CN118390197A - Method for macro spinning of aramid nanofiber - Google Patents
Method for macro spinning of aramid nanofiber Download PDFInfo
- Publication number
- CN118390197A CN118390197A CN202410664767.8A CN202410664767A CN118390197A CN 118390197 A CN118390197 A CN 118390197A CN 202410664767 A CN202410664767 A CN 202410664767A CN 118390197 A CN118390197 A CN 118390197A
- Authority
- CN
- China
- Prior art keywords
- aramid
- spinning
- filaments
- anf
- potassium hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004760 aramid Substances 0.000 title claims abstract description 130
- 229920003235 aromatic polyamide Polymers 0.000 title claims abstract description 124
- 239000002121 nanofiber Substances 0.000 title claims abstract description 116
- 238000009987 spinning Methods 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 43
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims abstract description 71
- 239000012530 fluid Substances 0.000 claims abstract description 54
- 230000015271 coagulation Effects 0.000 claims abstract description 43
- 238000005345 coagulation Methods 0.000 claims abstract description 43
- 238000004804 winding Methods 0.000 claims abstract description 34
- 239000006185 dispersion Substances 0.000 claims abstract description 31
- 238000003756 stirring Methods 0.000 claims abstract description 26
- 229920006231 aramid fiber Polymers 0.000 claims abstract description 21
- 238000002156 mixing Methods 0.000 claims abstract description 21
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 9
- 238000002166 wet spinning Methods 0.000 claims abstract description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 239000008367 deionised water Substances 0.000 claims description 20
- 229910021641 deionized water Inorganic materials 0.000 claims description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 230000002378 acidificating effect Effects 0.000 claims description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 239000012445 acidic reagent Substances 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 4
- 238000004108 freeze drying Methods 0.000 claims description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 4
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 claims description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 2
- 239000005711 Benzoic acid Substances 0.000 claims description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 239000000908 ammonium hydroxide Substances 0.000 claims description 2
- 235000010233 benzoic acid Nutrition 0.000 claims description 2
- 238000001125 extrusion Methods 0.000 claims description 2
- 235000019253 formic acid Nutrition 0.000 claims description 2
- 239000004310 lactic acid Substances 0.000 claims description 2
- 235000014655 lactic acid Nutrition 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 235000011007 phosphoric acid Nutrition 0.000 claims description 2
- 229910000105 potassium hydride Inorganic materials 0.000 claims description 2
- NTTOTNSKUYCDAV-UHFFFAOYSA-N potassium hydride Chemical compound [KH] NTTOTNSKUYCDAV-UHFFFAOYSA-N 0.000 claims description 2
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- 239000012312 sodium hydride Substances 0.000 claims description 2
- 229910000104 sodium hydride Inorganic materials 0.000 claims description 2
- 239000001488 sodium phosphate Substances 0.000 claims description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 claims description 2
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 claims description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 2
- 230000001112 coagulating effect Effects 0.000 claims 3
- 239000007788 liquid Substances 0.000 claims 2
- 239000003513 alkali Substances 0.000 claims 1
- 239000000835 fiber Substances 0.000 abstract description 27
- 239000004372 Polyvinyl alcohol Substances 0.000 description 60
- 229920002451 polyvinyl alcohol Polymers 0.000 description 60
- 238000001879 gelation Methods 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 239000004964 aerogel Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005595 deprotonation Effects 0.000 description 1
- 238000010537 deprotonation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/06—Wet spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D10/00—Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
- D01D10/06—Washing or drying
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/10—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/12—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Artificial Filaments (AREA)
Abstract
本发明公开了一种芳纶纳米纤维宏量纺丝的方法,包括如下步骤:S1:将芳纶纤维加入氢氧化钾溶液中,加热搅拌得到ANF分散液;S2:将步骤S1制得ANF分散液与PVA溶液混合,加热搅拌均匀,制得ANF/PVA纺丝流体;S3:将ANF/PVA纺丝流体通过湿法纺丝,得到芳纶纳米纤维凝胶长丝;S4:将芳纶纳米纤维凝胶长丝干燥处理,得到芳纶纳米纤维长丝。本发明分别从纺丝流体与凝固浴进行调控,提高凝胶纤维的强度和纺丝速度,能够解决现有技术对于芳纶纳米纤维规模纺丝的牵伸、卷绕困难及力学性能不理想等问题。
The invention discloses a method for mass spinning of aramid nanofibers, comprising the following steps: S1: adding aramid fibers to a potassium hydroxide solution, heating and stirring to obtain an ANF dispersion; S2: mixing the ANF dispersion obtained in step S1 with a PVA solution, heating and stirring evenly to obtain an ANF/PVA spinning fluid; S3: subjecting the ANF/PVA spinning fluid to wet spinning to obtain aramid nanofiber gel filaments; S4: drying the aramid nanofiber gel filaments to obtain aramid nanofiber filaments. The invention regulates the spinning fluid and the coagulation bath respectively to improve the strength and spinning speed of the gel fiber, and can solve the problems of the prior art in the large-scale spinning of aramid nanofibers, such as the difficulty in drafting and winding, and the unsatisfactory mechanical properties.
Description
技术领域Technical Field
本发明涉及纤维纺丝技术领域,尤其是涉及一种芳纶纳米纤维宏量纺丝的方法。The invention relates to the technical field of fiber spinning, in particular to a method for macro-spinning aramid nanofibers.
背景技术Background technique
废弃纺织品的回收利用对于绿色环保,节能减排具有重要意义,同时也是纺织产业持续发展的必然需求。芳纶纤维因其轻质、高强、高耐磨、阻燃等特点而被广泛应用于国防军工、航天航空、特种防护等领域。然而,每年都有大量的芳纶纤维以焚烧、填满方式处理,,导致了大量资源的浪费。目前利用化学劈裂法,可将宏观的芳纶长丝转化为纳米级别的纤维,因其具有更高的比表面积和更优的力学性能,对于提高复合材料的性能,如强度、刚度和韧性等具有重要的应用价值。将芳纶纤维纳米化并通过重组方式制备再生芳纶纤维,是赋予芳纶纤维新生的重要途径之一。其中采用湿法纺丝的制备芳纶纳米纤维长丝具有与原始芳纶纤维具有相似的形貌和性能,具有柔软度高、力学性能优异、阻燃等特点。此外,作为一维线性结构的芳纶纳米纤维能与其他纳米功能材料复合,制备具有导电、抗菌、隔热、储能等多种功能复合材料,在各行各业具有广阔的应用前景,因此受到科研界的广泛关注。The recycling of waste textiles is of great significance for green environmental protection, energy conservation and emission reduction, and is also an inevitable demand for the sustainable development of the textile industry. Aramid fiber is widely used in national defense, aerospace, special protection and other fields due to its light weight, high strength, high wear resistance and flame retardancy. However, a large amount of aramid fibers are treated by incineration and filling every year, resulting in a large waste of resources. At present, the macroscopic aramid filaments can be converted into nano-scale fibers by chemical splitting. Because of their higher specific surface area and better mechanical properties, they have important application value for improving the performance of composite materials, such as strength, stiffness and toughness. Nano-sizing aramid fibers and preparing regenerated aramid fibers by reorganization is one of the important ways to give aramid fibers a new life. Among them, the aramid nanofiber filaments prepared by wet spinning have similar morphology and properties to the original aramid fibers, and have the characteristics of high softness, excellent mechanical properties and flame retardancy. In addition, as a one-dimensional linear structure, aramid nanofibers can be compounded with other nanofunctional materials to prepare composite materials with multiple functions such as conductivity, antibacterial, thermal insulation, and energy storage. They have broad application prospects in all walks of life and have therefore received widespread attention from the scientific research community.
采用湿法纺丝方法制备芳纶纳米纤维长丝需要先制备芳纶纳米纤维纺丝流体,并将纺丝流体挤入凝固浴形成芳纶纳米纤维凝胶长丝,经过干燥得到芳纶纳米纤维长丝。然而,芳纶纳米纤维纺丝流体转变成凝胶纤维是一个缓慢过程,且芳纶纳米凝胶纤维仅存在由酰胺基构建单一氢键网络,力学性能较差,难以满足快速、连续纺丝宏量生产要求。The wet spinning method for preparing aramid nanofiber filaments requires the preparation of aramid nanofiber spinning fluid first, and the squeezing of the spinning fluid into a coagulation bath to form aramid nanofiber gel filaments, which are then dried to obtain aramid nanofiber filaments. However, the transformation of aramid nanofiber spinning fluid into gel fiber is a slow process, and aramid nanogel fiber only has a single hydrogen bond network constructed by amide groups, and has poor mechanical properties, making it difficult to meet the requirements of rapid, continuous spinning and mass production.
因此,开发一种芳纶纳米纤维宏量纺丝的方法,既能实现快速纺丝宏量制备的要求,又能提升芳纶纳米纤维长丝力学性能,是当前芳纶纳米纤维制备技术的重要研究方向。Therefore, developing a method for large-scale spinning of aramid nanofibers, which can not only achieve the requirements of rapid spinning large-scale preparation, but also improve the mechanical properties of aramid nanofiber filaments, is an important research direction of current aramid nanofiber preparation technology.
发明内容Summary of the invention
针对现有技术存在的上述问题,本发明提供了一种芳纶纳米纤维宏量纺丝的方法。本发明分别从纺丝流体与凝固浴进行调控,提高凝胶纤维的强度和纺丝速度,能够解决现有技术对于芳纶纳米纤维规模纺丝的牵伸、卷绕困难及力学性能不理想等问题。In view of the above problems existing in the prior art, the present invention provides a method for large-scale spinning of aramid nanofibers. The present invention regulates the spinning fluid and the coagulation bath respectively to improve the strength and spinning speed of the gel fiber, and can solve the problems of the prior art in large-scale spinning of aramid nanofibers such as drafting, winding difficulties and unsatisfactory mechanical properties.
本发明的技术方案如下:The technical solution of the present invention is as follows:
本发明的目的在于提供一种芳纶纳米纤维宏量纺丝的方法,所述方法包括如下步骤:The object of the present invention is to provide a method for macro-spinning of aramid nanofibers, the method comprising the following steps:
S1:将芳纶纤维加入氢氧化钾溶液中,加热搅拌得到ANF分散液;S1: adding aramid fiber into potassium hydroxide solution, heating and stirring to obtain ANF dispersion;
S2:将步骤S1制得ANF分散液与PVA溶液混合,加热搅拌均匀,制得ANF/PVA纺丝流体;S2: mixing the ANF dispersion obtained in step S1 with the PVA solution, heating and stirring to obtain an ANF/PVA spinning fluid;
S3:将ANF/PVA纺丝流体通过湿法纺丝,得到芳纶纳米纤维凝胶长丝;S3: The ANF/PVA spinning fluid is wet-spinned to obtain aramid nanofiber gel filaments;
S4:将芳纶纳米纤维凝胶长丝干燥处理,得到芳纶纳米纤维长丝。S4: Drying the aramid nanofiber gel filaments to obtain aramid nanofiber filaments.
在本发明的一个实施方式中,步骤S1中,氢氧化钾溶液由氢氧化钾、水和二甲基亚砜组成;所述氢氧化钾溶液中氢氧化钾的浓度为7.5-150g/L;所述氢氧化钾溶液中二甲基亚砜与水的体积比为25-100:1。In one embodiment of the present invention, in step S1, the potassium hydroxide solution consists of potassium hydroxide, water and dimethyl sulfoxide; the concentration of potassium hydroxide in the potassium hydroxide solution is 7.5-150 g/L; and the volume ratio of dimethyl sulfoxide to water in the potassium hydroxide solution is 25-100:1.
在本发明的一个实施方式中,步骤S1中,芳纶纤维与氢氧化钾溶液中氢氧化钾的质量比为1:0.5-1.5。In one embodiment of the present invention, in step S1, the mass ratio of the aramid fiber to the potassium hydroxide in the potassium hydroxide solution is 1:0.5-1.5.
在本发明的一个实施方式中,步骤S1中,加热搅拌的条件:温度为65-95℃,时间为6-24小时,搅拌速度为500-1500转/分钟。In one embodiment of the present invention, in step S1, the conditions for heating and stirring are: temperature of 65-95° C., time of 6-24 hours, and stirring speed of 500-1500 rpm.
在本发明的一个实施方式中,步骤S1中,所述ANF分散液的浓度为0.5-10%。In one embodiment of the present invention, in step S1, the concentration of the ANF dispersion is 0.5-10%.
在本发明的一个实施方式中,步骤S2中,PVA溶液的浓度为0.5-15%;ANF分散液与PVA溶液的体积比为2:0.1-2。In one embodiment of the present invention, in step S2, the concentration of the PVA solution is 0.5-15%; the volume ratio of the ANF dispersion to the PVA solution is 2:0.1-2.
当ANF分散液浓度或者PVA浓度增大时,造成纺丝液粘度增大,过于粘稠无法顺利挤出喷丝孔因此难以进行连续化纺丝。When the concentration of ANF dispersion or PVA increases, the viscosity of the spinning solution increases. It is too viscous to be squeezed out of the spinneret hole smoothly, making it difficult to carry out continuous spinning.
在本发明的一个实施方式中,步骤S2中,加热搅拌的温度为60-95℃。In one embodiment of the present invention, in step S2, the temperature of heating and stirring is 60-95°C.
在本发明的一个实施方式中,步骤S3中,湿法纺丝过程中,纺丝流体经过推进器挤出后依次经过喷丝头、凝固浴、卷绕滚筒。In one embodiment of the present invention, in step S3, during the wet spinning process, the spinning fluid is extruded by a propeller and then passes through a spinneret, a coagulation bath, and a winding drum in sequence.
其中,纺丝流体的温度为20-80℃,凝固浴的温度范围为20-60℃。The temperature of the spinning fluid is 20-80°C, and the temperature of the coagulation bath is 20-60°C.
在本发明的一个实施方式中,凝固浴为酸性凝固浴、碱性凝固浴或去离子水凝固浴。In one embodiment of the present invention, the coagulation bath is an acidic coagulation bath, an alkaline coagulation bath or a deionized water coagulation bath.
在本发明的一个实施方式中,酸性凝固浴中酸试剂为硫酸、盐酸、硝酸、甲酸、乙酸、亚硫酸、磷酸、乳酸、苯甲酸、丙烯酸中的一种或多种。In one embodiment of the present invention, the acid reagent in the acidic coagulation bath is one or more of sulfuric acid, hydrochloric acid, nitric acid, formic acid, acetic acid, sulfurous acid, phosphoric acid, lactic acid, benzoic acid, and acrylic acid.
在本发明的一个实施方式中,酸凝固浴中酸试剂的浓度为0.05 -5mol/L。In one embodiment of the present invention, the concentration of the acid reagent in the acid coagulation bath is 0.05-5 mol/L.
在本发明的一个实施方式中,碱性凝固浴中碱试剂为氢氧化钠、碳酸钠、磷酸钠、原硅酸钠、叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、氢氧化钾、氢氧化铵中的一种或多种。In one embodiment of the present invention, the alkaline agent in the alkaline coagulation bath is one or more of sodium hydroxide, sodium carbonate, sodium phosphate, sodium orthosilicate, potassium tert-butoxide, sodium tert-butoxide, potassium hydride, sodium hydride, potassium hydroxide, and ammonium hydroxide.
在本发明的一个实施方式中,碱性凝固浴中碱试剂的浓度为0.05 -5mol/L。In one embodiment of the present invention, the concentration of the alkaline agent in the alkaline coagulation bath is 0.05-5 mol/L.
在本发明的一个实施方式中,纺丝流体挤出时,喷丝头的规格为8-30G,推进器的挤出速度为0.3 -30ml/min;卷绕滚筒卷绕速度为0.2 -14m/min;改变卷绕滚筒的卷绕速度,可以实现-0.8-1.5倍的牵伸。In one embodiment of the present invention, when the spinning fluid is extruded, the specification of the spinneret is 8-30G, the extrusion speed of the propeller is 0.3-30ml/min; the winding speed of the winding drum is 0.2-14m/min; by changing the winding speed of the winding drum, a draft of -0.8-1.5 times can be achieved.
在本发明的一个实施方式中,步骤S4中,干燥处理采用冷冻干燥或加热干燥。In one embodiment of the present invention, in step S4, the drying process is freeze-drying or heat-drying.
在本发明的一个实施方式中,冷冻干燥的条件为:温度为-35℃,真空度为10-20Pa,时间为12-24小时;加热干燥的条件为:温度为80-150℃,时间为6-12小时。In one embodiment of the present invention, the freeze-drying conditions are: temperature of -35°C, vacuum degree of 10-20Pa, and time of 12-24 hours; the heating drying conditions are: temperature of 80-150°C, and time of 6-12 hours.
本发明有益的技术效果在于:The beneficial technical effects of the present invention are:
(1)本发明中将聚乙烯醇溶液加入的ANF溶液中,在芳纶纤维去质子化的过程中,将聚乙烯醇均匀的包覆在芳纶纳米纤维表面,构建氢键交联网络,形成良好的界面相互作用,同步提升ANF/PVA凝胶纤维长丝强度和韧度,为有效的提升ANF凝胶纤维长丝的纺丝速度。(1) In the present invention, polyvinyl alcohol solution is added to the ANF solution. During the deprotonation process of the aramid fiber, the polyvinyl alcohol is uniformly coated on the surface of the aramid nanofiber to construct a hydrogen bond cross-linking network, form a good interface interaction, and simultaneously improve the strength and toughness of the ANF/PVA gel fiber filaments, thereby effectively improving the spinning speed of the ANF gel fiber filaments.
(2)本发明中凝固浴可调控芳纶纳米纤维溶胶-凝胶转变速度方法,通过改变质子供体的种类与浓度控调控纤维凝胶化速度,进而调控凝胶纤维皮芯结构,影响芳纶纳米纤维在凝胶长丝中的有序排列,对凝胶纤维内部微观结构的调控,所得到芳纶纳米纤维长丝具有兼具较高的取向度、力学强度、耐化学腐和耐高温性能,在制备高性能再生化学纤维领域具有广阔的应用前景。(2) The coagulation bath in the present invention can regulate the sol-gel transition rate of aramid nanofibers. By changing the type and concentration of the proton donor, the fiber gelation rate is controlled, and then the gel fiber skin-core structure is regulated, which affects the orderly arrangement of the aramid nanofibers in the gel filaments. The internal microstructure of the gel fiber is regulated, and the resulting aramid nanofiber filaments have high orientation, mechanical strength, chemical corrosion resistance and high temperature resistance, and have broad application prospects in the field of preparing high-performance regenerated chemical fibers.
(3)采用本发明提供的芳纶纳米纤维凝胶长丝,可采用不同的干燥纺丝获得不同形态的芳纶纳米纤维长丝与芳纶纳米纤维气凝胶长丝,其不仅具有较高的力学强度、取向度还可通过纺织加工方法编织成机织物、针织物等多种织物。(3) By using the aramid nanofiber gel filaments provided by the present invention, different forms of aramid nanofiber filaments and aramid nanofiber aerogel filaments can be obtained by adopting different dry spinning methods. The aramid nanofiber filaments and aramid nanofiber aerogel filaments not only have high mechanical strength and orientation but can also be woven into various fabrics such as woven fabrics and knitted fabrics through textile processing methods.
(4)采用本发明的技术方案,与现有技术的制备方法相比,工艺方法简单,生产成本能耗较低,环境污染较小,宏量制备的纺丝工业能够满足规模化生产的要求。(4) Compared with the preparation method of the prior art, the technical solution of the present invention has a simple process, low production cost and energy consumption, less environmental pollution, and the large-scale spinning industry can meet the requirements of large-scale production.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明中采用湿法纺丝的装备组成示意图;FIG1 is a schematic diagram of the equipment composition of wet spinning in the present invention;
图2为本发明中实施例1中ANF分散液、PVA溶液以及ANF/PVA纺丝流体的光学照片;FIG2 is an optical photograph of the ANF dispersion, PVA solution and ANF/PVA spinning fluid in Example 1 of the present invention;
图3为本发明中实施例2中芳纶纳米纤维凝胶长丝的光学照片;FIG3 is an optical photograph of aramid nanofiber gel filaments in Example 2 of the present invention;
图4为本发明中实施例3中芳纶纳米纤维长丝的扫描电子显微镜照片;FIG4 is a scanning electron microscope photograph of aramid nanofiber filaments in Example 3 of the present invention;
图5为本发明中实施例4中芳纶纳米纤维长丝的光学照片;FIG5 is an optical photograph of aramid nanofiber filaments in Example 4 of the present invention;
图6为本发明中实施例8中芳纶纳米气凝胶纤维光学照片和对应的扫描电子显微镜照片;FIG6 is an optical photograph of the aramid nano-aerogel fiber in Example 8 of the present invention and a corresponding scanning electron microscope photograph;
图7为本发明实施例2和对比例1的芳纶纳米纤维凝胶长丝拉伸应力-应变曲线;FIG7 is a tensile stress-strain curve of aramid nanofiber gel filaments of Example 2 of the present invention and Comparative Example 1;
图8为本发明实施例1-5的芳纶纳米纤维凝胶长丝拉伸应力-应变曲线;FIG8 is a tensile stress-strain curve of aramid nanofiber gel filaments of Examples 1-5 of the present invention;
图9为本发明实施例1-5的芳纶纳米纤维长丝拉伸应力-应变曲线;FIG9 is a tensile stress-strain curve of aramid nanofiber filaments of Examples 1-5 of the present invention;
图10为本发明实施例2、6和7不同凝固浴得到的芳纶纳米纤维凝胶长丝拉伸应力-应变曲线;FIG10 is a tensile stress-strain curve of aramid nanofiber gel filaments obtained in different coagulation baths in Examples 2, 6 and 7 of the present invention;
图11为本发明实施例2、6和7不同凝固浴得到的芳纶纳米纤维长丝拉伸应力-应变曲线;FIG11 is a tensile stress-strain curve of aramid nanofiber filaments obtained in different coagulation baths in Examples 2, 6 and 7 of the present invention;
图12为计算凝胶化时间方法的示意图;FIG12 is a schematic diagram of a method for calculating gelation time;
图13为本发明实施例2、6和7不同凝固浴纺丝流体的凝胶化时间;FIG13 is a graph showing the gelation time of different coagulation bath spinning fluids in Examples 2, 6 and 7 of the present invention;
图14为本发明实施例2、6和7不同凝固浴纺丝流体的最快的纺丝卷绕速度。FIG. 14 shows the fastest spinning take-up speeds of different coagulation bath spinning fluids in Examples 2, 6 and 7 of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明进行具体描述。The present invention is described in detail below in conjunction with the accompanying drawings and embodiments.
图1为本发明中采用湿法纺丝的装备组成示意图,分别由推进器、喷丝头、凝固浴和卷绕滚筒组成。FIG1 is a schematic diagram of the wet spinning equipment used in the present invention, which is composed of a propeller, a spinneret, a coagulation bath and a winding drum.
实施例1Example 1
一种芳纶纳米纤维宏量纺丝的方法,所述方法包括如下步骤:A method for macro-spinning aramid nanofibers, the method comprising the following steps:
(1)将1.5g芳纶纤维加入氢氧化钾溶液(由2.25g氢氧化钾、50mL二甲基亚砜和2mL去离子组成)中,加入在95℃下搅拌24小时,得到3wt%暗红色芳纶纳米纤维分散液;(1) 1.5 g of aramid fiber was added to a potassium hydroxide solution (composed of 2.25 g of potassium hydroxide, 50 mL of dimethyl sulfoxide and 2 mL of deionized water), and stirred at 95° C. for 24 hours to obtain a 3 wt % dark red aramid nanofiber dispersion;
(2)将0.375g聚乙烯醇加入25mL二甲基亚砜中,在95℃下搅拌4小时,得到1.5wt%透明聚乙烯醇溶液;(2) adding 0.375 g of polyvinyl alcohol to 25 mL of dimethyl sulfoxide and stirring at 95° C. for 4 hours to obtain a 1.5 wt % transparent polyvinyl alcohol solution;
(3)将步骤(1)制得的3wt%芳纶纳米纤维分散液与步骤(2)制得的1.5wt%透明聚乙烯醇溶液按2:1的体积比混合,在85℃下搅拌混合4小时,得到ANF/PVA纺丝流体;(3) mixing the 3 wt % aramid nanofiber dispersion prepared in step (1) and the 1.5 wt % transparent polyvinyl alcohol solution prepared in step (2) in a volume ratio of 2:1, stirring and mixing at 85° C. for 4 hours to obtain an ANF/PVA spinning fluid;
(4)将步骤(3)制得的ANF/PVA纺丝流体通过推进器,经过21G的喷丝头,以4ml/min的速度进入凝固浴(5L去离子水)中,将纺丝流体固化为芳纶纳米纤维凝胶长丝,卷绕滚筒以6m/min速度进行收集;(4) passing the ANF/PVA spinning fluid obtained in step (3) through a propeller, through a 21G spinneret, into a coagulation bath (5 L deionized water) at a speed of 4 ml/min, solidifying the spinning fluid into aramid nanofiber gel filaments, and collecting the filaments on a winding drum at a speed of 6 m/min;
(5)将步骤(4)制得的芳纶纳米纤维凝胶长丝从卷绕滚筒上络筒至纱筒,并置于100℃烘箱中干燥8小时得到芳纶纳米纤维长丝。(5) The aramid nanofiber gel filaments obtained in step (4) are wound onto a yarn bobbin from a winding drum, and placed in an oven at 100° C. to dry for 8 hours to obtain aramid nanofiber filaments.
图2为本实施例中ANF分散液、PVA溶液以及ANF/PVA纺丝流体的光学照片,由图可见纺丝流体均匀稳定,存放180天后仍有较好的分散性,溶液没有纳米纤维沉积可用于湿法纺丝。FIG2 is an optical photograph of the ANF dispersion, PVA solution and ANF/PVA spinning fluid in this embodiment. It can be seen from the figure that the spinning fluid is uniform and stable, and still has good dispersibility after storage for 180 days. The solution has no nanofiber deposition and can be used for wet spinning.
实施例2Example 2
一种芳纶纳米纤维宏量纺丝的方法,所述方法包括如下步骤:A method for macro-spinning aramid nanofibers, the method comprising the following steps:
(1)将1.5g芳纶纤维加入氢氧化钾溶液(由2.25g氢氧化钾、50mL二甲基亚砜和2mL去离子组成)中,加入在95℃下搅拌24小时,得到3wt%暗红色芳纶纳米纤维分散液;(1) 1.5 g of aramid fiber was added to a potassium hydroxide solution (composed of 2.25 g of potassium hydroxide, 50 mL of dimethyl sulfoxide and 2 mL of deionized water), and stirred at 95° C. for 24 hours to obtain a 3 wt % dark red aramid nanofiber dispersion;
(2)将0.75g聚乙烯醇加入25mL二甲基亚砜中,在95℃下搅拌4小时,得到3wt%透明聚乙烯醇溶液;(2) adding 0.75 g of polyvinyl alcohol to 25 mL of dimethyl sulfoxide and stirring at 95° C. for 4 hours to obtain a 3 wt % transparent polyvinyl alcohol solution;
(3)将步骤(1)制得的3wt%芳纶纳米纤维分散液与步骤(2)制得的3wt%透明聚乙烯醇溶液按2:1的体积比混合,在85℃下搅拌混合4小时,得到ANF/PVA纺丝流体;(3) mixing the 3 wt % aramid nanofiber dispersion prepared in step (1) and the 3 wt % transparent polyvinyl alcohol solution prepared in step (2) in a volume ratio of 2:1, stirring and mixing at 85° C. for 4 hours to obtain an ANF/PVA spinning fluid;
(4)将步骤(3)制得的ANF/PVA纺丝流体通过推进器,经过21G的喷丝头,以4ml/min的速度进入凝固浴(5L去离子水)中,将纺丝流体固化为芳纶纳米纤维凝胶长丝,卷绕滚筒以6m/min速度进行收集;(4) passing the ANF/PVA spinning fluid obtained in step (3) through a propeller, through a 21G spinneret, into a coagulation bath (5 L deionized water) at a speed of 4 ml/min, solidifying the spinning fluid into aramid nanofiber gel filaments, and collecting the filaments on a winding drum at a speed of 6 m/min;
(5)将步骤(4)制得的芳纶纳米纤维凝胶长丝从卷绕滚筒上络筒至纱筒,并置于100℃烘箱中干燥8小时得到芳纶纳米纤维长丝。(5) The aramid nanofiber gel filaments obtained in step (4) are wound onto a yarn bobbin from a winding drum, and placed in an oven at 100° C. to dry for 8 hours to obtain aramid nanofiber filaments.
图3为本实施例中芳纶纳米纤维凝胶长丝的光学照片,由图可见ANF/PVA纺丝流体得到凝胶长丝,在ANF和PVA分子间形成了氢键交联网络,大大增强了凝胶长丝的构力学性能,能够顺利连续卷绕至纱筒而不发生断裂。Figure 3 is an optical photograph of the aramid nanofiber gel filaments in this embodiment. It can be seen from the figure that the gel filaments are obtained from the ANF/PVA spinning fluid, and a hydrogen bond cross-linking network is formed between the ANF and PVA molecules, which greatly enhances the structural mechanical properties of the gel filaments and can be smoothly and continuously wound into the yarn tube without breaking.
实施例3Example 3
一种芳纶纳米纤维宏量纺丝的方法,所述方法包括如下步骤:A method for macro-spinning aramid nanofibers, the method comprising the following steps:
(1)将1.5g芳纶纤维加入氢氧化钾溶液(由2.25g氢氧化钾、50mL二甲基亚砜和2mL去离子组成)中,加入在95℃下搅拌24小时,得到3wt%暗红色芳纶纳米纤维分散液;(1) 1.5 g of aramid fiber was added to a potassium hydroxide solution (composed of 2.25 g of potassium hydroxide, 50 mL of dimethyl sulfoxide and 2 mL of deionized water), and stirred at 95° C. for 24 hours to obtain a 3 wt % dark red aramid nanofiber dispersion;
(2)将1.5g聚乙烯醇加入25mL二甲基亚砜中,在95℃下搅拌4小时,得到6wt%透明聚乙烯醇溶液;(2) adding 1.5 g of polyvinyl alcohol to 25 mL of dimethyl sulfoxide and stirring at 95° C. for 4 hours to obtain a 6 wt % transparent polyvinyl alcohol solution;
(3)将步骤(1)制得的3wt%芳纶纳米纤维分散液与步骤(2)制得的6wt%透明聚乙烯醇溶液按2:1的体积比混合,在85℃下搅拌混合4小时,得到ANF/PVA纺丝流体;(3) mixing the 3 wt % aramid nanofiber dispersion prepared in step (1) and the 6 wt % transparent polyvinyl alcohol solution prepared in step (2) in a volume ratio of 2:1, stirring and mixing at 85° C. for 4 hours to obtain an ANF/PVA spinning fluid;
(4)将步骤(3)制得的ANF/PVA纺丝流体通过推进器,经过21G的喷丝头,以4ml/min的速度进入凝固浴(5L去离子水)中,将纺丝流体固化为芳纶纳米纤维凝胶长丝,卷绕滚筒以6m/min速度进行收集;(4) passing the ANF/PVA spinning fluid obtained in step (3) through a propeller, through a 21G spinneret, into a coagulation bath (5 L deionized water) at a speed of 4 ml/min, solidifying the spinning fluid into aramid nanofiber gel filaments, and collecting the filaments on a winding drum at a speed of 6 m/min;
(5)将步骤(4)制得的芳纶纳米纤维凝胶长丝从卷绕滚筒上络筒至纱筒,并置于100℃烘箱中干燥8小时得到芳纶纳米纤维长丝。(5) The aramid nanofiber gel filaments obtained in step (4) are wound onto a yarn bobbin from a winding drum, and placed in an oven at 100° C. to dry for 8 hours to obtain aramid nanofiber filaments.
图4为本实施例中芳纶纳米纤维长丝的扫描电子显微镜照片,由图可知,所制备的芳纶纳米纤维长丝直径约为125μm,表面光滑无杂质。FIG4 is a scanning electron microscope photograph of the aramid nanofiber filaments in this embodiment. As can be seen from the figure, the diameter of the prepared aramid nanofiber filaments is about 125 μm, and the surface is smooth and free of impurities.
实施例4Example 4
一种芳纶纳米纤维宏量纺丝的方法,所述方法包括如下步骤:A method for macro-spinning aramid nanofibers, the method comprising the following steps:
(1)将1.5g芳纶纤维加入氢氧化钾溶液(由2.25g氢氧化钾、50mL二甲基亚砜和2mL去离子组成)中,加入在95℃下搅拌24小时,得到3wt%暗红色芳纶纳米纤维分散液;(1) 1.5 g of aramid fiber was added to a potassium hydroxide solution (composed of 2.25 g of potassium hydroxide, 50 mL of dimethyl sulfoxide and 2 mL of deionized water), and stirred at 95° C. for 24 hours to obtain a 3 wt % dark red aramid nanofiber dispersion;
(2)将2.25g聚乙烯醇加入25mL二甲基亚砜中,在95℃下搅拌4小时,得到9wt%透明聚乙烯醇溶液;(2) adding 2.25 g of polyvinyl alcohol to 25 mL of dimethyl sulfoxide and stirring at 95° C. for 4 hours to obtain a 9 wt % transparent polyvinyl alcohol solution;
(3)将步骤(1)制得的3wt%芳纶纳米纤维分散液与步骤(2)制得的9wt%透明聚乙烯醇溶液按2:1的体积比混合,在85℃下搅拌混合4小时,得到ANF/PVA纺丝流体;(3) mixing the 3 wt % aramid nanofiber dispersion prepared in step (1) and the 9 wt % transparent polyvinyl alcohol solution prepared in step (2) in a volume ratio of 2:1, stirring and mixing at 85° C. for 4 hours to obtain an ANF/PVA spinning fluid;
(4)将步骤(3)制得的ANF/PVA纺丝流体通过推进器,经过21G的喷丝头,以4ml/min的速度进入凝固浴(5L去离子水)中,将纺丝流体固化为芳纶纳米纤维凝胶长丝,卷绕滚筒以6m/min速度进行收集;(4) passing the ANF/PVA spinning fluid obtained in step (3) through a propeller, through a 21G spinneret, into a coagulation bath (5 L deionized water) at a speed of 4 ml/min, solidifying the spinning fluid into aramid nanofiber gel filaments, and collecting the filaments on a winding drum at a speed of 6 m/min;
(5)将步骤(4)制得的芳纶纳米纤维凝胶长丝从卷绕滚筒上络筒至纱筒,并置于100℃烘箱中干燥8小时得到芳纶纳米纤维长丝。(5) The aramid nanofiber gel filaments obtained in step (4) are wound onto a yarn bobbin from a winding drum, and placed in an oven at 100° C. to dry for 8 hours to obtain aramid nanofiber filaments.
图5为本实施例中芳纶纳米纤维长丝的光学照片,由图可知所制备芳纶纳米纤维长丝呈橙黄色,由于纤维具有较好的柔韧性和强度,因此可以紧密连续卷绕至纱筒而不发生断裂。FIG5 is an optical photograph of the aramid nanofiber filaments in this embodiment. It can be seen from the figure that the prepared aramid nanofiber filaments are orange-yellow in color. Since the fibers have good flexibility and strength, they can be tightly and continuously wound into a yarn tube without breaking.
实施例5Example 5
一种芳纶纳米纤维宏量纺丝的方法,所述方法包括如下步骤:A method for macro-spinning aramid nanofibers, the method comprising the following steps:
(1)将1.5g芳纶纤维加入氢氧化钾溶液(由2.25g氢氧化钾、50mL二甲基亚砜和2mL去离子组成)中,加入在95℃下搅拌24小时,得到3wt%暗红色芳纶纳米纤维分散液;(1) 1.5 g of aramid fiber was added to a potassium hydroxide solution (composed of 2.25 g of potassium hydroxide, 50 mL of dimethyl sulfoxide and 2 mL of deionized water), and stirred at 95° C. for 24 hours to obtain a 3 wt % dark red aramid nanofiber dispersion;
(2)将3.75g聚乙烯醇加入25mL二甲基亚砜中,在95℃下搅拌4小时,得到9wt%透明聚乙烯醇溶液;(2) adding 3.75 g of polyvinyl alcohol to 25 mL of dimethyl sulfoxide and stirring at 95° C. for 4 hours to obtain a 9 wt % transparent polyvinyl alcohol solution;
(3)将步骤(1)制得的3wt%芳纶纳米纤维分散液与步骤(2)制得的12wt%透明聚乙烯醇溶液按2:1的体积比混合,在85℃下搅拌混合4小时,得到ANF/PVA纺丝流体;(3) mixing the 3 wt % aramid nanofiber dispersion prepared in step (1) and the 12 wt % transparent polyvinyl alcohol solution prepared in step (2) in a volume ratio of 2:1, stirring and mixing at 85° C. for 4 hours to obtain an ANF/PVA spinning fluid;
(4)将步骤(3)制得的ANF/PVA纺丝流体通过推进器,经过21G的喷丝头,以4ml/min的速度进入凝固浴(5L去离子水)中,将纺丝流体固化为芳纶纳米纤维凝胶长丝,卷绕滚筒以6m/min速度进行收集;(4) passing the ANF/PVA spinning fluid obtained in step (3) through a propeller, through a 21G spinneret, into a coagulation bath (5 L deionized water) at a speed of 4 ml/min, solidifying the spinning fluid into aramid nanofiber gel filaments, and collecting the filaments on a winding drum at a speed of 6 m/min;
(5)将步骤(4)制得的芳纶纳米纤维凝胶长丝从卷绕滚筒上络筒至纱筒,并置于100℃烘箱中干燥8小时得到芳纶纳米纤维长丝。(5) The aramid nanofiber gel filaments obtained in step (4) are wound onto a yarn bobbin from a winding drum, and placed in an oven at 100° C. to dry for 8 hours to obtain aramid nanofiber filaments.
实施例6Example 6
一种芳纶纳米纤维宏量纺丝的方法,所述方法包括如下步骤:A method for macro-spinning aramid nanofibers, the method comprising the following steps:
(1)将1.5g芳纶纤维加入氢氧化钾溶液(由2.25g氢氧化钾、50mL二甲基亚砜和2mL去离子组成)中,加入在95℃下搅拌24小时,得到3wt%暗红色芳纶纳米纤维分散液;(1) 1.5 g of aramid fiber was added to a potassium hydroxide solution (composed of 2.25 g of potassium hydroxide, 50 mL of dimethyl sulfoxide and 2 mL of deionized water), and stirred at 95° C. for 24 hours to obtain a 3 wt % dark red aramid nanofiber dispersion;
(2)将0.75g聚乙烯醇加入25mL二甲基亚砜中,在95℃下搅拌4小时,得到3wt%透明聚乙烯醇溶液;(2) adding 0.75 g of polyvinyl alcohol to 25 mL of dimethyl sulfoxide and stirring at 95° C. for 4 hours to obtain a 3 wt % transparent polyvinyl alcohol solution;
(3)将步骤(1)制得的3wt%芳纶纳米纤维分散液与步骤(2)制得的3wt%透明聚乙烯醇溶液按2:1的体积比混合,在85℃下搅拌混合4小时,得到ANF/PVA纺丝流体;(3) mixing the 3 wt % aramid nanofiber dispersion prepared in step (1) and the 3 wt % transparent polyvinyl alcohol solution prepared in step (2) in a volume ratio of 2:1, stirring and mixing at 85° C. for 4 hours to obtain an ANF/PVA spinning fluid;
(4)将步骤(3)制得的ANF/PVA纺丝流体通过推进器,经过21G的喷丝头,以4ml/min的速度进入凝固浴(100g氢氧化钠溶解于5L去离子水)中,将纺丝流体固化为芳纶纳米纤维凝胶长丝,卷绕滚筒以6m/min速度进行收集;(4) passing the ANF/PVA spinning fluid obtained in step (3) through a propeller, through a 21G spinneret, into a coagulation bath (100 g of sodium hydroxide dissolved in 5 L of deionized water) at a speed of 4 ml/min, solidifying the spinning fluid into aramid nanofiber gel filaments, and collecting the spinning fluid on a winding drum at a speed of 6 m/min;
(5)将步骤(4)制得的芳纶纳米纤维凝胶长丝从卷绕滚筒上络筒至纱筒,并置于100℃烘箱中干燥8小时得到芳纶纳米纤维长丝。(5) The aramid nanofiber gel filaments obtained in step (4) are wound onto a yarn bobbin from a winding drum, and placed in an oven at 100° C. to dry for 8 hours to obtain aramid nanofiber filaments.
实施例7Example 7
一种芳纶纳米纤维宏量纺丝的方法,所述方法包括如下步骤:A method for macro-spinning aramid nanofibers, the method comprising the following steps:
(1)将1.5g芳纶纤维加入氢氧化钾溶液(由2.25g氢氧化钾、50mL二甲基亚砜和2mL去离子组成)中,加入在95℃下搅拌24小时,得到3wt%暗红色芳纶纳米纤维分散液;(1) 1.5 g of aramid fiber was added to a potassium hydroxide solution (composed of 2.25 g of potassium hydroxide, 50 mL of dimethyl sulfoxide and 2 mL of deionized water), and stirred at 95° C. for 24 hours to obtain a 3 wt % dark red aramid nanofiber dispersion;
(2)将0.75g聚乙烯醇加入25mL二甲基亚砜中,在95℃下搅拌4小时,得到3wt%透明聚乙烯醇溶液;(2) adding 0.75 g of polyvinyl alcohol to 25 mL of dimethyl sulfoxide and stirring at 95° C. for 4 hours to obtain a 3 wt % transparent polyvinyl alcohol solution;
(3)将步骤(1)制得的3wt%芳纶纳米纤维分散液与步骤(2)制得的3wt%透明聚乙烯醇溶液按2:1的体积比混合,在85℃下搅拌混合4小时,得到ANF/PVA纺丝流体;(3) mixing the 3 wt % aramid nanofiber dispersion prepared in step (1) and the 3 wt % transparent polyvinyl alcohol solution prepared in step (2) in a volume ratio of 2:1, stirring and mixing at 85° C. for 4 hours to obtain an ANF/PVA spinning fluid;
(4)将步骤(3)制得的ANF/PVA纺丝流体通过推进器,经过21G的喷丝头,以4ml/min的速度进入凝固浴(将420mL浓度为37%的浓盐酸溶于4580mL去离子水)中,将纺丝流体固化为芳纶纳米纤维凝胶长丝,卷绕滚筒以6m/min速度进行收集;(4) passing the ANF/PVA spinning fluid obtained in step (3) through a propeller, through a 21G spinneret, into a coagulation bath (420 mL of 37% concentrated hydrochloric acid dissolved in 4580 mL of deionized water) at a speed of 4 ml/min, solidifying the spinning fluid into aramid nanofiber gel filaments, and collecting the filaments on a winding drum at a speed of 6 m/min;
(5)将步骤(4)制得的芳纶纳米纤维凝胶长丝从卷绕滚筒上络筒至纱筒,并置于100℃烘箱中干燥8小时得到芳纶纳米纤维长丝。(5) The aramid nanofiber gel filaments obtained in step (4) are wound onto a yarn bobbin from a winding drum, and placed in an oven at 100° C. to dry for 8 hours to obtain aramid nanofiber filaments.
实施例8Example 8
一种芳纶纳米纤维宏量纺丝的方法,所述方法包括如下步骤:A method for macro-spinning aramid nanofibers, the method comprising the following steps:
(1)将1.5g芳纶纤维加入氢氧化钾溶液(由2.25g氢氧化钾、50mL二甲基亚砜和2mL去离子组成)中,加入在95℃下搅拌24小时,得到3wt%暗红色芳纶纳米纤维分散液;(1) 1.5 g of aramid fiber was added to a potassium hydroxide solution (composed of 2.25 g of potassium hydroxide, 50 mL of dimethyl sulfoxide and 2 mL of deionized water), and stirred at 95° C. for 24 hours to obtain a 3 wt % dark red aramid nanofiber dispersion;
(2)将0.75g聚乙烯醇加入25mL二甲基亚砜中,在95℃下搅拌4小时,得到3wt%透明聚乙烯醇溶液;(2) adding 0.75 g of polyvinyl alcohol to 25 mL of dimethyl sulfoxide and stirring at 95° C. for 4 hours to obtain a 3 wt % transparent polyvinyl alcohol solution;
(3)将步骤(1)制得的3wt%芳纶纳米纤维分散液与步骤(2)制得的3wt%透明聚乙烯醇溶液按2:1的体积比混合,在85℃下搅拌混合4小时,得到ANF/PVA纺丝流体;(3) mixing the 3 wt % aramid nanofiber dispersion prepared in step (1) and the 3 wt % transparent polyvinyl alcohol solution prepared in step (2) in a volume ratio of 2:1, stirring and mixing at 85° C. for 4 hours to obtain an ANF/PVA spinning fluid;
(4)将步骤(3)制得的ANF/PVA纺丝流体通过推进器,经过21G的喷丝头,以4ml/min的速度进入凝固浴(5L去离子水)中,将纺丝流体固化为芳纶纳米纤维凝胶长丝,卷绕滚筒以6m/min速度进行收集;(4) passing the ANF/PVA spinning fluid obtained in step (3) through a propeller, through a 21G spinneret, into a coagulation bath (5 L deionized water) at a speed of 4 ml/min, solidifying the spinning fluid into aramid nanofiber gel filaments, and collecting the filaments on a winding drum at a speed of 6 m/min;
(5)将步骤(4)制得的芳纶纳米纤维凝胶长丝从卷绕滚筒上络筒至纱筒,并置于-40℃下冷冻干燥8小时,得到芳纶纳米纤维气凝胶长丝。(5) The aramid nanofiber gel filaments obtained in step (4) are wound onto a yarn bobbin from a winding drum, and freeze-dried at -40°C for 8 hours to obtain aramid nanofiber aerogel filaments.
图6为本实施例中芳纶纳米气凝胶长丝光学照片和对应的扫描电子显微镜照片,由图可见,所制备芳纶纳米气凝胶纤维呈淡黄色,内部具有丰富的多孔结构,呈现明显气凝胶结构特征,具有应用于保温隔热领域的潜力。FIG6 is an optical photograph of the aramid nano-aerogel filaments in this embodiment and a corresponding scanning electron microscope photograph. It can be seen from the figure that the prepared aramid nano-aerogel fibers are light yellow in color, have a rich porous structure inside, show obvious aerogel structural characteristics, and have the potential to be used in the field of thermal insulation.
对比例1Comparative Example 1
一种芳纶纳米纤维的制备方法,包括如下步骤:A method for preparing aramid nanofibers comprises the following steps:
(1)将1.5g芳纶纤维加入氢氧化钾溶液(由2.25g氢氧化钾、50mL二甲基亚砜和2mL去离子组成)中,加入在95℃下搅拌24小时,得到3wt%暗红色芳纶纳米纤维分散液;(1) 1.5 g of aramid fiber was added to a potassium hydroxide solution (composed of 2.25 g of potassium hydroxide, 50 mL of dimethyl sulfoxide and 2 mL of deionized water), and stirred at 95° C. for 24 hours to obtain a 3 wt % dark red aramid nanofiber dispersion;
(2)将步骤(1)制得的3wt%芳纶纳米纤维分散液与二甲基亚砜按2:1的体积比混合,在85℃下搅拌混合4小时,得到ANF纺丝流体;(2) mixing the 3 wt % aramid nanofiber dispersion prepared in step (1) with dimethyl sulfoxide in a volume ratio of 2:1, stirring and mixing at 85° C. for 4 hours to obtain an ANF spinning fluid;
(3)将步骤(2)制得的ANF纺丝流体通过推进器,经过21G的喷丝头,以4ml/min的速度进入凝固浴(5L去离子水)中,将纺丝流体固化为芳纶纳米纤维凝胶长丝,卷绕滚筒以6m/min速度进行收集;(3) passing the ANF spinning fluid obtained in step (2) through a propeller, through a 21G spinneret, into a coagulation bath (5 L deionized water) at a speed of 4 ml/min, solidifying the spinning fluid into aramid nanofiber gel filaments, and collecting them on a winding drum at a speed of 6 m/min;
(4)将步骤(3)制得的芳纶纳米纤维凝胶长丝从卷绕滚筒上络筒至纱筒,并置于100℃烘箱中干燥8小时得到芳纶纳米纤维长丝。(4) The aramid nanofiber gel filaments obtained in step (3) are wound onto a yarn bobbin from a winding drum, and placed in an oven at 100° C. to dry for 8 hours to obtain aramid nanofiber filaments.
测试例:Test example:
(1)力学性能(1) Mechanical properties
纤维强力的测试方法,参考国标GB/T 14344-2022化学纤维长丝拉伸性能试验方法进行,剪切所制纤维长丝300mm,夹持于纤维强力测试仪,调整夹距为250mm,拉伸速度为250mm/min;实施例1-7及对比例1所得芳纶纳米凝胶纤维长丝及芳纶纳米纤维长丝的力学性能测试结果分别如下表1、2所示。The fiber strength test method is carried out with reference to the national standard GB/T 14344-2022 chemical fiber filament tensile performance test method. The prepared fiber filament is cut into 300 mm and clamped in a fiber strength tester. The clamp distance is adjusted to 250 mm and the tensile speed is 250 mm/min. The mechanical properties test results of the aramid nanogel fiber filaments and aramid nanofiber filaments obtained in Examples 1-7 and Comparative Example 1 are shown in Tables 1 and 2 below, respectively.
表1芳纶纳米凝胶纤维长丝力学性能Table 1 Mechanical properties of aramid nanogel fiber filaments
表2芳纶纳米纤维长丝力学性能Table 2 Mechanical properties of aramid nanofiber filaments
图7为本发明实施例2和对比例1的芳纶纳米纤维凝胶长丝拉伸应力-应变曲线,对比例1由于未添加PVA,其最大应力和应变分别为0.03Mpa和3.2%,而实施例2均有PVA,与ANF形成氢键交联网络,其中实施例2具有0.16Mpa应力和14.1%应变,力学性能显著提升,为快速纺丝提供力学保障。Figure 7 shows the tensile stress-strain curves of the aramid nanofiber gel filaments of Example 2 and Comparative Example 1 of the present invention. Since PVA is not added to Comparative Example 1, its maximum stress and strain are 0.03Mpa and 3.2%, respectively, while Example 2 contains PVA, which forms a hydrogen bond cross-linked network with ANF, wherein Example 2 has a stress of 0.16Mpa and a strain of 14.1%, and the mechanical properties are significantly improved, providing mechanical guarantee for rapid spinning.
图8为本发明实施例1-5的芳纶纳米纤维凝胶长丝拉伸应力-应变曲线,由图可见,随着PVA浓度增强,凝胶纤维交联程度增加,凝胶纤维的力学性能增强,且随PVA含量增加而增加。FIG8 is a tensile stress-strain curve of the aramid nanofiber gel filaments of Examples 1-5 of the present invention. It can be seen from the figure that as the PVA concentration increases, the degree of crosslinking of the gel fiber increases, the mechanical properties of the gel fiber are enhanced, and increase with the increase of the PVA content.
图9为本发明实施例1-5的芳纶纳米纤维长丝拉伸应力-应变曲线,由图可见,干燥后的芳纶纳米纤维长丝力学性能,与凝胶纤维力学性能变化规律不同,长丝的应力先增加后减小,其中ANF与PVA质量比例为2:1时,具有最高的应力,约为325.6Mpa。Figure 9 is the tensile stress-strain curve of the aramid nanofiber filaments of Examples 1-5 of the present invention. It can be seen from the figure that the mechanical properties of the dried aramid nanofiber filaments are different from the change pattern of the mechanical properties of the gel fiber. The stress of the filaments first increases and then decreases. When the mass ratio of ANF to PVA is 2:1, it has the highest stress, which is about 325.6Mpa.
图10为本发明实施例2、6和7不同凝固浴得到的芳纶纳米纤维凝胶长丝拉伸应力-应变曲线,由图可知,由酸试剂制备的芳纶纳米纤维凝胶长丝的力学性能在三者中最好,从侧面验证了,质子供体影响了芳纶纳米纤维的排列,从而影响凝胶纤维的力学性能。Figure 10 is the tensile stress-strain curve of the aramid nanofiber gel filaments obtained in different coagulation baths of Examples 2, 6 and 7 of the present invention. It can be seen from the figure that the mechanical properties of the aramid nanofiber gel filaments prepared by acid reagent are the best among the three, which indirectly verifies that the proton donor affects the arrangement of the aramid nanofibers, thereby affecting the mechanical properties of the gel fibers.
图11为本发明实施例2、6和7不同凝固浴得到的芳纶纳米纤维长丝拉伸应力-应变曲线,由图可知,碱试剂由制备的芳纶纳米纤维长丝的应力在三者中高,从侧面验证了,质子供体影响了芳纶纳米纤维的排列,从而影响长丝的力学性能。FIG11 is a tensile stress-strain curve of aramid nanofiber filaments obtained in different coagulation baths of Examples 2, 6 and 7 of the present invention. It can be seen from the figure that the stress of the aramid nanofiber filaments prepared by alkaline reagent is higher among the three, which indirectly verifies that the proton donor affects the arrangement of aramid nanofibers, thereby affecting the mechanical properties of the filaments.
(2)凝胶化时间(2) Gelation time
如图12所示,从喷丝孔挤出的纺丝流体呈现深黄色,逐渐凝胶化纤维颜色发生变化,呈现淡黄色,记录纺丝流体深黄色变为淡黄色所需要时间,即为凝胶化时间。As shown in FIG12 , the spinning fluid extruded from the spinneret is dark yellow, and the color of the gradually gelled fiber changes to light yellow. The time required for the spinning fluid to change from dark yellow to light yellow is recorded as the gelation time.
图13为本发明实施例2、6和7不同凝固浴纺丝流体的凝胶化时间,结果如表3所示;由图13和表3可知,由于在酸性凝固浴中具有更多的质子供体,因此凝胶化时间最短为5.23s,而碱性凝固浴中凝胶化时间为13.2s。Figure 13 shows the gelation time of the spinning fluids in different coagulation baths in Examples 2, 6 and 7 of the present invention, and the results are shown in Table 3. It can be seen from Figure 13 and Table 3 that since there are more proton donors in the acidic coagulation bath, the gelation time is the shortest at 5.23 s, while the gelation time in the alkaline coagulation bath is 13.2 s.
表3不同凝固浴下凝胶化时间Table 3 Gel time under different coagulation baths
图14为本发明实施例2、6和7不同凝固浴纺丝流体的最快的纺丝卷绕速,测试方法为在纺丝过程逐步增大卷绕速度,当凝胶纤维发生断裂时,记录该卷绕速度,由图可知,在酸性凝固浴得到的芳纶纳米凝胶长丝具有最快的卷绕速度为12.4m/min,这是酸性凝固浴得到芳纶纳米凝胶长丝具有更好的力学性能,能够承受更快卷绕速度产生的离心力。Figure 14 shows the fastest spinning winding speed of different coagulation bath spinning fluids in Examples 2, 6 and 7 of the present invention. The test method is to gradually increase the winding speed during the spinning process, and record the winding speed when the gel fiber breaks. It can be seen from the figure that the aramid nanogel filaments obtained in the acidic coagulation bath have the fastest winding speed of 12.4 m/min. This means that the aramid nanogel filaments obtained in the acidic coagulation bath have better mechanical properties and can withstand the centrifugal force generated by the faster winding speed.
以上所提供的实施例并非用以限制本发明所涵盖的范围,所描述的步骤也不是用以限制其执行顺序。本领域技术人员结合现有公知常识对本发明做显而易见的改进,亦落入本发明权利要求书所界定的保护范围之内。The embodiments provided above are not intended to limit the scope of the present invention, and the steps described are not intended to limit the execution order thereof. Those skilled in the art may make obvious improvements to the present invention in combination with existing common knowledge, which also fall within the scope of protection defined by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410664767.8A CN118390197A (en) | 2024-05-27 | 2024-05-27 | Method for macro spinning of aramid nanofiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410664767.8A CN118390197A (en) | 2024-05-27 | 2024-05-27 | Method for macro spinning of aramid nanofiber |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118390197A true CN118390197A (en) | 2024-07-26 |
Family
ID=91987218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410664767.8A Pending CN118390197A (en) | 2024-05-27 | 2024-05-27 | Method for macro spinning of aramid nanofiber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118390197A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119877194A (en) * | 2025-03-31 | 2025-04-25 | 泰和新材集团股份有限公司 | Heat-insulating aerogel aramid fiber heat-insulating felt and preparation method thereof |
-
2024
- 2024-05-27 CN CN202410664767.8A patent/CN118390197A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119877194A (en) * | 2025-03-31 | 2025-04-25 | 泰和新材集团股份有限公司 | Heat-insulating aerogel aramid fiber heat-insulating felt and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102102233B (en) | Method for preparing polyacrylonitrile-based carbon nanofiber precursor | |
JP2018145540A (en) | Method for production of carbon fiber bundle | |
CN102002772B (en) | Method for preparing polyacrylonitrile bamboo charcoal composite fiber by in-situ polymerization | |
CN101161880A (en) | Method for preparing polyacrylonitrile-based carbon fiber precursor fiber | |
CN109402792B (en) | Low-diameter high-strength polyacrylonitrile-based carbon fiber and preparation method thereof | |
WO2016127833A1 (en) | Acetic nitrile fibre and preparation method therefor | |
CN101240468A (en) | A kind of polyacrylonitrile-chitin composite fiber and its manufacturing method | |
CN108532029A (en) | Using taking or the discarded method taken acrylic fibers and prepare carbon nano-fiber | |
CN113956501B (en) | Modified lignin and preparation method thereof, modified lignin-reinforced polyvinyl alcohol fiber and preparation method and application thereof | |
CN113308754A (en) | Method for preparing high-orientation aramid fiber based on wet spinning | |
CN110373729B (en) | Nascent fiber, polyacrylonitrile-based carbon fiber and preparation method thereof | |
CN110359114B (en) | Polyacrylonitrile fiber, polyacrylonitrile-based carbon fiber and preparation method thereof | |
CN1081686C (en) | Wet PVA-crosslinking spinning technology | |
CN118390197A (en) | Method for macro spinning of aramid nanofiber | |
CN118272968A (en) | A method for preparing ultra-high performance carbon fiber | |
CN116837482A (en) | Meta-aramid filament and preparation method and application thereof | |
KR101098040B1 (en) | Carbon nanotube composite filament and manufacturing method thereof | |
CN111088536B (en) | Oiling method of polyacrylonitrile protofilament | |
CN114045561A (en) | Method for preparing special-shaped cross-section precursor for carbon fiber from acrylic fiber | |
CN116024689A (en) | Polyacrylonitrile nascent fiber and preparation method and application thereof | |
CN114000228A (en) | Method for preparing high-performance carbon fiber precursor by dry spinning of acrylic fiber raw material | |
JPH06101129A (en) | Acrylic spun yarn | |
JP3423814B2 (en) | A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance. | |
CN110685029B (en) | Oiling method of polyacrylonitrile-based carbon fiber precursor | |
CN115506049B (en) | Preparation method of 24-50k carbon fiber precursor, carbon fiber precursor and carbon fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |