CN118370818A - 一种ICG/Fe(III)-NBs纳米气泡、制备方法及应用 - Google Patents

一种ICG/Fe(III)-NBs纳米气泡、制备方法及应用 Download PDF

Info

Publication number
CN118370818A
CN118370818A CN202410477641.XA CN202410477641A CN118370818A CN 118370818 A CN118370818 A CN 118370818A CN 202410477641 A CN202410477641 A CN 202410477641A CN 118370818 A CN118370818 A CN 118370818A
Authority
CN
China
Prior art keywords
icg
iii
nbs
aqueous solution
nanobubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410477641.XA
Other languages
English (en)
Inventor
杨莉
滕皋军
顾宁
张卫华
安艳丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202410477641.XA priority Critical patent/CN118370818A/zh
Publication of CN118370818A publication Critical patent/CN118370818A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种ICG/Fe(III)‑NBs纳米气泡、制备方法以及在制备治疗肿瘤药物中的应用。ICG/Fe(III)‑NBs纳米气泡由Fe(III)离子与ICG分子的亲水区配位结合并在自由纳米氧气泡的气液界面上组装得到的。制备方法包括:制备填充O2的Fe(III)‑NBs水溶液;将ICG溶解于超纯水中得到ICG溶液;将ICG溶液与Fe(III)‑NBs水溶液混合经自组装得到ICG/Fe(III)‑NBs。本发明制备的ICG/Fe(III)‑NBs纳米气泡能够增加ICG稳定性,提高溶液氧含量,实现协同光/化学动力产生大量活性氧自由基诱导癌细胞铁死亡,提高肿瘤的治疗效果。

Description

一种ICG/Fe(III)-NBs纳米气泡、制备方法及应用
技术领域
本发明涉及一种ICG/Fe(III)-NBs纳米气泡、制备方法以及在制备治疗肿瘤药物中的应用,属于生物医药纳米材料领域。
背景技术
癌症是全球疾病相关死亡的主要原因之一,其高发病率和高死亡率严重威胁着人类健康。为了提高治疗效果,许多研究致力于开发先进的治疗策略。其中,精确调节或利用肿瘤微环境(TME)破坏氧化还原稳态显示出巨大的肿瘤治疗潜力,也引起了相当多的研究和关注。
光动力治疗(PDT)利用光敏剂在光刺激下将TME中的氧分子转化为单线态氧(1O2),可以对肿瘤细胞产生局部和即时损伤。因此,PDT具有最小的侵袭性和副作用等优点。除了已知的细胞凋亡和坏死途径,最近研究表明,PDT可以通过触发细胞膜脂质过氧化诱导肿瘤细胞铁死亡。PDT产生的1O2可通过直接硫醇氧化消耗谷胱甘肽(GSH),抑制谷胱甘肽过氧化物4(GPX4)的表达。然而,PDT的治疗效果经常受到肿瘤缺氧和光敏剂在水溶液中的稳定性的影响,导致活性氧(ROS)或1O2的低量子产率(QY)。此外,PDT的耗氧量会使TME恶化,进一步降低治疗效果。
除了缺氧外,TME中GSH的高表达水平也削弱了PDT引发的ROS合成,显著影响了抗肿瘤疗效。为了克服这些挑战,通过引入芬顿试剂(Fe2+)消耗GSH,并与TME中丰富的H2O2反应,产生毒性较强的羟基自由基(·OH),用于化学动力学治疗(CDT)。由此产生的·OH可以引发一系列自由基反应,最终提高细胞内ROS水平,并对细胞膜中的磷脂(PL)造成氧化损伤,诱导癌症细胞铁死亡。此外,铁死亡通过消耗细胞内抗氧化剂GSH和抑制GPX4产生毒性磷脂氢过氧化物(PLOOH),证明了其杀伤癌细胞的有效性。
因此,设计一种能协同光/化学动力产生大量活性氧自由基(ROS)并引发一系列自由基连锁反应,导致铁死亡引发的肿瘤治疗作用的纳米药物,将其应用于肿瘤治疗,具有重要的社会意义和潜在的经济价值。
发明内容
本发明的目的在于针对现有技术的上述缺陷和不足,提供一种ICG/Fe(III)-NBs纳米气泡、制备方法以及在制备治疗肿瘤药物中的应用,该ICG/Fe(III)-NBs纳米气泡能够协同光/化学动力产生大量活性氧自由基(ROS)诱发癌细胞铁死亡,从而提高肿瘤的治疗效果。
为实现上述目的,本发明采用如下技术方案:
第一方面,本发明提供了一种ICG/Fe(III)-NBs纳米气泡,由自由纳米氧气泡以及组装在自由纳米氧气泡气液界面上的ICG/Fe(III)配合物分子构成,所述ICG/Fe(III)配合物分子中Fe(III)离子与ICG分子的亲水区配位结合。
其中,ICG/Fe(III)-NBs纳米气泡为球形结构,粒径为200~300nm。
第二方面,本发明提供了一种ICG/Fe(III)-NBs纳米气泡的制备方法,包括:
制备填充O2的Fe(III)-NBs水溶液;
将ICG溶解于超纯水中得到ICG溶液;
将ICG溶液与Fe(III)-NBs水溶液混合经自组装得到ICG/Fe(III)-NBs。
其中,Fe(III)-NBs水溶液、超纯水、ICG的添加量之比为0.9mL:1.8μL:0~30μg。
进一步地,所述Fe(III)-NBs水溶液的制备方法,包括:
将FeCl3粉末溶解于超纯水中,得到FeCl3水溶液;
将FeCl3水溶液加入试剂瓶中,将试剂瓶中的空气替换为氧气;
对试剂瓶中的FeCl3水溶液进行制泡,制泡完成后室温静置得到Fe(III)-NBs水溶液。
其中,所述的ICG/Fe(III)-NBs纳米气泡的制备方法中,FeCl3粉末与超纯水的添加量之比为0.5~300μg:1mL。
其中,超纯水的电导率为18.25mΩ·cm。
其中,制泡完成后室温静置时间为5~30分钟。
第三方面,本发明提供了前述的ICG/Fe(III)-NBs纳米气泡在制备治疗肿瘤药物中的应用。其中,ICG/Fe(III)-NBs纳米气泡能够协同光/化学动力产生大量活性氧自由基(ROS)并引发一系列自由基连锁反应,导致癌细胞铁死亡。
与现有技术相比,本发明具有如下优势:
1)本发明通过引入了一种简单的纳米平台ICG/Fe(III)-NBs,能够同时克服缺氧、生物安全和GSH介导的ROS消除问题,实现协同PDT和CDT;在无载体纳米体系中,所提供的氧气缓解了缺氧,并且气液界面的引入减少了ICG中荧光聚集猝灭,增强了ICG的PDT作用;通过Fe(III)和GSH之间的相互作用产生的Fe2+可以与H2O2反应,通过Fenton反应产生·OH,从而激活CDT,GSH耗竭还可以防止活性ROS清除,从而提高PDT的效率;2)制备方法简单、成本低且产率高;3)原料全部由FDA认证的ICG以及人体必需的Fe(III)离子构成,具有良好的生物相容性和生物可降解性,容易向临床转化。
附图说明
图1为本发明的ICG/Fe(III)-NBs纳米气泡制备方法及协同光/化学动力治疗肿瘤的应用示意图;
图2为水溶液中自由Fe(III)-NBs和ICG/Fe(III)-NBs纳米气泡的物理化学性质表征结果图;其中,A.水溶液中自由Fe(III)-NBs和ICG/Fe(III)-NBs的粒径表征;B.ICG/Fe(III)-NBs的TEM图像;C.Fe(III)-NBs和ICG/Fe(III)-NBs的平均ζ电位;D-E.ICG/Fe(III)和ICG/Fe(III)-NBs的紫外-可见-近红外吸收光谱随时间的变化图;F.游离ICG、ICG/Fe(III)和ICG/Fe(III)-NBs的FT-IR图;
图3为ROS产量表征图;其中A.超纯水、Fe(III)-NBs、ICG/Fe(III)-NBs水溶液的氧含量;B、C.分别为ICG、ICG/Fe(III)-NBs的1O2产量测试;D.·OH产量表征;
图4为体外抗肿瘤效果图;其中,A.ICG/Fe(III)-NBs细胞摄取;B.CCK-8评价ICG/Fe(III)-NBs对细胞的杀伤能力;C.ICG/Fe(III)-NBs处理细胞后GSH的耗竭评价;D.ICG/Fe(III)-NBs处理后细胞内ROS的产量;E.ICG/Fe(III)-NBs处理后细胞内LPO产量;
图5为体内抗肿瘤效果图;其中,A.肿瘤体积监测;B.缺氧改善;C.肿瘤组织内ROS产生;D.铁死亡的关键事件GPX4含量检测。
具体实施方式
下面结合具体实施例对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
本发明以下实施例所用的原料O2、注射用ICG和FeCl3均为市售。
实施例1
一种ICG/Fe(III)-NBs纳米气泡的制备方法,包括如下步骤:
(1)制备自由纳米氧气泡溶液(Fe(III)-NBs):1)取1mg FeCl3粉末溶解于1mL超纯水中,配制浓度为1mg/mL的FeCl3水溶液;2)取4μL浓度为1mg/mL的FeCl3水溶液,加入装有2mL超纯水的试剂瓶中进行密封;3)利用自制装置将试剂瓶中的空气替换为氧气;4)将试剂瓶装配到制泡设备中进行制泡;5)制泡完成后室温静置30分钟即得Fe(III)-NBs水溶液;
(2)在室温下取1mg ICG粉末溶解于1mL超纯水中,得到浓度为1mg/mL的ICG溶液;
(3)在室温避光环境下,取18μL ICG水溶液加入到0.9mL Fe(III)-NBs溶液中,经自组装即为ICG/Fe(III)-NBs。
实施例2
一种ICG/Fe(III)-NBs纳米气泡的制备方法,包括如下步骤:
(1)制备自由纳米氧气泡溶液(Fe(III)-NBs):1)取1mg FeCl3粉末溶解于1mL超纯水中,配制浓度为1mg/mL的FeCl3水溶液;2)取4μL浓度为1mg/mL的FeCl3水溶液,加入装有2mL超纯水的试剂瓶中进行密封;3)利用自制装置将试剂瓶中的空气替换为氧气;4)将试剂瓶装配到制泡设备中进行制泡;5)制泡完成后室温静置30分钟即得Fe(III)-NBs水溶液;
(2)在室温下取1mg ICG粉末溶解于1mL超纯水中得到浓度为1mg/mL的ICG溶液;
(3)在室温避光环境下,取9μL ICG水溶液加入到0.9mL Fe(III)-NBs溶液中,经自组装即为ICG/Fe(III)-NBs。
实施例3
一种ICG/Fe(III)-NBs纳米气泡的制备方法,包括如下步骤:
(1)制备自由纳米氧气泡溶液(Fe(III)-NBs):1)取1mg FeCl3粉末溶解于1mL超纯水中,配置浓度为1mg/mL的FeCl3水溶液;2)取8μL浓度为1mg/mL的FeCl3水溶液加入装有2mL超纯水的试剂瓶中进行密封;3)利用自制装置将试剂瓶中的空气替换为氧气;4)将试剂瓶装配到制泡设备中进行制泡;5)制泡完成后室温静置30分钟即得Fe(III)-NBs水溶液;
(2)在室温下取1mg ICG粉末溶解于1mL超纯水中得到浓度为1mg/mL的ICG溶液;
(3)在室温避光环境下,取18μL ICG水溶液加入到0.9mL Fe(III)-NBs溶液中,经自组装即为ICG/Fe(III)-NBs。
下面对实施例1制备的ICG/Fe(III)-NBs进行测试:
一、物理化学性质表征:
取1mL实施例1制备的纳米气泡溶液,利用动态光散射测定其粒径及粒径分布,如图2A所示,ICG/Fe(III)-NBs纳米气泡的平均流体力学粒径为241.6nm,多分散指数为0.216。
将10μL实施例1制备的纳米气泡溶液滴于300目铜网上,静置10分钟,用滤纸吸除多余样品后,真空干燥12小时,用透射电子显微镜(加速电压为100kV)检测,如图2B所示,ICG/Fe(III)-NBs纳米气泡的微观形貌为粒径约200nm的球形结构。
取1mL Fe(III)-NBs和ICG/Fe(III)-NBs溶液,分别测试ζ电位,如图2C所示,Fe(III)-NBs和ICG/Fe(III)-NBs溶液的ζ电位平均值分别为-22.5和-20.7mV。
使用紫外分光光度计在不同的时间点(0、4小时和12小时)评估ICG/Fe(III)与ICG/Fe(III)-NBs的紫外吸收稳定性,结果分别如图2D、2E所示。
使用傅立叶变换红外光谱(FT-IR)验证Fe(III)离子与ICG分子的SO3 -基团之间的相互作用。如图2F所示,ICG和ICG/Fe-NBs的FT-IR光谱分别在1266.7和1295.1cm-1处呈现峰值,对应于SO3 -的变形振动。说明,ICG/Fe-NBs出现红移。
二、ICG/Fe(III)-NBs的ROS检测
利用溶氧仪,测试ICG/Fe(III)-NBs水溶液的氧含量,如图3A所示,超纯水、Fe(III)-NBs和ICG/Fe(III)-NBs溶液氧含量分别为6.5、20.5和19.3mg/L,ICG/Fe(III)-NBs含氧量几乎是超纯水的三倍。
用DPBF作为1O2指示剂检测光敏剂的潜力。如图3B和3C所示,在激光照射下,记录DPBF在0、2、4、6、8、10和15分钟时在ICG和ICG/Fe(III)-NBs(FeCl3浓度:2μg/mL)的吸收光谱。以ICG(0.2%)为参照,计算出ICG/Fe(III)-NBs的1O2的量子产率为0.59%。
用APF作为·OH指示剂,研究了ICG/Fe(III)-NBs通过类Fenton反应生成·OH的能力。高活性·OH可氧化APF,产生荧光,发射波长为515nm。通过向100μL APF溶液(浓度:40μM)中添加2μL H2O2(浓度:3%)和10μL ICG/Fe(III)-NBs,最终浓度为10μg/mL的FeCl3。如图3D所示,ICG/Fe(III)-NBs通过类Fenton反应能够增强·OH水平。
三、ICG/Fe(III)-NBs的体外抗肿瘤作用测试
用激光共聚焦显微镜(CLSM)观察在Hepa1-6肝肿瘤细胞对ICG/Fe(III)-NB内化,红色荧光代表细胞内ICG。如图4A所示,ICG/Fe(III)-NBs在胞吞后主要分布在细胞质中。
采用CCK-8评价ICG/Fe(III)-NBs治疗效果。如图4B所示,经ICG/Fe(III)和ICG/Fe(III)-NBs处理后的Hepa1-6细胞活力分别为89%和83%。在近红外激光照射下,ICG/Fe(III)和ICG/Fe(III)-NBs的细胞活力分别为36%和14%,表明ICG/Fe(III)-NBs对细胞的杀伤能力最强。
用DCFH-DA探针评估细胞内ROS的产生,DCFH-DA可被ROS氧化为绿色荧光化合物(DCF),并通过荧光成像记录。如图4D所示,与对照组相比,经ICG/Fe(III)和ICG/Fe(III)-NBs处理的细胞显示出更强的绿色信号。推测内源性GSH可使ICG/Fe(III)-NBs转运的Fe(III)离子还原为Fe2+。Fe2+离子通过Fenton反应将内源H2O2转化为·OH。在近红外激光刺激下,ICG/Fe(III)-NBs组的荧光强度明显高于其他组,表明细胞内产生了更多的ROS。氧供应和GSH缺乏促进了ICG诱导的PDT,证实了PDT/CDT的协同效应。
为了证实ICG/Fe(III)-NBs对肿瘤细胞的铁死亡,本发明检测了铁死亡过程中GSH的耗竭关键事件。细胞内Fe(III)能将GSH转化为GSSG,GSSG的增加反映了GSH的耗竭水平。如图4C所示,经PBS、ICG/Fe(III)、ICG/Fe(III)-NBs、ICG/Fe(III)+激光和ICG/Fe(III)-NBs+激光处理的细胞内GSSG水平分别为8.87、12.81、14.21、19.50和31.32μmol/L,表明ICG/Fe(III)-NBs+激光处理后细胞内GSH明显减少。
本发明还检测了铁死亡过程中LPO关键事件,以C11-BODIPY581/591探针为指示剂,采用荧光成像检测PBS、ICG/Fe(III)、ICG/Fe(III)-NBs、ICG/Fe(III)+激光和ICG/Fe(III)-NBs+激光处理后Hepa1-6细胞的LPO水平。如图4E所示,与其他组相比,经ICG/Fe(III)-NBs+激光处理的细胞显示出最强的绿色荧光信号,表明LPO的最高增强水平。
四、ICG/Fe(III)-NBs的体内抗肿瘤作用
在Hepa1-6荷瘤小鼠评价ICG/Fe(III)-NBs的体内抗肿瘤作用。将小鼠随机分为5组(n=5):1)对照组;2)ICG/Fe(III);3)ICG/Fe(III)-NBs;4)ICG/Fe(III)+激光;5)ICG/Fe(III)-NBs+激光组。
在不同组治疗后的10天内,每隔2天记录小鼠肿瘤大小。如图5A所示,与PBS组相比,ICG/Fe(III)和ICG/Fe(III)-NBs对小鼠Hepa1-6肿瘤生长的抑制能力增强,这是由于Fe(III)诱导的CDT所致。此外,在激光照射下,ICG/Fe(III)-NBs组的平均肿瘤体积减小至初始肿瘤大小的0.34,与I CG/Fe(III)(1.38倍)和对照组(3.93倍)相比,显示出显著的抗肿瘤作用。
为研究ICG/Fe(III)-NBs供氧对肿瘤治疗的影响,采用抗吡莫硝唑抗体作为探针检测肿瘤组织中的氧含量。如图5B所示,与对照组和ICG/Fe(III)组相比,ICG/Fe(III)-NBs组的绿色荧光显著减少,表明ICG/Fe(III)-NBs可有效缓解缺氧现象。
图5C为不同组处理后肿瘤组织内ROS产生结果图。如图5C所示,ICG/Fe(III)-NBs通过缓解乏氧可促进ICG诱导的ROS产生,并与Fe(III)诱导的Fenton反应协同作用,在肿瘤组织中产生大量ROS。
图5D为不同组处理后癌细胞铁死亡的关键事件GPX4含量检测结果图。作为铁死亡的关键事件,GPX4在ICG/Fe(III)-NBs+激光治疗后显著下调(为对照组的19.52%),表明协同治疗引起强烈的局部氧化损伤,随后促进癌细胞铁死亡。
本发明将具有光敏剂作用的ICG和可诱发铁死亡、提供氧气的Fe(III)-NBs水溶液配位自组装,制备出同时具有光/化学动力协同、铁死亡作用的纳米气泡,与现有的单一模式的肿瘤治疗方法相比,能够提高肿瘤的治疗效果。
本发明通过引入一种简单的纳米平台ICG/Fe(III)-NBs实现协同PDT和CDT。大量产生的ROS的可能诱导癌症细胞的氧化损伤,导致肿瘤铁死亡,具有很好的临床应用前景。
以上已以较佳实施例公布了本发明,然其并非用以限制本发明,凡采取等同替换或等效变换的方案所获得的技术方案,均落在本发明的保护范围内。

Claims (10)

1.一种ICG/Fe(III)-NBs纳米气泡,其特征在于,由自由纳米氧气泡以及组装在自由纳米氧气泡气液界面上的ICG/Fe(III)配合物分子构成,所述ICG/Fe(III)配合物分子中Fe(III)离子与ICG分子的亲水区配位结合。
2.根据权利要求1所述的ICG/Fe(III)-NBs纳米气泡,其特征在于,所述ICG/Fe(III)-NBs纳米气泡为球形结构,粒径为200~300nm。
3.根据权利要求1所述的ICG/Fe(III)-NBs纳米气泡的制备方法,其特征在于,包括:
制备填充O2的Fe(III)-NBs水溶液;
将ICG溶解于超纯水中得到ICG溶液;
将ICG溶液与Fe(III)-NBs水溶液混合经自组装得到ICG/Fe(III)-NBs。
4.根据权利要求3所述的ICG/Fe(III)-NBs纳米气泡的制备方法,其特征在于,Fe(III)-NBs水溶液、ICG的添加量之比为0.9mL:0~30μg。
5.根据权利要求3所述的ICG/Fe(III)-NBs纳米气泡的制备方法,其特征在于,所述Fe(III)-NBs水溶液的制备方法,包括:
将FeCl3粉末溶解于超纯水中,得到FeCl3水溶液;
将FeCl3水溶液加入试剂瓶中,将试剂瓶中的空气替换为氧气;
对试剂瓶中的FeCl3水溶液进行制泡,制泡完成后室温静置得到Fe(III)-NBs水溶液。
6.根据权利要求5所述的ICG/Fe(III)-NBs纳米气泡的制备方法,其特征在于,FeCl3粉末与超纯水的添加量之比为0.5~300μg:1mL。
7.根据权利要求5所述的ICG/Fe(III)-NBs纳米气泡的制备方法,其特征在于,超纯水的电导率为18.25mΩ·cm。
8.根据权利要求5所述的ICG/Fe(III)-NBs纳米气泡的制备方法,其特征在于,室温静置时间为5~30分钟。
9.根据权利要求1所述的ICG/Fe(III)-NBs纳米气泡在制备治疗肿瘤药物中的应用。
10.根据权利要求9所述的ICG/Fe(III)-NBs纳米气泡在制备治疗肿瘤药物中的应用,其特征在于,所述ICG/Fe(III)-NBs纳米气泡用于协同光/化学动力产生大量活性氧自由基诱发癌细胞铁死亡。
CN202410477641.XA 2024-04-19 2024-04-19 一种ICG/Fe(III)-NBs纳米气泡、制备方法及应用 Pending CN118370818A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410477641.XA CN118370818A (zh) 2024-04-19 2024-04-19 一种ICG/Fe(III)-NBs纳米气泡、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410477641.XA CN118370818A (zh) 2024-04-19 2024-04-19 一种ICG/Fe(III)-NBs纳米气泡、制备方法及应用

Publications (1)

Publication Number Publication Date
CN118370818A true CN118370818A (zh) 2024-07-23

Family

ID=91904943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410477641.XA Pending CN118370818A (zh) 2024-04-19 2024-04-19 一种ICG/Fe(III)-NBs纳米气泡、制备方法及应用

Country Status (1)

Country Link
CN (1) CN118370818A (zh)

Similar Documents

Publication Publication Date Title
Chen et al. Engineered gold/black phosphorus nanoplatforms with remodeling tumor microenvironment for sonoactivated catalytic tumor theranostics
Fu et al. Mesoporous platinum nanoparticle-based nanoplatforms for combined chemo-photothermal breast cancer therapy
Gao et al. Tumor-targeted biocatalyst with self-accelerated cascade reactions for enhanced synergistic starvation and photodynamic therapy
Feng et al. Exosome camouflaged coordination-assembled Iridium (III) photosensitizers for apoptosis-autophagy-ferroptosis induced combination therapy against melanoma
Hu et al. Engineering Fe/Mn-doped zinc oxide nanosonosensitizers for ultrasound-activated and multiple ferroptosis-augmented nanodynamic tumor suppression
Bian et al. Cu-based MOFs decorated dendritic mesoporous silica as tumor microenvironment responsive nanoreactor for enhanced tumor multimodal therapy
Sun et al. MnO 2 nanoflowers as a multifunctional nano-platform for enhanced photothermal/photodynamic therapy and MR imaging
CN109876008B (zh) 一种用于肿瘤治疗的药物及其制备方法和应用
Geng et al. Oxygen-carrying biomimetic nanoplatform for sonodynamic killing of bacteria and treatment of infection diseases
You et al. Reactive oxygen species mediated theranostics using a Fenton reaction activable lipo-polymersome
Zhou et al. Two-dimensional semiconductor heterojunction nanostructure for mutually synergistic sonodynamic and chemoreactive cancer nanotherapy
Zhang et al. Biomimetic mesoporous polydopamine nanoparticles for MRI-guided photothermal-enhanced synergistic cascade chemodynamic cancer therapy
Liao et al. A spark to the powder keg: Microneedle-based antitumor nanomedicine targeting reactive oxygen species accumulation for chemodynamic/photothermal/chemotherapy
Li et al. Amphiphilic polymeric nanodrug integrated with superparamagnetic iron oxide nanoparticles for synergistic antibacterial and antitumor therapy of colorectal cancer
CN116983427A (zh) 一种多功能声激活型半导体聚合物纳米免疫药物及制备方法及应用
Sun et al. Nitrogen-doped carbon dots as a highly efficient photosensitizer for photodynamic therapy to promote apoptosis in oral squamous cell carcinoma
Zhang et al. Integrated platform of oxygen self-enriched nanovesicles: SP94 peptide-directed chemo/sonodynamic therapy for liver cancer
Luo et al. CuS NP-based nanocomposite with photothermal and augmented-photodynamic activity for magnetic resonance imaging-guided tumor synergistic therapy
Zou et al. Lactic acid responsive sequential production of hydrogen peroxide and consumption of glutathione for enhanced ferroptosis tumor therapy
Zhang et al. A biomimetic upconversion nanoreactors for near-infrared driven H2 release to inhibit tauopathy in Alzheimer's disease therapy
Hao et al. Dual-responsive hollow mesoporous organosilicon nanocarriers for photodynamic therapy
CN110115763B (zh) 一种近红外光激活的多功能脂质体及其制备方法与应用
Xie et al. Tumor microenvironment triggered iron-based metal organic frameworks for magnetic resonance imaging and photodynamic-enhanced ferroptosis therapy
Wang et al. Mesoporous cerium oxide nanoenzyme for Efficacious impeding tumor and metastasis via Conferring resistance to anoikis
CN112057618B (zh) 一种Fe(III)-ART纳米粒子、其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination