, controls the voltage measuring unit to measure the voltage between the second end of the first high withstand voltage unit and the second end of the second high withstand voltage unit to obtain a second voltage, and controls the current measuring unit to measure the test current;

所述处理器基于所述第一电压、所述第二电压和所述测试电流,确定出所述接地刀闸的回路电阻,并基于所述回路电阻确定所述接地刀闸对应的第三回路连续性监测结果。The processor determines the loop resistance of the grounding switch based on the first voltage, the second voltage and the test current, and determines the third loop continuity monitoring result corresponding to the grounding switch based on the loop resistance.

在本申请提供的接触网接地设备、回路连续性监测装置及方法中,回路连续性监测装置用于对接触网接地装置进行监测,接触网接地装置包括接触网线路、接地刀闸和回流轨线路,接触网线路包括第一接触网线路和第二接触网线路,构成第一测试回路,回流轨线路包括第一回流轨线路和第二回流轨线路,构成第二测试回路。回路连续性监测装置包括第一监测模块、第二监测模块,用于对第一测试回路和第二测试回路的回路连续性分别进行监测。基于上述内容,由于接触网线路包括的第一接触网线路和第二接触网线路能够与接触网构成第一测试回路,使得可以单独对第一测试回路进行回路连续性监测,同样地,由于回流轨线路包括的第一回流轨线路和第二回流轨线路能够与回流轨构成第二测试回路,使得也可以单独对第二测试回路进行回路连续性监测,如此,可以实现更小粒度的回路连续性监测,从而提高回路连续性监测的可靠性,便于进行异常定位(使得相应的维护操作可以更高效),因此,可以改善现有技术中存在的对接触网接地装置进行监测的可靠度相对不高的问题。并且,是直接利用接触网接地装置自身构成的回路,可以降低回路连续性监测装置的复杂度,使得体积也可以减小,在安装于隧道端口井处等位置时,可以使得回路连续性监测装置的安装空间不会受到限制,如此,可以使得其应用场景也不受限制,因而,具有较高的实用价值,另外,由于接触网接地装置包括第一接触网线路和第二接触网线路、第一回流轨线路和第二回流轨线路这样的双线路设置,还可以使得接触网接地装置的接地可靠性得到提高,从而保障在接触网(轨)的检修过程中,能够对接触网进行有效的接地,避免了无效接地而导致的人身安全事故等问题。In the overhead contact network grounding equipment, loop continuity monitoring device and method provided in the present application, the loop continuity monitoring device is used to monitor the overhead contact network grounding device, the overhead contact network grounding device includes an overhead contact network line, an earthing knife switch and a return rail line, the overhead contact network line includes a first overhead contact network line and a second overhead contact network line, forming a first test loop, and the return rail line includes a first return rail line and a second return rail line, forming a second test loop. The loop continuity monitoring device includes a first monitoring module and a second monitoring module, which are used to monitor the loop continuity of the first test loop and the second test loop respectively. Based on the above content, since the contact network line includes the first contact network line and the second contact network line which can form a first test loop with the contact network, the loop continuity monitoring of the first test loop can be performed separately. Similarly, since the return rail line includes the first return rail line and the second return rail line which can form a second test loop with the return rail, the loop continuity monitoring of the second test loop can also be performed separately. In this way, loop continuity monitoring with a smaller granularity can be achieved, thereby improving the reliability of loop continuity monitoring and facilitating abnormality positioning (making the corresponding maintenance operations more efficient). Therefore, the problem of relatively low reliability in monitoring the contact network grounding device in the prior art can be improved. Moreover, the circuit formed by the contact network grounding device itself is directly utilized, which can reduce the complexity of the circuit continuity monitoring device and reduce its volume. When installed at a location such as a tunnel port well, the installation space of the circuit continuity monitoring device will not be limited. In this way, its application scenarios will not be restricted. Therefore, it has high practical value. In addition, since the contact network grounding device includes a dual-line setting of a first contact network line and a second contact network line, a first return rail line and a second return rail line, the grounding reliability of the contact network grounding device can also be improved, thereby ensuring that the contact network can be effectively grounded during the maintenance of the contact network (rail), avoiding problems such as personal safety accidents caused by invalid grounding.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。In order to make the above-mentioned objects, features and advantages of the present application more obvious and easy to understand, preferred embodiments are specifically cited below and described in detail with reference to the attached drawings.

图1为本申请实施例提供的接触网接地装置的应用场景示意图。FIG1 is a schematic diagram of an application scenario of a contact network grounding device provided in an embodiment of the present application.

图2为本申请实施例提供的接触网接地设备的应用场景电路图。FIG2 is a circuit diagram of an application scenario of the overhead contact network grounding device provided in an embodiment of the present application.

图标:JD-接地刀闸,CPU-处理器,CT1-第一激励电流互感器,CT2-第一监测电流互感器,T1-第一信号变压器,R1-第一限流电阻,I1-第一激励电流测量单元,I2-第一监测电流测量单元,K1-第一电子开关,CT3-第二激励电流互感器,CT4-第二监测电流互感器,T2-第二信号变压器,R2-第二限流电阻,I3-第二激励电流测量单元,I4-第二监测电流测量单元,K2-第二电子开关,H1-第一高耐压单元,R3-第三限流电阻,M-试验信号控制单元,DY-信号发生器,I5-电流测量单元,H2-第二高耐压单元,U-电压测量单元,P1-感应电压防止单元。Icon: JD-grounding switch, CPU-processor, CT1-first excitation current transformer, CT2-first monitoring current transformer, T1-first signal transformer, R1-first current limiting resistor, I1-first excitation current measuring unit, I2-first monitoring current measuring unit, K1-first electronic switch, CT3-second excitation current transformer, CT4-second monitoring current transformer, T2-second signal transformer, R2-second current limiting resistor, I3-second excitation current measuring unit, I4-second monitoring current measuring unit, K2-second electronic switch, H1-first high withstand voltage unit, R3-third current limiting resistor, M-test signal control unit, DY-signal generator, I5-current measuring unit, H2-second high withstand voltage unit, U-voltage measuring unit, P1-induced voltage prevention unit.

具体实施方式DETAILED DESCRIPTION

为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例只是本申请的一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。In order to make the purpose, technical solution and advantages of the embodiments of the present application clearer, the technical solution in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. The components of the embodiments of the present application described and shown in the drawings here can be arranged and designed in various different configurations.

因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。Therefore, the following detailed description of the embodiments of the present application provided in the accompanying drawings is not intended to limit the scope of the present application for which protection is sought, but merely represents selected embodiments of the present application. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in the field without creative work are within the scope of protection of the present application.

如图1所示,本申请实施例提供了一种接触网接地设备。其中,所述接触网接地设备可以包括接触网接地装置和回路连续性监测装置,所述回路连续性监测装置可以用于对所述接触网接地装置进行监测。As shown in Fig. 1, an embodiment of the present application provides a contact network grounding device, wherein the contact network grounding device may include a contact network grounding device and a loop continuity monitoring device, and the loop continuity monitoring device may be used to monitor the contact network grounding device.

详细地,所述接触网接地装置可以包括接触网线路、接地刀闸和回流轨线路。也就是说,相应的应用场景中的接触网可以通过所述接触网线路、所述接地刀闸和所述回流轨线路与回流轨连接。In detail, the overhead contact network grounding device may include an overhead contact network line, an earthing switch and a return rail line. That is, the overhead contact network in the corresponding application scenario may be connected to the return rail through the overhead contact network line, the earthing switch and the return rail line.

第一方面,所述接触网线路可以包括第一接触网线路和第二接触网线路,和/或,所述回流轨线路可以包括第一回流轨线路和第二回流轨线路。In a first aspect, the overhead contact network line may include a first overhead contact network line and a second overhead contact network line, and/or the return rail line may include a first return rail line and a second return rail line.

例如,在一种可以替代的实施方式中,所述接触网线路包括第一接触网线路和第二接触网线路,所述回流轨线路包括第一回流轨线路。又例如,在第二种可以替代的实施方式中,所述接触网线路包括第一接触网线路,所述回流轨线路包括第一回流轨线路和第二回流轨线路。再例如,在第三种可以替代的实施方式中,所述接触网线路包括第一接触网线路和第二接触网线路,所述回流轨线路包括第一回流轨线路和第二回流轨线路。For example, in an alternative embodiment, the contact network line includes a first contact network line and a second contact network line, and the return rail line includes a first return rail line. For another example, in a second alternative embodiment, the contact network line includes a first contact network line, and the return rail line includes a first return rail line and a second return rail line. For another example, in a third alternative embodiment, the contact network line includes a first contact network line and a second contact network line, and the return rail line includes a first return rail line and a second return rail line.

其中,在所述接触网线路包括所述第一接触网线路和所述第二接触网线路时,所述第一接触网线路和所述第二接触网线路并联在所述接地刀闸的第一端(如接地刀闸的正极)与接触网之间。基于此,在将所述接触网与所述接地刀闸连接的同时,还可以构成所述第一接触网线路、所述第二接触网线路和所述接触网的第一测试回路(可以用于进行相应的连续性检测,如检测接触网线路与接地刀闸之间的连接可靠性,检测接触网线路与接触网之间的连接可靠性)。在所述回流轨线路包括所述第一回流轨线路和所述第二回流轨线路时,所述第一回流轨线路和所述第二回流轨线路并联在所述接地刀闸的第二端(如接地刀闸的负极)与回流轨之间,基于此,在将所述回流轨与所述接地刀闸连接的同时,还可以构成包括所述第一回流轨线路、所述第二回流轨线路和所述回流轨的第二测试回路(可以用于进行相应的连续性检测,如检测回流轨线路与接地刀闸之间的连接可靠性,检测回流轨线路与接回流轨之间的连接可靠性)。Wherein, when the overhead contact network line includes the first overhead contact network line and the second overhead contact network line, the first overhead contact network line and the second overhead contact network line are connected in parallel between the first end of the grounding knife switch (such as the positive pole of the grounding knife switch) and the overhead contact network. Based on this, while connecting the overhead contact network to the grounding knife switch, a first test loop of the first overhead contact network line, the second overhead contact network line and the overhead contact network can also be formed (which can be used for corresponding continuity detection, such as detecting the connection reliability between the overhead contact network line and the grounding knife switch, detecting the connection reliability between the overhead contact network line and the overhead contact network). When the return rail circuit includes the first return rail circuit and the second return rail circuit, the first return rail circuit and the second return rail circuit are connected in parallel between the second end of the grounding switch (such as the negative pole of the grounding switch) and the return rail. Based on this, when the return rail is connected to the grounding switch, a second test loop including the first return rail circuit, the second return rail circuit and the return rail can also be formed (which can be used to perform corresponding continuity detection, such as detecting the connection reliability between the return rail circuit and the grounding switch, and detecting the connection reliability between the return rail circuit and the return rail).

基于此,通过双接触网线路和/或双回流轨线路的设置,可以使得线路的连续性更可靠,例如,在一条接触网线路或回流轨线路连接不连续的时候,另外一条接触网线路或回流轨线路也能提供有效的回路连接。Based on this, by setting up double contact network lines and/or double return rail lines, the continuity of the lines can be made more reliable. For example, when one contact network line or return rail line is not connected continuously, the other contact network line or return rail line can also provide an effective loop connection.

第二方面,所述回路连续性监测装置可以包括第一监测模块和/或第二监测模块。也就是说,所述回路连续性监测装置可以包括至少一个监测模块,例如,所述回路连续性监测装置可以仅包括所述第一监测模块,或者,所述回路连续性监测装置可以仅包括所述第二监测模块,或者,所述回路连续性监测装置可以包括所述第一监测模块和所述第二监测模块。In a second aspect, the loop continuity monitoring device may include a first monitoring module and/or a second monitoring module. That is, the loop continuity monitoring device may include at least one monitoring module, for example, the loop continuity monitoring device may include only the first monitoring module, or the loop continuity monitoring device may include only the second monitoring module, or the loop continuity monitoring device may include the first monitoring module and the second monitoring module.

其中,所述第一监测模块与所述第一测试回路配合设置,可以用于对所述第一测试回路的回路连续性进行监测,例如,在监测结果反映出所述第一测试回路不连续时,可以得到接触网线路与接地刀闸之间的连接不可靠、接触网线路与接触网之间的连接不可靠的结果。所述第二监测模块与所述第二测试回路配合设置,可以用于对所述第二测试回路的回路连续性进行监测,例如,在监测结果反映出所述第二测试回路不连续时,可以得到回流轨线路与接地刀闸之间的连接不可靠、回流轨线路与回流轨之间的连接不可靠的结果。Among them, the first monitoring module is arranged in cooperation with the first test loop, and can be used to monitor the loop continuity of the first test loop. For example, when the monitoring result reflects that the first test loop is discontinuous, the result that the connection between the overhead contact line and the earthing knife switch is unreliable, and the connection between the overhead contact line and the overhead contact line is unreliable can be obtained. The second monitoring module is arranged in cooperation with the second test loop, and can be used to monitor the loop continuity of the second test loop. For example, when the monitoring result reflects that the second test loop is discontinuous, the result that the connection between the return rail line and the earthing knife switch is unreliable, and the connection between the return rail line and the return rail is unreliable can be obtained.

另外,所述回路连续性监测装置的具体构成可以参照后文的相关描述。In addition, the specific structure of the loop continuity monitoring device can refer to the relevant description below.

结合图2,本申请实施例还提供一种可应用于上述接触网接地设备的回路连续性监测装置。其中,所述回路连续性监测装置可以用于对所述接触网接地设备包括的接触网接地装置进行监测。In conjunction with Fig. 2, the embodiment of the present application further provides a loop continuity monitoring device applicable to the above-mentioned overhead line grounding equipment, wherein the loop continuity monitoring device can be used to monitor the overhead line grounding device included in the overhead line grounding equipment.

如前相关描述,所述接触网接地装置可以包括接触网线路、接地刀闸JD和回流轨线路,所述接触网线路可以包括第一接触网线路和第二接触网线路,和/或,所述回流轨线路可以包括第一回流轨线路和第二回流轨线路。在所述接触网线路包括所述第一接触网线路和所述第二接触网线路时,所述第一接触网线路和所述第二接触网线路可以并联在所述接地刀闸JD的第一端与接触网之间,以构成包括所述第一接触网线路、所述第二接触网线路和所述接触网的第一测试回路(如图2所示的测试回路Ⅰ)。在所述回流轨线路包括所述第一回流轨线路和所述第二回流轨线路时,所述第一回流轨线路和所述第二回流轨线路可以并联在所述接地刀闸JD的第二端与回流轨之间,以构成包括所述第一回流轨线路、所述第二回流轨线路和所述回流轨的第二测试回路(如图2所示的测试回路Ⅱ)。As described above, the contact network grounding device may include a contact network line, a grounding knife switch JD and a return rail line. The contact network line may include a first contact network line and a second contact network line, and/or the return rail line may include a first return rail line and a second return rail line. When the contact network line includes the first contact network line and the second contact network line, the first contact network line and the second contact network line may be connected in parallel between the first end of the grounding knife switch JD and the contact network to form a first test loop including the first contact network line, the second contact network line and the contact network (test loop I as shown in Figure 2). When the return rail line includes the first return rail line and the second return rail line, the first return rail line and the second return rail line may be connected in parallel between the second end of the grounding knife switch JD and the return rail to form a second test loop including the first return rail line, the second return rail line and the return rail (test loop II as shown in Figure 2).

如前相关描述,所述回路连续性监测装置可以包括第一监测模块和/或第二监测模块, 如包括所述第一监测模块和所述第二监测模块中的至少一个。所述第一监测模块与所述第一测试回路配合设置,可以用于对所述第一测试回路的回路连续性进行监测。所述第二监测模块与所述第二测试回路配合设置,可以用于对所述第二测试回路的回路连续性进行监测。As described above, the loop continuity monitoring device may include a first monitoring module and/or a second monitoring module, such as including at least one of the first monitoring module and the second monitoring module. The first monitoring module is arranged in conjunction with the first test loop, and can be used to monitor the loop continuity of the first test loop. The second monitoring module is arranged in conjunction with the second test loop, and can be used to monitor the loop continuity of the second test loop.

基于上述内容,由于接触网线路包括的第一接触网线路和第二接触网线路能够与接触网构成第一测试回路,使得可以单独对第一测试回路进行回路连续性监测,同样地,由于回流轨线路包括的第一回流轨线路和第二回流轨线路能够与回流轨构成第二测试回路,使得也可以单独对第二测试回路进行回路连续性监测,如此,可以实现更小粒度的回路连续性监测,从而提高回路连续性监测的可靠性,便于进行异常定位(使得相应的维护操作可以更高效),因此,可以改善现有技术中存在的对接触网接地装置进行监测的可靠度相对不高的问题。并且,是直接利用接触网接地装置自身构成的回路,可以降低回路连续性监测装置的复杂度,使得体积也可以减小,在安装于隧道端口井处等位置时,可以使得回路连续性监测装置的安装空间不会受到限制,如此,可以使得其应用场景也不受限制,因而,具有较高的实用价值,另外,由于接触网接地装置包括第一接触网线路和第二接触网线路、第一回流轨线路和第二回流轨线路这样的双线路设置,还可以使得接触网接地装置的接地可靠性得到提高,从而保障在接触网的检修过程中,能够对接触网进行有效的接地,避免了无效接地而导致的人身安全事故等问题。Based on the above content, since the contact network line includes the first contact network line and the second contact network line which can form a first test loop with the contact network, the loop continuity monitoring of the first test loop can be performed separately. Similarly, since the return rail line includes the first return rail line and the second return rail line which can form a second test loop with the return rail, the loop continuity monitoring of the second test loop can also be performed separately. In this way, loop continuity monitoring with a smaller granularity can be achieved, thereby improving the reliability of loop continuity monitoring and facilitating abnormality positioning (making the corresponding maintenance operations more efficient). Therefore, the problem of relatively low reliability in monitoring the contact network grounding device in the prior art can be improved. Moreover, the loop formed by the contact network grounding device itself is directly utilized, which can reduce the complexity of the loop continuity monitoring device and reduce its volume. When installed at a location such as a tunnel port well, the installation space of the loop continuity monitoring device will not be limited. In this way, its application scenarios will not be restricted. Therefore, it has a high practical value. In addition, since the contact network grounding device includes a dual-line setting of a first contact network line and a second contact network line, a first return rail line and a second return rail line, the grounding reliability of the contact network grounding device can also be improved, thereby ensuring that the contact network can be effectively grounded during the maintenance of the contact network, avoiding problems such as personal safety accidents caused by invalid grounding.

示例性地,在一种可以替代的实施方式中,所述回路连续性监测装置还可以包括处理器CPU。并且,所述第一监测模块可以包括第一激励电流互感器CT1和第一监测电流互感器CT2,所述第一激励电流互感器CT1和所述第一监测电流互感器CT2可以分别设置于所述第一测试回路,具体的设置位置可以不受限制,例如,所述第一激励电流互感器CT1可以设置于所述第一接触网线路,所述第一监测电流互感器CT2可以设置于所述第二接触网线路,或者,在其它实施方式中,也可以互换位置。Exemplarily, in an alternative embodiment, the loop continuity monitoring device may further include a processor CPU. Furthermore, the first monitoring module may include a first excitation current transformer CT1 and a first monitoring current transformer CT2, the first excitation current transformer CT1 and the first monitoring current transformer CT2 may be respectively arranged in the first test loop, and the specific arrangement positions may not be limited, for example, the first excitation current transformer CT1 may be arranged in the first contact network line, the first monitoring current transformer CT2 may be arranged in the second contact network line, or, in other embodiments, the positions may be interchanged.

基于此,所述处理器CPU可以控制外部电源向所述第一激励电流互感器CT1提供第一电流,若所述第一监测电流互感器CT2有输出第二电流,则确定所述第一测试回路处于闭合连接状态,若所述第一监测电流互感器CT2没有输出第二电流,则确定所述第一测试回路未处于闭合连接状态(如接触网线路与接触网的连接不可靠,如A1、B1接触点的连接不可靠,接触网线路与接地刀闸JD的连接不可靠,如C1接触点的连接不可靠)。Based on this, the processor CPU can control the external power supply to provide the first current to the first excitation current transformer CT1. If the first monitoring current transformer CT2 outputs the second current, it is determined that the first test loop is in a closed connection state. If the first monitoring current transformer CT2 does not output the second current, it is determined that the first test loop is not in a closed connection state (such as the connection between the contact network line and the contact network is unreliable, such as the connection between the A1 and B1 contact points is unreliable, the connection between the contact network line and the grounding switch JD is unreliable, such as the connection of the C1 contact point is unreliable).

其中,所述第一激励电流互感器CT1响应于所述第一电流,可以在处于闭合连接状态的所述第一测试回路中产生第一感应电流,如此,所述第一监测电流互感器CT2响应于所述第一感应电流可以输出所述第二电流。也就是说,只要所述处理器CPU可以监测到所述第一监测电流互感器CT2有输出所述第二电流,就可以确定所述第一测试回路处于闭合连接状态。反之,在所述第一测试回路未处于闭合连接状态(如线路的连接点断开)时,所述第一激励电流互感器CT1无法响应于所述第一电流在未处于闭合连接状态的所述第一测试回路中产生第一感应电流,如此,所述第一监测电流互感器CT2就不能输出所述第二电流,使得所述处理器CPU在监测到所述第一监测电流互感器CT2没有输出所述第二电流时,就可以确定所述第一测试回路未处于闭合状态。Among them, the first excitation current transformer CT1 can generate the first induced current in the first test loop in a closed connection state in response to the first current, so that the first monitoring current transformer CT2 can output the second current in response to the first induced current. That is to say, as long as the processor CPU can detect that the first monitoring current transformer CT2 outputs the second current, it can be determined that the first test loop is in a closed connection state. On the contrary, when the first test loop is not in a closed connection state (such as the connection point of the line is disconnected), the first excitation current transformer CT1 cannot generate the first induced current in the first test loop that is not in a closed connection state in response to the first current, so that the first monitoring current transformer CT2 cannot output the second current, so that when the processor CPU detects that the first monitoring current transformer CT2 does not output the second current, it can determine that the first test loop is not in a closed state.

举例来说,AC240V电压源(频率50Hz)可以在通过第一信号变压器T1(变比为T)后,通过第一限流电阻R1获得一个频率为50Hz的电流(该电流可以通过第一激励电流测量单元I1进行监测,并传输给处理器CPU),该电流作为输入信号传送给第一激励电流互感器CT1(变比为n1),此时在一次闭合回路(如所述第一测试回路)中会感应出一个同频率的交流感应电流I01,当且仅当一次闭合回路处于闭合连接状态时,第一监测电流互感器CT2(变比为n2)才能感应到电流I01并输出电流(该电流可以通过第一监测电流测量单元I2进行监测,并传输给处理器CPU),如果一次闭合回路断线时,则一次闭合回路中无法感应到电流I01,第一监测电流互感器CT2没有输出电流。For example, an AC240V voltage source (frequency 50Hz) can obtain a current with a frequency of 50Hz through the first current limiting resistor R1 after passing through the first signal transformer T1 (transformation ratio is T) (the current can be monitored by the first excitation current measuring unit I1 and transmitted to the processor CPU). The current is transmitted to the first excitation current transformer CT1 (transformation ratio is n1) as an input signal. At this time, an AC induced current I01 with the same frequency will be induced in the primary closed loop (such as the first test loop). When and only when the primary closed loop is in a closed connection state, the first monitoring current transformer CT2 (transformation ratio is n2) can sense the current I01 and output the current (the current can be monitored by the first monitoring current measuring unit I2 and transmitted to the processor CPU). If the primary closed loop is disconnected, the current I01 cannot be sensed in the primary closed loop, and the first monitoring current transformer CT2 has no output current.

另外,在一些可以替代的实施方式中,在第一限流电阻R1和第一激励电流互感器CT1之间还可以连接有第一电子开关K1,如此,所述处理器CPU可以通过第一电子开关K1,控制AC240V电压源是否向第一激励电流互感器CT1提供电流。In addition, in some alternative implementations, a first electronic switch K1 may be connected between the first current limiting resistor R1 and the first excitation current transformer CT1, so that the processor CPU may control whether the AC240V voltage source provides current to the first excitation current transformer CT1 through the first electronic switch K1.

示例性地,在一种可以替代的实施方式中,所述回路连续性监测装置还可以包括处理器CPU。并且,所述第二监测模块可以包括第二激励电流互感器CT3和第二监测电流互感器CT4,所述第二激励电流互感器CT3和所述第二监测电流互感器CT4可以分别设置于所述第二测试回路,具体的设置位置可以不受限制,例如,所述第二激励电流互感器CT3可以设置于所述第一回流轨线路,所述第二监测电流互感器CT4可以设置于所述第二回流轨线路,或者,在其它实施方式中,也可以互换位置。For example, in an alternative embodiment, the loop continuity monitoring device may further include a processor CPU. In addition, the second monitoring module may include a second excitation current transformer CT3 and a second monitoring current transformer CT4, and the second excitation current transformer CT3 and the second monitoring current transformer CT4 may be respectively arranged in the second test loop, and the specific arrangement position may not be limited, for example, the second excitation current transformer CT3 may be arranged in the first return rail line, and the second monitoring current transformer CT4 may be arranged in the second return rail line, or, in other embodiments, the positions may also be interchanged.

基于此,所述处理器CPU可以控制外部电源向所述第二激励电流互感器CT3提供第三电流,若所述第二监测电流互感器CT4有输出第四电流,则确定所述第二测试回路处于闭合连接状态,若所述第二监测电流互感器CT4没有输出第四电流,则确定所述第二测试回路未处于闭合连接状态(如回流轨线路与回流轨的连接不可靠,如A2、B2接触点的连接不可靠,回流轨线路与接地刀闸JD的连接不可靠,如C2接触点的连接不可靠)。Based on this, the processor CPU can control the external power supply to provide a third current to the second excitation current transformer CT3. If the second monitoring current transformer CT4 outputs the fourth current, it is determined that the second test loop is in a closed connection state. If the second monitoring current transformer CT4 does not output the fourth current, it is determined that the second test loop is not in a closed connection state (such as the connection between the return rail line and the return rail is unreliable, such as the connection between the A2 and B2 contact points is unreliable, the connection between the return rail line and the grounding switch JD is unreliable, such as the connection of the C2 contact point is unreliable).

其中,所述第二激励电流互感器CT3响应于所述第三电流,可以在处于闭合连接状态的所述第二测试回路中产生第二感应电流,所述第二监测电流互感器CT4响应于所述第二感应电流可以输出所述第四电流。也就是说,只要所述处理器CPU可以监测到所述第二监测电流互感器CT4有输出所述第四电流,就可以确定所述第二测试回路处于闭合连接状态。反之,在所述第二测试回路未处于闭合连接状态(如线路的连接点断开)时,所述第二激励电流互感器CT3无法响应于所述第三电流在未处于闭合连接状态的所述第二测试回路中产生第二感应电流,如此,所述第二监测电流互感器CT4就不能输出所述第四电流,使得所述处理器CPU在监测到所述第二监测电流互感器CT4没有输出所述第四电流时,就可以确定所述第二测试回路未处于闭合状态。Among them, the second excitation current transformer CT3 can generate a second induced current in the second test loop in a closed connection state in response to the third current, and the second monitoring current transformer CT4 can output the fourth current in response to the second induced current. That is to say, as long as the processor CPU can detect that the second monitoring current transformer CT4 outputs the fourth current, it can be determined that the second test loop is in a closed connection state. On the contrary, when the second test loop is not in a closed connection state (such as the connection point of the line is disconnected), the second excitation current transformer CT3 cannot generate a second induced current in the second test loop that is not in a closed connection state in response to the third current. In this way, the second monitoring current transformer CT4 cannot output the fourth current, so that when the processor CPU detects that the second monitoring current transformer CT4 does not output the fourth current, it can determine that the second test loop is not in a closed state.

举例来说,AC240V电压源(频率50Hz)可以在通过第二信号变压器T2(变比为T)后,通过第二限流电阻R2获得一个频率为50Hz的电流(该电流可以通过第二激励电流测量单元I3进行监测,并传输给处理器CPU),该电流作为输入信号传送给第二激励电流互感器CT3(变比为n1),此时在一次闭合回路(如所述第二测试回路)中会感应出一个同频率的交流感应电流I02,当且仅当一次闭合回路处于闭合连接状态时,第二监测电流互感器CT4(变比为n2)才能感应到电流I02并输出电流(该电流可以通过第二监测电流测量单元I4进行监测,并传输给处理器CPU),如果一次闭合回路断线时,则一次闭合回路中无法感应到电流I02,第二监测电流互感器CT4也没有输出电流。For example, an AC240V voltage source (frequency 50Hz) can obtain a current with a frequency of 50Hz through the second current limiting resistor R2 after passing through the second signal transformer T2 (transformation ratio is T) (the current can be monitored by the second excitation current measuring unit I3 and transmitted to the processor CPU). The current is transmitted to the second excitation current transformer CT3 (transformation ratio is n1) as an input signal. At this time, an AC induced current I02 with the same frequency will be induced in the primary closed loop (such as the second test loop). When and only when the primary closed loop is in a closed connection state, the second monitoring current transformer CT4 (transformation ratio is n2) can sense the current I02 and output the current (the current can be monitored by the second monitoring current measuring unit I4 and transmitted to the processor CPU). If the primary closed loop is disconnected, the current I02 cannot be sensed in the primary closed loop, and the second monitoring current transformer CT4 does not output current.

另外,在一些可以替代的实施方式中,在第二限流电阻R2和第二激励电流互感器CT3之间还可以连接有第二电子开关K2,如此,所述处理器CPU可以通过第二电子开关K2,控制AC240V电压源是否向第二激励电流互感器CT3提供电流。In addition, in some alternative implementations, a second electronic switch K2 may be connected between the second current limiting resistor R2 and the second excitation current transformer CT3, so that the processor CPU may control whether the AC240V voltage source provides current to the second excitation current transformer CT3 through the second electronic switch K2.

示例性地,在一种可以替代的实施方式中,所述回路连续性监测装置还可以包括第三监测模块。其中,所述第三监测模块与所述接地刀闸JD配合设置,可以用于对所述接地刀闸JD的回路连续性进行监测,如对所述接地刀闸JD的合闸情况(状态)进行监测。For example, in an alternative embodiment, the loop continuity monitoring device may further include a third monitoring module. The third monitoring module is configured in conjunction with the grounding switch JD, and may be used to monitor the loop continuity of the grounding switch JD, such as monitoring the closing condition (status) of the grounding switch JD.

例如,在一种可以替代的实施方式中,所述第三监测模块可以包括第一高耐压单元H1、第三限流电阻R3、试验信号控制单元M、信号发生器DY、电流测量单元I5、第二高耐压单元H2和电压测量单元U。For example, in an alternative embodiment, the third monitoring module may include a first high withstand voltage unit H1, a third current limiting resistor R3, a test signal control unit M, a signal generator DY, a current measuring unit I5, a second high withstand voltage unit H2 and a voltage measuring unit U.

详细地,所述第一高耐压单元H1的第一端与所述接地刀闸JD的第一端连接。所述第三限流电阻R3的第一端与所述第一高耐压单元H1的第二端连接。所述试验信号控制单元M的第一端与所述第三限流电阻R3的第二端连接,所述试验信号控制单元M的第二端与所述处理器CPU连接。所述信号发生器DY的第一端与所述试验信号控制单元M的第三端连接,所述信号发生器DY的第二端与所述处理器CPU连接。所述电流测量单元I5的第一端与所述信号发生器DY的第三端连接,所述电流测量单元I5的第二端与所述处理器CPU连接。所述第二高耐压单元H2的第一端与所述接地刀闸JD的第二端连接,所述第二高耐压单元H2的第二端与所述电流测量单元I5的第三端连接(如此,可以形成如图2所示的测试回路Ⅲ)。所述电压测量单元U的第一端与所述第一高耐压单元H1的第二端连接,所述电压测量单元U的第二端与所述第二高耐压单元H2的第二端连接,所述电压测量单元U的第三端与所述处理器CPU连接。In detail, the first end of the first high withstand voltage unit H1 is connected to the first end of the grounding knife switch JD. The first end of the third current limiting resistor R3 is connected to the second end of the first high withstand voltage unit H1. The first end of the test signal control unit M is connected to the second end of the third current limiting resistor R3, and the second end of the test signal control unit M is connected to the processor CPU. The first end of the signal generator DY is connected to the third end of the test signal control unit M, and the second end of the signal generator DY is connected to the processor CPU. The first end of the current measuring unit I5 is connected to the third end of the signal generator DY, and the second end of the current measuring unit I5 is connected to the processor CPU. The first end of the second high withstand voltage unit H2 is connected to the second end of the grounding knife switch JD, and the second end of the second high withstand voltage unit H2 is connected to the third end of the current measuring unit I5 (in this way, a test loop III as shown in Figure 2 can be formed). The first end of the voltage measuring unit U is connected to the second end of the first high withstand voltage unit H1 , the second end of the voltage measuring unit U is connected to the second end of the second high withstand voltage unit H2 , and the third end of the voltage measuring unit U is connected to the processor CPU.

基于此,在实际的测试过程中,在接地刀闸JD合闸、所述第一高耐压单元H1闭合、所述第二高耐压单元H2闭合之后,所述处理器CPU通过电压测量单元U测量得到一个本体电位(如U1),然后,可以控制试验信号控制单元M闭合(导通),使得信号发生器DY输出试验信号(信号发生器DY可以是一个电源装置),如此,所述处理器CPU通过电压测量单元U测量得到一个测试电位(如U2),并通过电流测量单元I5测量得到一个测试电流(如图2所示的I03),如此,可以计算得到相应的回路电阻,如(U2-U1)/I03,其中,通过将本体电位U1排除,可以在一定程度上降低其干扰,使得得到的回路电阻的可靠性可以更高。在其它的一些实施方式中,为了提高监测效率,也可以不用测试本体电位,即回路电阻为U2/I03。另外,在得到回路电阻之后,可以将回路电阻与参考电阻值(可以是一个具体的电阻值,也可以是一个电阻值区间)进行比较,然后,得到接地刀闸JD的合闸可靠性监测结果,例如,在得到的回路电阻大于参考电阻值时,表明接地刀闸JD的合闸可靠性不高(如在长期的使用过程中,导致接地刀闸JD的合闸出现松动的情况等)。如此,回路电阻不仅仅可以表征是否有合闸,还可以表征具体的合闸情况。Based on this, in the actual test process, after the grounding knife switch JD is closed, the first high withstand voltage unit H1 is closed, and the second high withstand voltage unit H2 is closed, the processor CPU measures a body potential (such as U1) through the voltage measurement unit U, and then controls the test signal control unit M to be closed (conducted), so that the signal generator DY outputs a test signal (the signal generator DY can be a power supply device). In this way, the processor CPU measures a test potential (such as U2) through the voltage measurement unit U, and measures a test current (such as I 03 as shown in Figure 2) through the current measurement unit I5. In this way, the corresponding loop resistance can be calculated, such as (U2-U1)/I 03 , wherein, by excluding the body potential U1, its interference can be reduced to a certain extent, so that the reliability of the obtained loop resistance can be higher. In some other implementations, in order to improve the monitoring efficiency, the body potential may not be tested, that is, the loop resistance is U2/I 03 . In addition, after obtaining the loop resistance, the loop resistance can be compared with a reference resistance value (which can be a specific resistance value or a resistance value range), and then the closing reliability monitoring result of the grounding knife switch JD can be obtained. For example, when the obtained loop resistance is greater than the reference resistance value, it indicates that the closing reliability of the grounding knife switch JD is not high (such as the situation that the closing of the grounding knife switch JD becomes loose during long-term use, etc.). In this way, the loop resistance can not only indicate whether the switch is closed, but also indicate the specific closing situation.

示例性地,在一种可以替代的实施方式中,所述第一高耐压单元H1闭合、所述第二高耐压单元H2在断开时可承受10kV/1min耐受电压。For example, in an alternative implementation, the first high voltage withstand unit H1 is closed and the second high voltage withstand unit H2 can withstand a withstand voltage of 10 kV/1 min when it is opened.

示例性地,在一种可以替代的实施方式中,经本申请的发明人的长期研究发现,在接触网的电压过高时,第一高耐压单元H1、第二高耐压单元H2可能会被击穿,如此就会导致后面的器件(如电压测量单元U、电流测量单元I5等)被高压损坏,基于此,所述第三监测模块还可以包括感应电压防止单元P1(一种开关器件),所述感应电压防止单元P1的第一端与所述第一高耐压单元H1的第二端连接,所述感应电压防止单元P1的第二端与所述第二高耐压单元H2的第二端连接,用于对所述第三监测模块进行高压保护。基于此,在测量的过程中,可以将所述感应电压防止单元P1断开,在非测量的过程中,可以将所述感应电压防止单元P1闭合,使得后面的器件被短接,以实现对后面的器件的高压保护。For example, in an alternative implementation, the inventors of the present application have found through long-term research that when the voltage of the contact network is too high, the first high-voltage withstand unit H1 and the second high-voltage withstand unit H2 may be broken down, which will cause the subsequent devices (such as the voltage measurement unit U, the current measurement unit I5, etc.) to be damaged by high voltage. Based on this, the third monitoring module may also include an induction voltage prevention unit P1 (a switching device), the first end of the induction voltage prevention unit P1 is connected to the second end of the first high-voltage withstand unit H1, and the second end of the induction voltage prevention unit P1 is connected to the second end of the second high-voltage withstand unit H2, which is used to perform high-voltage protection on the third monitoring module. Based on this, during the measurement process, the induction voltage prevention unit P1 can be disconnected, and during the non-measurement process, the induction voltage prevention unit P1 can be closed, so that the subsequent devices are short-circuited to achieve high-voltage protection for the subsequent devices.

示例性地,在一种可以替代的实施方式中,所述第三监测模块还可以包括接触网残压隔离二极管(具体的连接如图2所示的G1和G2)。如此,在测量的过程中,若接触网带有残压,接触网残压隔离二极管具有单向导通的特性,且接触网残压隔离二极管的反向耐压可以达到2kV以上,可以起到残压隔离的作用,实现高压隔离,更加安全可靠。For example, in an alternative implementation, the third monitoring module may also include a contact network residual voltage isolation diode (specifically connected as G1 and G2 shown in FIG2 ). In this way, during the measurement process, if the contact network has residual voltage, the contact network residual voltage isolation diode has the characteristic of unidirectional conduction, and the reverse withstand voltage of the contact network residual voltage isolation diode can reach more than 2kV, which can play the role of residual voltage isolation, realize high-voltage isolation, and be safer and more reliable.

本申请实施例还提供了一种可应用于上述的回路连续性监测装置的回路连续性监测方法,可以用于对接触网接地装置进行监测。The embodiment of the present application also provides a loop continuity monitoring method that can be applied to the above-mentioned loop continuity monitoring device, which can be used to monitor the contact network grounding device.

其中,所述接触网接地装置包括接触网线路、接地刀闸JD和回流轨线路。所述接触网线路包括第一接触网线路和第二接触网线路,和/或,所述回流轨线路包括第一回流轨线路和第二回流轨线路。在所述接触网线路包括所述第一接触网线路和所述第二接触网线路时,所述第一接触网线路和所述第二接触网线路并联在所述接地刀闸JD的第一端与接触网之间,以构成包括所述第一接触网线路、所述第二接触网线路和所述接触网的第一测试回路。在所述回流轨线路包括所述第一回流轨线路和所述第二回流轨线路时,所述第一回流轨线路和所述第二回流轨线路并联在所述接地刀闸JD的第二端与回流轨之间,以构成包括所述第一回流轨线路、所述第二回流轨线路和所述回流轨的第二测试回路。另外,所述回路连续性监测装置包括第一监测模块和/或第二监测模块,所述第一监测模块与所述第一测试回路配合设置,所述第二监测模块与所述第二测试回路配合设置。Wherein, the contact network grounding device includes a contact network line, a grounding knife switch JD and a return rail line. The contact network line includes a first contact network line and a second contact network line, and/or the return rail line includes a first return rail line and a second return rail line. When the contact network line includes the first contact network line and the second contact network line, the first contact network line and the second contact network line are connected in parallel between the first end of the grounding knife switch JD and the contact network to form a first test loop including the first contact network line, the second contact network line and the contact network. When the return rail line includes the first return rail line and the second return rail line, the first return rail line and the second return rail line are connected in parallel between the second end of the grounding knife switch JD and the return rail to form a second test loop including the first return rail line, the second return rail line and the return rail. In addition, the loop continuity monitoring device includes a first monitoring module and/or a second monitoring module, the first monitoring module is arranged in conjunction with the first test loop, and the second monitoring module is arranged in conjunction with the second test loop.

上述的接触网接地装置和回路连续性监测装置的具体内容如前相关描述,基于此,所述回路连续性监测方法可以包括以下的步骤:The specific contents of the above-mentioned overhead line grounding device and loop continuity monitoring device are as described above. Based on this, the loop continuity monitoring method may include the following steps:

可以利用所述第一监测模块,对所述第一测试回路的回路连续性进行监测,得到对应的第一测试回路连续性监测结果,其中,所述第一测试回路连续性监测结果可以用于反映所述第一测试回路的回路连续性,如所述第一测试回路处于连接闭合状态或未处于连接闭合状态;和/或The first monitoring module can be used to monitor the loop continuity of the first test loop to obtain a corresponding first test loop continuity monitoring result, wherein the first test loop continuity monitoring result can be used to reflect the loop continuity of the first test loop, such as whether the first test loop is in a connected closed state or not in a connected closed state; and/or

可以利用所述第二监测模块,对所述第二测试回路的回路连续性进行监测,得到对应的第二测试回路连续性监测结果,其中,所述第二测试回路连续性监测结果可以用于反映所述第二测试回路的回路连续性,如所述第二测试回路处于连接闭合状态或未处于连接闭合状态。The second monitoring module can be used to monitor the loop continuity of the second test loop to obtain a corresponding second test loop continuity monitoring result, wherein the second test loop continuity monitoring result can be used to reflect the loop continuity of the second test loop, such as whether the second test loop is in a connected closed state or not in a connected closed state.

示例性地,在一种可以替代的实施方式中,所述回路连续性监测装置还包括处理器CPU,且所述第一监测模块包括第一激励电流互感器CT1和第一监测电流互感器CT2,所述第一激励电流互感器CT1和所述第一监测电流互感器CT2分别设置于所述第一测试回路,所述第一激励电流互感器CT1响应于输入的第一电流在处于闭合连接状态的第一测试回路中产生第一感应电流,所述第一监测电流互感器CT2响应于所述第一感应电流输出第二电流。基于此,所述利用所述第一监测模块,对所述第一测试回路的回路连续性进行监测,得到对应的第一测试回路连续性监测结果的步骤,可以进一步包括以下内容:Exemplarily, in an alternative embodiment, the loop continuity monitoring device further includes a processor CPU, and the first monitoring module includes a first excitation current transformer CT1 and a first monitoring current transformer CT2, the first excitation current transformer CT1 and the first monitoring current transformer CT2 are respectively arranged in the first test loop, the first excitation current transformer CT1 generates a first induced current in the first test loop in a closed connection state in response to the input first current, and the first monitoring current transformer CT2 outputs a second current in response to the first induced current. Based on this, the step of using the first monitoring module to monitor the loop continuity of the first test loop and obtain the corresponding first test loop continuity monitoring result can further include the following:

所述处理器CPU控制外部电源向所述第一激励电流互感器CT1提供第一电流,并监测所述第一监测电流互感器CT2是否有输出第二电流;The processor CPU controls the external power supply to provide the first excitation current transformer CT1 with a first current, and monitors whether the first monitoring current transformer CT2 outputs a second current;

所述处理器CPU在监测到所述第一监测电流互感器CT2有输出所述第二电流时,输出用于表征所述第一测试回路处于闭合连接状态的第一测试回路连续性监测结果,所述处理器CPU在监测到所述第一监测电流互感器CT2没有输出所述第二电流时,输出用于表征所述第一测试回路未处于闭合连接状态的第一测试回路连续性监测结果。When the processor CPU detects that the first monitoring current transformer CT2 outputs the second current, it outputs a first test loop continuity monitoring result for characterizing that the first test loop is in a closed connection state. When the processor CPU detects that the first monitoring current transformer CT2 does not output the second current, it outputs a first test loop continuity monitoring result for characterizing that the first test loop is not in a closed connection state.

示例性地,在一种可以替代的实施方式中,处理器CPU在接到测量指令(如来自于接地装置控制器(PLC)等控制设备)后,可以闭合第一电子开关K1,接地连续性监测功能启用,持续测量第一测试回路的电流2秒(具体的时间长度可以设置)后,断开第一电子开关K1,退出连续性监测功能。Exemplarily, in an alternative embodiment, after receiving a measurement instruction (such as from a control device such as a grounding device controller (PLC)), the processor CPU can close the first electronic switch K1, enable the grounding continuity monitoring function, and continuously measure the current of the first test loop for 2 seconds (the specific time length can be set), and then disconnect the first electronic switch K1 to exit the continuity monitoring function.

示例性地,在一种可以替代的实施方式中,所述回路连续性监测装置还包括处理器CPU,且所述第二监测模块包括第二激励电流互感器CT3和第二监测电流互感器CT4,所述第二激励电流互感器CT3和所述第二监测电流互感器CT4分别设置于所述第二测试回路,所述第二激励电流互感器CT3响应于输入的第三电流在处于闭合连接状态的第二测试回路中产生第二感应电流,所述第二监测电流互感器CT4响应于所述第二感应电流输出第四电流。基于此,所述利用所述第二监测模块,对所述第二测试回路的回路连续性进行监测,得到对应的第二测试回路连续性监测结果的步骤,可以进一步包括以下内容:Exemplarily, in an alternative embodiment, the loop continuity monitoring device further includes a processor CPU, and the second monitoring module includes a second excitation current transformer CT3 and a second monitoring current transformer CT4, the second excitation current transformer CT3 and the second monitoring current transformer CT4 are respectively arranged in the second test loop, the second excitation current transformer CT3 generates a second induced current in the second test loop in a closed connection state in response to the input third current, and the second monitoring current transformer CT4 outputs a fourth current in response to the second induced current. Based on this, the step of using the second monitoring module to monitor the loop continuity of the second test loop and obtain the corresponding second test loop continuity monitoring result can further include the following:

所述处理器CPU控制外部电源向所述第二激励电流互感器CT3提供第三电流,并监测所述第二监测电流互感器CT4是否有输出第四电流;The processor CPU controls the external power supply to provide the third current to the second excitation current transformer CT3, and monitors whether the second monitoring current transformer CT4 outputs the fourth current;

所述处理器CPU在监测到所述第二监测电流互感器CT4有输出所述第四电流时,输出用于表征所述第二测试回路处于闭合连接状态的第二测试回路连续性监测结果,所述处理器CPU在监测到所述第二监测电流互感器CT4没有输出所述第四电流时,输出用于表征所述第二测试回路未处于闭合连接状态的第二测试回路连续性监测结果。When the processor CPU detects that the second monitoring current transformer CT4 outputs the fourth current, it outputs a second test loop continuity monitoring result for characterizing that the second test loop is in a closed connection state. When the processor CPU detects that the second monitoring current transformer CT4 does not output the fourth current, it outputs a second test loop continuity monitoring result for characterizing that the second test loop is not in a closed connection state.

示例性地,在一种可以替代的实施方式中,处理器CPU在接到测量指令(如来自于接地装置控制器(PLC)等控制设备)后,可以闭合第二电子开关K2,接地连续性监测功能启用,持续测量第二测试回路的电流2秒(具体的时间长度可以设置)后,断开第二电子开关K2,退出连续性监测功能。Exemplarily, in an alternative embodiment, after receiving a measurement instruction (such as from a control device such as a grounding device controller (PLC)), the processor CPU can close the second electronic switch K2, enable the grounding continuity monitoring function, and continuously measure the current of the second test loop for 2 seconds (the specific time length can be set), and then disconnect the second electronic switch K2 to exit the continuity monitoring function.

示例性地,在一种可以替代的实施方式中,所述回路连续性监测装置还可以包括处理器CPU和第三监测模块。所述第三监测模块包括第一高耐压单元H1、第三限流电阻R3、试验信号控制单元M、信号发生器DY、电流测量单元I5、第二高耐压单元H2和电压测量单元U。所述第一高耐压单元H1的第一端与所述接地刀闸JD的第一端连接,所述第三限流电阻R3的第一端与所述第一高耐压单元H1的第二端连接,所述试验信号控制单元M的第一端与所述第三限流电阻R3的第二端连接,所述试验信号控制单元M的第二端与所述处理器CPU连接,所述信号发生器DY的第一端与所述试验信号控制单元M的第三端连接,所述信号发生器DY的第二端与所述处理器CPU连接,所述电流测量单元I5的第一端与所述信号发生器DY的第三端连接,所述电流测量单元I5的第二端与所述处理器CPU连接,所述第二高耐压单元H2的第一端与所述接地刀闸JD的第二端连接,所述第二高耐压单元H2的第二端与所述电流测量单元I5的第三端连接,所述电压测量单元U的第一端与所述第一高耐压单元H1的第二端连接,所述电压测量单元U的第二端与所述第二高耐压单元H2的第二端连接,所述电压测量单元U的第三端与所述处理器CPU连接。基于此,所述回路连续性监测方法还可以包括以下步骤:For example, in an alternative embodiment, the loop continuity monitoring device may further include a processor CPU and a third monitoring module. The third monitoring module includes a first high withstand voltage unit H1, a third current limiting resistor R3, a test signal control unit M, a signal generator DY, a current measuring unit I5, a second high withstand voltage unit H2 and a voltage measuring unit U. A first end of the first high withstand voltage unit H1 is connected to a first end of the grounding switch JD, a first end of the third current limiting resistor R3 is connected to a second end of the first high withstand voltage unit H1, a first end of the test signal control unit M is connected to a second end of the third current limiting resistor R3, a second end of the test signal control unit M is connected to the processor CPU, a first end of the signal generator DY is connected to a third end of the test signal control unit M, a second end of the signal generator DY is connected to the processor CPU, a first end of the current measuring unit I5 is connected to a third end of the signal generator DY, a second end of the current measuring unit I5 is connected to the processor CPU, a first end of the second high withstand voltage unit H2 is connected to a second end of the grounding switch JD, a second end of the second high withstand voltage unit H2 is connected to a third end of the current measuring unit I5, a first end of the voltage measuring unit U is connected to a second end of the first high withstand voltage unit H1, a second end of the voltage measuring unit U is connected to a second end of the second high withstand voltage unit H2, and a third end of the voltage measuring unit U is connected to the processor CPU. Based on this, the loop continuity monitoring method may further include the following steps:

在所述接地刀闸JD闭合、所述第一高耐压单元H1闭合、所述第二高耐压单元H2闭合后,所述处理器CPU控制所述电压测量单元U对所述第一高耐压单元H1的第二端和所述第二高耐压单元H2的第二端之间的电压进行测量,得到第一电压;After the grounding switch JD is closed, the first high withstand voltage unit H1 is closed, and the second high withstand voltage unit H2 is closed, the processor CPU controls the voltage measuring unit U to measure the voltage between the second end of the first high withstand voltage unit H1 and the second end of the second high withstand voltage unit H2 to obtain a first voltage;

在得到所述第一电压之后,所述处理器CPU控制所述信号发生器DY通过所述试验信号控制单元M和所述第三限流电阻R3,输出测试电流,且控制所述电压测量单元U对所述第一高耐压单元H1的第二端和所述第二高耐压单元H2的第二端之间的电压进行测量,得到第二电压,并控制所述电流测量单元I5对所述测试电流进行测量;After obtaining the first voltage, the processor CPU controls the signal generator DY to output a test current through the test signal control unit M and the third current limiting resistor R3, and controls the voltage measuring unit U to measure the voltage between the second end of the first high withstand voltage unit H1 and the second end of the second high withstand voltage unit H2 to obtain a second voltage, and controls the current measuring unit I5 to measure the test current;

所述处理器CPU基于所述第一电压、所述第二电压和所述测试电流,确定出所述接地刀闸JD的回路电阻(如先计算第二电压与第一电压之间的电压差值,然后,再计算该电压差值与测试电流之间的比值),并基于所述回路电阻确定所述接地刀闸JD对应的第三回路连续性监测结果。The processor CPU determines the loop resistance of the grounding switch JD based on the first voltage, the second voltage and the test current (such as first calculating the voltage difference between the second voltage and the first voltage, and then calculating the ratio between the voltage difference and the test current), and determines the third loop continuity monitoring result corresponding to the grounding switch JD based on the loop resistance.

基于以上内容,第一方面,采用上下双电缆(线路)的连接方式,可以从物理层面增强接触网接地装置的可靠性,同时便于监测接触网接地装置的电缆的连续性。第二方面,回路连续性监测装置的体积小,增设该回路连续性监测装置后对接触网接地装置的外形体积影响小,可以满足现场的安装要求。第三方面,回路连续性监测装置与牵引供电电路中的高压部分没有直接接触的风险,牵引供电系统正常运行时,即使回路连续性监测装置损坏,也不会影响供电系统的正常运行。第四方面,回路连续性监测装置的功能配置灵活,是否启用接地连续性监测功能可通过后台进行配置。第五方面,在开关闭合前、后各2秒内(时间可以设置,总测试时间不超过5秒),可以注入测试信号,测试完成后自动退出,测试信号频率可以根据用户要求定制,确保不会影响牵地铁信号系统的正常工作。第六方面,当满足测量条件时,单台回路连续性监测装置即可满足测量功能,无需配合外部设备进行测试,可靠性高。第七方面,接地刀闸连续性测试与接线电缆连续性测试可以独立进行,测试回路的启用可以通过软件进行配置,接地刀闸合闸前(测试接线电缆的连续性)和合闸后(测试接地刀闸的连续性)利用不同的方式进行测试,更加可靠。第八方面,可以定位到具体的故障点:上接线连续性故障(如图2所示的A1、B1)、下线接线连续性故障(如图2所示的A2、B2)、刀闸连续性故障,如此,可以便于检修。Based on the above, firstly, the connection method of upper and lower double cables (lines) can enhance the reliability of the contact network grounding device from a physical level, and at the same time facilitate the monitoring of the continuity of the cables of the contact network grounding device. Secondly, the loop continuity monitoring device is small in size, and the addition of the loop continuity monitoring device has little impact on the external volume of the contact network grounding device, which can meet the installation requirements on site. Thirdly, there is no risk of direct contact between the loop continuity monitoring device and the high-voltage part of the traction power supply circuit. When the traction power supply system is operating normally, even if the loop continuity monitoring device is damaged, it will not affect the normal operation of the power supply system. Fourthly, the function configuration of the loop continuity monitoring device is flexible, and whether to enable the grounding continuity monitoring function can be configured through the background. Fifthly, within 2 seconds before and after the switch is closed (the time can be set, and the total test time does not exceed 5 seconds), the test signal can be injected, and it will automatically exit after the test is completed. The test signal frequency can be customized according to user requirements to ensure that it will not affect the normal operation of the traction iron signal system. Sixthly, when the measurement conditions are met, a single loop continuity monitoring device can meet the measurement function, without the need to cooperate with external equipment for testing, and has high reliability. Seventhly, the continuity test of the grounding knife switch and the continuity test of the wiring cable can be performed independently, the activation of the test loop can be configured through software, and the grounding knife switch can be tested in different ways before closing (testing the continuity of the wiring cable) and after closing (testing the continuity of the grounding knife switch), which is more reliable. Eighthly, the specific fault point can be located: upper wiring continuity fault (A1, B1 as shown in Figure 2), lower wiring continuity fault (A2, B2 as shown in Figure 2), knife switch continuity fault, so that it can be easily repaired.

综上所述,本申请提供的接触网接地设备、回路连续性监测装置及方法中,回路连续性监测装置用于对接触网接地装置进行监测,接触网接地装置包括接触网线路、接地刀闸和回流轨线路,接触网线路包括第一接触网线路和第二接触网线路,构成第一测试回路,回流轨线路包括第一回流轨线路和第二回流轨线路,构成第二测试回路。回路连续性监测装置包括第一监测模块、第二监测模块,用于对第一测试回路和第二测试回路的回路连续性分别进行监测。基于上述内容,由于接触网线路包括的第一接触网线路和第二接触网线路能够与接触网构成第一测试回路,使得可以单独对第一测试回路进行回路连续性监测,同样地,由于回流轨线路包括的第一回流轨线路和第二回流轨线路能够与回流轨构成第二测试回路,使得也可以单独对第二测试回路进行回路连续性监测,如此,可以实现更小粒度的回路连续性监测,从而提高回路连续性监测的可靠性,便于进行异常定位(使得相应的维护操作可以更高效),因此,可以改善现有技术中存在的对接触网接地装置进行监测的可靠度相对不高的问题。并且,是直接利用接触网接地装置自身构成的回路,可以降低回路连续性监测装置的复杂度,使得体积也可以减小,在安装于隧道端口井处等位置时,可以使得回路连续性监测装置的安装空间不会受到限制,如此,可以使得其应用场景也不受限制,因而,具有较高的实用价值,另外,由于接触网接地装置包括第一接触网线路和第二接触网线路、第一回流轨线路和第二回流轨线路这样的双线路设置,还可以使得接触网接地装置的接地可靠性得到提高,从而保障在接触网的检修过程中,能够对接触网进行有效的接地,避免了无效接地而导致的人身安全事故等问题。In summary, in the overhead contact network grounding equipment, loop continuity monitoring device and method provided by the present application, the loop continuity monitoring device is used to monitor the overhead contact network grounding device, the overhead contact network grounding device includes an overhead contact network line, an earthing knife switch and a return rail line, the overhead contact network line includes a first overhead contact network line and a second overhead contact network line, constituting a first test loop, and the return rail line includes a first return rail line and a second return rail line, constituting a second test loop. The loop continuity monitoring device includes a first monitoring module and a second monitoring module, which are used to monitor the loop continuity of the first test loop and the second test loop respectively. Based on the above content, since the contact network line includes the first contact network line and the second contact network line which can form a first test loop with the contact network, the loop continuity monitoring of the first test loop can be performed separately. Similarly, since the return rail line includes the first return rail line and the second return rail line which can form a second test loop with the return rail, the loop continuity monitoring of the second test loop can also be performed separately. In this way, loop continuity monitoring with a smaller granularity can be achieved, thereby improving the reliability of loop continuity monitoring and facilitating abnormality positioning (making the corresponding maintenance operations more efficient). Therefore, the problem of relatively low reliability in monitoring the contact network grounding device in the prior art can be improved. Moreover, the loop formed by the contact network grounding device itself is directly utilized, which can reduce the complexity of the loop continuity monitoring device and reduce its volume. When installed at a location such as a tunnel port well, the installation space of the loop continuity monitoring device will not be limited. In this way, its application scenarios will not be restricted. Therefore, it has a high practical value. In addition, since the contact network grounding device includes a dual-line setting of a first contact network line and a second contact network line, a first return rail line and a second return rail line, the grounding reliability of the contact network grounding device can also be improved, thereby ensuring that the contact network can be effectively grounded during the maintenance of the contact network, avoiding problems such as personal safety accidents caused by invalid grounding.

以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above description is only the preferred embodiment of the present application and is not intended to limit the present application. For those skilled in the art, the present application may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present application shall be included in the protection scope of the present application.

Claims (9)

1.一种回路连续性监测装置,其特征在于,用于对接触网接地装置进行监测,所述接触网接地装置包括接触网线路、接地刀闸和回流轨线路,所述接触网线路包括第一接触网线路和第二接触网线路,和/或,所述回流轨线路包括第一回流轨线路和第二回流轨线路;1. A loop continuity monitoring device, characterized in that it is used to monitor a contact network grounding device, wherein the contact network grounding device comprises a contact network line, a grounding switch and a return rail line, the contact network line comprises a first contact network line and a second contact network line, and/or the return rail line comprises a first return rail line and a second return rail line; 在所述接触网线路包括所述第一接触网线路和所述第二接触网线路时,所述第一接触网线路和所述第二接触网线路并联在所述接地刀闸的第一端与接触网之间,以构成包括所述第一接触网线路、所述第二接触网线路和所述接触网的第一测试回路;When the overhead contact network line includes the first overhead contact network line and the second overhead contact network line, the first overhead contact network line and the second overhead contact network line are connected in parallel between the first end of the grounding knife switch and the overhead contact network to form a first test loop including the first overhead contact network line, the second overhead contact network line and the overhead contact network; 在所述回流轨线路包括所述第一回流轨线路和所述第二回流轨线路时,所述第一回流轨线路和所述第二回流轨线路并联在所述接地刀闸的第二端与回流轨之间,以构成包括所述第一回流轨线路、所述第二回流轨线路和所述回流轨的第二测试回路;When the return rail circuit includes the first return rail circuit and the second return rail circuit, the first return rail circuit and the second return rail circuit are connected in parallel between the second end of the grounding knife switch and the return rail to form a second test loop including the first return rail circuit, the second return rail circuit and the return rail; 其中,所述回路连续性监测装置包括第一监测模块和/或第二监测模块,所述第一监测模块与所述第一测试回路配合设置,所述第一监测模块用于对所述第一测试回路的回路连续性进行监测;所述第二监测模块与所述第二测试回路配合设置,所述第二监测模块用于对所述第二测试回路的回路连续性进行监测;Wherein, the loop continuity monitoring device includes a first monitoring module and/or a second monitoring module, the first monitoring module is arranged in cooperation with the first test loop, and the first monitoring module is used to monitor the loop continuity of the first test loop; the second monitoring module is arranged in cooperation with the second test loop, and the second monitoring module is used to monitor the loop continuity of the second test loop; 其中,所述回路连续性监测装置还包括处理器,且所述第一监测模块包括第一激励电流互感器和第一监测电流互感器,所述第一激励电流互感器和所述第一监测电流互感器分别设置于所述第一测试回路;Wherein, the loop continuity monitoring device further includes a processor, and the first monitoring module includes a first excitation current transformer and a first monitoring current transformer, and the first excitation current transformer and the first monitoring current transformer are respectively arranged in the first test loop; 其中,所述处理器在控制外部电源向所述第一激励电流互感器提供第一电流之后,若所述第一监测电流互感器有输出第二电流,则确定所述第一测试回路处于闭合连接状态,若所述第一监测电流互感器没有输出第二电流,则确定所述第一测试回路未处于闭合连接状态;wherein, after the processor controls the external power supply to provide the first excitation current transformer with the first current, if the first monitoring current transformer outputs the second current, it is determined that the first test loop is in a closed connection state; if the first monitoring current transformer does not output the second current, it is determined that the first test loop is not in a closed connection state; 并且,所述第一激励电流互感器响应于所述第一电流,在处于闭合连接状态的所述第一测试回路中产生第一感应电流,所述第一监测电流互感器响应于所述第一感应电流输出所述第二电流。Furthermore, the first excitation current transformer generates a first induced current in the first test loop in a closed connection state in response to the first current, and the first monitoring current transformer outputs the second current in response to the first induced current. 2.一种接触网接地设备,其特征在于,包括接触网接地装置和回路连续性监测装置,所述接触网接地装置包括接触网线路、接地刀闸和回流轨线路,所述接触网线路、所述接地刀闸和所述回流轨线路串联在接触网和回流轨之间,用于对所述接触网和所述回流轨进行接地管控;2. A contact network grounding device, characterized in that it comprises a contact network grounding device and a loop continuity monitoring device, wherein the contact network grounding device comprises a contact network line, a grounding knife switch and a return rail line, and the contact network line, the grounding knife switch and the return rail line are connected in series between the contact network and the return rail, and are used to perform grounding control on the contact network and the return rail; 所述接触网线路包括第一接触网线路和第二接触网线路,和/或,所述回流轨线路包括第一回流轨线路和第二回流轨线路;The contact network line includes a first contact network line and a second contact network line, and/or the return rail line includes a first return rail line and a second return rail line; 在所述接触网线路包括所述第一接触网线路和所述第二接触网线路时,所述第一接触网线路和所述第二接触网线路并联在所述接地刀闸的第一端与所述接触网之间,以构成包括所述第一接触网线路、所述第二接触网线路和所述接触网的第一测试回路;When the overhead contact network line includes the first overhead contact network line and the second overhead contact network line, the first overhead contact network line and the second overhead contact network line are connected in parallel between the first end of the grounding knife switch and the overhead contact network to form a first test loop including the first overhead contact network line, the second overhead contact network line and the overhead contact network; 在所述回流轨线路包括所述第一回流轨线路和所述第二回流轨线路时,所述第一回流轨线路和所述第二回流轨线路并联在所述接地刀闸的第二端与所述回流轨之间,以构成包括所述第一回流轨线路、所述第二回流轨线路和所述回流轨的第二测试回路;When the return rail circuit includes the first return rail circuit and the second return rail circuit, the first return rail circuit and the second return rail circuit are connected in parallel between the second end of the grounding knife switch and the return rail to form a second test loop including the first return rail circuit, the second return rail circuit and the return rail; 所述回路连续性监测装置包括第一监测模块和/或第二监测模块,所述第一监测模块与所述第一测试回路配合设置,所述第一监测模块用于对所述第一测试回路的回路连续性进行监测;所述第二监测模块与所述第二测试回路配合设置,所述第二监测模块用于对所述第二测试回路的回路连续性进行监测;The loop continuity monitoring device includes a first monitoring module and/or a second monitoring module, the first monitoring module is arranged in cooperation with the first test loop, and the first monitoring module is used to monitor the loop continuity of the first test loop; the second monitoring module is arranged in cooperation with the second test loop, and the second monitoring module is used to monitor the loop continuity of the second test loop; 其中,所述回路连续性监测装置还包括处理器,且所述第一监测模块包括第一激励电流互感器和第一监测电流互感器,所述第一激励电流互感器和所述第一监测电流互感器分别设置于所述第一测试回路;Wherein, the loop continuity monitoring device further includes a processor, and the first monitoring module includes a first excitation current transformer and a first monitoring current transformer, and the first excitation current transformer and the first monitoring current transformer are respectively arranged in the first test loop; 其中,所述处理器在控制外部电源向所述第一激励电流互感器提供第一电流之后,若所述第一监测电流互感器有输出第二电流,则确定所述第一测试回路处于闭合连接状态,若所述第一监测电流互感器没有输出第二电流,则确定所述第一测试回路未处于闭合连接状态;wherein, after the processor controls the external power supply to provide the first excitation current transformer with the first current, if the first monitoring current transformer outputs the second current, it is determined that the first test loop is in a closed connection state; if the first monitoring current transformer does not output the second current, it is determined that the first test loop is not in a closed connection state; 并且,所述第一激励电流互感器响应于所述第一电流,在处于闭合连接状态的所述第一测试回路中产生第一感应电流,所述第一监测电流互感器响应于所述第一感应电流输出所述第二电流。Furthermore, the first excitation current transformer generates a first induced current in the first test loop in a closed connection state in response to the first current, and the first monitoring current transformer outputs the second current in response to the first induced current. 3.根据权利要求2所述的接触网接地设备,其特征在于,所述回路连续性监测装置还包括处理器,且所述第二监测模块包括第二激励电流互感器和第二监测电流互感器,所述第二激励电流互感器和所述第二监测电流互感器分别设置于所述第二测试回路;3. The overhead contact grounding device according to claim 2, characterized in that the loop continuity monitoring device further comprises a processor, and the second monitoring module comprises a second excitation current transformer and a second monitoring current transformer, and the second excitation current transformer and the second monitoring current transformer are respectively arranged in the second test loop; 其中,所述处理器在控制外部电源向所述第二激励电流互感器提供第三电流之后,若所述第二监测电流互感器有输出第四电流,则确定所述第二测试回路处于闭合连接状态,若所述第二监测电流互感器没有输出第四电流,则确定所述第二测试回路未处于闭合连接状态;wherein, after the processor controls the external power supply to provide the third current to the second excitation current transformer, if the second monitoring current transformer outputs the fourth current, it is determined that the second test loop is in a closed connection state; if the second monitoring current transformer does not output the fourth current, it is determined that the second test loop is not in a closed connection state; 并且,所述第二激励电流互感器响应于所述第三电流,在处于闭合连接状态的所述第二测试回路中产生第二感应电流,所述第二监测电流互感器响应于所述第二感应电流输出所述第四电流。Furthermore, the second excitation current transformer generates a second induced current in the second test loop in a closed connection state in response to the third current, and the second monitoring current transformer outputs the fourth current in response to the second induced current. 4.根据权利要求2-3任意一项所述的接触网接地设备,其特征在于,所述回路连续性监测装置还包括第三监测模块,其中,所述第三监测模块与所述接地刀闸配合设置,用于对所述接地刀闸的回路连续性进行监测。4. The contact network grounding equipment according to any one of claims 2-3 is characterized in that the loop continuity monitoring device also includes a third monitoring module, wherein the third monitoring module is arranged in cooperation with the grounding switch to monitor the loop continuity of the grounding switch. 5.根据权利要求4所述的接触网接地设备,其特征在于,所述回路连续性监测装置还包括处理器,所述第三监测模块包括:5. The contact network grounding device according to claim 4, characterized in that the loop continuity monitoring device further comprises a processor, and the third monitoring module comprises: 第一高耐压单元,其中,所述第一高耐压单元的第一端与所述接地刀闸的第一端连接;A first high voltage withstand unit, wherein a first end of the first high voltage withstand unit is connected to a first end of the grounding switch; 限流电阻,其中,所述限流电阻的第一端与所述第一高耐压单元的第二端连接;A current limiting resistor, wherein a first end of the current limiting resistor is connected to a second end of the first high withstand voltage unit; 试验信号控制单元,其中,所述试验信号控制单元的第一端与所述限流电阻的第二端连接,所述试验信号控制单元的第二端与所述处理器连接;A test signal control unit, wherein a first end of the test signal control unit is connected to a second end of the current limiting resistor, and a second end of the test signal control unit is connected to the processor; 信号发生器,其中,所述信号发生器的第一端与所述试验信号控制单元的第三端连接,所述信号发生器的第二端与所述处理器连接;A signal generator, wherein a first end of the signal generator is connected to a third end of the test signal control unit, and a second end of the signal generator is connected to the processor; 电流测量单元,其中,所述电流测量单元的第一端与所述信号发生器的第三端连接,所述电流测量单元的第二端与所述处理器连接;a current measuring unit, wherein a first terminal of the current measuring unit is connected to a third terminal of the signal generator, and a second terminal of the current measuring unit is connected to the processor; 第二高耐压单元,其中,所述第二高耐压单元的第一端与所述接地刀闸的第二端连接,所述第二高耐压单元的第二端与所述电流测量单元的第三端连接;A second high-voltage withstand unit, wherein a first end of the second high-voltage withstand unit is connected to a second end of the grounding switch, and a second end of the second high-voltage withstand unit is connected to a third end of the current measuring unit; 电压测量单元,其中,所述电压测量单元的第一端与所述第一高耐压单元的第二端连接,所述电压测量单元的第二端与所述第二高耐压单元的第二端连接,所述电压测量单元的第三端与所述处理器连接。A voltage measuring unit, wherein a first end of the voltage measuring unit is connected to a second end of the first high withstand voltage unit, a second end of the voltage measuring unit is connected to a second end of the second high withstand voltage unit, and a third end of the voltage measuring unit is connected to the processor. 6.根据权利要求5所述的接触网接地设备,其特征在于,所述第三监测模块还包括:6. The contact network grounding device according to claim 5, characterized in that the third monitoring module further comprises: 感应电压防止单元,其中,所述感应电压防止单元的第一端与所述第一高耐压单元的第二端连接,所述感应电压防止单元的第二端与所述第二高耐压单元的第二端连接,所述感应电压防止单元用于对所述第三监测模块进行高压保护。An induced voltage prevention unit, wherein the first end of the induced voltage prevention unit is connected to the second end of the first high voltage withstand unit, the second end of the induced voltage prevention unit is connected to the second end of the second high voltage withstand unit, and the induced voltage prevention unit is used to perform high voltage protection on the third monitoring module. 7.一种回路连续性监测方法,其特征在于,应用于回路连续性监测装置,以对接触网接地装置进行监测;7. A loop continuity monitoring method, characterized in that it is applied to a loop continuity monitoring device to monitor a contact network grounding device; 所述接触网接地装置包括接触网线路、接地刀闸和回流轨线路,所述接触网线路包括第一接触网线路和第二接触网线路,和/或,所述回流轨线路包括第一回流轨线路和第二回流轨线路;The contact network grounding device comprises a contact network line, a grounding switch and a return rail line, the contact network line comprises a first contact network line and a second contact network line, and/or the return rail line comprises a first return rail line and a second return rail line; 在所述接触网线路包括所述第一接触网线路和所述第二接触网线路时,所述第一接触网线路和所述第二接触网线路并联在所述接地刀闸的第一端与接触网之间,以构成包括所述第一接触网线路、所述第二接触网线路和所述接触网的第一测试回路,在所述回流轨线路包括所述第一回流轨线路和所述第二回流轨线路时,所述第一回流轨线路和所述第二回流轨线路并联在所述接地刀闸的第二端与回流轨之间,以构成包括所述第一回流轨线路、所述第二回流轨线路和所述回流轨的第二测试回路;When the overhead contact network line includes the first overhead contact network line and the second overhead contact network line, the first overhead contact network line and the second overhead contact network line are connected in parallel between the first end of the earthing knife switch and the overhead contact network to form a first test loop including the first overhead contact network line, the second overhead contact network line and the overhead contact network; when the return rail line includes the first return rail line and the second return rail line, the first return rail line and the second return rail line are connected in parallel between the second end of the earthing knife switch and the return rail to form a second test loop including the first return rail line, the second return rail line and the return rail; 其中,所述回路连续性监测装置包括第一监测模块和/或第二监测模块,所述第一监测模块与所述第一测试回路配合设置,所述第二监测模块与所述第二测试回路配合设置;Wherein, the loop continuity monitoring device includes a first monitoring module and/or a second monitoring module, the first monitoring module is arranged in cooperation with the first test loop, and the second monitoring module is arranged in cooperation with the second test loop; 其中,所述回路连续性监测方法包括:Wherein, the loop continuity monitoring method comprises: 利用所述第一监测模块,对所述第一测试回路的回路连续性进行监测,得到对应的第一测试回路连续性监测结果;和/或Using the first monitoring module, monitoring the loop continuity of the first test loop to obtain a corresponding first test loop continuity monitoring result; and/or 利用所述第二监测模块,对所述第二测试回路的回路连续性进行监测,得到对应的第二测试回路连续性监测结果;Using the second monitoring module, monitoring the loop continuity of the second test loop to obtain a corresponding second test loop continuity monitoring result; 其中,所述回路连续性监测装置还包括处理器,且所述第一监测模块包括第一激励电流互感器和第一监测电流互感器,所述第一激励电流互感器和所述第一监测电流互感器分别设置于所述第一测试回路,所述第一激励电流互感器响应于输入的第一电流在处于闭合连接状态的第一测试回路中产生第一感应电流,所述第一监测电流互感器响应于所述第一感应电流输出第二电流,所述利用所述第一监测模块,对所述第一测试回路的回路连续性进行监测,得到对应的第一测试回路连续性监测结果的步骤,包括:Wherein, the loop continuity monitoring device further includes a processor, and the first monitoring module includes a first excitation current transformer and a first monitoring current transformer, the first excitation current transformer and the first monitoring current transformer are respectively arranged in the first test loop, the first excitation current transformer generates a first induced current in the first test loop in a closed connection state in response to the input first current, and the first monitoring current transformer outputs a second current in response to the first induced current, and the step of using the first monitoring module to monitor the loop continuity of the first test loop and obtain the corresponding first test loop continuity monitoring result includes: 所述处理器控制外部电源向所述第一激励电流互感器提供第一电流,并监测所述第一监测电流互感器是否有输出第二电流;The processor controls the external power supply to provide the first excitation current transformer with a first current, and monitors whether the first monitoring current transformer outputs a second current; 所述处理器在监测到所述第一监测电流互感器有输出所述第二电流时,输出用于表征所述第一测试回路处于闭合连接状态的第一测试回路连续性监测结果,所述处理器在监测到所述第一监测电流互感器没有输出所述第二电流时,输出用于表征所述第一测试回路未处于闭合连接状态的第一测试回路连续性监测结果。When the processor detects that the first monitoring current transformer outputs the second current, the processor outputs a first test loop continuity monitoring result used to characterize that the first test loop is in a closed connection state. When the processor detects that the first monitoring current transformer does not output the second current, the processor outputs a first test loop continuity monitoring result used to characterize that the first test loop is not in a closed connection state. 8.根据权利要求7所述的回路连续性监测方法,其特征在于,所述第二监测模块包括第二激励电流互感器和第二监测电流互感器,所述第二激励电流互感器和所述第二监测电流互感器分别设置于所述第二测试回路,所述第二激励电流互感器响应于输入的第三电流在处于闭合连接状态的第二测试回路中产生第二感应电流,所述第二监测电流互感器响应于所述第二感应电流输出第四电流;8. The loop continuity monitoring method according to claim 7, characterized in that the second monitoring module comprises a second excitation current transformer and a second monitoring current transformer, the second excitation current transformer and the second monitoring current transformer are respectively arranged in the second test loop, the second excitation current transformer generates a second induced current in the second test loop in a closed connection state in response to an input third current, and the second monitoring current transformer outputs a fourth current in response to the second induced current; 其中,所述利用所述第二监测模块,对所述第二测试回路的回路连续性进行监测,得到对应的第二测试回路连续性监测结果的步骤,包括:The step of using the second monitoring module to monitor the loop continuity of the second test loop to obtain the corresponding second test loop continuity monitoring result includes: 所述处理器控制外部电源向所述第二激励电流互感器提供第三电流,并监测所述第二监测电流互感器是否有输出第四电流;The processor controls the external power supply to provide the third current to the second excitation current transformer, and monitors whether the second monitoring current transformer outputs the fourth current; 所述处理器在监测到所述第二监测电流互感器有输出所述第四电流时,输出用于表征所述第二测试回路处于闭合连接状态的第二测试回路连续性监测结果,所述处理器在监测到所述第二监测电流互感器没有输出所述第四电流时,输出用于表征所述第二测试回路未处于闭合连接状态的第二测试回路连续性监测结果。When the processor detects that the second monitoring current transformer outputs the fourth current, the processor outputs a second test loop continuity monitoring result for characterizing that the second test loop is in a closed connection state. When the processor detects that the second monitoring current transformer does not output the fourth current, the processor outputs a second test loop continuity monitoring result for characterizing that the second test loop is not in a closed connection state. 9.根据权利要求7所述的回路连续性监测方法,其特征在于,所述回路连续性监测装置还包括处理器和第三监测模块;9. The loop continuity monitoring method according to claim 7, characterized in that the loop continuity monitoring device further comprises a processor and a third monitoring module; 所述第三监测模块包括第一高耐压单元、限流电阻、试验信号控制单元、信号发生器、电流测量单元、第二高耐压单元和电压测量单元,所述第一高耐压单元的第一端与所述接地刀闸的第一端连接,所述限流电阻的第一端与所述第一高耐压单元的第二端连接,所述试验信号控制单元的第一端与所述限流电阻的第二端连接,所述试验信号控制单元的第二端与所述处理器连接,所述信号发生器的第一端与所述试验信号控制单元的第三端连接,所述信号发生器的第二端与所述处理器连接,所述电流测量单元的第一端与所述信号发生器的第三端连接,所述电流测量单元的第二端与所述处理器连接,所述第二高耐压单元的第一端与所述接地刀闸的第二端连接,所述第二高耐压单元的第二端与所述电流测量单元的第三端连接,所述电压测量单元的第一端与所述第一高耐压单元的第二端连接,所述电压测量单元的第二端与所述第二高耐压单元的第二端连接,所述电压测量单元的第三端与所述处理器连接;The third monitoring module includes a first high withstand voltage unit, a current limiting resistor, a test signal control unit, a signal generator, a current measuring unit, a second high withstand voltage unit and a voltage measuring unit, wherein the first end of the first high withstand voltage unit is connected to the first end of the grounding switch, the first end of the current limiting resistor is connected to the second end of the first high withstand voltage unit, the first end of the test signal control unit is connected to the second end of the current limiting resistor, the second end of the test signal control unit is connected to the processor, the first end of the signal generator is connected to the third end of the test signal control unit, the second end of the signal generator is connected to the processor, the first end of the current measuring unit is connected to the third end of the signal generator, the second end of the current measuring unit is connected to the processor, the first end of the second high withstand voltage unit is connected to the second end of the grounding switch, the second end of the second high withstand voltage unit is connected to the third end of the current measuring unit, the first end of the voltage measuring unit is connected to the second end of the first high withstand voltage unit, the second end of the voltage measuring unit is connected to the second end of the second high withstand voltage unit, and the third end of the voltage measuring unit is connected to the processor; 其中,所述回路连续性监测方法还包括:Wherein, the loop continuity monitoring method further includes: 在所述接地刀闸闭合、所述第一高耐压单元闭合、所述第二高耐压单元闭合后,所述处理器控制所述电压测量单元对所述第一高耐压单元的第二端和所述第二高耐压单元的第二端之间的电压进行测量,得到第一电压;After the grounding switch is closed, the first high-voltage withstand unit is closed, and the second high-voltage withstand unit is closed, the processor controls the voltage measuring unit to measure the voltage between the second end of the first high-voltage withstand unit and the second end of the second high-voltage withstand unit to obtain a first voltage; 在得到所述第一电压之后,所述处理器控制所述信号发生器通过所述试验信号控制单元和所述限流电阻,输出测试电流,且控制所述电压测量单元对所述第一高耐压单元的第二端和所述第二高耐压单元的第二端之间的电压进行测量,得到第二电压,并控制所述电流测量单元对所述测试电流进行测量;After obtaining the first voltage, the processor controls the signal generator to output a test current through the test signal control unit and the current limiting resistor, controls the voltage measuring unit to measure the voltage between the second end of the first high withstand voltage unit and the second end of the second high withstand voltage unit to obtain a second voltage, and controls the current measuring unit to measure the test current; 所述处理器基于所述第一电压、所述第二电压和所述测试电流,确定出所述接地刀闸的回路电阻,并基于所述回路电阻确定所述接地刀闸对应的第三回路连续性监测结果。The processor determines the loop resistance of the grounding switch based on the first voltage, the second voltage and the test current, and determines the third loop continuity monitoring result corresponding to the grounding switch based on the loop resistance.
CN202410903173.8A 2024-07-08 2024-07-08 Contact net grounding equipment, loop continuity monitoring device and method Active CN118444204B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410903173.8A CN118444204B (en) 2024-07-08 2024-07-08 Contact net grounding equipment, loop continuity monitoring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410903173.8A CN118444204B (en) 2024-07-08 2024-07-08 Contact net grounding equipment, loop continuity monitoring device and method

Publications (2)

Publication Number Publication Date
CN118444204A CN118444204A (en) 2024-08-06
CN118444204B true CN118444204B (en) 2024-09-13

Family

ID=92320246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410903173.8A Active CN118444204B (en) 2024-07-08 2024-07-08 Contact net grounding equipment, loop continuity monitoring device and method

Country Status (1)

Country Link
CN (1) CN118444204B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213262033U (en) * 2020-09-08 2021-05-25 珠海优特电力科技股份有限公司 Bipolar grounding device
CN117907893A (en) * 2023-12-05 2024-04-19 珠海优特电力科技股份有限公司 Method, device and system for detecting state of contact net grounding wire and storage medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2081535A (en) * 1980-08-01 1982-02-17 Northern Eng Ind Continuity monitoring system
JP4695789B2 (en) * 2001-08-30 2011-06-08 東海旅客鉄道株式会社 Fault location device for feeder circuits
CN109066643B (en) * 2018-09-29 2024-01-30 成都中工电气工程有限公司 Rail potential limiting device
CN213619449U (en) * 2020-09-28 2021-07-06 珠海南自电气系统工程有限公司 27.5kV intelligent grounding device of alternating-current traction power supply system
CN112350297A (en) * 2020-10-23 2021-02-09 郑州地铁集团有限公司 Subway contact net DC power supply integrated device
CN112590624B (en) * 2020-12-24 2022-12-20 四川汇友电气有限公司 Automatic grounding device for 27.5kV contact network of electrified railway and control method thereof
CN115453412B (en) * 2022-11-11 2023-03-31 中铁电气化勘测设计研究院有限公司 A grounding loop disconnection monitoring device for urban rail transit traction network maintenance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213262033U (en) * 2020-09-08 2021-05-25 珠海优特电力科技股份有限公司 Bipolar grounding device
CN117907893A (en) * 2023-12-05 2024-04-19 珠海优特电力科技股份有限公司 Method, device and system for detecting state of contact net grounding wire and storage medium

Also Published As

Publication number Publication date
CN118444204A (en) 2024-08-06

Similar Documents

Publication Publication Date Title
CN110389276B (en) Single-phase grounding fault management system and method
CN103323655B (en) Non-contact alternating current and direct current crosstalk online detecting device and non-contact alternating current and direct current crosstalk online detecting method
CN210129032U (en) Device for on-line monitoring fault of current transformer
CN111781427A (en) A cable single-ended grounding loop resistance live detection system and method
CN108550244A (en) A kind of safety ground monitoring alarm with multichannel
CN105743072A (en) High-voltage electric circuit protection system for electric motor train unit
CN104426128B (en) Broken neutral line detects circuit and corresponding residual current circuit breaker
CN214412259U (en) IT power supply system earth leakage protection device
CN112531642B (en) Residual current protection circuit and residual current protection device
CN103869202A (en) Transformer high-tension side phase-failure detection method and system
CN108181528B (en) High-voltage cable differential protection checking system in no-load state
CN118444204B (en) Contact net grounding equipment, loop continuity monitoring device and method
CN212433275U (en) Live detection system for single-ended grounding loop resistor of cable
CN201266833Y (en) On-line pre-detection circuit and device for protection of shorted to earth of frequency changer output end
CN106711987B (en) A kind of singlephase earth fault fast arc extinction system and method for small current neutral grounding system
CN202502139U (en) High-voltage charged display device
CN110501658A (en) One kind is portable to be used for DC experiment power supply insulating monitoring and trouble shoot instrument
CN216560835U (en) A Simulation Circuit for Detecting Ring Network Faults
CN102707206B (en) Reclosure device for insulation detection
CN207010200U (en) Cut-off device to prevent substation relay protection debugging primary equipment from being charged
CN112748321B (en) Test device for residual current protective device
CN116031853A (en) Transformer direct-current magnetic bias suppression device and suppression method thereof
CN202693726U (en) Detection circuit and detection system for electric transmission and transformation equipment
CN112834869A (en) A differential protection verification system for large-length submarine cables in no-load state
CN202929158U (en) 10kV grounding line selection system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant