CN118311030A - Marine plankton imager based on digital holography and data processing method - Google Patents
Marine plankton imager based on digital holography and data processing method Download PDFInfo
- Publication number
- CN118311030A CN118311030A CN202410432563.1A CN202410432563A CN118311030A CN 118311030 A CN118311030 A CN 118311030A CN 202410432563 A CN202410432563 A CN 202410432563A CN 118311030 A CN118311030 A CN 118311030A
- Authority
- CN
- China
- Prior art keywords
- plankton
- cabin
- data
- light
- imager
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001093 holography Methods 0.000 title claims abstract description 20
- 238000003672 processing method Methods 0.000 title claims abstract description 13
- 230000003287 optical effect Effects 0.000 claims abstract description 46
- 238000003384 imaging method Methods 0.000 claims abstract description 38
- 238000013528 artificial neural network Methods 0.000 claims abstract description 8
- 238000001514 detection method Methods 0.000 claims description 19
- 238000003032 molecular docking Methods 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 7
- 239000013535 sea water Substances 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 3
- 238000013135 deep learning Methods 0.000 abstract description 5
- 238000012549 training Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000003062 neural network model Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000010200 validation analysis Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/147—Details of sensors, e.g. sensor lenses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/94—Hardware or software architectures specially adapted for image or video understanding
- G06V10/955—Hardware or software architectures specially adapted for image or video understanding using specific electronic processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/05—Underwater scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/693—Acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/695—Preprocessing, e.g. image segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/698—Matching; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/07—Target detection
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Software Systems (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Vascular Medicine (AREA)
- Optics & Photonics (AREA)
- Holo Graphy (AREA)
Abstract
本发明公开了一种基于数字全息的海洋浮游生物成像仪及数据处理方法,包括:光源舱和数据舱;光源舱和数据舱之间设置有成像区域;光源舱包括:激光器,设置于激光器输出端的分光棱镜,以及设置于分光棱镜后侧的第一光路和第二光路;第一光路包括:依次同轴设置的第一扩束镜、第一准直透镜和第一光学窗口;第二光路包括:依次同轴设置的反射镜、第二扩束镜、第二准直透镜和第二光学窗口。本发明通过分光光路将光源发出的光分为第一光路和第二光路,分别实现对微尺度浮游生物的全息显微成像,对中大型浮游生物的大视场全息成像,且数据舱内置神经网络,该神经网络基于深度学习算法的自动分类计数算法,输出结果直接为浮游生物的类型及对应数量。
The present invention discloses a marine plankton imager based on digital holography and a data processing method, comprising: a light source cabin and a data cabin; an imaging area is arranged between the light source cabin and the data cabin; the light source cabin comprises: a laser, a beam splitter prism arranged at the output end of the laser, and a first light path and a second light path arranged at the rear side of the beam splitter prism; the first light path comprises: a first beam expander, a first collimating lens and a first optical window arranged coaxially in sequence; the second light path comprises: a reflector, a second beam expander, a second collimating lens and a second optical window arranged coaxially in sequence. The present invention divides the light emitted by the light source into the first light path and the second light path through the beam splitting light path, respectively realizing holographic microscopic imaging of microscale plankton and large-field holographic imaging of medium and large plankton, and the data cabin has a built-in neural network, which is based on an automatic classification and counting algorithm of a deep learning algorithm, and the output result is directly the type and corresponding number of plankton.
Description
技术领域Technical Field
本发明涉及水下原位微尺度生物监测仪器技术领域,尤其涉及一种基于数字全息的海洋浮游生物成像仪及数据处理方法。The invention relates to the technical field of underwater in-situ micro-scale biological monitoring instruments, and in particular to a marine plankton imager based on digital holography and a data processing method.
背景技术Background technique
浮游生物,作为海洋生态系统中至关重要的组成部分,它们在维持海洋食物链、物质循环和能量传递等方面扮演着举足轻重的角色。这些微小的生物,虽然肉眼难以察觉,但它们对整个海洋生态系统的健康与稳定起着至关重要的作用。因此,对浮游生物的深入研究,不仅有助于我们理解海洋资源的分布与利用,还能揭示生物多样性的水平以及气候变化对海洋生态系统的影响。Plankton, as a vital component of the marine ecosystem, plays a vital role in maintaining the marine food chain, material circulation and energy transfer. Although these tiny organisms are difficult to detect with the naked eye, they play a vital role in the health and stability of the entire marine ecosystem. Therefore, in-depth research on plankton not only helps us understand the distribution and utilization of marine resources, but also reveals the level of biodiversity and the impact of climate change on the marine ecosystem.
然而,在对海洋浮游生物进行数据采集时,基于光学成像的方法获取的浮游生物中,受到图像分辨率与视场以及成像景深的限制,无法实现同时获取到微米级的微型浮游生物、小型浮游生物,毫米级的中型浮游生物,以及可至厘米级大型浮游生物。However, when collecting data on marine plankton, the plankton obtained based on optical imaging methods is limited by image resolution, field of view, and imaging depth, and it is impossible to simultaneously obtain micro-plankton and small plankton at the micrometer level, medium-sized plankton at the millimeter level, and large plankton up to the centimeter level.
因此,有必要提供一种基于数字全息的海洋浮游生物成像仪及数据处理方法,以解决上述技术问题。Therefore, it is necessary to provide a marine plankton imager and data processing method based on digital holography to solve the above technical problems.
发明内容Summary of the invention
本发明克服了现有技术的不足,提供一种基于数字全息的海洋浮游生物成像仪及数据处理方法。The present invention overcomes the shortcomings of the prior art and provides an ocean plankton imager based on digital holography and a data processing method.
为达到上述目的,本发明采用的技术方案为:一种基于数字全息的海洋浮游生物成像仪,包括:光源舱和数据舱;所述光源舱和所述数据舱之间设置有成像区域;To achieve the above-mentioned purpose, the technical solution adopted by the present invention is: a marine plankton imager based on digital holography, comprising: a light source cabin and a data cabin; an imaging area is arranged between the light source cabin and the data cabin;
所述光源舱包括:激光器,设置于所述激光器输出端的分光棱镜,以及设置于所述分光棱镜后侧的第一光路和第二光路;所述第一光路包括:依次同轴设置的第一扩束镜、第一准直透镜和第一光学窗口;所述第二光路包括:依次同轴设置的反射镜、第二扩束镜、第二准直透镜和第二光学窗口;The light source cabin comprises: a laser, a beam splitter prism arranged at the output end of the laser, and a first optical path and a second optical path arranged at the rear side of the beam splitter prism; the first optical path comprises: a first beam expander, a first collimating lens and a first optical window which are coaxially arranged in sequence; the second optical path comprises: a reflector, a second beam expander, a second collimating lens and a second optical window which are coaxially arranged in sequence;
所述数据舱包括:若干工业相机,分别设置于若干所述工业相机前端的显微物镜和远心镜头,数字全息系统以及嵌入式处理器;所述显微物镜朝向所述第一光学窗口设置;所述远心镜头朝向所述第二光学窗口设置;The data cabin comprises: a plurality of industrial cameras, microscope objective lenses and telecentric lenses respectively arranged at the front ends of the plurality of industrial cameras, a digital holographic system and an embedded processor; the microscope objective lenses are arranged toward the first optical window; the telecentric lenses are arranged toward the second optical window;
所述嵌入式处理器包括:数据传输模块、数据库和目标检测模块;若干所述工业相机通过所述数据传输模块将成像图传输至所述数据库储存;The embedded processor includes: a data transmission module, a database and a target detection module; a plurality of industrial cameras transmit imaging images to the database for storage through the data transmission module;
所述目标检测模块搭载神经网络,对所述数据库中的成像图进行分析,识别并统计浮游生物的种类和数量,并输出统计结果。The target detection module is equipped with a neural network to analyze the images in the database, identify and count the types and quantities of plankton, and output statistical results.
本发明一个较佳实施例中,所述数据舱的后端设置有若干海缆接头,其中一个所述海缆接头用于连接水下接驳平台或用户上位机,用于将所述统计结果传输至水下接驳平台或上位机。In a preferred embodiment of the present invention, a plurality of submarine cable connectors are provided at the rear end of the data cabin, one of which is used to connect to an underwater docking platform or a user host computer to transmit the statistical results to the underwater docking platform or the host computer.
本发明一个较佳实施例中,另一个所述海缆接头与所述光源舱连接,将经所述数据舱内降压后的电能传输至所述光源舱内的所述激光器。In a preferred embodiment of the present invention, another submarine cable connector is connected to the light source cabin to transmit the electrical energy after voltage reduction in the data cabin to the laser in the light source cabin.
本发明一个较佳实施例中,所述数字全息系统为同轴全息,并使用所述海缆接头为所述数字全息系统供电。In a preferred embodiment of the present invention, the digital holographic system is a coaxial holographic system, and the submarine cable connector is used to power the digital holographic system.
本发明一个较佳实施例中,所述激光器发出的激光经过所述分光棱镜分光为透射光和反射光,所述透射光朝向所述第一扩束镜,所述反射光朝向所述第二扩束镜;所述透射光能量与反射光能量比为1:1~50。In a preferred embodiment of the present invention, the laser emitted by the laser is split into transmitted light and reflected light by the beam splitter prism, the transmitted light is directed toward the first beam expander, and the reflected light is directed toward the second beam expander; the ratio of the transmitted light energy to the reflected light energy is 1:1 to 50.
本发明一个较佳实施例中,所述统计结果以字符形式,并基于RS232通信标准向外自动发出。In a preferred embodiment of the present invention, the statistical results are automatically sent out in character form based on the RS232 communication standard.
本发明一个较佳实施例中,所述显微物镜与其对应所述工业相机参数:像元分辨率为0.5~2um,视场为2~36mm2;所述远心镜头与其对应所述工业相机参数:像元分辨率为5~20um,视场为200~3600mm2。In a preferred embodiment of the present invention, the microscope objective lens and its corresponding industrial camera parameters have pixel resolution of 0.5-2um and field of view of 2-36mm 2 ; the telecentric lens and its corresponding industrial camera parameters have pixel resolution of 5-20um and field of view of 200-3600mm 2 .
基于上述中任一项所述的一种基于数字全息的海洋浮游生物成像仪的数据处理方法,包括以下步骤:A data processing method for a digital holographic marine plankton imager based on any one of the above comprises the following steps:
S1、激光器发出的激光经过第一光路和第二光路的调制后,从两个光学窗口分别出射,并照亮成像区域内的浮游生物;S1, the laser emitted by the laser is modulated by the first optical path and the second optical path, and then emitted from two optical windows respectively, and illuminates the plankton in the imaging area;
S2、在成像区域内,被海水中浮游生物散射或衍射的光与未经过浮游生物的光束发生干涉,干涉后产生的全息图被数据舱内的显微物镜或远心镜头成像,成像于其后方的工业相机内,并将成像图传输至数据库;S2. In the imaging area, the light scattered or diffracted by the plankton in the seawater interferes with the light beam that has not passed through the plankton. The hologram generated after the interference is imaged by the microscope objective lens or telecentric lens in the data cabin, and the image is formed in the industrial camera behind it, and the image is transmitted to the database;
S3-1、保存成像图的工作模式:成像图保存在数据库中,保存后的成像图将传输至目标检测模块处理,输出浮游生物的统计结果,并保存为本地文档在数据库;S3-1, working mode of saving imaging images: the imaging images are saved in the database, and the saved imaging images are transmitted to the target detection module for processing, and the statistical results of plankton are output and saved as local documents in the database;
S3-2、不保存成像图的工作模式:成像图临时储存在数据库中,并将成像图传输至目标检测模块处理,输出浮游生物的统计结果,并保存为本地文档在数据库,同时将统计结果通过仪器的串口发送至水下接驳平台或上位机。S3-2, working mode without saving the image: the image is temporarily stored in the database, and the image is transmitted to the target detection module for processing, the statistical results of plankton are output, and saved as local documents in the database, and the statistical results are sent to the underwater docking platform or host computer through the serial port of the instrument.
本发明一个较佳实施例中,在所述S3-1中,经过目标检测模块检测出的浮游生物的位置和类别将标注在成像图上,并替换原始成像图进行保存。In a preferred embodiment of the present invention, in S3-1, the location and category of the plankton detected by the target detection module will be marked on the image and will replace the original image for storage.
本发明一个较佳实施例中,将所述S3-2输出的统计结果通过无线网络上传服务器。In a preferred embodiment of the present invention, the statistical results output by S3-2 are uploaded to a server via a wireless network.
本发明解决了背景技术中存在的缺陷,本发明具备以下有益效果:The present invention solves the defects existing in the background technology and has the following beneficial effects:
(1)本发明提供了一种基于数字全息的海洋浮游生物成像仪,基于硬件结构设计,通过分光光路将光源发出的光分为第一光路和第二光路,分别实现对微尺度浮游生物的全息显微成像,对中大型浮游生物的大视场全息成像,且数据舱内置神经网络,该神经网络基于深度学习算法的自动分类计数算法,输出结果直接为浮游生物的类型及对应数量,解决了海洋原位仪器间数据传输的传输效率低、数据安全性差、存储容量有限、数据延迟等实际问题。(1) The present invention provides an ocean plankton imager based on digital holography. Based on the hardware structure design, the light emitted by the light source is divided into a first light path and a second light path through a split light path, thereby realizing holographic microscopic imaging of microscale plankton and large-scale plankton with a large field of view. The data cabin has a built-in neural network. The neural network is based on an automatic classification and counting algorithm of a deep learning algorithm. The output result is directly the type and corresponding number of plankton, which solves the practical problems of low transmission efficiency, poor data security, limited storage capacity, data delay, etc. in data transmission between in-situ instruments in the ocean.
(2)本发明基于双光路的设计,分别对应像元分辨率为0.5~2um、视场为2~36mm2的显微物镜与工业相机,与像元分辨率为5~20um、视场为200~3600mm2的远心镜头与工业相机,实现在相同的时间内,同时获取全尺度浮游生物的种类信息,基于全息显微部分的光路可以获得微尺度浮游生物的种类信息,以及浮游生物外形的高分辨率细节信息,基于大视场远心成像部分的全息成像光路,可以获得大尺度的浮游生物种类及数量,结合两部分成像单元,实现对海洋浮游生物从微米级到厘米级的全尺度观测,以便进一步分析海洋环境中浮游生物的种类及数量信息。(2) The present invention is based on a dual optical path design, which corresponds to a microscope objective lens and an industrial camera with a pixel resolution of 0.5 to 2 um and a field of view of 2 to 36 mm2, and a telecentric lens and an industrial camera with a pixel resolution of 5 to 20 um and a field of view of 200 to 3600 mm2 , respectively, so as to obtain the species information of plankton at all scales at the same time. The optical path based on the holographic microscope part can obtain the species information of micro-scale plankton and the high-resolution detail information of the plankton appearance. The holographic imaging optical path based on the large-field telecentric imaging part can obtain the species and quantity of large-scale plankton. The two imaging units are combined to realize full-scale observation of marine plankton from micron level to centimeter level, so as to further analyze the species and quantity information of plankton in the marine environment.
(3)本发明在数据舱内设置了嵌入式处理器,实现在仪器内完成对浮游生物图像数据的处理,使用基于深度学习的目标检测模块直接将浮游生物图像数据转换为浮游生物的种类及对应数量的字符串数据,极大压缩从传感器上传至服务器或接驳平台的数据量。(3) The present invention sets an embedded processor in the data cabin to complete the processing of plankton image data in the instrument, and uses a deep learning-based target detection module to directly convert the plankton image data into string data of the type and corresponding quantity of plankton, thereby greatly compressing the amount of data uploaded from the sensor to the server or docking platform.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图;In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments recorded in the present invention. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without creative work.
图1是本发明的优选实施例的一种基于数字全息的海洋浮游生物成像仪立体结构图;FIG1 is a three-dimensional structural diagram of a marine plankton imager based on digital holography according to a preferred embodiment of the present invention;
图2是本发明的优选实施例的一种基于数字全息的海洋浮游生物成像仪内部结构示意图;FIG2 is a schematic diagram of the internal structure of a marine plankton imager based on digital holography according to a preferred embodiment of the present invention;
图3是本发明的优选实施例的一种基于数字全息的海洋浮游生物成像仪工作流程图;FIG3 is a flow chart of a digital holographic-based marine plankton imager according to a preferred embodiment of the present invention;
图中:100、光源舱;110、激光器;120、分光棱镜;130、第一扩束镜;140、第一准直透镜;150、第一光学窗口;160、反射镜;170、第二扩束镜;180、第二准直透镜;190、第二光学窗口;200、数据舱;210、工业相机;220、显微物镜;230、远心镜头;240、嵌入式处理器;250、海缆接头;300、成像区域。In the figure: 100, light source cabin; 110, laser; 120, beam splitter; 130, first beam expander; 140, first collimating lens; 150, first optical window; 160, reflector; 170, second beam expander; 180, second collimating lens; 190, second optical window; 200, data cabin; 210, industrial camera; 220, microscope objective; 230, telecentric lens; 240, embedded processor; 250, submarine cable connector; 300, imaging area.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。In the following description, many specific details are set forth to facilitate a full understanding of the present invention, but the present invention may also be implemented in other ways different from those described herein. Therefore, the protection scope of the present invention is not limited to the specific embodiments disclosed below.
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含指明所指示的技术特征的数量。因此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明创造的描述中,除非另有说明,“多个”的含义是两个或两个以上。In the description of the present application, it should be understood that the terms "center", "longitudinal", "lateral", "up", "down", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside" and the like indicate positions or positional relationships based on the positions or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as limiting the scope of protection of the present application. In addition, the terms "first", "second", etc. are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, features defined as "first", "second", etc. may explicitly or implicitly include one or more of the features. In the description of the invention, unless otherwise specified, "multiple" means two or more.
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should be noted that, unless otherwise clearly specified and limited, the terms "installed", "connected", and "connected" should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components. For ordinary technicians in this field, the specific meanings of the above terms in this application can be understood by specific circumstances.
如图1所示,本发明提供了一种基于数字全息的海洋浮游生物成像仪,包括:光源舱100和数据舱200;光源舱100和数据舱200之间设置有成像区域300;光源舱100与数据舱200分开设置,分列于成像区域300的两侧。As shown in FIG1 , the present invention provides a marine plankton imager based on digital holography, comprising: a light source cabin 100 and a data cabin 200; an imaging area 300 is arranged between the light source cabin 100 and the data cabin 200; the light source cabin 100 and the data cabin 200 are arranged separately, and are arranged on both sides of the imaging area 300.
本实施例中的光源舱100包括:激光器110,设置于激光器110输出端的分光棱镜120,以及设置于分光棱镜120后侧的第一光路和第二光路;第一光路包括:依次同轴设置的第一扩束镜130、第一准直透镜140和第一光学窗口150;第二光路包括:依次同轴设置的反射镜160、第二扩束镜170、第二准直透镜180和第二光学窗口190。The light source cabin 100 in this embodiment includes: a laser 110, a beam splitter prism 120 arranged at the output end of the laser 110, and a first optical path and a second optical path arranged on the rear side of the beam splitter prism 120; the first optical path includes: a first beam expander 130, a first collimating lens 140 and a first optical window 150 arranged coaxially in sequence; the second optical path includes: a reflector 160, a second beam expander 170, a second collimating lens 180 and a second optical window 190 arranged coaxially in sequence.
值得说明的是,激光器110发出的光源经过分光棱镜120分为两份,一份水平直射入第一光路,另一份垂直向下射入第二光路,反射镜160倾斜45°角设置,将来自分光棱镜120的垂直光反射为水平直射进入第二扩束镜170,实现同一光源,两光路的结构设计。It is worth mentioning that the light source emitted by the laser 110 is divided into two parts by the beam splitter prism 120, one part is emitted horizontally directly into the first light path, and the other part is emitted vertically downward into the second light path. The reflector 160 is set at an angle of 45° to reflect the vertical light from the beam splitter prism 120 as horizontal direct light entering the second beam expander 170, realizing the structural design of the same light source and two light paths.
本实施例中的激光器110发出的激光经过分光棱镜120分光为透射光和反射光,透射光朝向第一扩束镜130,反射光朝向第二扩束镜170;透射光能量与反射光能量比为1:1~50。The laser light emitted by the laser 110 in this embodiment is split into transmitted light and reflected light by the beam splitter prism 120 , the transmitted light is directed toward the first beam expander 130 , and the reflected light is directed toward the second beam expander 170 ; the energy ratio of the transmitted light to the reflected light is 1:1-50.
值得说明的是,根据所选择分光棱镜120或者分光片的参数实现透射光能量与反射光能量的不同比例分布,优选为1:4,实现第一光路和第二光路不同光强度的设置。改变分光比是通过改变镀膜材料,主要是镀膜的反射率和透射率。It is worth noting that different proportions of transmitted light energy and reflected light energy are distributed according to the parameters of the selected beam splitter prism 120 or beam splitter, preferably 1:4, to achieve different light intensities of the first light path and the second light path. The splitting ratio is changed by changing the coating material, mainly the reflectivity and transmittance of the coating.
透射光经过其后的第一扩束镜130与第一准直透镜140形成平行光束,平行光束经过第一光学窗口150,反射光经过其后的第二扩束镜170与第二准直透镜180形成平行光束,平行光束经过第二光学窗口190;第一光路与第二光路的光束照亮成像区域300,在成像区域300内,被海水中浮游生物散射或衍射的光与未经过浮游生物的光束发生干涉,产生全息图像。The transmitted light passes through the first beam expander 130 and the first collimating lens 140 to form a parallel light beam, and the parallel light beam passes through the first optical window 150. The reflected light passes through the second beam expander 170 and the second collimating lens 180 to form a parallel light beam, and the parallel light beam passes through the second optical window 190. The light beams of the first light path and the second light path illuminate the imaging area 300. In the imaging area 300, the light scattered or diffracted by the plankton in the seawater interferes with the light beam that has not passed through the plankton to produce a holographic image.
本实施例中的数据舱200包括:若干工业相机210,分别设置于若干工业相机210前端的显微物镜220和远心镜头230,数字全息系统以及嵌入式处理器240;显微物镜220朝向第一光学窗口150设置;远心镜头230朝向第二光学窗口190设置。The data cabin 200 in this embodiment includes: a number of industrial cameras 210, a microscope objective lens 220 and a telecentric lens 230 respectively arranged at the front end of the several industrial cameras 210, a digital holographic system and an embedded processor 240; the microscope objective lens 220 is set toward the first optical window 150; the telecentric lens 230 is set toward the second optical window 190.
工业相机210的数量优选为两个,分别对显微物镜220和远心镜头230进行成像。The number of the industrial cameras 210 is preferably two, which respectively image the microscope objective lens 220 and the telecentric lens 230 .
本实施例中的显微物镜与其对应工业相机参数:像元分辨率为0.5~2um,视场为2~36mm2;远心镜头与其对应工业相机参数:像元分辨率为5~20um,视场为200~3600mm2。The parameters of the microscope objective lens in this embodiment and its corresponding industrial camera are: pixel resolution of 0.5-2um, field of view of 2-36mm 2 ; the parameters of the telecentric lens and its corresponding industrial camera are: pixel resolution of 5-20um, field of view of 200-3600mm 2 .
值得说明的是,基于全息显微部分的第一光路可以获得微尺度浮游生物的种类信息,以及浮游生物外形的高分辨率细节信息,基于大视场远心成像部分的全息成像第二光路,可以获得大尺度的浮游生物种类及数量。It is worth mentioning that the first optical path based on the holographic microscopy part can obtain the species information of micro-scale plankton and the high-resolution detail information of the plankton appearance, and the second optical path based on the holographic imaging of the large-field telecentric imaging part can obtain the species and quantity of large-scale plankton.
本实施例中的嵌入式处理器240包括:数据传输模块、数据库和目标检测模块;若干工业相机210通过数据传输模块将成像图传输至数据库储存;目标检测模块搭载神经网络,对数据库中的成像图进行分析,识别并统计浮游生物的种类和数量,并输出统计结果。The embedded processor 240 in this embodiment includes: a data transmission module, a database and a target detection module; a number of industrial cameras 210 transmit the imaging images to the database for storage through the data transmission module; the target detection module is equipped with a neural network to analyze the imaging images in the database, identify and count the types and quantities of plankton, and output the statistical results.
神经网络的构建,包括以下步骤:The construction of a neural network includes the following steps:
步骤1、收集大量浮游生物图像数据,并确保数据的多样性和代表性。将收集到的图像数据进行数据增强和预处理,以确保模型训练的准确性和鲁棒性。Step 1: Collect a large amount of plankton image data and ensure the diversity and representativeness of the data. Perform data enhancement and preprocessing on the collected image data to ensure the accuracy and robustness of the model training.
数据增强包括旋转、缩放、裁剪、翻转等,以增加模型的泛化能力;预处理包括图像归一化、去噪、标注等预处理操作,确保输入数据的质量和一致性。并将图像数据划分为训练集、验证集和测试集,用于模型的训练、验证和测试。Data enhancement includes rotation, scaling, cropping, flipping, etc. to increase the generalization ability of the model; preprocessing includes image normalization, denoising, labeling and other preprocessing operations to ensure the quality and consistency of input data. The image data is divided into training set, validation set and test set for model training, validation and testing.
步骤2、选择YOLOv9神经网络模型,并使用训练集和验证集进行端到端的训练,在测试集上评估模型的性能,包括准确率、召回率、mAP等指标,并根据评估结果对模型进行进一步优化如调整模型结构、增加数据等。Step 2: Select the YOLOv9 neural network model and use the training set and validation set for end-to-end training. Evaluate the performance of the model on the test set, including accuracy, recall, mAP and other indicators. Further optimize the model based on the evaluation results, such as adjusting the model structure and adding data.
步骤3、使用重新训练完成的YOLOv9神经网络模型对图像数据进行检测,识别不同种类的浮游生物,并获取浮游生物在图片中的数量信息。Step 3: Use the retrained YOLOv9 neural network model to detect the image data, identify different types of plankton, and obtain the quantity information of plankton in the picture.
步骤4、对重新训练完成的YOLOv9神经网络模型的检测结果进行统计分析,生成浮游生物各类别的数量统计数据。Step 4: Perform statistical analysis on the detection results of the retrained YOLOv9 neural network model to generate quantitative statistics of each category of plankton.
实现对浮游生物的自动识别和数量统计。Realize automatic identification and quantity counting of plankton.
本发明数据舱200内置嵌入式处理器240,嵌入式处理器240设置了目标检测模块搭载神经网络,内置基于深度学习算法的自动分类计数算法,在对浮游生物采集过程中,实时在水下对浮游生物全息图数据进行处理,并对全息图内的浮游生物进行统计分类,仪器输出内容直接为浮游生物的种类及数量信息。The data cabin 200 of the present invention has a built-in embedded processor 240. The embedded processor 240 is provided with a target detection module equipped with a neural network and a built-in automatic classification and counting algorithm based on a deep learning algorithm. During the plankton collection process, the plankton hologram data is processed underwater in real time, and the plankton in the hologram is statistically classified. The instrument outputs directly the type and quantity information of the plankton.
本实施例中的数据舱200的后端设置有若干海缆接头250,其中一个海缆接头250用于连接水下接驳平台或用户上位机,用于将统计结果传输至水下接驳平台或上位机。In this embodiment, the rear end of the data cabin 200 is provided with a plurality of submarine cable connectors 250, one of which is used to connect to an underwater docking platform or a user host computer, and is used to transmit statistical results to the underwater docking platform or the host computer.
本实施例中的另一个海缆接头250与光源舱100连接,将经数据舱内降压后的电能传输至光源舱100内的激光器110。Another submarine cable connector 250 in this embodiment is connected to the light source cabin 100 to transmit the electrical energy after voltage reduction in the data cabin to the laser 110 in the light source cabin 100 .
所述统计结果以字符形式,并基于RS232通信标准向外自动发出,以便于与其他海洋仪器或原位接驳平台相连接,方便后期与其他仪器或平台适配。The statistical results are automatically sent out in character form based on the RS232 communication standard to facilitate connection with other marine instruments or in-situ docking platforms, and facilitate subsequent adaptation with other instruments or platforms.
本实施例中的数字全息系统为同轴全息,从光源仓100出来的光照射在水体,水体中照射在物体上,发生衍射或散射的光与未照射在物体上的光发生干涉,即可产生全息图。同时使用海缆接头250为数字全息系统供电。The digital holographic system in this embodiment is a coaxial holographic system. The light from the light source chamber 100 is irradiated on the water body, and then irradiated on the object in the water body. The diffracted or scattered light interferes with the light not irradiated on the object, and a hologram can be generated. At the same time, the submarine cable connector 250 is used to power the digital holographic system.
本发明使用时,激光器110发出激光,经分光棱镜120分光后,可根据所选择分光棱镜120的参数实现透射光能量与反射光能量的不同比例分布,透射光/反射光经过其后的第一扩束镜130/第二扩束镜170与第一准直透镜140/第二准直透镜180形成平行光束,平行光束经过第一光学窗口150/第二光学窗口190,照亮成像区域300,在成像区域300内,被海水中浮游生物散射或衍射的光与未经过浮游生物的光束发生干涉,干涉后产生的全息图被数据舱200内的显微物镜220或远心镜头230成像,成像于其后方的工业相机210内,并将数据传输并存储于嵌入式处理器240内。When the present invention is used, the laser 110 emits a laser, which is split by the beam splitter 120. Different proportional distributions of the transmitted light energy and the reflected light energy can be achieved according to the parameters of the selected beam splitter prism 120. The transmitted light/reflected light passes through the first beam expander 130/the second beam expander 170 and the first collimating lens 140/the second collimating lens 180 to form a parallel light beam. The parallel light beam passes through the first optical window 150/the second optical window 190 to illuminate the imaging area 300. In the imaging area 300, the light scattered or diffracted by the plankton in the seawater interferes with the light beam that has not passed through the plankton. The hologram generated after the interference is imaged by the microscope objective 220 or the telecentric lens 230 in the data cabin 200, and the image is formed in the industrial camera 210 behind it, and the data is transmitted and stored in the embedded processor 240.
如图3所示,本发明还提供了一种基于数字全息的海洋浮游生物成像仪的数据处理方法,包括以下步骤:As shown in FIG3 , the present invention also provides a data processing method for a marine plankton imager based on digital holography, comprising the following steps:
S1、激光器110发出的激光经过第一光路和第二光路的调制后,从两个光学窗口分别出射,并照亮成像区域300内的浮游生物。S1. The laser emitted by the laser 110 is modulated by the first optical path and the second optical path, and then emitted from two optical windows respectively to illuminate the plankton in the imaging area 300.
S2、在成像区域300内,被海水中浮游生物散射或衍射的光与未经过浮游生物的光束发生干涉,干涉后产生的全息图被数据舱200内的显微物镜220或远心镜头230成像,成像于其后方的工业相机210内,并将成像图传输至数据库。S2. In the imaging area 300, the light scattered or diffracted by the plankton in the seawater interferes with the light beam that has not passed through the plankton. The hologram generated after the interference is imaged by the microscope objective lens 220 or the telecentric lens 230 in the data cabin 200, and the image is formed in the industrial camera 210 behind it, and the image is transmitted to the database.
S3-1、保存成像图的工作模式:成像图保存在数据库中,保存后的成像图将传输至目标检测模块处理,输出浮游生物的统计结果,保存为本地文档在数据库。S3-1. Working mode of saving imaging images: the imaging images are saved in the database. The saved imaging images will be transmitted to the target detection module for processing, and the statistical results of plankton will be output and saved as local documents in the database.
S3-2、不保存成像图的工作模式:成像图临时储存在数据库中,并将成像图传输至目标检测模块处理,输出浮游生物的统计结果,并保存为本地文档在数据库,同时将统计结果通过仪器的串口发送至水下接驳平台或上位机。S3-2, working mode without saving the image: the image is temporarily stored in the database, and the image is transmitted to the target detection module for processing, the statistical results of plankton are output, and saved as local documents in the database, and the statistical results are sent to the underwater docking platform or host computer through the serial port of the instrument.
在步骤S3-1中,经过目标检测模块检测出的浮游生物的位置和类别将标注在成像图上,并替换原始成像图进行保存。In step S3-1, the location and category of the plankton detected by the target detection module will be marked on the image and will replace the original image for storage.
本实施例中,还可以将S3-2输出的统计结果通过无线网络上传服务器。In this embodiment, the statistical results output by S3-2 can also be uploaded to the server via the wireless network.
本发明在数据舱200内设置了嵌入式处理器240,实现在仪器内完成对浮游生物图像数据的处理,使用基于深度学习的目标检测模块直接将浮游生物图像数据转换为浮游生物的种类及对应数量的字符串数据,极大压缩从传感器上传至服务器或接驳平台的数据量。The present invention sets an embedded processor 240 in the data cabin 200 to complete the processing of plankton image data in the instrument, and uses a deep learning-based target detection module to directly convert the plankton image data into character string data of the type and corresponding quantity of plankton, thereby greatly compressing the amount of data uploaded from the sensor to the server or docking platform.
以上依据本发明的理想实施例为启示,通过上述的说明内容,相关人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定技术性范围。The above is based on the ideal embodiment of the present invention. Through the above description, relevant personnel can make various changes and modifications without departing from the technical concept of the present invention. The technical scope of the present invention is not limited to the content in the specification, and the technical scope must be determined according to the scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410432563.1A CN118311030A (en) | 2024-04-11 | 2024-04-11 | Marine plankton imager based on digital holography and data processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410432563.1A CN118311030A (en) | 2024-04-11 | 2024-04-11 | Marine plankton imager based on digital holography and data processing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118311030A true CN118311030A (en) | 2024-07-09 |
Family
ID=91729584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410432563.1A Pending CN118311030A (en) | 2024-04-11 | 2024-04-11 | Marine plankton imager based on digital holography and data processing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118311030A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060033987A1 (en) * | 2002-12-09 | 2006-02-16 | Stelzer Ernst H K | Microscope with a viewing direction perpendicular to the illumination direction |
CN105607452A (en) * | 2016-01-04 | 2016-05-25 | 中国海洋大学 | Dual-digital holographic imaging device for measuring setting velocity of suspension particle |
CN105744129A (en) * | 2016-02-29 | 2016-07-06 | 清华大学深圳研究生院 | Telecentric illumination and camera system for detecting marine micro organisms |
CN107014793A (en) * | 2017-04-21 | 2017-08-04 | 浙江大学 | One kind is based on double galvanometer doublet multi-mode wide fields super-resolution micro imaging system |
CN115308174A (en) * | 2022-07-20 | 2022-11-08 | 清华大学深圳国际研究生院 | In situ imaging system and method of plankton applied in open scene |
CN116594167A (en) * | 2023-05-19 | 2023-08-15 | 中国科学院苏州生物医学工程技术研究所 | Large-view-field high-resolution light sheet illumination imaging system |
CN220137013U (en) * | 2023-04-28 | 2023-12-05 | 中国海洋大学 | A plankton in-situ detection system |
-
2024
- 2024-04-11 CN CN202410432563.1A patent/CN118311030A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060033987A1 (en) * | 2002-12-09 | 2006-02-16 | Stelzer Ernst H K | Microscope with a viewing direction perpendicular to the illumination direction |
CN105607452A (en) * | 2016-01-04 | 2016-05-25 | 中国海洋大学 | Dual-digital holographic imaging device for measuring setting velocity of suspension particle |
CN105744129A (en) * | 2016-02-29 | 2016-07-06 | 清华大学深圳研究生院 | Telecentric illumination and camera system for detecting marine micro organisms |
CN107014793A (en) * | 2017-04-21 | 2017-08-04 | 浙江大学 | One kind is based on double galvanometer doublet multi-mode wide fields super-resolution micro imaging system |
CN115308174A (en) * | 2022-07-20 | 2022-11-08 | 清华大学深圳国际研究生院 | In situ imaging system and method of plankton applied in open scene |
CN220137013U (en) * | 2023-04-28 | 2023-12-05 | 中国海洋大学 | A plankton in-situ detection system |
CN116594167A (en) * | 2023-05-19 | 2023-08-15 | 中国科学院苏州生物医学工程技术研究所 | Large-view-field high-resolution light sheet illumination imaging system |
Non-Patent Citations (4)
Title |
---|
LIU, T (LIU, T) ; JIANG, S (JIANG, S): "Miniaturized Digital Inline Holographic Camera for In-situ Plankton Detection", 《ADVANCED SENSOR SYSTEMS AND APPLICATIONS VIII》, vol. 10821, 28 December 2018 (2018-12-28) * |
于佳;郭卜瑜;元光;程凯;刘惠萍;许文彬;侯蕊;: "海洋原位数字全息浮游生物探测系统的小型化研究与试验", 中国海洋大学学报(自然科学版), no. 1, 15 July 2020 (2020-07-15) * |
王添 等: "基于数字全息显微的海洋浮游生物三维形貌快速重建方法研究", 《中国海洋大学学报》, vol. 49, no. 2, 15 February 2019 (2019-02-15) * |
许文彬;郭卜瑜;侯蕊;: "LED同轴数字全息显微浮游生物原位探测系统", 光学技术, no. 04, 15 July 2018 (2018-07-15) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Holt et al. | Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory | |
Bredfeldt et al. | Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer | |
JP2022513494A (en) | Computational microscope-based systems and methods for automatic imaging and analysis of pathological specimens | |
Evans et al. | Using metrology in early prehistoric stone tool research: further work and a brief instrument comparison | |
CN111954805A (en) | Systems and methods for analysis and remote interpretation of optical histological images | |
US10921252B2 (en) | Image processing apparatus and method of operating image processing apparatus | |
CN101943663B (en) | Measuring analytical system and measuring analytical method for distinguishing diffraction image of particles automatically | |
WO2009151610A2 (en) | Flow cytometer apparatus for three dimensional diffraction imaging and related methods | |
CN110081996B (en) | A quantum dot space tracer temperature measurement system and method | |
Collier et al. | Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer | |
CN117422699B (en) | Highway detection method, device, computer equipment and storage medium | |
CN111105415A (en) | A large-field-of-view image detection system and method for white blood cells based on deep learning | |
CN112712877A (en) | Large-view-field high-flux high-resolution pathological section analyzer | |
CN1806501B (en) | Marine phytoplankton automatic distinguishing method and apparatus | |
Pala et al. | Improving cellular analysis throughput of lens-free holographic microscopy with circular Hough transform and convolutional neural networks | |
CN109557070B (en) | Raman imaging system based on space coded light | |
Nevis et al. | Advantages of three-dimensional electro-optic imaging sensors | |
CN118311030A (en) | Marine plankton imager based on digital holography and data processing method | |
CN101907490A (en) | Measuring method of tiny light spot intensity distribution based on two-dimensional subdivision method | |
CN113160376A (en) | Multicolor light illumination three-dimensional particle imaging system and method | |
TWI632361B (en) | Method and apparatus for digital holographic microtomography | |
CN111861916B (en) | Pathological picture processing method | |
Akiba et al. | Design and testing of an underwater microscope and image processing system for the study of zooplankton distribution | |
CN118865484A (en) | Fish anomaly detection method based on deep separable convolution and deformable self-attention | |
CN115184276B (en) | Towed plankton polarization imaging recorder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |