CN118393570B - Seismic inversion method, device, storage medium and electronic equipment - Google Patents

Seismic inversion method, device, storage medium and electronic equipment Download PDF

Info

Publication number
CN118393570B
CN118393570B CN202410870728.3A CN202410870728A CN118393570B CN 118393570 B CN118393570 B CN 118393570B CN 202410870728 A CN202410870728 A CN 202410870728A CN 118393570 B CN118393570 B CN 118393570B
Authority
CN
China
Prior art keywords
wave impedance
longitudinal wave
lithofacies
category
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410870728.3A
Other languages
Chinese (zh)
Other versions
CN118393570A (en
Inventor
李坤
陈若冰
郑清文
印兴耀
宗兆云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202410870728.3A priority Critical patent/CN118393570B/en
Publication of CN118393570A publication Critical patent/CN118393570A/en
Application granted granted Critical
Publication of CN118393570B publication Critical patent/CN118393570B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6169Data from specific type of measurement using well-logging

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The invention provides a seismic inversion method, a seismic inversion device, a storage medium and electronic equipment, wherein the seismic inversion method comprises the following steps: acquiring target post-stack seismic data and acquiring target prior probability density distribution of each of K lithofacies categories; generating initial longitudinal wave impedance populations under each lithofacies category based on target prior probability density distribution of each lithofacies category respectively; determining a target longitudinal wave impedance population set under each lithofacies category based on the initial longitudinal wave impedance population under each lithofacies category; and determining longitudinal wave impedance of the target post-stack seismic data under each lithofacies category based on the target longitudinal wave impedance population set under each lithofacies category respectively, wherein the longitudinal wave impedance support of the target post-stack seismic data under each lithofacies category is used for determining a target longitudinal wave impedance and/or a target lithofacies identification result corresponding to the target post-stack seismic data. The embodiment of the invention can improve the convergence precision of the seismic inversion under the condition of avoiding sinking into a local mechanism.

Description

地震反演方法、装置、存储介质及电子设备Seismic inversion method, device, storage medium and electronic equipment

技术领域Technical Field

本发明涉及地球物理勘探技术领域,尤其涉及一种地震反演方法、装置、存储介质及电子设备。The present invention relates to the field of geophysical exploration technology, and in particular to a seismic inversion method, device, storage medium and electronic equipment.

背景技术Background Art

目前,面对日益复杂的油气储层等,地球物理研究人员对地震反演的精度提出了更高的要求,使得基于统计学和随机采样的概率化地震反演引起了研究人员的广泛关注;但相关技术存在容易陷入局部机制,且收敛精度较低等问题。基于此,如何在避免陷入局部机制的情况下,提高地震反演的收敛精度目前尚未具有较好的解决方案。At present, facing the increasingly complex oil and gas reservoirs, geophysical researchers have put forward higher requirements for the accuracy of seismic inversion, which has attracted widespread attention from researchers for probabilistic seismic inversion based on statistics and random sampling; however, related technologies are prone to fall into local mechanisms and have low convergence accuracy. Based on this, there is currently no good solution for how to improve the convergence accuracy of seismic inversion while avoiding falling into local mechanisms.

发明内容Summary of the invention

有鉴于此,本发明实施例提供了一种地震反演方法、装置、存储介质及电子设备,以解决相关技术容易陷入局部机制,且收敛精度较低等问题;也就是说,本发明实施例可通过各个岩相类别下的纵波阻抗种群,避免陷入局部机制,即可有效避免陷入局部最优,并可有效提高地震反演的收敛精度;基于此,本发明实施例可在避免陷入局部机制的情况下,提高地震反演的收敛精度。In view of this, the embodiments of the present invention provide a seismic inversion method, device, storage medium and electronic device to solve the problems that the related technologies are prone to fall into local mechanisms and have low convergence accuracy. That is to say, the embodiments of the present invention can avoid falling into local mechanisms through the longitudinal wave impedance population under each lithology category, which can effectively avoid falling into local optimality and effectively improve the convergence accuracy of seismic inversion. Based on this, the embodiments of the present invention can improve the convergence accuracy of seismic inversion while avoiding falling into local mechanisms.

根据本发明实施例的一方面,提供了一种地震反演方法,所述方法包括:According to one aspect of an embodiment of the present invention, a seismic inversion method is provided, the method comprising:

获取目标叠后地震数据,以及获取K个岩相类别中各个岩相类别的目标先验概率密度分布,一个目标先验概率密度分布用于指示所述目标叠后地震数据在相应岩相类别下的纵波阻抗服从的先验概率密度分布,所述目标叠后地震数据包括N个采样点中各个采样点的地震采样值,K和N均为正整数;Obtain target post-stack seismic data, and obtain target prior probability density distribution of each lithofacies category in K lithofacies categories, wherein a target prior probability density distribution is used to indicate the prior probability density distribution of the longitudinal wave impedance of the target post-stack seismic data in the corresponding lithofacies category, and the target post-stack seismic data includes seismic sampling values of each sampling point in N sampling points, where K and N are both positive integers;

分别基于所述各个岩相类别的目标先验概率密度分布,生成所述各个岩相类别下的初始纵波阻抗种群,一个纵波阻抗种群包括NP个纵波阻抗个体中各个纵波阻抗个体的纵波阻抗,且一个初始纵波阻抗种群中的一个纵波阻抗个体的纵波阻抗是基于一个目标先验概率密度分布采样得到的,NP为大于1的整数;Based on the target prior probability density distribution of each lithofacies category, an initial P-wave impedance population under each lithofacies category is generated, wherein one P-wave impedance population includes the P-wave impedance of each P-wave impedance individual in NP P-wave impedance individuals, and the P-wave impedance of one P-wave impedance individual in an initial P-wave impedance population is obtained by sampling based on a target prior probability density distribution, and NP is an integer greater than 1;

分别基于所述各个岩相类别下的初始纵波阻抗种群,确定所述各个岩相类别下的目标纵波阻抗种群集合;Determining a target longitudinal wave impedance population set under each lithofacies category based on the initial longitudinal wave impedance population under each lithofacies category;

分别基于所述各个岩相类别下的目标纵波阻抗种群集合,确定所述目标叠后地震数据在所述各个岩相类别下的纵波阻抗,所述目标叠后地震数据在所述各个岩相类别下的纵波阻抗支持用于确定所述目标叠后地震数据对应的目标纵波阻抗和/或目标岩相识别结果。The longitudinal wave impedance of the target post-stack seismic data under each lithofacies category is determined based on the target longitudinal wave impedance population set under each lithofacies category, and the longitudinal wave impedance support of the target post-stack seismic data under each lithofacies category is used to determine the target longitudinal wave impedance and/or target lithofacies identification result corresponding to the target post-stack seismic data.

根据本发明实施例的另一方面,提供了一种地震反演装置,所述装置包括:According to another aspect of an embodiment of the present invention, a seismic inversion device is provided, the device comprising:

获取单元,用于获取目标叠后地震数据,以及获取K个岩相类别中各个岩相类别的目标先验概率密度分布,一个目标先验概率密度分布用于指示所述目标叠后地震数据在相应岩相类别下的纵波阻抗服从的先验概率密度分布,所述目标叠后地震数据包括N个采样点中各个采样点的地震采样值,K和N均为正整数;an acquisition unit, used for acquiring target post-stack seismic data and acquiring a target priori probability density distribution of each lithofacies category in K lithofacies categories, wherein a target priori probability density distribution is used for indicating a priori probability density distribution obeyed by the longitudinal wave impedance of the target post-stack seismic data in the corresponding lithofacies category, wherein the target post-stack seismic data includes seismic sampling values of each sampling point in N sampling points, and K and N are both positive integers;

处理单元,用于分别基于所述各个岩相类别的目标先验概率密度分布,生成所述各个岩相类别下的初始纵波阻抗种群,一个纵波阻抗种群包括NP个纵波阻抗个体中各个纵波阻抗个体的纵波阻抗,且一个初始纵波阻抗种群中的一个纵波阻抗个体的纵波阻抗是基于一个目标先验概率密度分布采样得到的,NP为大于1的整数;A processing unit is used to generate an initial P-wave impedance population under each lithofacies category based on a target prior probability density distribution of each lithofacies category, wherein one P-wave impedance population includes the P-wave impedance of each P-wave impedance individual in NP P-wave impedance individuals, and the P-wave impedance of one P-wave impedance individual in an initial P-wave impedance population is obtained by sampling based on a target prior probability density distribution, and NP is an integer greater than 1;

所述处理单元,还用于分别基于所述各个岩相类别下的初始纵波阻抗种群,确定所述各个岩相类别下的目标纵波阻抗种群集合;The processing unit is further used to determine the target longitudinal wave impedance population set under each lithofacies category based on the initial longitudinal wave impedance population under each lithofacies category;

所述处理单元,还用于分别基于所述各个岩相类别下的目标纵波阻抗种群集合,确定所述目标叠后地震数据在所述各个岩相类别下的纵波阻抗,所述目标叠后地震数据在所述各个岩相类别下的纵波阻抗支持用于确定所述目标叠后地震数据对应的目标纵波阻抗和/或目标岩相识别结果。The processing unit is also used to determine the longitudinal wave impedance of the target post-stack seismic data in each lithofacies category based on the target longitudinal wave impedance population set in each lithofacies category. The longitudinal wave impedance support of the target post-stack seismic data in each lithofacies category is used to determine the target longitudinal wave impedance and/or target lithofacies identification result corresponding to the target post-stack seismic data.

根据本发明实施例的另一方面,提供了一种电子设备,所述电子设备包括处理器、以及存储程序的存储器,其中,所述程序包括指令,所述指令在由所述处理器执行时使所述处理器执行上述所提及的方法。According to another aspect of an embodiment of the present invention, an electronic device is provided, which includes a processor and a memory storing a program, wherein the program includes instructions, and when the instructions are executed by the processor, the processor executes the above-mentioned method.

根据本发明实施例的另一方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,所述计算机指令用于使计算机执行上述所提及的方法。According to another aspect of an embodiment of the present invention, a non-transitory computer-readable storage medium storing computer instructions is provided, wherein the computer instructions are used to enable a computer to execute the above-mentioned method.

根据本发明实施例的另一方面,提供了一种计算机程序产品,包括计算机程序,其中,所述计算机程序在被处理器执行时用于使计算机执行上述所提及的方法。According to another aspect of an embodiment of the present invention, a computer program product is provided, comprising a computer program, wherein the computer program is used to enable a computer to perform the above-mentioned method when executed by a processor.

本发明实施例可在获取到目标叠后地震数据,以及获取到K个岩相类别中各个岩相类别的目标先验概率密度分布后,分别基于各个岩相类别的目标先验概率密度分布,生成各个岩相类别下的初始纵波阻抗种群,一个目标先验概率密度分布用于指示目标叠后地震数据在相应岩相类别下的纵波阻抗服从的先验概率密度分布,目标叠后地震数据包括N个采样点中各个采样点的地震采样值,一个纵波阻抗种群包括NP个纵波阻抗个体中各个纵波阻抗个体的纵波阻抗,且一个初始纵波阻抗种群中的一个纵波阻抗个体的纵波阻抗是基于一个目标先验概率密度分布采样得到的,K和N均为正整数,NP为大于1的整数。进一步的,可分别基于各个岩相类别下的初始纵波阻抗种群,确定各个岩相类别下的目标纵波阻抗种群集合;并可分别基于各个岩相类别下的目标纵波阻抗种群集合,确定目标叠后地震数据在各个岩相类别下的纵波阻抗,目标叠后地震数据在各个岩相类别下的纵波阻抗支持用于确定目标叠后地震数据对应的目标纵波阻抗和/或目标岩相识别结果。可见,本发明实施例可通过各个岩相类别下的纵波阻抗种群,避免陷入局部机制,即可有效避免陷入局部最优,并可有效提高地震反演的收敛精度;也就是说,本发明实施例可在避免陷入局部机制的情况下,提高地震反演的收敛精度。The embodiment of the present invention can generate an initial P-wave impedance population under each lithofacies category based on the target prior probability density distribution of each lithofacies category after acquiring the target post-stack seismic data and the target prior probability density distribution of each lithofacies category in K lithofacies categories, wherein a target prior probability density distribution is used to indicate the prior probability density distribution that the P-wave impedance of the target post-stack seismic data under the corresponding lithofacies category obeys, the target post-stack seismic data includes the seismic sampling value of each sampling point in N sampling points, a P-wave impedance population includes the P-wave impedance of each P-wave impedance individual in NP P-wave impedance individuals, and the P-wave impedance of a P-wave impedance individual in an initial P-wave impedance population is obtained by sampling based on a target prior probability density distribution, K and N are both positive integers, and NP is an integer greater than 1. Further, the target P-wave impedance population set under each lithofacies category can be determined based on the initial P-wave impedance population under each lithofacies category; and the P-wave impedance of the target post-stack seismic data under each lithofacies category can be determined based on the target P-wave impedance population set under each lithofacies category, and the P-wave impedance support of the target post-stack seismic data under each lithofacies category is used to determine the target P-wave impedance and/or target lithofacies identification result corresponding to the target post-stack seismic data. It can be seen that the embodiment of the present invention can avoid falling into a local mechanism through the P-wave impedance population under each lithofacies category, which can effectively avoid falling into a local optimum and effectively improve the convergence accuracy of seismic inversion; that is, the embodiment of the present invention can improve the convergence accuracy of seismic inversion while avoiding falling into a local mechanism.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

在下面结合附图对于示例性实施例的描述中,本发明的更多细节、特征和优点被公开,在附图中:Further details, features and advantages of the invention are disclosed in the following description of exemplary embodiments in conjunction with the accompanying drawings, in which:

图1示出了根据本发明示例性实施例的一种地震反演方法的流程示意图;FIG1 shows a schematic flow chart of a seismic inversion method according to an exemplary embodiment of the present invention;

图2示出了根据本发明示例性实施例的另一种地震反演方法的流程示意图;FIG2 shows a schematic flow chart of another seismic inversion method according to an exemplary embodiment of the present invention;

图3示出了根据本发明示例性实施例的一种反演结果的示意图;FIG3 is a schematic diagram showing an inversion result according to an exemplary embodiment of the present invention;

图4示出了根据本发明示例性实施例的另一种反演结果的示意图;FIG4 is a schematic diagram showing another inversion result according to an exemplary embodiment of the present invention;

图5示出了根据本发明示例性实施例的又一种反演结果的示意图;FIG5 is a schematic diagram showing another inversion result according to an exemplary embodiment of the present invention;

图6示出了根据本发明示例性实施例的再一种反演结果的示意图;FIG6 is a schematic diagram showing another inversion result according to an exemplary embodiment of the present invention;

图7示出了根据本发明示例性实施例的一种运行时间的示意图;FIG7 shows a schematic diagram of a running time according to an exemplary embodiment of the present invention;

图8示出了根据本发明示例性实施例的一种地震剖面反演结果的示意图;其中,图8中(a)示出了根据本发明示例性实施例的一种实际叠后地震剖面的示意图,图8中(b)示出了根据本发明示例性实施例的一种纵波阻抗的低频背景的示意图,图8中(c)示出了根据本发明示例性实施例的一种纵波阻抗的示意图,图8中(d)示出了根据本发明示例性实施例的一种岩相识别结果的示意图;FIG8 shows a schematic diagram of a seismic profile inversion result according to an exemplary embodiment of the present invention; wherein FIG8 (a) shows a schematic diagram of an actual post-stack seismic profile according to an exemplary embodiment of the present invention, FIG8 (b) shows a schematic diagram of a low-frequency background of a longitudinal wave impedance according to an exemplary embodiment of the present invention, FIG8 (c) shows a schematic diagram of a longitudinal wave impedance according to an exemplary embodiment of the present invention, and FIG8 (d) shows a schematic diagram of a lithofacies identification result according to an exemplary embodiment of the present invention;

图9示出了根据本发明示例性实施例的一种地震反演装置的示意性框图;FIG9 shows a schematic block diagram of a seismic inversion device according to an exemplary embodiment of the present invention;

图10示出了能够用于实现本发明的实施例的示例性电子设备的结构框图。FIG. 10 shows a block diagram of an exemplary electronic device that can be used to implement an embodiment of the present invention.

具体实施方式DETAILED DESCRIPTION

下面将参照附图更详细地描述本发明的实施例。虽然附图中显示了本发明的某些实施例,然而应当理解的是,本发明可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本发明。应当理解的是,本发明的附图及实施例仅用于示例性作用,并非用于限制本发明的保护范围。Embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. Although certain embodiments of the present invention are shown in the accompanying drawings, it should be understood that the present invention can be implemented in various forms and should not be construed as being limited to the embodiments described herein, which are instead provided for a more thorough and complete understanding of the present invention. It should be understood that the drawings and embodiments of the present invention are only for exemplary purposes and are not intended to limit the scope of protection of the present invention.

应当理解,本发明的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本发明的范围在此方面不受限制。It should be understood that the various steps described in the method embodiments of the present invention may be performed in different orders and/or in parallel. In addition, the method embodiments may include additional steps and/or omit the steps shown. The scope of the present invention is not limited in this respect.

本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。需要注意,本发明中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。The term "including" and its variations used in this document are open inclusions, that is, "including but not limited to". The term "based on" means "based at least in part on". The term "one embodiment" means "at least one embodiment"; the term "another embodiment" means "at least one other embodiment"; the term "some embodiments" means "at least some embodiments". Relevant definitions of other terms will be given in the following description. It should be noted that the concepts of "first", "second", etc. mentioned in the present invention are only used to distinguish different devices, modules or units, and are not used to limit the order or interdependence of the functions performed by these devices, modules or units.

需要注意,本发明中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。It should be noted that the modifications of "one" and "plurality" mentioned in the present invention are illustrative rather than restrictive, and those skilled in the art should understand that, unless otherwise clearly indicated in the context, it should be understood as "one or more".

本发明实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。The names of the messages or information exchanged between multiple devices in the embodiments of the present invention are only used for illustrative purposes, and are not used to limit the scope of these messages or information.

需要说明的是,本发明实施例提供的地震反演方法的执行主体可以是一个或多个电子设备,本发明对此不作限定;其中,电子设备可以是终端(即客户端)或者服务器,那么在执行主体包括多个电子设备,且多个电子设备中包括至少一个终端和至少一个服务器时,本发明实施例提供的地震反演方法可由终端和服务器共同执行。相应的,此处所提及的终端可包括但不限于:智能手机、笔记本电脑、台式计算机、智能语音交互设备,等等。此处所提及的服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算(cloud computing)、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN(Content Delivery Network,内容分发网络)、以及大数据和人工智能平台等基础云计算服务的云服务器,等等。It should be noted that the execution subject of the seismic inversion method provided in the embodiment of the present invention may be one or more electronic devices, which is not limited by the present invention; wherein, the electronic device may be a terminal (i.e., a client) or a server, then when the execution subject includes multiple electronic devices, and the multiple electronic devices include at least one terminal and at least one server, the seismic inversion method provided in the embodiment of the present invention may be jointly executed by the terminal and the server. Accordingly, the terminal mentioned here may include but is not limited to: smart phones, laptops, desktop computers, intelligent voice interaction devices, and the like. The server mentioned here may be an independent physical server, or a server cluster or distributed system composed of multiple physical servers, or a cloud server that provides cloud services, cloud databases, cloud computing (cloud computing), cloud functions, cloud storage, network services, cloud communications, middleware services, domain name services, security services, CDN (Content Delivery Network), and basic cloud computing services such as big data and artificial intelligence platforms, and the like.

基于上述描述,本发明实施例提出一种地震反演方法,该地震反演方法可以由上述所提及的电子设备(终端或服务器)执行;或者,该地震反演方法可由终端和服务器共同执行。为了便于阐述,后续均以电子设备执行该地震反演方法为例进行说明;如图1所示,该地震反演方法可包括以下步骤S101-S104:Based on the above description, an embodiment of the present invention proposes a seismic inversion method, which can be executed by the electronic device (terminal or server) mentioned above; or, the seismic inversion method can be executed by the terminal and the server together. For the convenience of explanation, the following description is taken as an example of an electronic device executing the seismic inversion method; as shown in FIG1 , the seismic inversion method may include the following steps S101-S104:

S101,获取目标叠后地震数据,以及获取K个岩相类别中各个岩相类别的目标先验概率密度分布,一个目标先验概率密度分布用于指示目标叠后地震数据在相应岩相类别下的纵波阻抗服从的先验概率密度分布,目标叠后地震数据包括N个采样点中各个采样点的地震采样值,K和N均为正整数。S101, obtaining target post-stack seismic data, and obtaining target prior probability density distribution of each lithofacies category in K lithofacies categories, a target prior probability density distribution is used to indicate the prior probability density distribution of the longitudinal wave impedance of the target post-stack seismic data under the corresponding lithofacies category, the target post-stack seismic data includes the seismic sampling value of each sampling point in N sampling points, and K and N are both positive integers.

可选的,K个岩相类别可包括但不限于:泥岩和砂岩等,本发明实施例对此不作限定。可选的,本发明实施例所涉及的数据可为时间域下的数据等;相应的,一个采样点可为一个时间采样点,即一个采样点可为一个深度层次,等等。Optionally, the K lithofacies categories may include but are not limited to mudstone and sandstone, etc., which are not limited in the embodiment of the present invention. Optionally, the data involved in the embodiment of the present invention may be data in the time domain, etc.; accordingly, a sampling point may be a time sampling point, that is, a sampling point may be a depth level, etc.

在本发明实施例中,目标叠后地震数据可以是任一道叠后地震数据(一道叠后地震数据也可称为一个地震道的叠后地震数据),本发明实施例对此不作限定。可选的,目标叠后地震数据的数量可为一个或多个,本发明实施例对此不作限定;可选的,在对一个目标区域进行地震反演时,可将目标区域中多道叠后地震数据中的各道叠后地震数据均作为目标叠后地震数据,从而分别对目标区域中多个目标叠后地震数据中的各个目标叠后地震数据进行地震反演,从而得到各个目标叠后地震数据对应的目标纵波阻抗和/或目标岩相识别结果,以对各个目标叠后地震数据对应的目标纵波阻抗和/或目标岩相识别结果进行拼接,以得到目标区域的地震反演结果(即各个目标叠后地震数据对应的目标纵波阻抗的拼接结果和/或各个目标叠后地震数据对应的目标岩相识别结果的拼接结果),从而实现对目标区域的地震反演;可选的,目标区域可为任一区域,本发明实施例对此不作限定。其中,当多个目标叠后地震数据位于同一剖面时,目标区域的地震反演结果也可称为目标区域的地震剖面反演结果。In the embodiment of the present invention, the target post-stack seismic data may be any post-stack seismic data (a post-stack seismic data may also be referred to as post-stack seismic data of a seismic trace), which is not limited in the embodiment of the present invention. Optionally, the number of target post-stack seismic data may be one or more, which is not limited in the embodiment of the present invention; Optionally, when performing seismic inversion on a target area, each post-stack seismic data in multiple post-stack seismic data in the target area may be used as the target post-stack seismic data, so that seismic inversion is performed on each target post-stack seismic data in multiple target post-stack seismic data in the target area, so as to obtain the target P-wave impedance and/or target lithofacies identification result corresponding to each target post-stack seismic data, so as to splice the target P-wave impedance and/or target lithofacies identification result corresponding to each target post-stack seismic data, so as to obtain the seismic inversion result of the target area (i.e., the splicing result of the target P-wave impedance corresponding to each target post-stack seismic data and/or the splicing result of the target lithofacies identification result corresponding to each target post-stack seismic data), so as to realize the seismic inversion of the target area; Optionally, the target area may be any area, which is not limited in the embodiment of the present invention. When multiple target post-stack seismic data are located in the same section, the seismic inversion result of the target area can also be called the seismic section inversion result of the target area.

需要说明的是,在分层贝叶斯推断的框架下,纵波阻抗的先验概率密度分布可被有效地引入到地震反演中。由于纵波阻抗在不同岩性(即岩相类别)地层中的统计特征存在差异,因此可假设地层纵波阻抗(即纵波阻抗)服从混合概率密度分布;其中,纵波阻抗服从的混合概率密度分布可包括各个岩相类别下的纵波阻抗服从的概率密度分布。可选的,纵波阻抗可服从混合Laplace(拉普拉斯)概率密度分布,也可服从混合柯西概率密度分布等,本发明实施例对此不作限定。为了便于阐述,后续均以纵波阻抗服从混合Laplace概率密度分布为例进行说明。示例性的,纵波阻抗服从的混合Laplace概率密度分布可如公式1.1所示:It should be noted that, under the framework of hierarchical Bayesian inference, the prior probability density distribution of P-wave impedance can be effectively introduced into seismic inversion. Since the statistical characteristics of P-wave impedance in strata of different lithology (i.e., lithofacies categories) are different, it can be assumed that the P-wave impedance of the stratum (i.e., P-wave impedance) obeys a mixed probability density distribution; wherein, the mixed probability density distribution obeyed by the P-wave impedance may include the probability density distribution obeyed by the P-wave impedance under each lithofacies category. Optionally, the P-wave impedance may obey a mixed Laplace probability density distribution, or a mixed Cauchy probability density distribution, etc., which is not limited in the embodiments of the present invention. For ease of explanation, the following description will be made by taking the P-wave impedance obeying a mixed Laplace probability density distribution as an example. Exemplarily, the mixed Laplace probability density distribution obeyed by the P-wave impedance may be as shown in Formula 1.1:

式1.1 Formula 1.1

其中,K为岩相类别的个数(也可称为Laplace分量个数,即一个岩相类别对应一个Laplace分量,Laplace分量个数与岩相类别个数相同);相应的,p(m)可表示纵波阻抗的先验概率密度分布,那么每一个先验Laplace分量可具有不同的先验均值和先验协方差,m可表示纵波阻抗,表示K个先验Laplace分量中的第k个先验Laplace分量(即第k个Laplace先验概率密度分布,k∈[1,K]),λk表示第k种岩相类别的先验占比。可选的,一个先验Laplace分量的先验均值、先验协方差以及先验占比均可以是按照经验设置的,也可以是按照实际需求设置的,本发明实施例对此不作限定。例如,一个先验Laplace分量的先验均值、先验协方差以及先验占比可以是通过测井数据(也可称为测井解释数据)获取到的;又如,在无法准确获取先验占比时,一个岩相类别的先验占比可为0.5,等等。需要说明的是,一个先验均值可包括各个采样点的纵波阻抗均值(也可称为各个采样点的均值),即一个先验均值可为一个N维向量;相应的,一个先验协方差可包括任意两个采样点之间的协方差,并可包括任一采样点的纵波阻抗方差。在本发明实施例中,一个协方差可为一个协方差矩阵。Where K is the number of lithofacies categories (also called the number of Laplace components, that is, one lithofacies category corresponds to one Laplace component, and the number of Laplace components is the same as the number of lithofacies categories); accordingly, p(m) can represent the prior probability density distribution of the longitudinal wave impedance, then each prior Laplace component can have a different prior mean and the prior covariance , m can represent the longitudinal wave impedance, represents the kth prior Laplace component among the K prior Laplace components (i.e., the kth Laplace prior probability density distribution, k∈[1,K]), and λ k represents the prior proportion of the kth lithofacies category. Optionally, the prior mean, prior covariance, and prior proportion of a prior Laplace component can be set according to experience or according to actual needs, and the embodiments of the present invention do not limit this. For example, the prior mean, prior covariance, and prior proportion of a prior Laplace component can be obtained through well logging data (also referred to as well logging interpretation data); for another example, when the prior proportion cannot be accurately obtained, the prior proportion of a lithofacies category can be 0.5, and so on. It should be noted that a prior mean may include the mean of the longitudinal wave impedance of each sampling point (also referred to as the mean of each sampling point), that is, a prior mean may be an N-dimensional vector; accordingly, a prior covariance may include the covariance between any two sampling points, and may include the variance of the longitudinal wave impedance of any sampling point. In the embodiment of the present invention, a covariance may be a covariance matrix.

基于此,一个目标先验概率密度可为目标叠后地震数据下的纵波阻抗服从的一个先验Laplace分量。需要说明的是,一个目标先验概率密度分布中的先验均值和先验协方差与目标叠后地震数据所在子区域相对应,如一个目标先验概率密度分布中的先验均值和先验协方差可以是通过目标叠后地震数据所在子区域中的测井数据获取到的,等等。Based on this, a target prior probability density can be a prior Laplace component obeyed by the longitudinal wave impedance under the target post-stack seismic data. It should be noted that the prior mean and prior covariance in a target prior probability density distribution correspond to the sub-region where the target post-stack seismic data is located. For example, the prior mean and prior covariance in a target prior probability density distribution can be obtained through the logging data in the sub-region where the target post-stack seismic data is located, and so on.

可选的,目标叠后地震数据的获取方式可包括但不限于以下几种:Optionally, the target post-stack seismic data may be obtained in the following ways, but not limited to:

第一种获取方式:电子设备的自身存储空间中可存储有多个叠后地震数据,在此种情况下,可将多个叠后地震数据中的任一叠后地震数据作为目标叠后地震数据;或者,在对目标区域进行地震反演时,可分别将目标区域中的多个叠后地震数据(即多道叠后地震数据)中的各个叠后地震数据作为一个目标叠后地震数据。The first acquisition method: a plurality of post-stack seismic data may be stored in the storage space of the electronic device itself. In this case, any one of the plurality of post-stack seismic data may be used as target post-stack seismic data; or, when performing seismic inversion on the target area, each of the plurality of post-stack seismic data (i.e., multi-channel post-stack seismic data) in the target area may be used as a target post-stack seismic data.

第二种获取方式:电子设备可获取地震数据下载链接,并将基于地震数据下载链接下载的地震数据作为目标叠后地震数据。The second acquisition method: the electronic device can obtain a seismic data download link, and use the seismic data downloaded based on the seismic data download link as the target post-stack seismic data.

第三种获取方式:电子设备可连接有多个接收器,在此种情况下,电子设备可通过多个接收器接收多道地震数据,并基于接收到的多道地震数据获取目标叠后地震数据,如对接收到的多道地震数据进行杂音消除等操作,得到多个叠后地震数据,并从多个叠后地震数据中选取出一个叠后地震数据,以将选取出的叠后地震数据作为目标叠后地震数据,或者将多个叠后地震数据中的各个叠后地震数据分别作为目标叠后地震数据,等等。The third acquisition method: the electronic device can be connected to multiple receivers. In this case, the electronic device can receive multi-channel seismic data through the multiple receivers, and acquire target post-stack seismic data based on the received multi-channel seismic data, such as performing noise elimination and other operations on the received multi-channel seismic data to obtain multiple post-stack seismic data, and select one post-stack seismic data from the multiple post-stack seismic data to use the selected post-stack seismic data as the target post-stack seismic data, or use each post-stack seismic data in the multiple post-stack seismic data as the target post-stack seismic data, and so on.

那么相应的,电子设备的自身存储空间中可存储有多个叠后地震数据中各个叠后地震数据在各个岩相类别下的纵波阻抗服从的先验概率密度分布(如存储有各个叠后地震数据在各个岩相类别下的纵波阻抗服从的先验概率密度分布的先验均值、先验协方差等),且目标叠后地震数据为多个叠后地震数据中确定出的叠后地震数据,在此种情况下,电子设备可从自身存储空间中获取目标叠后地震数据在各个岩相类别下的纵波阻抗服从的先验概率密度分布,以实现获取各个岩相类别的目标先验概率密度分布;或者,电子设备可获取概率密度分布下载链接,并基于概率密度分布下载链接下载各个岩相类别的目标先验概率密度分布;或者,电子设备的自身存储空间中可存储有多个子区域中各个子区域在各个岩相类别下的纵波阻抗服从的先验概率密度分布,那么电子设备可确定目标叠后地震数据所在的子区域,并将目标叠后地震数据所在子区域在各个岩相类别下的纵波阻抗服从的先验概率密度分布,作为目标叠后地震数据在各个岩相类别下的纵波阻抗服从的先验概率密度分布,以实现获取各个岩相类别的目标先验概率密度分布;或者,电子设备还可获取目标叠后地震数据所在子区域的测井数据,并基于该测井数据获取各个岩相类别的目标先验概率密度分布,等等;本发明实施例对此不作限定。Accordingly, the electronic device's own storage space may store a priori probability density distribution of the longitudinal wave impedance of each post-stack seismic data in each lithofacies category among multiple post-stack seismic data (such as storing a priori mean, a priori covariance, etc. of the prior probability density distribution of the longitudinal wave impedance of each post-stack seismic data in each lithofacies category), and the target post-stack seismic data is the post-stack seismic data determined from the multiple post-stack seismic data. In this case, the electronic device may obtain the priori probability density distribution of the longitudinal wave impedance of the target post-stack seismic data in each lithofacies category from its own storage space to achieve the acquisition of the target priori probability density distribution of each lithofacies category; or, the electronic device may obtain a probability density distribution download link, and download the target post-stack seismic data for each lithofacies category based on the probability density distribution download link. Other target prior probability density distributions; or, the electronic device's own storage space may store a prior probability density distribution of the longitudinal wave impedance of each sub-region in each lithofacies category among multiple sub-regions, then the electronic device may determine the sub-region where the target post-stack seismic data is located, and use the prior probability density distribution of the longitudinal wave impedance of the sub-region where the target post-stack seismic data is located in each lithofacies category as the prior probability density distribution of the longitudinal wave impedance of the target post-stack seismic data in each lithofacies category, so as to achieve the acquisition of the target prior probability density distribution of each lithofacies category; or, the electronic device may also obtain the logging data of the sub-region where the target post-stack seismic data is located, and obtain the target prior probability density distribution of each lithofacies category based on the logging data, and so on; the embodiments of the present invention are not limited to this.

S102,分别基于各个岩相类别的目标先验概率密度分布,生成各个岩相类别下的初始纵波阻抗种群,一个纵波阻抗种群包括NP个纵波阻抗个体中各个纵波阻抗个体的纵波阻抗,且一个初始纵波阻抗种群中的一个纵波阻抗个体的纵波阻抗是基于一个目标先验概率密度分布采样得到的,NP为大于1的整数。S102, based on the target prior probability density distribution of each lithofacies category, generate an initial P-wave impedance population under each lithofacies category, wherein a P-wave impedance population includes the P-wave impedance of each P-wave impedance individual among NP P-wave impedance individuals, and the P-wave impedance of a P-wave impedance individual in an initial P-wave impedance population is obtained by sampling based on a target prior probability density distribution, and NP is an integer greater than 1.

具体的,针对K个岩相类别中的任一岩相类别,电子设备可基于任一岩相类别的目标先验概率密度分布,生成任一岩相类别下的初始纵波阻抗种群。应当理解的是,任一岩相类别在一次模拟过程中可对应NP个纵波阻抗个体。Specifically, for any of the K lithofacies categories, the electronic device may generate an initial P-wave impedance population under any lithofacies category based on the target prior probability density distribution of any lithofacies category. It should be understood that any lithofacies category may correspond to NP P-wave impedance individuals in one simulation process.

可选的,针对任一岩相类别下的任一纵波阻抗个体,电子设备可通过任一岩相类别的目标先验概率密度分布进行采样,以得到任一岩相类别下的初始纵波阻抗种群中任一纵波阻抗个体的纵波阻抗,一个岩相类别下的一个纵波阻抗种群中一个纵波阻抗个体的纵波阻抗也可称为相应岩相类别下的相应纵波阻抗个体在相应纵波阻抗种群中的纵波阻抗;也就是说,电子设备可通过任一岩相类别的目标先验概率密度分布进行NP次采样,以得到任一岩相类别下的NP个纵波阻抗个体中各个纵波阻抗个体的纵波阻抗,从而得到任一岩相类别下的初始纵波阻抗种群,即任一岩相类别下的初始纵波阻抗种群中的一个纵波阻抗为任一岩相类别下的一个纵波阻抗个体的初始纵波阻抗,且任一岩相类别下的初始纵波阻抗种群中的每个纵波阻抗均是通过任一岩相类别的目标先验概率密度分布采样得到的。Optionally, for any longitudinal wave impedance individual under any lithofacies category, the electronic device can perform sampling through the target prior probability density distribution of any lithofacies category to obtain the longitudinal wave impedance of any longitudinal wave impedance individual in the initial longitudinal wave impedance population under any lithofacies category. The longitudinal wave impedance of a longitudinal wave impedance individual in a longitudinal wave impedance population under a lithofacies category can also be called the longitudinal wave impedance of the corresponding longitudinal wave impedance individual under the corresponding lithofacies category in the corresponding longitudinal wave impedance population; that is, the electronic device can perform NP times of sampling through the target prior probability density distribution of any lithofacies category to obtain the longitudinal wave impedance of each longitudinal wave impedance individual in the NP longitudinal wave impedance individuals under any lithofacies category, thereby obtaining the initial longitudinal wave impedance population under any lithofacies category, that is, a longitudinal wave impedance in the initial longitudinal wave impedance population under any lithofacies category is the initial longitudinal wave impedance of a longitudinal wave impedance individual under any lithofacies category, and each longitudinal wave impedance in the initial longitudinal wave impedance population under any lithofacies category is obtained by sampling through the target prior probability density distribution of any lithofacies category.

基于此,可得到任一岩相类别下的NP条马尔科夫链(也可称为马尔可夫链),任一岩相类别下的一条马尔科夫链的初始状态可为任一岩相类别下的初始纵波阻抗种群中的一个纵波阻抗个体的纵波阻抗,且一个纵波阻抗的维度可为N,即一个纵波阻抗可为一个N维向量(包括N个采样点中各个采样点的纵波阻抗值)。可见,在不同岩相类别下,每条马尔科夫链的初始状态可以是从相应岩相类别的目标先验概率密度分布中抽样得到的,也就是说,任一岩相类别下的每条马尔科夫链的初始状态均可以是从任一岩相类别的目标先验概率密度分布中抽样得到的。Based on this, NP Markov chains (also called Markov chains) under any lithofacies category can be obtained. The initial state of a Markov chain under any lithofacies category can be the P-wave impedance of a P-wave impedance individual in the initial P-wave impedance population under any lithofacies category, and the dimension of a P-wave impedance can be N, that is, a P-wave impedance can be an N-dimensional vector (including the P-wave impedance value of each sampling point among the N sampling points). It can be seen that under different lithofacies categories, the initial state of each Markov chain can be sampled from the target prior probability density distribution of the corresponding lithofacies category, that is, the initial state of each Markov chain under any lithofacies category can be sampled from the target prior probability density distribution of any lithofacies category.

S103,分别基于各个岩相类别下的初始纵波阻抗种群,确定各个岩相类别下的目标纵波阻抗种群集合。S103, determining a target longitudinal wave impedance population set under each lithofacies category based on the initial longitudinal wave impedance population under each lithofacies category.

在本发明实施例中,针对K个岩相类别中的任一岩相类别,电子设备可分别对任一岩相类别下的每条马尔科夫链进行迭代,即可实现对任一岩相类别下的各个纵波阻抗个体进行迭代,以更新任一岩相类别下的各个纵波阻抗个体的纵波阻抗,从而实现对任一岩相类别下的纵波阻抗种群进行种群更新,进而确定任一岩相类别下的目标纵波阻抗种群集合。In an embodiment of the present invention, for any of the K lithofacies categories, the electronic device can iterate each Markov chain under any lithofacies category respectively, so as to iterate each longitudinal wave impedance individual under any lithofacies category to update the longitudinal wave impedance of each longitudinal wave impedance individual under any lithofacies category, thereby realizing population update of the longitudinal wave impedance population under any lithofacies category, and further determining the target longitudinal wave impedance population set under any lithofacies category.

可选的,电子设备可同时对任一岩相类别下的每条马尔科夫链进行迭代,也就是说,可对任一岩相类别下的当前纵波阻抗种群(即任一岩相类别在第t次迭代下的纵波阻抗种群)中的各个纵波阻抗进行并行迭代(即可对任一岩相类别在当前迭代下的各个纵波阻抗个体进行并行迭代),以得到任一岩相类别下的当前纵波阻抗种群的下一个纵波阻抗种群(即任一岩相类别在第t+1次迭代下的纵波阻抗种群);基于此,本发明实施例可有效提高收敛效率,并可有效提高地震反演的计算效率。其中,t∈[1,T-1],T为停止迭代时的迭代总数,且T为大于1的整数。Optionally, the electronic device can iterate each Markov chain under any lithofacies category at the same time, that is, each P-wave impedance in the current P-wave impedance population under any lithofacies category (i.e., the P-wave impedance population under the tth iteration of any lithofacies category) can be iterated in parallel (i.e., each P-wave impedance individual under the current iteration of any lithofacies category can be iterated in parallel) to obtain the next P-wave impedance population of the current P-wave impedance population under any lithofacies category (i.e., the P-wave impedance population under the t+1th iteration of any lithofacies category); based on this, the embodiment of the present invention can effectively improve the convergence efficiency and the computational efficiency of seismic inversion. Wherein, t∈[1, T-1], T is the total number of iterations when the iteration is stopped, and T is an integer greater than 1.

S104,分别基于各个岩相类别下的目标纵波阻抗种群集合,确定目标叠后地震数据在各个岩相类别下的纵波阻抗,目标叠后地震数据在各个岩相类别下的纵波阻抗支持用于确定目标叠后地震数据对应的目标纵波阻抗和/或目标岩相识别结果。S104, determining the P-wave impedance of the target post-stack seismic data in each lithofacies category based on the target P-wave impedance population set in each lithofacies category, wherein the P-wave impedance support of the target post-stack seismic data in each lithofacies category is used to determine the target P-wave impedance and/or target lithofacies identification result corresponding to the target post-stack seismic data.

其中,目标叠后地震数据在各个岩相类别下的纵波阻抗、目标叠后地震数据对应的目标纵波阻抗和/或目标岩相识别结果等均可为目标叠后地震数据的反演结果,也就是说,目标叠后地震数据的反演结果可包括以下至少一种:目标叠后地震数据在各个岩相类别下的纵波阻抗、目标纵波阻抗以及目标岩相识别结果。Among them, the longitudinal wave impedance of the target post-stack seismic data in each lithofacies category, the target longitudinal wave impedance corresponding to the target post-stack seismic data and/or the target lithofacies identification result can all be the inversion results of the target post-stack seismic data. That is to say, the inversion results of the target post-stack seismic data may include at least one of the following: the longitudinal wave impedance of the target post-stack seismic data in each lithofacies category, the target longitudinal wave impedance and the target lithofacies identification result.

在一种实施方式中,目标叠后地震数据在各个岩相类别下的纵波阻抗可用于确定目标叠后地震数据对应的目标岩相识别结果;其中,目标岩相识别结果可包括各个采样点的岩相识别结果(即可包括各个采样点在目标叠后地震数据下的岩相识别结果),且一个纵波阻抗包括各个采样点的纵波阻抗值(即包括相应纵波阻抗在各个采样点的纵波阻抗值)。基于此,电子设备可遍历N个采样点中的各个采样点,并将当前遍历的采样点作为当前采样点;并分别从目标叠后地震数据在各个岩相类别下的纵波阻抗中,确定出当前采样点在各个岩相类别下的模拟纵波阻抗值,以及分别从各个岩相类别下的参考纵波阻抗中,确定出当前采样点在各个岩相类别下的参考纵波阻抗值,其中,一个岩相类别下的一个纵波阻抗可包括各个采样点在相应岩相类别下的纵波阻抗值;进一步的,可分别对当前采样点在各个岩相类别下的模拟纵波阻抗值和参考纵波阻抗值进行差值运算,得到当前采样点在各个岩相类别下的纵波阻抗差值运算结果,并将当前采样点在各个岩相类别下的纵波阻抗差值运算结果中的最小值所对应的岩相类别,作为当前采样点的岩相识别结果;在遍历完N个采样点中的各个采样点后,得到目标岩相识别结果。可选的,各个岩相类别下的参考纵波阻抗可以是按照经验设置的,也可以是按照实际需求设置的,本发明实施例对此不作限定;示例性的,任一岩相类别下的参考纵波阻抗可为任一岩相类别的目标先验概率密度分布中的先验均值,或者是通过目标叠后地震数据所在子区域的测井数据确定的,一个子区域的测井数据可包括至少一个井中各个井的测井数据。In one embodiment, the longitudinal wave impedance of the target post-stack seismic data under each lithofacies category can be used to determine the target lithofacies identification result corresponding to the target post-stack seismic data; wherein the target lithofacies identification result may include the lithofacies identification results of each sampling point (that is, it may include the lithofacies identification results of each sampling point under the target post-stack seismic data), and a longitudinal wave impedance includes the longitudinal wave impedance value of each sampling point (that is, it includes the longitudinal wave impedance value of the corresponding longitudinal wave impedance at each sampling point). Based on this, the electronic device can traverse each sampling point among the N sampling points, and use the currently traversed sampling point as the current sampling point; and respectively determine the simulated P-wave impedance value of the current sampling point under each lithofacies category from the P-wave impedance of the target post-stack seismic data under each lithofacies category, and respectively determine the reference P-wave impedance value of the current sampling point under each lithofacies category from the reference P-wave impedance under each lithofacies category, wherein a P-wave impedance under one lithofacies category may include the P-wave impedance value of each sampling point under the corresponding lithofacies category; further, the simulated P-wave impedance value and the reference P-wave impedance value of the current sampling point under each lithofacies category can be respectively subjected to difference calculation to obtain the P-wave impedance difference calculation result of the current sampling point under each lithofacies category, and the lithofacies category corresponding to the minimum value in the P-wave impedance difference calculation result of the current sampling point under each lithofacies category is used as the lithofacies identification result of the current sampling point; after traversing each sampling point among the N sampling points, the target lithofacies identification result is obtained. Optionally, the reference P-wave impedance under each lithofacies category may be set according to experience or according to actual needs, which is not limited in the embodiments of the present invention; illustratively, the reference P-wave impedance under any lithofacies category may be a prior mean in the target prior probability density distribution of any lithofacies category, or may be determined by the logging data of the sub-area where the target post-stack seismic data is located, and the logging data of a sub-area may include the logging data of each well in at least one well.

具体的,针对K个岩相类别中的任一岩相类别,电子设备可对当前采样点在任一岩相类别下的模拟纵波阻抗值和参考纵波阻抗值进行差值运算,得到当前采样点在任一岩相类别下的纵波阻抗差值运算结果,从而可得到当前采样点在各个岩相类别下的纵波阻抗差值运算结果。其中,一个岩相类别下的纵波阻抗差值运算结果所对应的岩相类别为相应岩相类别,即任一岩相类别下的纵波阻抗差值运算结果与任一岩相类别相对应。Specifically, for any of the K lithofacies categories, the electronic device can perform a difference operation on the simulated longitudinal wave impedance value and the reference longitudinal wave impedance value of the current sampling point under any lithofacies category to obtain a longitudinal wave impedance difference operation result of the current sampling point under any lithofacies category, thereby obtaining a longitudinal wave impedance difference operation result of the current sampling point under each lithofacies category. Among them, the lithofacies category corresponding to the longitudinal wave impedance difference operation result under a lithofacies category is the corresponding lithofacies category, that is, the longitudinal wave impedance difference operation result under any lithofacies category corresponds to any lithofacies category.

示例性的,假设K个岩相类别包括泥岩和砂岩,且当前采样点在泥岩下的模拟纵波阻抗值和参考纵波阻抗值之间的纵波阻抗差值运算结果,小于当前采样点在砂岩下的模拟纵波阻抗值和参考纵波阻抗值之间的纵波阻抗差值运算结果,则可确定当前采样点在各个岩相类别下的纵波阻抗差值运算结果中的最小值为当前采样点在泥岩下的纵波阻抗差值运算结果,即可确定当前采样点在各个岩相类别下的纵波阻抗差值运算结果中的最小值所对应的岩相类别为泥岩,那么电子设备可将泥岩作为当前采样点的岩相识别结果。Exemplarily, assuming that K lithofacies categories include mudstone and sandstone, and the P-wave impedance difference calculation result between the simulated P-wave impedance value and the reference P-wave impedance value of the current sampling point under mudstone is smaller than the P-wave impedance difference calculation result between the simulated P-wave impedance value and the reference P-wave impedance value of the current sampling point under sandstone, then it can be determined that the minimum value of the P-wave impedance difference calculation results of the current sampling point under each lithofacies category is the P-wave impedance difference calculation result of the current sampling point under mudstone, and it can be determined that the lithofacies category corresponding to the minimum value of the P-wave impedance difference calculation results of the current sampling point under each lithofacies category is mudstone, and the electronic device can use mudstone as the lithofacies identification result of the current sampling point.

另一种实施方式中,目标叠后地震数据在各个岩相类别下的纵波阻抗可用于确定目标叠后地震数据对应的目标纵波阻抗;其中,目标纵波阻抗可包括各个采样点的目标纵波阻抗值(即可包括各个采样点在目标叠后地震数据下的目标纵波阻抗值)。基于此,电子设备可将当前采样点在各个岩相类别下的纵波阻抗差值运算结果中的最小值所对应的模拟纵波阻抗值,作为当前采样点的目标纵波阻抗值,以实现在遍历完N个采样点中的各个采样点后,得到目标纵波阻抗。其中,当前采样点在一个岩相类别下的纵波阻抗差值运算结果所对应的模拟纵波阻抗值为当前采样点在相应岩相类别下的模拟纵波阻抗值,即当前采样点在任一岩相类别下的纵波阻抗差值运算结果所对应的模拟纵波阻抗值为当前采样点在任一岩相类别下的模拟纵波阻抗值。示例性的,假设K个岩相类别包括泥岩和砂岩,且当前采样点在泥岩下的模拟纵波阻抗值和参考纵波阻抗值之间的纵波阻抗差值运算结果,小于当前采样点在砂岩下的模拟纵波阻抗值和参考纵波阻抗值之间的纵波阻抗差值运算结果,那么电子设备可将当前采样点在泥岩下的模拟纵波阻抗值作为当前采样点的目标纵波阻抗值。In another embodiment, the P-wave impedance of the target post-stack seismic data under each lithofacies category can be used to determine the target P-wave impedance corresponding to the target post-stack seismic data; wherein the target P-wave impedance may include the target P-wave impedance value of each sampling point (i.e., the target P-wave impedance value of each sampling point under the target post-stack seismic data). Based on this, the electronic device may use the simulated P-wave impedance value corresponding to the minimum value in the P-wave impedance difference calculation result of the current sampling point under each lithofacies category as the target P-wave impedance value of the current sampling point, so as to obtain the target P-wave impedance after traversing each sampling point among the N sampling points. wherein the simulated P-wave impedance value corresponding to the P-wave impedance difference calculation result of the current sampling point under a lithofacies category is the simulated P-wave impedance value of the current sampling point under the corresponding lithofacies category, that is, the simulated P-wave impedance value corresponding to the P-wave impedance difference calculation result of the current sampling point under any lithofacies category is the simulated P-wave impedance value of the current sampling point under any lithofacies category. Exemplarily, assuming that K lithofacies categories include mudstone and sandstone, and the result of the P-wave impedance difference calculation between the simulated P-wave impedance value of the current sampling point under the mudstone and the reference P-wave impedance value is smaller than the result of the P-wave impedance difference calculation between the simulated P-wave impedance value of the current sampling point under the sandstone and the reference P-wave impedance value, then the electronic device may use the simulated P-wave impedance value of the current sampling point under the mudstone as the target P-wave impedance value of the current sampling point.

本发明实施例可在获取到目标叠后地震数据,以及获取到K个岩相类别中各个岩相类别的目标先验概率密度分布后,分别基于各个岩相类别的目标先验概率密度分布,生成各个岩相类别下的初始纵波阻抗种群,一个目标先验概率密度分布用于指示目标叠后地震数据在相应岩相类别下的纵波阻抗服从的先验概率密度分布,目标叠后地震数据包括N个采样点中各个采样点的地震采样值,一个纵波阻抗种群包括NP个纵波阻抗个体中各个纵波阻抗个体的纵波阻抗,且一个初始纵波阻抗种群中的一个纵波阻抗个体的纵波阻抗是基于一个目标先验概率密度分布采样得到的,M和N均为正整数,NP为大于1的整数。进一步的,可分别基于各个岩相类别下的初始纵波阻抗种群,确定各个岩相类别下的目标纵波阻抗种群集合;并可分别基于各个岩相类别下的目标纵波阻抗种群集合,确定目标叠后地震数据在各个岩相类别下的纵波阻抗,目标叠后地震数据在各个岩相类别下的纵波阻抗支持用于确定目标叠后地震数据对应的目标纵波阻抗和/或目标岩相识别结果。可见,本发明实施例可通过各个岩相类别下的纵波阻抗种群,避免陷入局部机制,即可有效避免陷入局部最优,并可有效提高地震反演的收敛精度;也就是说,本发明实施例可在避免陷入局部机制的情况下,提高地震反演的收敛精度。The embodiment of the present invention can generate an initial P-wave impedance population under each lithofacies category based on the target prior probability density distribution of each lithofacies category after acquiring the target post-stack seismic data and the target prior probability density distribution of each lithofacies category in K lithofacies categories, wherein a target prior probability density distribution is used to indicate the prior probability density distribution that the P-wave impedance of the target post-stack seismic data under the corresponding lithofacies category obeys, the target post-stack seismic data includes the seismic sampling value of each sampling point in N sampling points, a P-wave impedance population includes the P-wave impedance of each P-wave impedance individual in NP P-wave impedance individuals, and the P-wave impedance of a P-wave impedance individual in an initial P-wave impedance population is obtained by sampling based on a target prior probability density distribution, M and N are both positive integers, and NP is an integer greater than 1. Further, the target P-wave impedance population set under each lithofacies category can be determined based on the initial P-wave impedance population under each lithofacies category; and the P-wave impedance of the target post-stack seismic data under each lithofacies category can be determined based on the target P-wave impedance population set under each lithofacies category, and the P-wave impedance support of the target post-stack seismic data under each lithofacies category is used to determine the target P-wave impedance and/or target lithofacies identification result corresponding to the target post-stack seismic data. It can be seen that the embodiment of the present invention can avoid falling into a local mechanism through the P-wave impedance population under each lithofacies category, which can effectively avoid falling into a local optimum and effectively improve the convergence accuracy of seismic inversion; that is, the embodiment of the present invention can improve the convergence accuracy of seismic inversion while avoiding falling into a local mechanism.

基于上述描述,本发明实施例还提出一种更为具体的地震反演方法。相应的,该地震反演方法可以由上述所提及的电子设备(终端或服务器)执行;或者,该地震反演方法可由终端和服务器共同执行。为了便于阐述,后续均以电子设备执行该地震反演方法为例进行说明;请参见图2,该地震反演方法可包括以下步骤S201-S206:Based on the above description, the embodiment of the present invention further proposes a more specific seismic inversion method. Accordingly, the seismic inversion method can be executed by the electronic device (terminal or server) mentioned above; or, the seismic inversion method can be executed by the terminal and the server together. For the convenience of explanation, the following description is taken as an example of an electronic device executing the seismic inversion method; please refer to Figure 2, the seismic inversion method may include the following steps S201-S206:

S201,获取目标叠后地震数据,以及获取K个岩相类别中各个岩相类别的目标先验概率密度分布,一个目标先验概率密度分布用于指示目标叠后地震数据在相应岩相类别下的纵波阻抗服从的先验概率密度分布,目标叠后地震数据包括N个采样点中各个采样点的地震采样值。S201, obtaining target post-stack seismic data, and obtaining a target prior probability density distribution of each lithofacies category in K lithofacies categories, a target prior probability density distribution is used to indicate the prior probability density distribution of the longitudinal wave impedance of the target post-stack seismic data under the corresponding lithofacies category, the target post-stack seismic data includes the seismic sampling value of each sampling point in N sampling points.

S202,分别基于各个岩相类别的目标先验概率密度分布,生成各个岩相类别下的初始纵波阻抗种群,一个纵波阻抗种群包括NP个纵波阻抗个体中各个纵波阻抗个体的纵波阻抗,且一个初始纵波阻抗种群中的一个纵波阻抗个体的纵波阻抗是基于一个目标先验概率密度分布采样得到的。S202, based on the target prior probability density distribution of each lithofacies category, generate an initial P-wave impedance population under each lithofacies category, wherein a P-wave impedance population includes the P-wave impedance of each P-wave impedance individual among NP P-wave impedance individuals, and the P-wave impedance of a P-wave impedance individual in an initial P-wave impedance population is obtained based on sampling of a target prior probability density distribution.

其中,一个初始纵波阻抗种群中的一个纵波阻抗个体的纵波阻抗为一条马尔科夫链的初始状态。Among them, the longitudinal wave impedance of a longitudinal wave impedance individual in an initial longitudinal wave impedance population is the initial state of a Markov chain.

S203,针对K个岩相类别中的任一岩相类别,通过粒子群算法,对任一岩相类别下的初始纵波阻抗种群进行种群更新,得到任一岩相类别下的更新纵波阻抗种群,并将任一岩相类别下的更新纵波阻抗种群添加至任一岩相类别下的纵波阻抗种群集合中,以实现NP条马尔科夫链的状态更新,一个纵波阻抗个体对应一条马尔科夫链。S203, for any lithofacies category among the K lithofacies categories, the initial P-wave impedance population under any lithofacies category is updated through the particle swarm algorithm to obtain an updated P-wave impedance population under any lithofacies category, and the updated P-wave impedance population under any lithofacies category is added to the P-wave impedance population set under any lithofacies category to realize the state update of NP Markov chains, and one P-wave impedance individual corresponds to one Markov chain.

其中,任一岩相类别下的初始纵波阻抗种群可为任一岩相类别在第1次迭代下的纵波阻抗种群,且任一岩相类别下的更新纵波阻抗种群可为任一岩相类别在第2次迭代下的纵波阻抗种群;也就是说,当t为1时,任一岩相类别在第t次迭代下的纵波阻抗种群可为任一岩相类别下的初始纵波阻抗种群,且任一岩相类别在第t+1次迭代下的纵波阻抗种群可为任一岩相类别下的更新纵波阻抗种群。其中,一条马尔科夫链的状态更新也可指的是对相应马尔科夫链的迭代,且任一岩相类别下的一次种群更新可包括任一岩相类别下的每条马尔科夫链的一次迭代,即可包括任一岩相类别下的每条马尔科夫链的一次状态更新。The initial P-wave impedance population under any lithofacies category may be the P-wave impedance population of any lithofacies category at the first iteration, and the updated P-wave impedance population under any lithofacies category may be the P-wave impedance population of any lithofacies category at the second iteration; that is, when t is 1, the P-wave impedance population of any lithofacies category at the tth iteration may be the initial P-wave impedance population under any lithofacies category, and the P-wave impedance population of any lithofacies category at the t+1th iteration may be the updated P-wave impedance population under any lithofacies category. The state update of a Markov chain may also refer to the iteration of the corresponding Markov chain, and a population update under any lithofacies category may include one iteration of each Markov chain under any lithofacies category, that is, one state update of each Markov chain under any lithofacies category.

在本发明实施例中,电子设备可将任一岩相类别在每次迭代下的纵波阻抗种群添加至任一岩相类别下的纵波阻抗种群集合中,也就是说,任一岩相类别下的纵波阻抗种群集合可依次包括任一岩相类别在每次迭代下的纵波阻抗种群。应当理解的是,在完成第t+1次迭代后,任一岩相类别下的纵波阻抗种群集合可包括任一岩相类别在第1次迭代下的纵波阻抗种群,……,任一岩相类别在第t+1次迭代下的纵波阻抗种群。In the embodiment of the present invention, the electronic device may add the P-wave impedance population of any lithofacies category in each iteration to the P-wave impedance population set under any lithofacies category, that is, the P-wave impedance population set under any lithofacies category may sequentially include the P-wave impedance population of any lithofacies category in each iteration. It should be understood that after completing the t+1th iteration, the P-wave impedance population set under any lithofacies category may include the P-wave impedance population of any lithofacies category in the 1st iteration, ..., the P-wave impedance population of any lithofacies category in the t+1th iteration.

S204,基于任一岩相类别下的更新纵波阻抗种群,确定任一岩相类别下的当前纵波阻抗反演结果,并基于当前纵波阻抗反演结果判断任一岩相类别下的纵波阻抗反演结果是否趋于稳定。S204, based on the updated P-wave impedance population under any lithofacies category, determine the current P-wave impedance inversion result under any lithofacies category, and judge whether the P-wave impedance inversion result under any lithofacies category tends to be stable based on the current P-wave impedance inversion result.

应当理解的是,在第t+1次迭代过程中,电子设备可基于任一岩相类别在第t+1次迭代下的纵波阻抗种群,确定任一岩相类别下的当前纵波阻抗反演结果(即任一岩相类别在第t+1次迭代下的纵波阻抗反演结果),以基于任一岩相类别在第t+1次迭代下的纵波阻抗反演结果判断任一岩相类别下的纵波阻抗反演结果是否趋于稳定。It should be understood that during the t+1th iteration, the electronic device can determine the current P-wave impedance inversion result under any lithofacies category (i.e., the P-wave impedance inversion result of any lithofacies category at the t+1th iteration) based on the P-wave impedance population of any lithofacies category at the t+1th iteration, so as to judge whether the P-wave impedance inversion result of any lithofacies category tends to be stable based on the P-wave impedance inversion result of any lithofacies category at the t+1th iteration.

在一种实施方式中,在确定任一岩相类别在第t+1次迭代下的纵波阻抗反演结果(即任一岩相类别下的当前纵波阻抗反演结果)时,可对任一岩相类别在第t+1次迭代下的纵波阻抗种群进行均值运算,得到任一岩相类别在第t+1次迭代下的纵波阻抗反演结果(此时即为任一岩相类别在第t+1次迭代下的纵波阻抗种群中各个纵波阻抗之间的均值运算结果);也就是说,当t为1时,可对任一岩相类别下的更新纵波阻抗种群进行均值运算,从而得到任一岩相类别下的当前纵波阻抗反演结果。In one embodiment, when determining the P-wave impedance inversion result of any lithofacies category at the t+1th iteration (i.e., the current P-wave impedance inversion result of any lithofacies category), a mean operation can be performed on the P-wave impedance population of any lithofacies category at the t+1th iteration to obtain the P-wave impedance inversion result of any lithofacies category at the t+1th iteration (at this time, it is the mean operation result between the P-wave impedances in the P-wave impedance population of any lithofacies category at the t+1th iteration); that is, when t is 1, a mean operation can be performed on the updated P-wave impedance population under any lithofacies category to obtain the current P-wave impedance inversion result under any lithofacies category.

另一种实施方式中,电子设备可从任一岩相类别下的纵波阻抗种群集合中确定出任一岩相类别下的判定纵波阻抗种群集合,任一岩相类别下的判定纵波阻抗种群集合中任一纵波阻抗种群集合对应的迭代次数大于任一岩相类别下的纵波阻抗种群集合中除任一岩相类别下的判定纵波阻抗种群集合以外的所有纵波阻抗种群对应的迭代次数;其中,当t+1小于H时,任一岩相类别下的判定纵波阻抗种群集合可为任一岩相类别下的纵波阻抗种群集合,即任一岩相类别下的判定纵波阻抗种群集合可包括任一岩相类别下的纵波阻抗种群集合中的所有纵波阻抗种群集合,且此时任一岩相类别下的纵波阻抗种群集合中的纵波阻抗种群集合的数量小于H,H为大于1的整数;当t+1大于或等于H时,任一岩相类别下的判定纵波阻抗种群集合可包括任一岩相类别下的纵波阻抗种群集合中后H次迭代中每次迭代下的纵波阻抗种群,即可包括任一岩相类别下的纵波阻抗种群集合中的后H个纵波阻抗种群。可选的,H的取值可与任一岩相类别下的目标纵波阻抗种群集合中的纵波阻抗种群的数量相同,也可不同,本发明实施例对此不作限定。基于此,电子设备可对任一岩相类别下的判定纵波阻抗种群集合进行均值运算,即可对任一岩相类别下的判定纵波阻抗种群集合中的各个纵波阻抗进行均值运算,得到任一岩相类别在第t+1次迭代下的纵波阻抗反演结果,此时任一岩相类别在第t+1次迭代下的纵波阻抗反演结果可为任一岩相类别下的判定纵波阻抗种群集合中各个纵波阻抗(即任一岩相类别下的判定纵波阻抗种群集合中所有纵波阻抗种群包括的各个纵波阻抗)之间的均值运算结果,等等;本发明实施例对此不作限定。In another embodiment, the electronic device may determine a determined longitudinal wave impedance population set under any lithofacies category from the longitudinal wave impedance population set under any lithofacies category, and the number of iterations corresponding to any longitudinal wave impedance population set in the determined longitudinal wave impedance population set under any lithofacies category is greater than the number of iterations corresponding to all longitudinal wave impedance populations in the longitudinal wave impedance population set under any lithofacies category except the determined longitudinal wave impedance population set under any lithofacies category; wherein, when t+1 is less than H, the determined longitudinal wave impedance population set under any lithofacies category may be the longitudinal wave impedance population set under any lithofacies category, That is, the determined P-wave impedance population set under any lithofacies category may include all P-wave impedance population sets in the P-wave impedance population set under any lithofacies category, and at this time, the number of P-wave impedance population sets in the P-wave impedance population set under any lithofacies category is less than H, and H is an integer greater than 1; when t+1 is greater than or equal to H, the determined P-wave impedance population set under any lithofacies category may include the P-wave impedance populations in each iteration of the last H iterations in the P-wave impedance population set under any lithofacies category, that is, it may include the last H P-wave impedance populations in the P-wave impedance population set under any lithofacies category. Optionally, the value of H may be the same as or different from the number of P-wave impedance populations in the target P-wave impedance population set under any lithofacies category, and this is not limited in the embodiment of the present invention. Based on this, the electronic device can perform mean operation on the determined longitudinal wave impedance population set under any facies category, that is, perform mean operation on each longitudinal wave impedance in the determined longitudinal wave impedance population set under any facies category, and obtain the longitudinal wave impedance inversion result of any facies category under the t+1th iteration. At this time, the longitudinal wave impedance inversion result of any facies category under the t+1th iteration can be the mean operation result between each longitudinal wave impedance in the determined longitudinal wave impedance population set under any facies category (that is, each longitudinal wave impedance included in all longitudinal wave impedance populations in the determined longitudinal wave impedance population set under any facies category), and so on; the embodiment of the present invention is not limited to this.

可选的,在基于当前纵波阻抗反演结果判断任一岩相类别下的纵波阻抗反演结果是否趋于稳定时,电子设备可确定任一岩相识别下的P个历史纵波阻抗反演结果,并基于当前纵波阻抗反演结果和P个历史纵波阻抗反演结果,判断任一岩相类别下的纵波阻抗反演结果是否趋于稳定,P为正整数;其中,P个历史纵波阻抗反演结果包括任一岩相类别在第t+1次迭代的前P次迭代中每次迭代下的纵波阻抗反演结果,也就是说,当前纵波阻抗反演结果和P个历史纵波阻抗反演结果可包括任一岩相类别在后P+1次迭代(即第t-P+1次迭代至第t+1次迭代)中每次迭代下的纵波阻抗反演结果。可选的,电子设备还可判断t+1是否大于P;若t+1大于P,则触发执行上述确定任一岩相识别下的P个历史纵波阻抗反演结果;若t+1小于或等于P,则确定任一岩相类别下的纵波阻抗反演结果未趋于稳定。Optionally, when judging whether the P-wave impedance inversion result under any facies category tends to be stable based on the current P-wave impedance inversion result, the electronic device may determine P historical P-wave impedance inversion results under any facies identification, and judge whether the P-wave impedance inversion result under any facies category tends to be stable based on the current P-wave impedance inversion result and the P historical P-wave impedance inversion results, where P is a positive integer; wherein the P historical P-wave impedance inversion results include the P-wave impedance inversion result of any facies category under each iteration in the P iterations before the t+1th iteration, that is, the current P-wave impedance inversion result and the P historical P-wave impedance inversion results may include the P-wave impedance inversion result of any facies category under each iteration in the subsequent P+1 iterations (i.e., from the t-P+1th iteration to the t+1th iteration). Optionally, the electronic device can also determine whether t+1 is greater than P; if t+1 is greater than P, it triggers the execution of the above-mentioned determination of P historical longitudinal wave impedance inversion results under any lithofacies identification; if t+1 is less than or equal to P, it determines that the longitudinal wave impedance inversion results under any lithofacies category have not stabilized.

可选的,在基于当前纵波阻抗反演结果和P个历史纵波阻抗反演结果,判断任一岩相类别下的纵波阻抗反演结果是否趋于稳定时,电子设备可判断当前纵波阻抗反演结果和P个历史纵波阻抗反演结果是否服从稳态分布(也可称为平稳分布),也就是说,可判断P个历史纵波阻抗反演结果和当前纵波阻抗反演结果是否为平稳序列;若当前纵波阻抗反演结果和P个历史纵波阻抗反演结果服从稳态分布,则确定任一岩相类别下的纵波阻抗反演结果趋于稳定,此时P个历史纵波阻抗反演结果和当前纵波阻抗反演结果为平稳序列;若当前纵波阻抗反演结果和P个历史纵波阻抗反演结果不服从稳态分布,则确定任一岩相类别下的纵波阻抗反演结果不趋于稳定,此时P个历史纵波阻抗反演结果和当前纵波阻抗反演结果不为平稳序列。Optionally, when judging whether the P-wave impedance inversion result under any facies category tends to be stable based on the current P-wave impedance inversion result and P historical P-wave impedance inversion results, the electronic device can judge whether the current P-wave impedance inversion result and the P historical P-wave impedance inversion results obey a steady-state distribution (also called a stable distribution), that is, it can judge whether the P historical P-wave impedance inversion results and the current P-wave impedance inversion result are a stable sequence; if the current P-wave impedance inversion result and the P historical P-wave impedance inversion results obey a steady-state distribution, it is determined that the P-wave impedance inversion result under any facies category tends to be stable, and at this time, the P historical P-wave impedance inversion results and the current P-wave impedance inversion result are a stable sequence; if the current P-wave impedance inversion result and the P historical P-wave impedance inversion results do not obey a steady-state distribution, it is determined that the P-wave impedance inversion result under any facies category does not tend to be stable, and at this time, the P historical P-wave impedance inversion results and the current P-wave impedance inversion result are not a stable sequence.

S205,当任一岩相类别下的纵波阻抗反演结果未趋于稳定时,继续对任一岩相类别下的更新纵波阻抗种群进行种群更新,直至任一岩相识别下的纵波阻抗反演结果趋于稳定,以从任一岩相类别下的纵波阻抗种群集合中确定出任一岩相类别下的目标纵波阻抗种群集合。S205, when the P-wave impedance inversion result under any lithofacies category has not tended to be stable, continue to update the updated P-wave impedance population under any lithofacies category until the P-wave impedance inversion result under any lithofacies identification tends to be stable, so as to determine the target P-wave impedance population set under any lithofacies category from the P-wave impedance population set under any lithofacies category.

在本发明实施例中,当任一岩相类别下的纵波阻抗反演结果趋于稳定时,可停止任一岩相类别下的种群更新,此时任一岩相类别下的纵波阻抗种群集合可包括任一岩相类别在T次迭代中的每次迭代下的纵波阻抗种群,T为停止任一岩相类别下的种群更新时的迭代次数,即T为任一岩相类别下的迭代总次数。In an embodiment of the present invention, when the longitudinal wave impedance inversion result under any lithofacies category tends to be stable, the population update under any lithofacies category can be stopped. At this time, the longitudinal wave impedance population set under any lithofacies category may include the longitudinal wave impedance population of any lithofacies category in each iteration of T iterations, where T is the number of iterations when the population update under any lithofacies category is stopped, that is, T is the total number of iterations under any lithofacies category.

基于此,任一岩相类别下的纵波阻抗种群集合可包括任一岩相类别在T次迭代中每次迭代下的纵波阻抗种群,T次迭代中的第t+1次迭代下的纵波阻抗种群是通过对第t次迭代下的纵波阻抗种群进行种群更新得到的,T为大于1的整数,t∈[1,T-1]。其中,任一岩相类别在第t+1次迭代下的纵波阻抗种群的确定方式可如下所示。Based on this, the set of P-wave impedance populations under any lithofacies category may include the P-wave impedance populations of any lithofacies category in each iteration in T iterations, and the P-wave impedance population at the t+1th iteration in T iterations is obtained by updating the P-wave impedance population at the tth iteration, where T is an integer greater than 1, t∈[1, T-1]. The determination method of the P-wave impedance population of any lithofacies category at the t+1th iteration may be as follows.

那么相应的,在确定任一岩相类别在第t+1次迭代下的纵波阻抗种群时,针对任一岩相类别在第t次迭代下的纵波阻抗种群中的第i个纵波阻抗,以及N个采样点中的第n个采样点,电子设备可将任一岩相类别在第t次迭代下的纵波阻抗种群中的第i个纵波阻抗作为第t次迭代下的第i个纵波阻抗,i∈[1,NP],n∈[1,N];并通过粒子群算法,基于第t次迭代下的第i个纵波阻抗中第n个采样点的纵波阻抗值,确定第n个采样点的候选纵波阻抗值(即第t+1次迭代下的第i个纵波阻抗中第n个采样点的候选纵波阻抗值),以得到候选纵波阻抗,候选纵波阻抗包括各个采样点的候选纵波阻抗值。具体的,电子设备可采用公式2.1,计算第n个采样点的候选纵波阻抗值:Then correspondingly, when determining the P-wave impedance population of any lithofacies category at the t+1th iteration, for the i-th P-wave impedance in the P-wave impedance population of any lithofacies category at the tth iteration, and the n-th sampling point in the N sampling points, the electronic device can use the i-th P-wave impedance in the P-wave impedance population of any lithofacies category at the tth iteration as the i-th P-wave impedance at the tth iteration, i∈[1, NP], n∈[1, N]; and through the particle swarm algorithm, based on the P-wave impedance value of the n-th sampling point in the i-th P-wave impedance at the tth iteration, determine the candidate P-wave impedance value of the n-th sampling point (i.e., the candidate P-wave impedance value of the n-th sampling point in the i-th P-wave impedance at the t+1th iteration) to obtain the candidate P-wave impedance, which includes the candidate P-wave impedance values of each sampling point. Specifically, the electronic device can use formula 2.1 to calculate the candidate P-wave impedance value of the n-th sampling point:

式2.1 Formula 2.1

其中,t表示迭代次数,m(i,n)(t+1)表示第t+1次迭代下的第i个纵波阻抗(即任一岩相类别在第t+1次迭代下的纵波阻抗种群中的第i个纵波阻抗,即任一岩相类别在第t+1次迭代下的第i个纵波阻抗个体的纵波阻抗)中第n个采样点的候选纵波阻抗值(即可表示第t+1次迭代中第i条马尔科夫链的第n维度的值),v(i,n)(t+1)可表示任一岩相类别在第t+1次迭代下的第i个纵波阻抗中第n个采样点的速度(即可表示第t+1次迭代中第i条马尔科夫链的第n维度的速度)。基于此,在通过粒子群算法,基于第t次迭代下的第i个纵波阻抗中第n个采样点的纵波阻抗值,确定第n个采样点的候选纵波阻抗值时,电子设备可基于第t次迭代下的第i个纵波阻抗中第n个采样点的纵波阻抗值和第t+1次迭代下的第i个纵波阻抗中第n个采样点的速度,计算第n个采样点的候选纵波阻抗值。Wherein, t represents the number of iterations, m (i,n) (t+1) represents the candidate P-wave impedance value of the n-th sampling point in the ith P-wave impedance at the t+1-th iteration (i.e., the ith P-wave impedance in the P-wave impedance population of any lithofacies category at the t+1-th iteration, i.e., the P-wave impedance of the ith P-wave impedance individual of any lithofacies category at the t+1-th iteration) (i.e., the value of the n-th dimension of the ith Markov chain at the t+1-th iteration), and v (i,n) (t+1) represents the velocity of the n-th sampling point in the ith P-wave impedance of any lithofacies category at the t+1-th iteration (i.e., the velocity of the n-th dimension of the ith Markov chain at the t+1-th iteration). Based on this, when determining the candidate longitudinal wave impedance value of the nth sampling point based on the longitudinal wave impedance value of the nth sampling point in the i-th longitudinal wave impedance at the t-th iteration through the particle swarm algorithm, the electronic device can calculate the candidate longitudinal wave impedance value of the nth sampling point based on the longitudinal wave impedance value of the nth sampling point in the i-th longitudinal wave impedance at the t-th iteration and the velocity of the nth sampling point in the i-th longitudinal wave impedance at the t+1-th iteration.

具体的,电子设备可采用公式2.2,计算任一岩相类别在第t+1次迭代下的第i个纵波阻抗中第n个采样点的速度:Specifically, the electronic device can use Formula 2.2 to calculate the velocity of the nth sampling point in the ith longitudinal wave impedance of any lithofacies category at the t+1th iteration:

式2.2 Formula 2.2

其中,ω为惯性权值,c1、c2均为正常数(也可称为加速系数),r1、r2均是在[0,1]范围内变化的随机数(即可以是随机生成的);可选的,ω、c1以及c2均可以是按照经验设置的,也可以是按照实际需求设置的,本发明实施例对此不作限定。相应的,Pbest(i,n)(t)可表示第i个纵波阻抗个体的最优纵波阻抗(即任一岩相类别在前t次迭代中每次迭代下的第i个纵波阻抗中的最优位置,也可称为第i个纵波阻抗个体在前t次迭代所经历的个体历史最优位置)中第n个采样点的纵波阻抗值;Gbestn(t)可表示任一岩相类别在前t次迭代中,各个纵波阻抗个体的所有纵波阻抗中的最优纵波阻抗(即任一岩相类别下的所有纵波阻抗个体所经历的所有个体位置中的历史最优位置)包括的第n个采样点的纵波阻抗值。可选的,电子设备可采用目标评价函数计算一个纵波阻抗的评价值,那么电子设备可通过目标评价函数确定任一岩相类别在每次迭代下的纵波阻抗种群中每个纵波阻抗的评价值;基于此,可将任一岩相类别在前t次迭代中每个纵波阻抗种群中的第i个纵波阻抗(即任一岩相类别下的第i个纵波阻抗个体在前t次迭代中的纵波阻抗)的评价值中最大值所对应的纵波阻抗,作为第i个纵波阻抗个体的最优纵波阻抗(也可称为第i个纵波阻抗个体在前t次迭代中的最优纵波阻抗);相应的,可将任一岩相类别在前t次迭代中每个纵波阻抗的评价值中的最大值所对应的纵波阻抗,作为任一岩相类别在前t次迭代中各个纵波阻抗个体的所有纵波阻抗中的最优纵波阻抗。可选的,目标评价函数可以是按照经验设置的,也可以是按照实际需求设置的,本发明实施例对此不作限定;例如,目标评价函数可为下述损失函数,等等。Wherein, ω is the inertia weight, c 1 and c 2 are both positive constants (also known as acceleration coefficients), r 1 and r 2 are both random numbers varying in the range of [0, 1] (i.e., they can be randomly generated); optionally, ω, c 1 and c 2 can be set according to experience or according to actual needs, which is not limited in the embodiment of the present invention. Correspondingly, Pbest (i,n) (t) can represent the P-wave impedance value of the nth sampling point in the optimal P-wave impedance of the i-th P-wave impedance individual (i.e., the optimal position in the i-th P-wave impedance of any lithofacies category in each iteration in the first t iterations, which can also be called the individual historical optimal position experienced by the i-th P-wave impedance individual in the first t iterations); Gbest n (t) can represent the P-wave impedance value of the nth sampling point included in the optimal P-wave impedance of all P-wave impedances of each P-wave impedance individual in any lithofacies category in the first t iterations (i.e., the historical optimal position in all individual positions experienced by all P-wave impedance individuals under any lithofacies category). Optionally, the electronic device may calculate an evaluation value of a longitudinal wave impedance using a target evaluation function, and then the electronic device may determine the evaluation value of each longitudinal wave impedance in the longitudinal wave impedance population of any facies category in each iteration through the target evaluation function; based on this, the longitudinal wave impedance corresponding to the maximum value in the evaluation value of the i-th longitudinal wave impedance in each longitudinal wave impedance population of any facies category in the first t iterations (i.e., the longitudinal wave impedance of the i-th longitudinal wave impedance individual under any facies category in the first t iterations) may be used as the optimal longitudinal wave impedance of the i-th longitudinal wave impedance individual (also referred to as the optimal longitudinal wave impedance of the i-th longitudinal wave impedance individual in the first t iterations); accordingly, the longitudinal wave impedance corresponding to the maximum value in the evaluation value of each longitudinal wave impedance of any facies category in the first t iterations may be used as the optimal longitudinal wave impedance of all longitudinal wave impedances of each longitudinal wave impedance individual in any facies category in the first t iterations. Optionally, the target evaluation function may be set according to experience or according to actual needs, and the embodiment of the present invention does not limit this; for example, the target evaluation function may be the following loss function, etc.

进一步的,电子设备可基于第t次迭代下的第i个纵波阻抗、候选纵波阻抗以及目标叠后地震数据,计算候选纵波阻抗的接收概率,并基于候选纵波阻抗的接收概率判断是否接收候选纵波阻抗;若确定接收候选纵波阻抗,则将候选纵波阻抗,作为任一岩相类别在第t+1次迭代下的纵波阻抗种群中的第i个纵波阻抗;若确定不接收候选纵波阻抗,则将第t次迭代下的第i个纵波阻抗,作为任一岩相类别在第t+1次迭代下的纵波阻抗种群中的第i个纵波阻抗,以实现确定任一岩相类别在第t+1次迭代下的纵波阻抗种群。可选的,电子设备可确定接收概率阈值,若候选纵波阻抗的接收概率大于或等于接收概率阈值,则可确定接收候选纵波阻抗;若候选纵波阻抗的接收概率小于接受概率阈值,则可确定不接受候选纵波阻抗。可选的,接收概率阈值可以是按照经验或实际需求设置的,也可以是通过随机采样得到的,本发明实施例对此不作限定;示例性的,接收概率阈值可以是通过log(U[0,1])采样得到的。Further, the electronic device may calculate the reception probability of the candidate P-wave impedance based on the i-th P-wave impedance at the t-th iteration, the candidate P-wave impedance and the target post-stack seismic data, and determine whether to receive the candidate P-wave impedance based on the reception probability of the candidate P-wave impedance; if it is determined to receive the candidate P-wave impedance, the candidate P-wave impedance is used as the i-th P-wave impedance in the P-wave impedance population of any facies category at the t+1-th iteration; if it is determined not to receive the candidate P-wave impedance, the i-th P-wave impedance at the t-th iteration is used as the i-th P-wave impedance in the P-wave impedance population of any facies category at the t+1-th iteration, so as to determine the P-wave impedance population of any facies category at the t+1-th iteration. Optionally, the electronic device may determine a reception probability threshold, and if the reception probability of the candidate P-wave impedance is greater than or equal to the reception probability threshold, it may be determined to receive the candidate P-wave impedance; if the reception probability of the candidate P-wave impedance is less than the acceptance probability threshold, it may be determined not to accept the candidate P-wave impedance. Optionally, the reception probability threshold may be set according to experience or actual needs, or may be obtained through random sampling, which is not limited in the embodiments of the present invention; illustratively, the reception probability threshold may be obtained through log(U[0,1]) sampling.

可选的,当任一岩相类别为K个岩相类别中的第k个岩相类别,k∈[1,K]时,电子设备可采用公式2.3,计算候选纵波阻抗的接收概率:Optionally, when any lithofacies category is the kth lithofacies category among K lithofacies categories, k∈[1, K], the electronic device may use formula 2.3 to calculate the reception probability of the candidate longitudinal wave impedance:

式2.3 Formula 2.3

其中,可表示第t+1次迭代过程中(即第t+1次迭代下)第i个纵波阻抗个体的候选纵波阻抗(即上述候选纵波阻抗),也可称为第t+1次迭代过程中生成的第i个纵波阻抗个体的候选状态;可表示第t次迭代过程中第i个纵波阻抗个体的纵波阻抗,也可称为第t次迭代过程中第i个纵波阻抗个体的当前状态。可选的,pk(m|d)可为纵波阻抗的后验概率密度分布的第k个Laplace分量,后验概率密度分布p(m|d)可以是一个混合Laplace概率密度分布;Lk(m|d)可表示与pk(m|d)等价的损失函数(也可称为目标泛函)。in, It can represent the candidate longitudinal wave impedance (i.e., the above-mentioned candidate longitudinal wave impedance) of the i-th longitudinal wave impedance individual in the t+1-th iteration process (i.e., the t+1-th iteration), and can also be called the candidate state of the i-th longitudinal wave impedance individual generated in the t+1-th iteration process; It can represent the longitudinal wave impedance of the i-th longitudinal wave impedance individual in the t-th iteration process, and can also be called the current state of the i-th longitudinal wave impedance individual in the t-th iteration process. Optionally, p k (m|d) can be the k-th Laplace component of the posterior probability density distribution of the longitudinal wave impedance, and the posterior probability density distribution p(m|d) can be a mixed Laplace probability density distribution; L k (m|d) can represent a loss function (also called a target functional) equivalent to p k (m|d).

相应的,电子设备可采用公式2.4,计算第k个分量下的损失函数:Correspondingly, the electronic device can use formula 2.4 to calculate the loss function under the kth component:

式2.4 Formula 2.4

其中,d可表示目标叠后地震数据(为一个向量),W可表示地震子波矩阵(可以是通过地震子波(如雷克子波)和采样点数量采样得到的,也可以是按照经验或实际需求设置的,本发明实施例对此不作限定),D可为差分矩阵算子(可以是按照经验或实际需求等设置的),Cd可表示观测地震数据中噪声的协方差矩阵(被用来衡量地震数据的不确定性,协方差越大表示地震数据的信噪比越低,可以是通过观测地震数据中的噪声数据确定的,也可以是按照经验或实际需求设置的,等等)。另外,可表示第k个岩相类别的目标先验概率密度分布(如第k个Laplace概率密度分布)中第n采样点的方差(即第n个采样点在第k个岩相类别下的纵波阻抗方差),可表示第k个岩相类别的目标先验概率密度分布中第n采样点的中心位置(即第n个采样点在第k个岩相类别下的纵波阻抗均值)。需要说明的是,目标叠后地震数据可表示为地震子波与地震反射系数的褶积,也就是说,目标叠后地震数据可表示为d=WDm+ε;其中,ε可表示目标叠后地震数据对应的噪声,一个地震道可对应一个噪声,即可表示目标叠后地震数据所在地震道对应的噪声,一个噪声的维度等于采样点数量。Wherein, d may represent the target post-stack seismic data (a vector), W may represent the seismic wavelet matrix (which may be obtained by sampling the seismic wavelet (such as Ricker wavelet) and the number of sampling points, or may be set according to experience or actual needs, which is not limited in the embodiment of the present invention), D may be a difference matrix operator (which may be set according to experience or actual needs, etc.), and Cd may represent the covariance matrix of the noise in the observed seismic data (which is used to measure the uncertainty of the seismic data, the larger the covariance, the lower the signal-to-noise ratio of the seismic data, which may be determined by the noise data in the observed seismic data, or may be set according to experience or actual needs, etc.). In addition, It can represent the variance of the nth sampling point in the target prior probability density distribution of the kth lithofacies category (such as the kth Laplace probability density distribution) (i.e., the longitudinal wave impedance variance of the nth sampling point under the kth lithofacies category), It can represent the center position of the nth sampling point in the target prior probability density distribution of the kth lithofacies category (i.e., the mean value of the P-wave impedance of the nth sampling point under the kth lithofacies category). It should be noted that the target post-stack seismic data can be represented as the convolution of the seismic wavelet and the seismic reflection coefficient, that is, the target post-stack seismic data can be represented as d=WDm+ε; where ε can represent the noise corresponding to the target post-stack seismic data, and one seismic trace can correspond to one noise, that is, it can represent the noise corresponding to the seismic trace where the target post-stack seismic data is located, and the dimension of one noise is equal to the number of sampling points.

在本发明实施例中,通过分层贝叶斯公式将目标叠后地震数据的高斯似然函数p(d|m)和混合Laplace概率密度分布(即各个岩相类别的目标先验概率密度分布之和)联合起来,可得到纵波阻抗的后验概率密度分布,如公式2.5所示:In the embodiment of the present invention, the Gaussian likelihood function p(d|m) of the target post-stack seismic data and the mixed Laplace probability density distribution (i.e., the sum of the target prior probability density distributions of each lithofacies category) are combined through the hierarchical Bayesian formula to obtain the posterior probability density distribution of the P-wave impedance, as shown in Formula 2.5:

式2.5 Formula 2.5

基于此,后验概率密度分布p(m|d)可以是一个混合Laplace概率密度分布,那么p(m|d)可如公式2.6所示:Based on this, the posterior probability density distribution p(m|d) can be a mixed Laplace probability density distribution, then p(m|d) can be shown as formula 2.6:

式2.6 Formula 2.6

其中,基于公式2.5和公式2.6所示,后验概率密度分布的第k个Laplace分量pk(m|d)可以如公式2.7所示:Wherein, based on Formula 2.5 and Formula 2.6, the kth Laplace component p k (m|d) of the posterior probability density distribution can be shown as Formula 2.7:

式2.7 Formula 2.7

进一步的,可将高斯似然函数p(d|m)=N(d-WDm;0,Cd)和第k个Laplace先验概率密度分布(即第k个岩相类别的目标先验概率密度分布)代入公式2.7,并采用后验概率密度分布的自然对数来构建等价的目标泛函(即可分别对公式2.7中等价的两部分取自然对数),从而等价得到公式2.4。其中,第k个Laplace先验概率密度分布可如公式2.8所示:Furthermore, the Gaussian likelihood function p(d|m)=N(d-WDm;0,C d ) and the kth Laplace prior probability density distribution (i.e., the target prior probability density distribution of the kth lithofacies category) can be substituted into Formula 2.7, and the natural logarithm of the posterior probability density distribution can be used to construct an equivalent target functional (i.e., the natural logarithm of the two equivalent parts in Formula 2.7 can be taken respectively), thereby equivalently obtaining Formula 2.4. Among them, the kth Laplace prior probability density distribution can be shown as Formula 2.8:

式2.8 Formula 2.8

基于此,在基于第t次迭代下的第i个纵波阻抗、候选纵波阻抗以及目标叠后地震数据,计算候选纵波阻抗的接收概率时,电子设备可确定各个采样点在任一岩相类别下的纵波阻抗均值和纵波阻抗方差,如从任一岩相类别的目标先验概率密度分布中确定出各个采样点在任一岩相类别下的纵波阻抗均值和纵波阻抗方差;并基于第t次迭代下的第i个纵波阻抗、候选纵波阻抗、目标叠后地震数据以及各个采样点在任一岩相类别下的纵波阻抗均值和纵波阻抗方差,计算候选纵波阻抗的接收概率;也就是说,可将第t次迭代下的第i个纵波阻抗、候选纵波阻抗、目标叠后地震数据以及各个采样点在任一岩相类别下的纵波阻抗均值和纵波阻抗方差代入公式2.3以计算候选纵波阻抗的接收概率。具体的,电子设备可采用第t次迭代下的第i个纵波阻抗、候选纵波阻抗、目标叠后地震数据、地震子波矩阵、差分矩阵算子、噪声的协方差矩阵以及各个采样点在任一岩相类别下的纵波阻抗均值和纵波阻抗方差等,计算候选纵波阻抗的接收概率。Based on this, when calculating the reception probability of the candidate P-wave impedance based on the i-th P-wave impedance, the candidate P-wave impedance and the target post-stack seismic data at the t-th iteration, the electronic device can determine the mean P-wave impedance and the variance of the P-wave impedance of each sampling point in any lithofacies category, such as determining the mean P-wave impedance and the variance of the P-wave impedance of each sampling point in any lithofacies category from the target prior probability density distribution of any lithofacies category; and based on the i-th P-wave impedance, the candidate P-wave impedance, the target post-stack seismic data and the mean P-wave impedance and the variance of the P-wave impedance of each sampling point in any lithofacies category at the t-th iteration, the reception probability of the candidate P-wave impedance is calculated; that is, the i-th P-wave impedance, the candidate P-wave impedance, the target post-stack seismic data and the mean P-wave impedance and the variance of the P-wave impedance of each sampling point in any lithofacies category at the t-th iteration can be substituted into formula 2.3 to calculate the reception probability of the candidate P-wave impedance. Specifically, the electronic device can use the i-th P-wave impedance under the t-th iteration, the candidate P-wave impedance, the target post-stack seismic data, the seismic wavelet matrix, the difference matrix operator, the covariance matrix of the noise, and the mean P-wave impedance and the P-wave impedance variance of each sampling point under any lithofacies category to calculate the reception probability of the candidate P-wave impedance.

进一步的,在从任一岩相类别下的纵波阻抗种群集合中确定出任一岩相类别下的目标纵波阻抗种群集合时,可将任一岩相类别下的纵波阻抗种群集合中的后Q个纵波阻抗种群添加至任一岩相类别下的目标纵波阻抗种群集群中,以实现确定出任一岩相类别下的目标纵波阻抗种群集合,Q为正整数;可选的,Q可以是按照经验或实际需求设置的,也可以是按照预设比例阈值确定的,等等;示例性的,当Q是按照预设比例阈值确定时,Q可等于预设比例阈值与任一岩相类别下的纵波阻抗种群集合中纵波阻抗种群数量之间的乘法运算结果;可选的,预设比例阈值可以是按照经验设置的,也可以是按照实际需求设置的,本发明实施例对此不作限定。Further, when determining the target P-wave impedance population set under any facies category from the P-wave impedance population set under any facies category, the last Q P-wave impedance populations in the P-wave impedance population set under any facies category can be added to the target P-wave impedance population cluster under any facies category to determine the target P-wave impedance population set under any facies category, where Q is a positive integer; optionally, Q can be set according to experience or actual needs, or can be determined according to a preset ratio threshold, and so on; illustratively, when Q is determined according to a preset ratio threshold, Q can be equal to the multiplication result between the preset ratio threshold and the number of P-wave impedance populations in the P-wave impedance population set under any facies category; optionally, the preset ratio threshold can be set according to experience, or can be set according to actual needs, and the embodiments of the present invention are not limited to this.

S206,分别基于各个岩相类别下的目标纵波阻抗种群集合,确定目标叠后地震数据在各个岩相类别下的纵波阻抗,目标叠后地震数据在各个岩相类别下的纵波阻抗支持用于确定目标叠后地震数据对应的目标纵波阻抗和/或目标岩相识别结果。S206, based on the target P-wave impedance population set under each lithofacies category, determine the P-wave impedance of the target post-stack seismic data under each lithofacies category, and the P-wave impedance support of the target post-stack seismic data under each lithofacies category is used to determine the target P-wave impedance and/or target lithofacies identification result corresponding to the target post-stack seismic data.

具体的,在分别基于各个岩相类别下的目标纵波阻抗种群集合,确定目标叠后地震数据在各个岩相类别下的纵波阻抗时,针对K个岩相类别中的任一岩相类别,电子设备可对任一岩相类别下的目标纵波阻抗种群集合中的各个纵波阻抗进行均值运算,得到目标叠后地震数据在任一岩相类别下的纵波阻抗,也就是说,目标叠后地震数据在任一岩相类别下的纵波阻抗可为任一岩相类别下的目标纵波阻抗种群集合中所有纵波阻抗之间的均值运算结果。其中,目标叠后地震数据在任一岩相类别下的纵波阻抗也可称为任一岩相类别下的纵波阻抗的后验均值。Specifically, when determining the P-wave impedance of the target post-stack seismic data in each lithofacies category based on the target P-wave impedance population set in each lithofacies category, for any lithofacies category among the K lithofacies categories, the electronic device may perform mean calculation on each P-wave impedance in the target P-wave impedance population set in any lithofacies category to obtain the P-wave impedance of the target post-stack seismic data in any lithofacies category, that is, the P-wave impedance of the target post-stack seismic data in any lithofacies category may be the mean calculation result between all P-wave impedances in the target P-wave impedance population set in any lithofacies category. The P-wave impedance of the target post-stack seismic data in any lithofacies category may also be referred to as the posterior mean of the P-wave impedance in any lithofacies category.

进一步的,电子设备还可基于任一岩相类别下的目标纵波阻抗种群集合,确定目标叠后地震数据在任一岩相类别下的纵波阻抗协方差矩阵和置信区间指示数据等,本发明实施例对此不作限定。可选的,目标叠后地震数据在任一岩相类别下的置信区间指示数据可包括目标叠后地震数据在任一岩相类别下各个采样点的置信区间;示例性的,针对N个采样点中的任一采样点,可基于任一岩相类别下的目标纵波阻抗种群集合中任一采样点的所有纵波阻抗值,计算任一岩相类别下任一采样点的纵波阻抗方差,以基于任一岩相类别下任一采样点的纵波阻抗方差确定目标叠后地震数据在任一岩相类别下任一采样点的置信区间,如一个纵波阻抗方差范围可对应一个置信区间。Further, the electronic device may also determine the P-wave impedance covariance matrix and confidence interval indication data of the target post-stack seismic data under any lithofacies category based on the target P-wave impedance population set under any lithofacies category, and the embodiment of the present invention is not limited to this. Optionally, the confidence interval indication data of the target post-stack seismic data under any lithofacies category may include the confidence interval of each sampling point of the target post-stack seismic data under any lithofacies category; illustratively, for any sampling point among the N sampling points, the P-wave impedance variance of any sampling point under any lithofacies category may be calculated based on all P-wave impedance values of any sampling point in the target P-wave impedance population set under any lithofacies category, so as to determine the confidence interval of any sampling point of the target post-stack seismic data under any lithofacies category based on the P-wave impedance variance of any sampling point under any lithofacies category, such as a P-wave impedance variance range may correspond to one confidence interval.

可选的,电子设备可针对目标叠后地震数据进行多次模拟,得到目标叠后地震数据在多次模拟中每次模拟下的目标纵波阻抗和/或目标岩相识别结果;相应的,可对目标叠后地震数据在每次模拟下的目标纵波阻抗进行均值运算,得到目标叠后地震数据对应的目标纵波阻抗;以及,可对目标叠后地震数据在每次模拟下的目标岩相识别结果进行统计,如可将目标叠后地震数据在每次模拟下任一采样点的岩相识别结果进行统计,并将统计数量最大的岩相识别结果作为目标岩相识别结果中任一采样点的岩相识别结果,从而得到目标岩相识别结果。Optionally, the electronic device may perform multiple simulations on the target post-stack seismic data to obtain the target P-wave impedance and/or target lithofacies identification result of the target post-stack seismic data in each simulation in the multiple simulations; accordingly, the target P-wave impedance of the target post-stack seismic data in each simulation may be averaged to obtain the target P-wave impedance corresponding to the target post-stack seismic data; and, the target lithofacies identification result of the target post-stack seismic data in each simulation may be statistically analyzed, such as the lithofacies identification result of any sampling point of the target post-stack seismic data in each simulation may be statistically analyzed, and the lithofacies identification result with the largest statistical number may be used as the lithofacies identification result of any sampling point in the target lithofacies identification result, thereby obtaining the target lithofacies identification result.

综上所述,本发明实施例可将粒子群算法引入到马尔科夫链蒙特卡罗算法(MCMC算法,一种利用马尔科夫链进行随机模拟的方法)中,MCMC算法可以为Metropolis-Hastings算法(一种具体的MCMC算法),那么可将粒子群算法引入到Metropolis-Hastings算法中,以在第t+1次迭代过程中确定上述候选纵波阻抗;可见,本发明实施例提出一种联合粒子群优化算法与蒙特卡洛模型的地震反演算法,即提出了一种改进的粒子群-Metropolis Hastings算法的地震概率化反演与岩相识别方法。基于此,PSO-MCMC算法在Metropolis-Hastings算法的框架下,联合了粒子群算法的全局优化特性,通过粒子(即纵波阻抗个体)的运动状态来改进候选状态的生成过程,多条马尔科夫链可实现同步优化,不仅可提高候选状态的接收概率,还可提高模型参数(即纵波阻抗)的收敛效率;PSO-MCMC兼具了粒子群优化算法与Markov(即马尔科夫)链蒙特卡洛模型的优势,在多条Markov链(多个纵波阻抗个体同步优化)群优化过程中,同步计算纵波阻抗等参数的后验均值、协方差、置信区间等不确定性量化特征,对提升纵波阻抗地震概率化反演的稳定性具有重要意义。In summary, the embodiment of the present invention can introduce the particle swarm algorithm into the Markov chain Monte Carlo algorithm (MCMC algorithm, a method of random simulation using Markov chain), and the MCMC algorithm can be the Metropolis-Hastings algorithm (a specific MCMC algorithm), then the particle swarm algorithm can be introduced into the Metropolis-Hastings algorithm to determine the above-mentioned candidate longitudinal wave impedance in the t+1th iteration process; it can be seen that the embodiment of the present invention proposes a seismic inversion algorithm that combines the particle swarm optimization algorithm and the Monte Carlo model, that is, an improved particle swarm-Metropolis Hastings algorithm seismic probabilistic inversion and lithofacies identification method is proposed. Based on this, the PSO-MCMC algorithm combines the global optimization characteristics of the particle swarm algorithm under the framework of the Metropolis-Hastings algorithm, and improves the generation process of candidate states through the motion state of particles (i.e., P-wave impedance individuals). Multiple Markov chains can be optimized synchronously, which can not only improve the acceptance probability of candidate states, but also improve the convergence efficiency of model parameters (i.e., P-wave impedance). PSO-MCMC combines the advantages of the particle swarm optimization algorithm and the Markov (i.e., Markov) chain Monte Carlo model. In the group optimization process of multiple Markov chains (synchronous optimization of multiple P-wave impedance individuals), the uncertainty quantification characteristics such as the posterior mean, covariance, and confidence interval of parameters such as P-wave impedance are calculated synchronously, which is of great significance to improving the stability of P-wave impedance seismic probabilistic inversion.

在本发明实施例中,为了进一步验证本发明实施例所提及的地震反演的可行性,一方面,基于常规数值模型(即地震数据波阻抗数据配套的一个虚拟的地下地质体的完备数据,可在上面进行模拟计算)建立合成地震记录,在不同信噪比条件下使用本发明实施例所提及的地震反演方法进行反演;如图3-图6所示,在不同信噪比条件下分别模拟50次后,反演结果与合成数据保持较高的一致性,验证了本发明实施例所提及的地震反演方法的可行性和稳定性;也就是说,通过在不同信噪比情况下进行实验,可看出本发明实施例所提及的地震反演方法的纵波阻抗估计精度受噪声的影响较小,后验均值的反演误差小,验证了本发明实施例提出的地震反演方法在地层岩相和纵波阻抗协同预测方面的可行性和稳定性。其中,图3-图6中每个图中的纵波阻抗可为10次地震反演得到的纵波阻抗,即可包括10次模拟中每次模拟下的纵波阻抗,且图3-图6中每个图中的纵波阻抗的横坐标可以为纵波阻抗值(单位:kg/m2·s(即千克/平方米.秒));图3-图6中每个图中的地震数据可包括由混合域褶积模型和零相位30Hz(赫兹) Ricker子波(雷克子波)合成的地震数据、两个高斯分量(如砂岩和泥岩)的50次模拟结果拟合的地震数据、无噪声污染情况下的理论地震数据等,且图3-图6中每个图中的地震数据的横坐标可以为振幅(单位:m);图3-图6中每个图中的实际岩相和岩相识别结果的横坐标可以为地层宽度,仅示例性地在一个采样点的岩相(如实际岩相或岩相识别结果)为砂岩时采用一种颜色进行横向表示,一个采样点的岩相为泥岩时采用另一种颜色进行横向表示,从而实现对各个采样点在一个宽度范围中的岩相表示,其中,此处用于表示泥岩的颜色深于用于表示砂岩的颜色。In an embodiment of the present invention, in order to further verify the feasibility of the seismic inversion mentioned in the embodiment of the present invention, on the one hand, a synthetic seismic record is established based on a conventional numerical model (i.e., complete data of a virtual underground geological body matched with seismic data wave impedance data, on which simulation calculations can be performed), and the seismic inversion method mentioned in the embodiment of the present invention is used for inversion under different signal-to-noise ratio conditions; as shown in Figures 3-6, after 50 simulations under different signal-to-noise ratios, the inversion results maintain a high degree of consistency with the synthetic data, verifying the feasibility and stability of the seismic inversion method mentioned in the embodiment of the present invention; that is, by conducting experiments under different signal-to-noise ratios, it can be seen that the longitudinal wave impedance estimation accuracy of the seismic inversion method mentioned in the embodiment of the present invention is less affected by noise, and the inversion error of the posterior mean is small, verifying the feasibility and stability of the seismic inversion method proposed in the embodiment of the present invention in the coordinated prediction of stratigraphic facies and longitudinal wave impedance. The longitudinal wave impedance in each of Figures 3 to 6 may be the longitudinal wave impedance obtained by 10 seismic inversions, that is, it may include the longitudinal wave impedance in each simulation in the 10 simulations, and the abscissa of the longitudinal wave impedance in each of Figures 3 to 6 may be the longitudinal wave impedance value (unit: kg/m 2 ·s (i.e., kilograms/square meter.second)); the seismic data in each of Figures 3 to 6 may include the seismic data obtained by the mixed domain convolution model and the zero-phase 30 Hz (Hertz) Seismic data synthesized by Ricker wavelet, seismic data fitted by 50 simulation results of two Gaussian components (such as sandstone and mudstone), theoretical seismic data without noise pollution, etc., and the abscissa of the seismic data in each of Figures 3 to 6 can be amplitude (unit: m); the abscissa of the actual lithofacies and lithofacies identification results in each of Figures 3 to 6 can be formation width, and only exemplarily, when the lithofacies (such as actual lithofacies or lithofacies identification results) of a sampling point is sandstone, one color is used for horizontal representation, and when the lithofacies of a sampling point is mudstone, another color is used for horizontal representation, thereby realizing the lithofacies representation of each sampling point in a width range, wherein the color used to represent mudstone here is darker than the color used to represent sandstone.

另一方面,本发明实施例通过对比原始反演方法和基于粒子群-MCMC算法的地震反演方法的运行速度,测试本发明实施例提及的地震反演方法的有效性;如图7所示,本发明实施例所提及的地震反演方法的运行速度在每次模拟下均快于现有MCMC算法,即本发明实施例可有效减少运行时间,提高计算效率。On the other hand, the embodiment of the present invention tests the effectiveness of the seismic inversion method mentioned in the embodiment of the present invention by comparing the running speeds of the original inversion method and the seismic inversion method based on the particle swarm-MCMC algorithm; as shown in Figure 7, the running speed of the seismic inversion method mentioned in the embodiment of the present invention is faster than the existing MCMC algorithm in each simulation, that is, the embodiment of the present invention can effectively reduce the running time and improve the computing efficiency.

又一方面,本发明实施例验证了实际地震资料处理的有效性,选取地质构造复杂的二维地震剖面,采用本发明实施例所提出的地震反演方法,通过与实际测井数据进行对比,验证了本发明实施例提出的地震反演方法的稳定性和有效性。示例性的,如图8所示,图8中(a)(即(a)标记的子图)为真实叠后地震剖面(即实际叠后地震剖面,横向包含255道地震数据),图8中(b)(即(b)标记的子图)为纵波阻抗低频背景(即已知的低频先验背景,如测井得到的纵波阻抗的低频部分的数据,可借助Jason(一种地学平台)、Geoview(一种叠前、叠后联合反演软件)等软件建立起来),图8中(c)(即(c)标记的子图)为通过地震反演所得到的纵波阻抗(此处为10次模拟后的纵波阻抗反演结果),图8中(d)(即(d)标记的子图)为岩相识别结果(此处为10次模拟后的岩相识别统计结果);其中,横坐标为采样地层的宽度(单位:m),纵坐标为时间域下的深度;可选的,纵向采样间隔可为2毫秒(ms)。可见,纵波阻抗和岩相识别结果与测井数据(即真实叠后地震剖面等)吻合较好,验证了本发明实施例提出的地震反演方法的有效性和实用性。其中,图8所示的地震剖面反演结果可包括255道叠后地震数据中每道叠后地震数据对应的纵波阻抗和/或岩相识别结果。On the other hand, the embodiment of the present invention verifies the effectiveness of actual seismic data processing. A two-dimensional seismic profile with complex geological structure is selected, and the seismic inversion method proposed in the embodiment of the present invention is adopted. By comparing with actual well logging data, the stability and effectiveness of the seismic inversion method proposed in the embodiment of the present invention are verified. Exemplarily, as shown in FIG8 , (a) in FIG8 (i.e., the sub-graph marked with (a)) is a real post-stack seismic profile (i.e., the actual post-stack seismic profile, which contains 255 seismic data in the horizontal direction), (b) in FIG8 (i.e., the sub-graph marked with (b)) is a low-frequency background of P-wave impedance (i.e., a known low-frequency prior background, such as the data of the low-frequency part of the P-wave impedance obtained by logging, which can be established with the help of software such as Jason (a geological platform) and Geoview (a pre-stack and post-stack joint inversion software)), (c) in FIG8 (i.e., the sub-graph marked with (c)) is the P-wave impedance obtained by seismic inversion (here, the P-wave impedance inversion result after 10 simulations), and (d) in FIG8 (i.e., the sub-graph marked with (d)) is a lithofacies identification result (here, the lithofacies identification statistical result after 10 simulations); wherein, the abscissa is the width of the sampled stratum (unit: m), and the ordinate is the depth in the time domain; optionally, the longitudinal sampling interval can be 2 milliseconds (ms). It can be seen that the P-wave impedance and lithofacies identification results are well consistent with the logging data (i.e., the real post-stack seismic profile, etc.), which verifies the effectiveness and practicality of the seismic inversion method proposed in the embodiment of the present invention. The seismic profile inversion result shown in FIG8 may include the P-wave impedance and/or lithofacies identification results corresponding to each of the 255 post-stack seismic data.

本发明实施例可在获取到目标叠后地震数据,以及获取到K个岩相类别中各个岩相类别的目标先验概率密度分布后,分别基于各个岩相类别的目标先验概率密度分布,生成各个岩相类别下的初始纵波阻抗种群,一个纵波阻抗种群包括NP个纵波阻抗个体中各个纵波阻抗个体的纵波阻抗,且一个初始纵波阻抗种群中的一个纵波阻抗个体的纵波阻抗是基于一个目标先验概率密度分布采样得到的;其中,一个初始纵波阻抗种群中的一个纵波阻抗个体的纵波阻抗为一条马尔科夫链的初始状态。基于此,针对K个岩相类别中的任一岩相类别,可通过粒子群算法,对任一岩相类别下的初始纵波阻抗种群进行种群更新,得到任一岩相类别下的更新纵波阻抗种群,并将任一岩相类别下的更新纵波阻抗种群添加至任一岩相类别下的纵波阻抗种群集合中,以实现NP条马尔科夫链的状态更新,一个纵波阻抗个体对应一条马尔科夫链。进一步的,可基于任一岩相类别下的更新纵波阻抗种群,确定任一岩相类别下的当前纵波阻抗反演结果,并基于当前纵波阻抗反演结果判断任一岩相类别下的纵波阻抗反演结果是否趋于稳定;当任一岩相类别下的纵波阻抗反演结果未趋于稳定时,继续对任一岩相类别下的更新纵波阻抗种群进行种群更新,直至任一岩相识别下的纵波阻抗反演结果趋于稳定,以从任一岩相类别下的纵波阻抗种群集合中确定出任一岩相类别下的目标纵波阻抗种群集合。那么相应的,可分别基于各个岩相类别下的目标纵波阻抗种群集合,确定目标叠后地震数据在各个岩相类别下的纵波阻抗,目标叠后地震数据在各个岩相类别下的纵波阻抗支持用于确定目标叠后地震数据对应的目标纵波阻抗和/或目标岩相识别结果。可见,本发明实施例提出了一种联合粒子群优化算法(即粒子群算法)与蒙特卡洛模型的地震反演方法,可有效解决相关技术收敛效率较低、计算效率较低、容易陷入局部机制以及耗时较长等问题;也就是说,本发明实施例可提高地震概率化反演(即地震反演)的计算效率和收敛精度等,可实现油气储层纵波阻抗等参数的稳定高效预测,从而可聚焦于复杂油气储层中地震概率化反演问题。The embodiment of the present invention can generate an initial P-wave impedance population under each lithofacies category based on the target prior probability density distribution of each lithofacies category after acquiring the target post-stack seismic data and the target prior probability density distribution of each lithofacies category in the K lithofacies categories, wherein a P-wave impedance population includes the P-wave impedance of each P-wave impedance individual among NP P-wave impedance individuals, and the P-wave impedance of a P-wave impedance individual in an initial P-wave impedance population is obtained based on sampling of a target prior probability density distribution; wherein the P-wave impedance of a P-wave impedance individual in an initial P-wave impedance population is the initial state of a Markov chain. Based on this, for any lithofacies category in the K lithofacies categories, the initial P-wave impedance population under any lithofacies category can be updated by using a particle swarm algorithm to obtain an updated P-wave impedance population under any lithofacies category, and the updated P-wave impedance population under any lithofacies category is added to the P-wave impedance population set under any lithofacies category to realize the state update of NP Markov chains, and one P-wave impedance individual corresponds to one Markov chain. Furthermore, the current P-wave impedance inversion result under any lithofacies category can be determined based on the updated P-wave impedance population under any lithofacies category, and whether the P-wave impedance inversion result under any lithofacies category tends to be stable can be judged based on the current P-wave impedance inversion result; when the P-wave impedance inversion result under any lithofacies category does not tend to be stable, the updated P-wave impedance population under any lithofacies category is continuously updated until the P-wave impedance inversion result under any lithofacies identification tends to be stable, so as to determine the target P-wave impedance population set under any lithofacies category from the P-wave impedance population set under any lithofacies category. Accordingly, the P-wave impedance of the target post-stack seismic data under each lithofacies category can be determined based on the target P-wave impedance population set under each lithofacies category, and the P-wave impedance of the target post-stack seismic data under each lithofacies category supports the determination of the target P-wave impedance and/or the target lithofacies identification result corresponding to the target post-stack seismic data. It can be seen that the embodiment of the present invention proposes a seismic inversion method that combines a particle swarm optimization algorithm (i.e., a particle swarm algorithm) with a Monte Carlo model, which can effectively solve the problems of low convergence efficiency, low computational efficiency, easy to fall into local mechanisms, and long time consumption in related technologies; that is, the embodiment of the present invention can improve the computational efficiency and convergence accuracy of seismic probabilistic inversion (i.e., seismic inversion), and can achieve stable and efficient prediction of parameters such as longitudinal wave impedance of oil and gas reservoirs, thereby focusing on the problem of seismic probabilistic inversion in complex oil and gas reservoirs.

基于上述地震反演方法的相关实施例的描述,本发明实施例还提出了一种地震反演装置,该地震反演装置可以是运行于电子设备中的一个计算机程序(包括程序代码);如图9所示,该地震反演装置可包括获取单元901和处理单元902。该地震反演装置可以执行图1或图2所示的地震反演方法,即该地震反演装置可以运行上述单元:Based on the description of the relevant embodiments of the above-mentioned seismic inversion method, the embodiment of the present invention further proposes a seismic inversion device, which can be a computer program (including program code) running in an electronic device; as shown in FIG9 , the seismic inversion device can include an acquisition unit 901 and a processing unit 902. The seismic inversion device can execute the seismic inversion method shown in FIG1 or FIG2 , that is, the seismic inversion device can run the above-mentioned units:

获取单元901,用于获取目标叠后地震数据,以及获取K个岩相类别中各个岩相类别的目标先验概率密度分布,一个目标先验概率密度分布用于指示所述目标叠后地震数据在相应岩相类别下的纵波阻抗服从的先验概率密度分布,所述目标叠后地震数据包括N个采样点中各个采样点的地震采样值,K和N均为正整数;An acquisition unit 901 is used to acquire target post-stack seismic data and a target priori probability density distribution of each lithofacies category in K lithofacies categories, wherein a target priori probability density distribution is used to indicate a priori probability density distribution that the longitudinal wave impedance of the target post-stack seismic data in the corresponding lithofacies category obeys, and the target post-stack seismic data includes seismic sampling values of each sampling point in N sampling points, where K and N are both positive integers;

处理单元902,用于分别基于所述各个岩相类别的目标先验概率密度分布,生成所述各个岩相类别下的初始纵波阻抗种群,一个纵波阻抗种群包括NP个纵波阻抗个体中各个纵波阻抗个体的纵波阻抗,且一个初始纵波阻抗种群中的一个纵波阻抗个体的纵波阻抗是基于一个目标先验概率密度分布采样得到的,NP为大于1的整数;The processing unit 902 is used to generate an initial P-wave impedance population under each lithofacies category based on the target prior probability density distribution of each lithofacies category, wherein one P-wave impedance population includes the P-wave impedance of each P-wave impedance individual in NP P-wave impedance individuals, and the P-wave impedance of one P-wave impedance individual in an initial P-wave impedance population is obtained by sampling based on a target prior probability density distribution, and NP is an integer greater than 1;

所述处理单元902,还用于分别基于所述各个岩相类别下的初始纵波阻抗种群,确定所述各个岩相类别下的目标纵波阻抗种群集合;The processing unit 902 is further configured to determine a target longitudinal wave impedance population set under each lithofacies category based on the initial longitudinal wave impedance population under each lithofacies category;

所述处理单元902,还用于分别基于所述各个岩相类别下的目标纵波阻抗种群集合,确定所述目标叠后地震数据在所述各个岩相类别下的纵波阻抗,所述目标叠后地震数据在所述各个岩相类别下的纵波阻抗支持用于确定所述目标叠后地震数据对应的目标纵波阻抗和/或目标岩相识别结果。The processing unit 902 is also used to determine the longitudinal wave impedance of the target post-stack seismic data in each lithofacies category based on the target longitudinal wave impedance population set in each lithofacies category. The longitudinal wave impedance support of the target post-stack seismic data in each lithofacies category is used to determine the target longitudinal wave impedance and/or target lithofacies identification result corresponding to the target post-stack seismic data.

在一种实施方式中,所述目标岩相识别结果包括所述各个采样点的岩相识别结果,且一个纵波阻抗包括所述各个采样点的纵波阻抗值,处理单元902还可用于:遍历所述N个采样点中的各个采样点,并将当前遍历的采样点作为当前采样点;分别从目标叠后地震数据在所述各个岩相类别下的纵波阻抗中,确定出所述当前采样点在所述各个岩相类别下的模拟纵波阻抗值,以及分别从所述各个岩相类别下的参考纵波阻抗中,确定出所述当前采样点在所述各个岩相类别下的参考纵波阻抗值;分别对所述当前采样点在所述各个岩相类别下的模拟纵波阻抗值和参考纵波阻抗值进行差值运算,得到所述当前采样点在所述各个岩相类别下的纵波阻抗差值运算结果,并将所述当前采样点在所述各个岩相类别下的纵波阻抗差值运算结果中的最小值所对应的岩相类别,作为所述当前采样点的岩相识别结果;在遍历完所述N个采样点中的各个采样点后,得到所述目标岩相识别结果。In one embodiment, the target lithofacies identification result includes the lithofacies identification results of the sampling points, and a longitudinal wave impedance includes the longitudinal wave impedance values of the sampling points. The processing unit 902 can also be used to: traverse each sampling point in the N sampling points, and use the currently traversed sampling point as the current sampling point; determine the simulated longitudinal wave impedance value of the current sampling point in each lithofacies category from the longitudinal wave impedance of the target post-stack seismic data in each lithofacies category, and determine the reference longitudinal wave impedance value of the current sampling point in each lithofacies category from the reference longitudinal wave impedance in each lithofacies category; perform difference calculation on the simulated longitudinal wave impedance value and the reference longitudinal wave impedance value of the current sampling point in each lithofacies category, respectively, to obtain the longitudinal wave impedance difference calculation result of the current sampling point in each lithofacies category, and use the lithofacies category corresponding to the minimum value in the longitudinal wave impedance difference calculation result of the current sampling point in each lithofacies category as the lithofacies identification result of the current sampling point; after traversing each sampling point in the N sampling points, the target lithofacies identification result is obtained.

另一种实施方式中,所述目标纵波阻抗包括所述各个采样点的目标纵波阻抗值,处理单元902还可用于:将所述当前采样点在所述各个岩相类别下的纵波阻抗差值运算结果中的最小值所对应的模拟纵波阻抗值,作为所述当前采样点的目标纵波阻抗值,以实现在遍历完所述N个采样点中的各个采样点后,得到所述目标纵波阻抗。In another embodiment, the target longitudinal wave impedance includes the target longitudinal wave impedance value of each sampling point, and the processing unit 902 can also be used to: use the simulated longitudinal wave impedance value corresponding to the minimum value in the longitudinal wave impedance difference calculation results of the current sampling point under the various lithology categories as the target longitudinal wave impedance value of the current sampling point, so as to obtain the target longitudinal wave impedance after traversing each of the N sampling points.

另一种实施方式中,一个初始纵波阻抗种群中的一个纵波阻抗个体的纵波阻抗为一条马尔科夫链的初始状态,处理单元902在分别基于所述各个岩相类别下的初始纵波阻抗种群,确定所述各个岩相类别下的目标纵波阻抗种群集合时,可具体用于:针对所述K个岩相类别中的任一岩相类别,通过粒子群算法,对所述任一岩相类别下的初始纵波阻抗种群进行种群更新,得到所述任一岩相类别下的更新纵波阻抗种群,并将所述任一岩相类别下的更新纵波阻抗种群添加至所述任一岩相类别下的纵波阻抗种群集合中,以实现NP条马尔科夫链的状态更新,一个纵波阻抗个体对应一条马尔科夫链;基于所述任一岩相类别下的更新纵波阻抗种群,确定所述任一岩相类别下的当前纵波阻抗反演结果,并基于所述当前纵波阻抗反演结果判断所述任一岩相类别下的纵波阻抗反演结果是否趋于稳定;当所述任一岩相类别下的纵波阻抗反演结果未趋于稳定时,继续对所述任一岩相类别下的更新纵波阻抗种群进行种群更新,直至所述任一岩相识别下的纵波阻抗反演结果趋于稳定,以从所述任一岩相类别下的纵波阻抗种群集合中确定出所述任一岩相类别下的目标纵波阻抗种群集合。In another embodiment, the longitudinal wave impedance of a longitudinal wave impedance individual in an initial longitudinal wave impedance population is the initial state of a Markov chain. When the processing unit 902 determines the target longitudinal wave impedance population set under each lithofacies category based on the initial longitudinal wave impedance population under each lithofacies category, it can be specifically used to: for any lithofacies category among the K lithofacies categories, use the particle swarm algorithm to update the initial longitudinal wave impedance population under any lithofacies category to obtain an updated longitudinal wave impedance population under any lithofacies category, and add the updated longitudinal wave impedance population under any lithofacies category to the longitudinal wave impedance population set under any lithofacies category to achieve NP Markov chain. The state of the Markov chain is updated, and one P-wave impedance individual corresponds to one Markov chain; based on the updated P-wave impedance population under any lithofacies category, the current P-wave impedance inversion result under any lithofacies category is determined, and based on the current P-wave impedance inversion result, whether the P-wave impedance inversion result under any lithofacies category tends to be stable is judged; when the P-wave impedance inversion result under any lithofacies category does not tend to be stable, the updated P-wave impedance population under any lithofacies category is continuously updated until the P-wave impedance inversion result under any lithofacies identification tends to be stable, so as to determine the target P-wave impedance population set under any lithofacies category from the P-wave impedance population set under any lithofacies category.

另一种实施方式中,所述任一岩相类别下的纵波阻抗种群集合包括所述任一岩相类别在T次迭代中每次迭代下的纵波阻抗种群,所述T次迭代中的第t+1次迭代下的纵波阻抗种群是通过对第t次迭代下的纵波阻抗种群进行种群更新得到的,T为大于1的整数,t∈[1,T-1];处理单元902还可用于确定任一岩相类别在所述第t+1次迭代下的纵波阻抗种群,任一岩相类别在所述第t+1次迭代下的纵波阻抗种群的确定方式包括:针对所述任一岩相类别在所述第t次迭代下的纵波阻抗种群中的第i个纵波阻抗,以及所述N个采样点中的第n个采样点,将所述任一岩相类别在所述第t次迭代下的纵波阻抗种群中的第i个纵波阻抗作为所述第t次迭代下的第i个纵波阻抗,i∈[1,NP],n∈[1,N];通过粒子群算法,基于所述第t次迭代下的第i个纵波阻抗中所述第n个采样点的纵波阻抗值,确定所述第n个采样点的候选纵波阻抗值,以得到候选纵波阻抗,所述候选纵波阻抗包括所述各个采样点的候选纵波阻抗值;基于所述第t次迭代下的第i个纵波阻抗、所述候选纵波阻抗以及所述目标叠后地震数据,计算所述候选纵波阻抗的接收概率,并基于所述候选纵波阻抗的接收概率判断是否接收所述候选纵波阻抗;若确定接收所述候选纵波阻抗,则将所述候选纵波阻抗,作为所述任一岩相类别在所述第t+1次迭代下的纵波阻抗种群中的第i个纵波阻抗;若确定不接收所述候选纵波阻抗,则将所述第t次迭代下的第i个纵波阻抗,作为所述任一岩相类别在所述第t+1次迭代下的纵波阻抗种群中的第i个纵波阻抗,以实现确定所述任一岩相类别在所述第t+1次迭代下的纵波阻抗种群。In another embodiment, the P-wave impedance population set under any facies category includes the P-wave impedance population of any facies category in each iteration in T iterations, the P-wave impedance population at the t+1th iteration in the T iterations is obtained by updating the P-wave impedance population at the t-th iteration, T is an integer greater than 1, t∈[1, T-1]; the processing unit 902 can also be used to determine the P-wave impedance population of any facies category at the t+1th iteration, and the determination method of the P-wave impedance population of any facies category at the t+1th iteration includes: for the i-th P-wave impedance in the P-wave impedance population of any facies category at the t-th iteration, and the n-th sampling point among the N sampling points, the i-th P-wave impedance in the P-wave impedance population of any facies category at the t-th iteration is used as the i-th P-wave impedance at the t-th iteration, i∈[1, NP], n∈[1, N]; through the particle swarm algorithm, based on the t-th iteration, the P-wave impedance of the facies category is determined. The method comprises the following steps: determining a candidate P-wave impedance value of the n-th sampling point in the i-th P-wave impedance of the t-th iteration, determining a candidate P-wave impedance value of the n-th sampling point, so as to obtain a candidate P-wave impedance, wherein the candidate P-wave impedance includes the candidate P-wave impedance values of the respective sampling points; calculating a reception probability of the candidate P-wave impedance based on the i-th P-wave impedance of the t-th iteration, the candidate P-wave impedance and the target post-stack seismic data, and judging whether to receive the candidate P-wave impedance based on the reception probability of the candidate P-wave impedance; if it is determined that the candidate P-wave impedance is received, taking the candidate P-wave impedance as the i-th P-wave impedance in the P-wave impedance population of any lithofacies category at the t+1-th iteration; and if it is determined that the candidate P-wave impedance is not received, taking the i-th P-wave impedance of the t-th iteration as the i-th P-wave impedance in the P-wave impedance population of any lithofacies category at the t+1-th iteration, so as to determine the P-wave impedance population of any lithofacies category at the t+1-th iteration.

另一种实施方式中,处理单元902在基于所述第t次迭代下的第i个纵波阻抗、所述候选纵波阻抗以及所述目标叠后地震数据,计算所述候选纵波阻抗的接收概率时,可具体用于:确定所述各个采样点在所述任一岩相类别下的纵波阻抗均值和纵波阻抗方差;基于所述第t次迭代下的第i个纵波阻抗、所述候选纵波阻抗、所述目标叠后地震数据以及所述各个采样点在所述任一岩相类别下的纵波阻抗均值和纵波阻抗方差,计算所述候选纵波阻抗的接收概率。In another embodiment, when the processing unit 902 calculates the reception probability of the candidate P-wave impedance based on the i-th P-wave impedance at the t-th iteration, the candidate P-wave impedance and the target post-stack seismic data, it can be specifically used to: determine the mean P-wave impedance and the variance of the P-wave impedance of each sampling point under any lithofacies category; calculate the reception probability of the candidate P-wave impedance based on the i-th P-wave impedance at the t-th iteration, the candidate P-wave impedance, the target post-stack seismic data and the mean P-wave impedance and the variance of the P-wave impedance of each sampling point under any lithofacies category.

另一种实施方式中,处理单元902在分别基于所述各个岩相类别下的目标纵波阻抗种群集合,确定所述目标叠后地震数据在所述各个岩相类别下的纵波阻抗时,可具体用于:针对所述K个岩相类别中的任一岩相类别,对所述任一岩相类别下的目标纵波阻抗种群集合中的各个纵波阻抗进行均值运算,得到所述目标叠后地震数据在所述任一岩相类别下的纵波阻抗。In another embodiment, when the processing unit 902 determines the longitudinal wave impedance of the target post-stack seismic data in each lithofacies category based on the target longitudinal wave impedance population set under each lithofacies category, it can be specifically used to: for any lithofacies category among the K lithofacies categories, perform mean operation on each longitudinal wave impedance in the target longitudinal wave impedance population set under any lithofacies category to obtain the longitudinal wave impedance of the target post-stack seismic data in any lithofacies category.

根据本发明的一个实施例,图9所示的地震反演装置中的各个单元均可以分别或全部合并为一个或若干个另外的单元来构成,或者其中的某个(些)单元还可以再拆分为功能上更小的多个单元来构成,这可以实现同样的操作,而不影响本发明的实施例的技术效果的实现。上述单元是基于逻辑功能划分的,在实际应用中,一个单元的功能也可以由多个单元来实现,或者多个单元的功能由一个单元实现。在本发明的其它实施例中,任一地震反演装置也可以包括其他单元,在实际应用中,这些功能也可以由其它单元协助实现,并且可以由多个单元协作实现。According to one embodiment of the present invention, each unit in the seismic inversion device shown in FIG. 9 can be separately or completely combined into one or several other units to form a structure, or one (or some) of the units can be further divided into multiple functionally smaller units to form a structure, which can achieve the same operation without affecting the realization of the technical effects of the embodiments of the present invention. The above-mentioned units are divided based on logical functions. In practical applications, the function of one unit can also be realized by multiple units, or the functions of multiple units can be realized by one unit. In other embodiments of the present invention, any seismic inversion device can also include other units. In practical applications, these functions can also be implemented with the assistance of other units, and can be implemented by the collaboration of multiple units.

根据本发明的另一个实施例,可以通过在包括中央处理单元(CPU)、随机存取存储介质(RAM)、只读存储介质(ROM)等处理元件和存储元件的例如计算机的通用电子设备上运行能够执行如图1或图2中所示的相应方法所涉及的各步骤的计算机程序(包括程序代码),来构造如图9中所示的地震反演装置,以及来实现本发明实施例的地震反演方法。所述计算机程序可以记载于例如计算机存储介质上,并通过计算机存储介质装载于上述电子设备中,并在其中运行。According to another embodiment of the present invention, a seismic inversion device as shown in FIG. 9 can be constructed and a seismic inversion method of the embodiment of the present invention can be implemented by running a computer program (including program code) capable of executing each step involved in the corresponding method as shown in FIG. 1 or FIG. 2 on a general electronic device such as a computer including processing elements and storage elements such as a central processing unit (CPU), a random access storage medium (RAM), and a read-only storage medium (ROM). The computer program can be recorded on, for example, a computer storage medium, and loaded into the above-mentioned electronic device through the computer storage medium and run therein.

基于上述方法实施例以及装置实施例的描述,本发明示例性实施例还提供一种电子设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器。所述存储器存储有能够被所述至少一个处理器执行的计算机程序,所述计算机程序在被所述至少一个处理器执行时用于使所述电子设备执行根据本发明实施例的方法。Based on the description of the above method embodiment and device embodiment, the exemplary embodiment of the present invention further provides an electronic device, including: at least one processor; and a memory connected to the at least one processor in communication. The memory stores a computer program that can be executed by the at least one processor, and the computer program is used to enable the electronic device to perform the method according to the embodiment of the present invention when executed by the at least one processor.

本发明示例性实施例还提供一种存储有计算机程序的非瞬时计算机可读存储介质,其中,所述计算机程序在被计算机的处理器执行时用于使所述计算机执行根据本发明实施例的方法。Exemplary embodiments of the present invention also provide a non-transitory computer-readable storage medium storing a computer program, wherein the computer program, when executed by a processor of a computer, is used to cause the computer to perform a method according to an embodiment of the present invention.

本发明示例性实施例还提供一种计算机程序产品,包括计算机程序,其中,所述计算机程序在被计算机的处理器执行时用于使所述计算机执行根据本发明实施例的方法。An exemplary embodiment of the present invention further provides a computer program product, comprising a computer program, wherein when the computer program is executed by a processor of a computer, the computer is used to enable the computer to perform a method according to an embodiment of the present invention.

参考图10,现将描述可以作为本发明的服务器或客户端的电子设备1000的结构框图,其是可以应用于本发明的各方面的硬件设备的示例。电子设备旨在表示各种形式的数字电子的计算机设备,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本发明的实现。With reference to Figure 10, the structural block diagram of the electronic device 1000 that can be used as the server or client of the present invention will now be described, which is an example of a hardware device that can be applied to various aspects of the present invention. The electronic device is intended to represent various forms of digital electronic computer equipment, such as laptop computers, desktop computers, workbenches, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers. The electronic device can also represent various forms of mobile devices, such as personal digital processing, cellular phones, smart phones, wearable devices and other similar computing devices. The components shown herein, their connections and relationships, and their functions are merely examples, and are not intended to limit the implementation of the present invention described herein and/or required.

如图10所示,电子设备1000包括计算单元1001,其可以根据存储在只读存储器(ROM)1002中的计算机程序或者从存储单元1008加载到随机访问存储器(RAM)1003中的计算机程序,来执行各种适当的动作和处理。在RAM 1003中,还可存储电子设备1000操作所需的各种程序和数据。计算单元1001、ROM 1002以及RAM 1003通过总线1004彼此相连。输入/输出(I/O)接口1005也连接至总线1004。As shown in FIG10 , the electronic device 1000 includes a computing unit 1001, which can perform various appropriate actions and processes according to a computer program stored in a read-only memory (ROM) 1002 or a computer program loaded from a storage unit 1008 into a random access memory (RAM) 1003. In the RAM 1003, various programs and data required for the operation of the electronic device 1000 can also be stored. The computing unit 1001, the ROM 1002, and the RAM 1003 are connected to each other via a bus 1004. An input/output (I/O) interface 1005 is also connected to the bus 1004.

电子设备1000中的多个部件连接至I/O接口1005,包括:输入单元1006、输出单元1007、存储单元1008以及通信单元1009。输入单元1006可以是能向电子设备1000输入信息的任何类型的设备,输入单元1006可以接收输入的数字或字符信息,以及产生与电子设备的用户设置和/或功能控制有关的键信号输入。输出单元1007可以是能呈现信息的任何类型的设备,并且可以包括但不限于显示器、扬声器、视频/音频输出终端、振动器和/或打印机。存储单元1008可以包括但不限于磁盘、光盘。通信单元1009允许电子设备1000通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据,并且可以包括但不限于调制解调器、网卡、红外通信设备、无线通信收发机和/或芯片组,例如蓝牙TM设备、WiFi设备、WiMax设备、蜂窝通信设备和/或类似物。A plurality of components in the electronic device 1000 are connected to the I/O interface 1005, including: an input unit 1006, an output unit 1007, a storage unit 1008, and a communication unit 1009. The input unit 1006 may be any type of device capable of inputting information to the electronic device 1000, and the input unit 1006 may receive input digital or character information, and generate key signal inputs related to user settings and/or function control of the electronic device. The output unit 1007 may be any type of device capable of presenting information, and may include but is not limited to a display, a speaker, a video/audio output terminal, a vibrator, and/or a printer. The storage unit 1008 may include but is not limited to a disk, an optical disk. The communication unit 1009 allows the electronic device 1000 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunication networks, and may include but is not limited to a modem, a network card, an infrared communication device, a wireless communication transceiver, and/or a chipset, such as a Bluetooth™ device, a WiFi device, a WiMax device, a cellular communication device, and/or the like.

计算单元1001可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元1001的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元1001执行上文所描述的各个方法和处理。例如,在一些实施例中,地震反演方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元1008。在一些实施例中,计算机程序的部分或者全部可以经由ROM 1002和/或通信单元1009而被载入和/或安装到电子设备1000上。在一些实施例中,计算单元1001可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行地震反演方法。The computing unit 1001 may be a variety of general and/or special processing components with processing and computing capabilities. Some examples of the computing unit 1001 include, but are not limited to, a central processing unit (CPU), a graphics processing unit (GPU), various dedicated artificial intelligence (AI) computing chips, various computing units running machine learning model algorithms, digital signal processors (DSPs), and any appropriate processors, controllers, microcontrollers, etc. The computing unit 1001 performs the various methods and processes described above. For example, in some embodiments, the seismic inversion method may be implemented as a computer software program, which is tangibly contained in a machine-readable medium, such as a storage unit 1008. In some embodiments, part or all of the computer program may be loaded and/or installed on the electronic device 1000 via the ROM 1002 and/or the communication unit 1009. In some embodiments, the computing unit 1001 may be configured to perform the seismic inversion method in any other appropriate manner (e.g., by means of firmware).

用于实施本发明的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。The program code for implementing the method of the present invention can be written in any combination of one or more programming languages. These program codes can be provided to a processor or controller of a general-purpose computer, a special-purpose computer or other programmable data processing device, so that the program code, when executed by the processor or controller, enables the functions/operations specified in the flow chart and/or block diagram to be implemented. The program code can be executed entirely on the machine, partially on the machine, partially on the machine as a stand-alone software package and partially on a remote machine, or entirely on a remote machine or server.

在本发明的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present invention, a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, device, or equipment. A machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. A machine-readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or equipment, or any suitable combination of the foregoing. A more specific example of a machine-readable storage medium may include an electrical connection based on one or more lines, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

如本发明使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。As used herein, the terms "machine-readable medium" and "computer-readable medium" refer to any computer program product, apparatus, and/or device (e.g., disk, optical disk, memory, programmable logic device (PLD)) for providing machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term "machine-readable signal" refers to any signal for providing machine instructions and/or data to a programmable processor.

为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。To provide interaction with a user, the systems and techniques described herein can be implemented on a computer having: a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user; and a keyboard and pointing device (e.g., a mouse or trackball) through which the user can provide input to the computer. Other types of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and input from the user can be received in any form (including acoustic input, voice input, or tactile input).

可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。The systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., a user computer with a graphical user interface or a web browser through which a user can interact with implementations of the systems and techniques described herein), or a computing system that includes any combination of such back-end components, middleware components, or front-end components. The components of the system may be interconnected by any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include: a local area network (LAN), a wide area network (WAN), and the Internet.

并且,应理解的是,以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。Furthermore, it should be understood that what is disclosed above is only a preferred embodiment of the present invention, and certainly cannot be used to limit the scope of rights of the present invention. Therefore, equivalent changes made according to the claims of the present invention are still within the scope covered by the present invention.

Claims (8)

1. A method of seismic inversion, comprising:
Acquiring target post-stack seismic data, and acquiring target prior probability density distribution of each of K lithofacies categories, wherein one target prior probability density distribution is used for indicating prior probability density distribution obeying longitudinal wave impedance of the target post-stack seismic data under the corresponding lithofacies category, the target post-stack seismic data comprises seismic sampling values of each of N sampling points, and K and N are positive integers;
Generating initial longitudinal wave impedance groups under each lithofacies category based on target prior probability density distribution of each lithofacies category respectively, wherein one longitudinal wave impedance group comprises longitudinal wave impedance of each longitudinal wave impedance individual in NP longitudinal wave impedance individuals, the longitudinal wave impedance of each longitudinal wave impedance individual in the initial longitudinal wave impedance group is obtained by sampling based on the target prior probability density distribution, and NP is an integer greater than 1; the longitudinal wave impedance of a longitudinal wave impedance individual in an initial longitudinal wave impedance population is the initial state of a Markov chain;
Determining a set of target longitudinal wave impedance populations under each lithofacies category based on the initial longitudinal wave impedance populations under each lithofacies category, respectively, comprising: for any one of the K facies categories, carrying out population update on an initial longitudinal wave impedance population under the any one facies category through a particle swarm algorithm to obtain an updated longitudinal wave impedance population under the any one facies category, and adding the updated longitudinal wave impedance population under the any one facies category into a longitudinal wave impedance population set under the any one facies category to realize state update of NP Markov chains, wherein one longitudinal wave impedance individual corresponds to one Markov chain; determining a current longitudinal wave impedance inversion result under any lithofacies category based on the updated longitudinal wave impedance population under the any lithofacies category, and judging whether the longitudinal wave impedance inversion result under the any lithofacies category tends to be stable or not based on the current longitudinal wave impedance inversion result; when the longitudinal wave impedance inversion result under any lithofacies category does not tend to be stable, continuing to update the population of the updated longitudinal wave impedance population under any lithofacies category until the longitudinal wave impedance inversion result under any lithofacies identification tends to be stable, so as to determine a target longitudinal wave impedance population set under any lithofacies category from the longitudinal wave impedance population set under any lithofacies category;
Determining longitudinal wave impedance of the target post-stack seismic data under each lithofacies category based on the target longitudinal wave impedance population set under each lithofacies category, wherein the longitudinal wave impedance support of the target post-stack seismic data under each lithofacies category is used for determining a target longitudinal wave impedance and/or a target lithofacies identification result corresponding to the target post-stack seismic data;
the longitudinal wave impedance population set under any lithofacies category comprises longitudinal wave impedance populations of the lithofacies category under each iteration in T iterations, wherein the longitudinal wave impedance populations under the t+1th iteration in the T iterations are obtained by carrying out population updating on the longitudinal wave impedance populations under the T iterations, T is an integer greater than 1, and T epsilon [1, T-1]; the determination mode of the longitudinal wave impedance population of any lithofacies category under the t+1th iteration comprises the following steps:
Regarding the ith longitudinal wave impedance in the longitudinal wave impedance population of any lithofacies category under the t-th iteration and the nth sampling point in the N sampling points, taking the ith longitudinal wave impedance in the longitudinal wave impedance population of any lithofacies category under the t-th iteration as the ith longitudinal wave impedance under the t-th iteration, i epsilon [1, NP ], N epsilon [1, N ];
Determining candidate longitudinal wave impedance values of the nth sampling point based on the longitudinal wave impedance values of the nth sampling point in the ith longitudinal wave impedance under the nth iteration through a particle swarm algorithm to obtain candidate longitudinal wave impedance, wherein the candidate longitudinal wave impedance comprises candidate longitudinal wave impedance values of all the sampling points;
Calculating the receiving probability of the candidate longitudinal wave impedance based on the ith longitudinal wave impedance, the candidate longitudinal wave impedance and the target post-stack seismic data under the t-th iteration, and judging whether to receive the candidate longitudinal wave impedance based on the receiving probability of the candidate longitudinal wave impedance;
If the candidate longitudinal wave impedance is determined to be received, the candidate longitudinal wave impedance is used as the ith longitudinal wave impedance in the longitudinal wave impedance population of any lithofacies category under the t+1th iteration;
If the candidate longitudinal wave impedance is not received, the ith longitudinal wave impedance in the t iteration is used as the ith longitudinal wave impedance in the longitudinal wave impedance population of any lithofacies category in the t+1th iteration, so that the longitudinal wave impedance population of any lithofacies category in the t+1th iteration is determined;
The candidate longitudinal wave impedance value of the nth sampling point is determined based on the longitudinal wave impedance value of the nth sampling point in the ith longitudinal wave impedance of the nth iteration and the speed of the nth sampling point in the ith longitudinal wave impedance of the (t+1) th iteration of any lithofacies category; the speed of the nth sampling point in the ith longitudinal wave impedance at the t+1th iteration is determined based on the longitudinal wave impedance value of the nth sampling point in the optimal longitudinal wave impedance of the ith longitudinal wave impedance individual at the any lithofacies classification, the longitudinal wave impedance value of the nth sampling point included in the optimal longitudinal wave impedance of the any of the plurality of lithofacies classification in the previous t iterations, and the longitudinal wave impedance value of the nth sampling point in the ith longitudinal wave impedance at the t iteration, the optimal longitudinal wave impedance of the ith longitudinal wave impedance individual and the optimal longitudinal wave impedance of the any of the plurality of longitudinal wave impedance individuals being determined based on the evaluation value of the any of the plurality of lithofacies classification in each of the previous t iterations; the evaluation value of the longitudinal wave impedance under any one of the lithology categories is determined by a target evaluation function, and when the any one of the lithology categories is the kth lithology category of the K lithology categories, the target evaluation function is: a target functional equivalent to the kth component of the posterior probability density distribution of longitudinal wave impedance, k e [1, k ].
2. The method of claim 1, wherein the target lithofacies recognition result comprises lithofacies recognition results for the respective sampling points, and one longitudinal wave impedance comprises a longitudinal wave impedance value for the respective sampling points, the method further comprising:
Traversing each sampling point in the N sampling points, and taking the currently traversed sampling point as a current sampling point;
Determining the simulated longitudinal wave impedance value of the current sampling point under each lithofacies category from the longitudinal wave impedance of the target post-stack seismic data under each lithofacies category, and determining the reference longitudinal wave impedance value of the current sampling point under each lithofacies category from the reference longitudinal wave impedance of the current sampling point under each lithofacies category;
Respectively carrying out difference value operation on the analog longitudinal wave impedance value and the reference longitudinal wave impedance value of the current sampling point under each lithofacies category to obtain a longitudinal wave impedance difference value operation result of the current sampling point under each lithofacies category, and taking the lithofacies category corresponding to the minimum value in the longitudinal wave impedance difference value operation result of the current sampling point under each lithofacies category as a lithofacies identification result of the current sampling point;
and after traversing each sampling point in the N sampling points, obtaining the target lithology recognition result.
3. The method of claim 2, wherein the target longitudinal wave impedance comprises a target longitudinal wave impedance value for the respective sampling point, the method further comprising:
And taking the simulated longitudinal wave impedance value corresponding to the minimum value in the longitudinal wave impedance difference value operation result of the current sampling point under each lithofacies category as the target longitudinal wave impedance value of the current sampling point so as to obtain the target longitudinal wave impedance after traversing each sampling point in the N sampling points.
4. A method according to any one of claims 1-3, wherein said calculating a reception probability of the candidate longitudinal wave impedance based on the ith longitudinal wave impedance at the t-th iteration, the candidate longitudinal wave impedance, and the target post-stack seismic data comprises:
determining a longitudinal wave impedance mean value and a longitudinal wave impedance variance of each sampling point under any lithofacies category;
And calculating the receiving probability of the candidate longitudinal wave impedance based on the ith longitudinal wave impedance, the candidate longitudinal wave impedance, the target post-stack seismic data and the longitudinal wave impedance mean value and the longitudinal wave impedance variance of each sampling point under any lithology category.
5. A method according to any one of claims 1-3, wherein said determining the longitudinal wave impedance of the target post-stack seismic data under the respective facies categories based on the respective sets of target longitudinal wave impedance populations under the respective facies categories, comprises:
And carrying out mean value operation on each longitudinal wave impedance in the target longitudinal wave impedance population set under any one of the K lithofacies categories to obtain the longitudinal wave impedance of the target post-stack seismic data under any one of the lithofacies categories.
6. A seismic inversion apparatus, the apparatus comprising:
The acquisition unit is used for acquiring target post-stack seismic data and acquiring target prior probability density distribution of each lithofacies category in K lithofacies categories, wherein one target prior probability density distribution is used for indicating prior probability density distribution obeying longitudinal wave impedance of the target post-stack seismic data under the corresponding lithofacies category, the target post-stack seismic data comprises seismic sampling values of each sampling point in N sampling points, and K and N are positive integers;
The processing unit is used for generating initial longitudinal wave impedance groups under each lithofacies category based on the target prior probability density distribution of each lithofacies category respectively, one longitudinal wave impedance group comprises longitudinal wave impedance of each longitudinal wave impedance individual in NP longitudinal wave impedance individuals, the longitudinal wave impedance of one longitudinal wave impedance individual in the initial longitudinal wave impedance group is obtained by sampling based on the target prior probability density distribution, and NP is an integer greater than 1; the longitudinal wave impedance of a longitudinal wave impedance individual in an initial longitudinal wave impedance population is the initial state of a Markov chain;
The processing unit is further configured to determine a target population of longitudinal wave impedances under each lithofacies category based on the initial population of longitudinal wave impedances under each lithofacies category, respectively, and includes: for any one of the K facies categories, carrying out population update on an initial longitudinal wave impedance population under the any one facies category through a particle swarm algorithm to obtain an updated longitudinal wave impedance population under the any one facies category, and adding the updated longitudinal wave impedance population under the any one facies category into a longitudinal wave impedance population set under the any one facies category to realize state update of NP Markov chains, wherein one longitudinal wave impedance individual corresponds to one Markov chain; determining a current longitudinal wave impedance inversion result under any lithofacies category based on the updated longitudinal wave impedance population under the any lithofacies category, and judging whether the longitudinal wave impedance inversion result under the any lithofacies category tends to be stable or not based on the current longitudinal wave impedance inversion result; when the longitudinal wave impedance inversion result under any lithofacies category does not tend to be stable, continuing to update the population of the updated longitudinal wave impedance population under any lithofacies category until the longitudinal wave impedance inversion result under any lithofacies identification tends to be stable, so as to determine a target longitudinal wave impedance population set under any lithofacies category from the longitudinal wave impedance population set under any lithofacies category;
The processing unit is further configured to determine a longitudinal wave impedance of the target post-stack seismic data under each lithofacies category based on the target longitudinal wave impedance population set under each lithofacies category, where the longitudinal wave impedance support of the target post-stack seismic data under each lithofacies category is used for determining a target longitudinal wave impedance and/or a target lithofacies recognition result corresponding to the target post-stack seismic data; the longitudinal wave impedance population set under any lithofacies category comprises longitudinal wave impedance populations of the lithofacies category under each iteration in T iterations, wherein the longitudinal wave impedance populations under the t+1th iteration in the T iterations are obtained by carrying out population updating on the longitudinal wave impedance populations under the T iterations, T is an integer greater than 1, and T epsilon [1, T-1]; the determination mode of the longitudinal wave impedance population of any lithofacies category under the t+1th iteration comprises the following steps: regarding the ith longitudinal wave impedance in the longitudinal wave impedance population of any lithofacies category under the t-th iteration and the nth sampling point in the N sampling points, taking the ith longitudinal wave impedance in the longitudinal wave impedance population of any lithofacies category under the t-th iteration as the ith longitudinal wave impedance under the t-th iteration, i epsilon [1, NP ], N epsilon [1, N ]; determining candidate longitudinal wave impedance values of the nth sampling point based on the longitudinal wave impedance values of the nth sampling point in the ith longitudinal wave impedance under the nth iteration through a particle swarm algorithm to obtain candidate longitudinal wave impedance, wherein the candidate longitudinal wave impedance comprises candidate longitudinal wave impedance values of all the sampling points; calculating the receiving probability of the candidate longitudinal wave impedance based on the ith longitudinal wave impedance, the candidate longitudinal wave impedance and the target post-stack seismic data under the t-th iteration, and judging whether to receive the candidate longitudinal wave impedance based on the receiving probability of the candidate longitudinal wave impedance; if the candidate longitudinal wave impedance is determined to be received, the candidate longitudinal wave impedance is used as the ith longitudinal wave impedance in the longitudinal wave impedance population of any lithofacies category under the t+1th iteration; if the candidate longitudinal wave impedance is not received, the ith longitudinal wave impedance in the t iteration is used as the ith longitudinal wave impedance in the longitudinal wave impedance population of any lithofacies category in the t+1th iteration, so that the longitudinal wave impedance population of any lithofacies category in the t+1th iteration is determined;
The candidate longitudinal wave impedance value of the nth sampling point is determined based on the longitudinal wave impedance value of the nth sampling point in the ith longitudinal wave impedance of the nth iteration and the speed of the nth sampling point in the ith longitudinal wave impedance of the (t+1) th iteration of any lithofacies category; the speed of the nth sampling point in the ith longitudinal wave impedance at the t+1th iteration is determined based on the longitudinal wave impedance value of the nth sampling point in the optimal longitudinal wave impedance of the ith longitudinal wave impedance individual at the any lithofacies classification, the longitudinal wave impedance value of the nth sampling point included in the optimal longitudinal wave impedance of the any of the plurality of lithofacies classification in the previous t iterations, and the longitudinal wave impedance value of the nth sampling point in the ith longitudinal wave impedance at the t iteration, the optimal longitudinal wave impedance of the ith longitudinal wave impedance individual and the optimal longitudinal wave impedance of the any of the plurality of longitudinal wave impedance individuals being determined based on the evaluation value of the any of the plurality of lithofacies classification in each of the previous t iterations; the evaluation value of the longitudinal wave impedance under any one of the lithology categories is determined by a target evaluation function, and when the any one of the lithology categories is the kth lithology category of the K lithology categories, the target evaluation function is: a target functional equivalent to the kth component of the posterior probability density distribution of longitudinal wave impedance, k e [1, k ].
7. An electronic device, comprising:
A processor; and
A memory in which a program is stored,
Wherein the program comprises instructions which, when executed by the processor, cause the processor to perform the method according to any of claims 1-5.
8. A non-transitory computer readable storage medium storing computer instructions for causing a computer to perform the method of any one of claims 1-5.
CN202410870728.3A 2024-07-01 2024-07-01 Seismic inversion method, device, storage medium and electronic equipment Active CN118393570B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410870728.3A CN118393570B (en) 2024-07-01 2024-07-01 Seismic inversion method, device, storage medium and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410870728.3A CN118393570B (en) 2024-07-01 2024-07-01 Seismic inversion method, device, storage medium and electronic equipment

Publications (2)

Publication Number Publication Date
CN118393570A CN118393570A (en) 2024-07-26
CN118393570B true CN118393570B (en) 2024-09-17

Family

ID=91998088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410870728.3A Active CN118393570B (en) 2024-07-01 2024-07-01 Seismic inversion method, device, storage medium and electronic equipment

Country Status (1)

Country Link
CN (1) CN118393570B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112649867A (en) * 2019-10-12 2021-04-13 中国石油化工股份有限公司 Virtual well construction method and system
CN115993647A (en) * 2021-10-20 2023-04-21 中国石油化工股份有限公司 Method, device, medium and equipment for predicting compact thin reservoir

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633748B (en) * 2018-11-12 2020-05-01 中国石油大学(华东) Seismic attribute optimization method based on improved genetic algorithm
CN114966856B (en) * 2022-08-02 2022-12-02 中国科学院地质与地球物理研究所 Carbon storage site selection method, system and equipment based on multi-band seismic data
CN117950025A (en) * 2022-10-26 2024-04-30 中国石油天然气股份有限公司 Reservoir physical property parameter prediction method and device
CN117784255A (en) * 2023-12-25 2024-03-29 中国矿业大学 Earthquake rock physical nonlinear inversion method for communicating pore content

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112649867A (en) * 2019-10-12 2021-04-13 中国石油化工股份有限公司 Virtual well construction method and system
CN115993647A (en) * 2021-10-20 2023-04-21 中国石油化工股份有限公司 Method, device, medium and equipment for predicting compact thin reservoir

Also Published As

Publication number Publication date
CN118393570A (en) 2024-07-26

Similar Documents

Publication Publication Date Title
US11016214B2 (en) Dolomite reservoir prediction method and system based on well and seismic combination, and storage medium
AU2013325186B2 (en) Propagating fracture plane updates
Helmstetter et al. Comparison of short-term and time-independent earthquake forecast models for southern California
Liang et al. Stochastic approximation in Monte Carlo computation
US12032111B2 (en) Method and system for faster seismic imaging using machine learning
CN102053258B (en) Self-adaptive three-dimensional ray tracing method based on complex geological structure
CN101650443A (en) Back-propagation network calculating method of apparent resistivity
CN110879412A (en) Underground transverse wave velocity inversion method, device, computing equipment and storage medium
US20140156244A1 (en) System for determining position of marker depth coordinates for construction of geological model of deposit
WO2022232572A1 (en) Method and system for high resolution least-squares reverse time migration
US11340368B2 (en) Generating a velocity model and a density model of a subsurface structure of a reservoir
Grubas et al. Neural Eikonal solver: Improving accuracy of physics-informed neural networks for solving eikonal equation in case of caustics
Gao et al. Global optimization with deep-learning-based acceleration surrogate for large-scale seismic acoustic-impedance inversion
Wang et al. Stochastic inversion of magnetotelluric data using deep reinforcement learning
Wang et al. Genetic Nelder-Mead neural network algorithm for fault parameter inversion using GPS data
CN118393570B (en) Seismic inversion method, device, storage medium and electronic equipment
KR102110316B1 (en) Method and device for variational interference using neural network
Sun et al. The adaptive particle swarm optimization technique for solving microseismic source location parameters
US12013508B2 (en) Method and system for determining seismic processing parameters using machine learning
Zhang et al. VIP--Variational Inversion Package with example implementations of Bayesian tomographic imaging
CN112147679B (en) Lithology prediction method and device based on elastic parameters under fuzzy logic framework
CN115659773A (en) Full waveform inversion acceleration method based on depth network and related device
US9720117B1 (en) Imaging subsurface properties using a parallel processing database system
CN115685314A (en) Seismic reservoir physical property parameter prediction method and device
CN112649869A (en) Reservoir characteristic parameter prediction method and system based on GA-WNN

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant