CN118244805B - A control method, device and equipment for a bionic robot dolphin - Google Patents
A control method, device and equipment for a bionic robot dolphin Download PDFInfo
- Publication number
- CN118244805B CN118244805B CN202410666955.4A CN202410666955A CN118244805B CN 118244805 B CN118244805 B CN 118244805B CN 202410666955 A CN202410666955 A CN 202410666955A CN 118244805 B CN118244805 B CN 118244805B
- Authority
- CN
- China
- Prior art keywords
- control
- intermediate result
- dolphin
- bionic robot
- control signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241001481833 Coryphaena hippurus Species 0.000 title claims abstract description 123
- 239000011664 nicotinic acid Substances 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims abstract description 60
- 210000002569 neuron Anatomy 0.000 claims abstract description 64
- 230000033001 locomotion Effects 0.000 claims abstract description 61
- 230000008569 process Effects 0.000 claims abstract description 24
- 238000012545 processing Methods 0.000 claims abstract description 22
- 230000006870 function Effects 0.000 claims description 41
- 239000013598 vector Substances 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000004590 computer program Methods 0.000 claims description 3
- 230000003592 biomimetic effect Effects 0.000 claims 9
- 238000005516 engineering process Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000000006 pectoral fin Anatomy 0.000 description 3
- 241001125840 Coryphaenidae Species 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D13/00—Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
- G05D13/62—Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover characterised by the use of electric means, e.g. use of a tachometric dynamo, use of a transducer converting an electric value into a displacement
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Toys (AREA)
- Feedback Control In General (AREA)
Abstract
本发明提供一种仿生机器海豚的控制方法、装置及设备,属于仿生机器人控制技术领域。本发明的仿生机器海豚的控制方法,包括:获取仿生机器海豚的运动速度信息和坐标信息;根据所述运动速度信息和所述坐标信息,得到所述仿生机器海豚的控制参数;所述控制参数包括:目标速度增量和目标转角;将所述控制参数输入控制模型进行处理,得到输出信号;所述控制模型通过神经元函数对控制参数进行处理,得到中间结果,对所述中间结果进行校正,得到输出信号;根据所述输出信号控制所述仿生机器海豚的运行状态。本发明的技术方案,实现了仿生机器海豚运动时能够对控制指令做出及时响应,提高了仿生机器海豚的运动性能。
The present invention provides a control method, device and equipment for a bionic robot dolphin, which belongs to the field of bionic robot control technology. The control method for a bionic robot dolphin of the present invention includes: obtaining the movement speed information and coordinate information of the bionic robot dolphin; obtaining the control parameters of the bionic robot dolphin according to the movement speed information and the coordinate information; the control parameters include: target speed increment and target turning angle; inputting the control parameters into a control model for processing to obtain an output signal; the control model processes the control parameters through a neuron function to obtain an intermediate result, corrects the intermediate result and obtains an output signal; and controls the operation state of the bionic robot dolphin according to the output signal. The technical solution of the present invention enables the bionic robot dolphin to respond to control instructions in a timely manner when in motion, thereby improving the motion performance of the bionic robot dolphin.
Description
技术领域Technical Field
本发明涉及仿生机器人控制技术领域,特别是指一种仿生机器海豚的控制方法、装置及设备。The present invention relates to the technical field of bionic robot control, and in particular to a control method, device and equipment for a bionic robot dolphin.
背景技术Background technique
传统船只和潜水艇通常采用螺旋桨为推进机构,不仅发出极大噪声,而且机械做功的一部分能量在传导和克服阻力过程中消耗以及传统桨叶旋转时会伤害水中生物。目前,仿生类水下机器人大部分以鱼类为基础,根据不同的水生生物的外形和推进模式,设计外壳以及推进结构。推进模式可分为中央鳍/对鳍推进模式和身体/尾鳍推进模式两大类,其中,中央鳍/对鳍推进模式具有较高的航行稳定性,而身体/尾鳍推进模式则能够实现较高的航行速度,推进性能、能量利用效率更高,同时,身体/尾鳍推进模式还可以消除螺旋桨产生的巨大噪声,具有很好的隐蔽效果。海豚依靠尾巴和尾鳍摆动提供主要动力,其推进模式为典型的身体/尾鳍推进模式,通过尾部的弯曲运动带动尾鳍摆动,在游进过程中, 海豚尾鳍游动的轨迹可近似视为按正弦规律变化的曲线。Traditional ships and submarines usually use propellers as propulsion mechanisms, which not only make a lot of noise, but also consume part of the energy of mechanical work in the process of transmission and overcoming resistance, and the rotation of traditional blades will harm aquatic organisms. At present, most bionic underwater robots are based on fish, and the shell and propulsion structure are designed according to the appearance and propulsion mode of different aquatic organisms. The propulsion mode can be divided into two categories: central fin/opposite fin propulsion mode and body/tail fin propulsion mode. Among them, the central fin/opposite fin propulsion mode has higher navigation stability, while the body/tail fin propulsion mode can achieve a higher navigation speed, with higher propulsion performance and energy utilization efficiency. At the same time, the body/tail fin propulsion mode can also eliminate the huge noise generated by the propeller and has a good concealment effect. Dolphins rely on the swing of their tails and tail fins to provide the main power. Their propulsion mode is a typical body/tail fin propulsion mode. The tail fin swings through the bending movement of the tail. During the swimming process, the trajectory of the dolphin's tail fin can be approximately regarded as a curve that changes according to the sine law.
为了真实地还原海豚的运动姿态,现有的仿生机器海豚大多采用多关节模块驱动方式,每个关节模块内部均设有动力装置,动力装置能够根据控制指令,并结合当前的环境对仿生机器的运动状态进行即时调整。在此过程中,由于需要同时控制仿生机器海豚的多个动力装置相互配合工作,采用传统的控制方式不能对控制指令做出及时响应,使得仿生机器海豚的运动性能不高。In order to truly restore the movement posture of the dolphin, most of the existing bionic robot dolphins use a multi-joint module drive method. Each joint module is equipped with a power device, which can adjust the movement state of the bionic machine in real time according to the control instructions and the current environment. In this process, since it is necessary to control the multiple power devices of the bionic robot dolphin to work together at the same time, the traditional control method cannot respond to the control instructions in time, resulting in low movement performance of the bionic robot dolphin.
发明内容Summary of the invention
本发明提供一种仿生机器海豚的控制方法、装置及设备,提高了仿生机器海豚的运动性能。The present invention provides a control method, device and equipment for a bionic robot dolphin, which improve the motion performance of the bionic robot dolphin.
为解决上述技术问题,本发明的技术方案如下:In order to solve the above technical problems, the technical solution of the present invention is as follows:
一种仿生机器海豚的控制方法,包括:A control method for a bionic robot dolphin, comprising:
获取仿生机器海豚的运动速度信息和坐标信息;Obtain the movement speed information and coordinate information of the bionic robot dolphin;
根据所述运动速度信息和所述坐标信息,得到所述仿生机器海豚的控制参数;所述控制参数包括:目标速度增量和目标转角;According to the motion speed information and the coordinate information, control parameters of the bionic robot dolphin are obtained; the control parameters include: target speed increment and target rotation angle;
将所述控制参数输入控制模型进行处理,得到输出信号;所述控制模型通过神经元函数对控制参数进行处理,得到中间结果,对所述中间结果进行校正,得到输出信号;The control parameters are input into the control model for processing to obtain an output signal; the control model processes the control parameters through a neuron function to obtain an intermediate result, and the intermediate result is corrected to obtain an output signal;
根据所述输出信号控制所述仿生机器海豚的运行状态。The operating state of the bionic robot dolphin is controlled according to the output signal.
可选地,根据所述运动速度信息和所述坐标信息,得到所述仿生机器海豚的控制参数,包括:Optionally, obtaining control parameters of the bionic robot dolphin according to the motion speed information and the coordinate information includes:
根据所述运动速度信息和所述坐标信息,通过算式:According to the motion speed information and the coordinate information, by the formula:
,得到目标速度增量; , get the target speed increment;
其中,为目标速度增量,x2、y2、z2为目标位置坐标数据,x1、y1、z1为所述仿生机器海豚的当前位置坐标数据,t为预设时间数据,为所述仿生机器海豚的当前运动速度;in, is the target speed increment, x 2 , y 2 , z 2 are the target position coordinate data, x 1 , y 1 , z 1 are the current position coordinate data of the bionic robot dolphin, t is the preset time data, is the current movement speed of the bionic robot dolphin;
通过算式:By formula:
,得到目标转角; , get the target turning angle;
其中,为目标转角,为所述仿生机器海豚的当前运动速度向量,为所述仿生机器海豚的目标位置向量。in, is the target corner, is the current motion speed vector of the bionic robot dolphin, is the target position vector of the bionic robot dolphin.
可选地,所述控制模型通过神经元函数对控制参数进行处理,得到中间结果,对所述中间结果进行校正,得到输出信号,包括:Optionally, the control model processes the control parameter by a neuron function to obtain an intermediate result, and corrects the intermediate result to obtain an output signal, including:
将所述控制参数,输入控制模型通过神经元函数进行加权处理,得到中间结果;The control parameters are input into the control model for weighted processing through a neuron function to obtain an intermediate result;
对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号;所述电流强度控制信号和通电时间区间控制信号,用于控制所述仿生机器海豚的姿态调整装置和驱动装置运动。The intermediate result is corrected to obtain a current intensity control signal and a power-on time interval control signal; the current intensity control signal and the power-on time interval control signal are used to control the movement of the posture adjustment device and the driving device of the bionic robot dolphin.
可选地,将所述控制参数,输入控制模型通过神经元函数进行加权处理,得到中间结果,包括:Optionally, the control parameters are input into the control model and weighted by a neuron function to obtain an intermediate result, including:
所述控制模型通过神经元函数:The control model is implemented by neuron function:
对控制参数进行处理,得到中间结果;Process the control parameters to obtain intermediate results;
其中,f (ni)为中间结果;ni=Ai∙x+d1i,1≤i≤j,j为第一隐藏层中的神经元数量;Ai=[],为输入层到第一隐藏层的权值;x=[x1,x2]为输入向量,x1=,x2=;d1i为第一隐藏层中神经元偏置值的权重;a为参量,0<a<1。Where f ( ni ) is the intermediate result; ni = Ai ∙x+ d1i , 1≤i≤j, j is the number of neurons in the first hidden layer; Ai =[ ], is the weight from the input layer to the first hidden layer; x=[x 1 ,x 2 ] is the input vector, x 1 = , x 2 = ; d 1i is the weight of the neuron bias value in the first hidden layer; a is a parameter, 0<a<1.
可选地,对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号,包括:Optionally, the intermediate result is corrected to obtain a current intensity control signal and a power-on time interval control signal, including:
根据所述中间结果,通过算式:According to the intermediate results, by formula:
确定偏差数据,其中,E为偏差数据;为预期结果;Determine deviation data, where E is the deviation data; For the expected results;
根据所述偏差数据,对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号。The intermediate result is corrected according to the deviation data to obtain a current intensity control signal and a power-on time interval control signal.
可选地,根据所述偏差数据,对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号,包括:Optionally, the intermediate result is corrected according to the deviation data to obtain a current intensity control signal and a power-on time interval control signal, including:
根据所述偏差数据,通过算式:According to the deviation data, by the formula:
确定第二隐藏层到输出层的权值和第二隐藏层中神经元偏置值的权重,其中,为第二隐藏层到输出层的权值,m=1,2;为第二隐藏层中神经元偏置值的权重;为学习率;Determine the weight from the second hidden layer to the output layer and the weight of the neuron bias value in the second hidden layer, where, is the weight from the second hidden layer to the output layer, m=1, 2; is the weight of the neuron bias value in the second hidden layer; is the learning rate;
根据所述第二隐藏层到输出层的权值和第二隐藏层中神经元偏置值的权重,通过所述神经元函数,得到电流强度控制信号和通电时间区间控制信号。According to the weight from the second hidden layer to the output layer and the weight of the neuron bias value in the second hidden layer, a current intensity control signal and a power-on time interval control signal are obtained through the neuron function.
可选地,根据所述输出信号控制所述仿生机器海豚的运行状态,包括:Optionally, controlling the operating state of the bionic robot dolphin according to the output signal includes:
根据所述电流强度控制信号和通电时间区间控制信号,生成控制脉冲信号;generating a control pulse signal according to the current intensity control signal and the power-on time interval control signal;
根据所述控制脉冲信号,控制所述仿生机器海豚的运行状态。The operating state of the bionic robot dolphin is controlled according to the control pulse signal.
本发明的实施例还提供一种仿生机器海豚的控制装置,所述装置包括:An embodiment of the present invention further provides a control device for a bionic robot dolphin, the device comprising:
获取模块,用于获取仿生机器海豚的运动速度信息和坐标信息;An acquisition module is used to acquire the movement speed information and coordinate information of the bionic robot dolphin;
生产模块,用于根据所述运动速度信息和所述坐标信息,得到所述仿生机器海豚的控制参数;所述控制参数包括:目标速度增量和目标转角;A production module, used for obtaining control parameters of the bionic robot dolphin according to the motion speed information and the coordinate information; the control parameters include: target speed increment and target rotation angle;
确定模块,用于将所述控制参数输入控制模型进行处理,得到输出信号;所述控制模型通过神经元函数对控制参数进行处理,得到中间结果,对所述中间结果进行校正,得到输出信号;A determination module is used to input the control parameter into a control model for processing to obtain an output signal; the control model processes the control parameter through a neuron function to obtain an intermediate result, and corrects the intermediate result to obtain an output signal;
控制模块,用于根据所述输出信号控制所述仿生机器海豚的运行状态。A control module is used to control the operating state of the bionic robot dolphin according to the output signal.
可选地,根据所述运动速度信息和所述坐标信息,得到所述仿生机器海豚的控制参数,包括:Optionally, obtaining control parameters of the bionic robot dolphin according to the motion speed information and the coordinate information includes:
根据所述运动速度信息和所述坐标信息,通过算式:According to the motion speed information and the coordinate information, by the formula:
,得到目标速度增量; , get the target speed increment;
其中,为目标速度增量,x2、y2、z2为目标位置坐标数据,x1、y1、z1为所述仿生机器海豚的当前位置坐标数据,t为预设时间数据,为所述仿生机器海豚的当前运动速度;in, is the target speed increment, x 2 , y 2 , z 2 are the target position coordinate data, x 1 , y 1 , z 1 are the current position coordinate data of the bionic robot dolphin, t is the preset time data, is the current movement speed of the bionic robot dolphin;
通过算式:By formula:
,得到目标转角; , get the target turning angle;
其中,为目标转角,为所述仿生机器海豚的当前运动速度向量,为所述仿生机器海豚的目标位置向量。in, is the target corner, is the current motion speed vector of the bionic robot dolphin, is the target position vector of the bionic robot dolphin.
可选地,所述控制模型通过神经元函数对控制参数进行处理,得到中间结果,对所述中间结果进行校正,得到输出信号,包括:Optionally, the control model processes the control parameter by a neuron function to obtain an intermediate result, and corrects the intermediate result to obtain an output signal, including:
将所述控制参数,输入控制模型通过神经元函数进行加权处理,得到中间结果;The control parameters are input into the control model for weighted processing through a neuron function to obtain an intermediate result;
对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号;所述电流强度控制信号和通电时间区间控制信号,用于控制所述仿生机器海豚的姿态调整装置和驱动装置运动。The intermediate result is corrected to obtain a current intensity control signal and a power-on time interval control signal; the current intensity control signal and the power-on time interval control signal are used to control the movement of the posture adjustment device and the driving device of the bionic robot dolphin.
可选地,将所述控制参数,输入控制模型通过神经元函数进行加权处理,得到中间结果,包括:Optionally, the control parameters are input into the control model and weighted by a neuron function to obtain an intermediate result, including:
所述控制模型通过神经元函数:The control model is implemented by neuron function:
对控制参数进行处理,得到中间结果;Process the control parameters to obtain intermediate results;
其中,f (ni)为中间结果;ni=Ai∙x+d1i,1≤i≤j,j为第一隐藏层中的神经元数量;Ai=[],为输入层到第一隐藏层的权值;x=[x1,x2]为输入向量,x1=,x2=;d1i为第一隐藏层中神经元偏置值的权重;a为参量,0<a<1。Where f ( ni ) is the intermediate result; ni = Ai ∙x+ d1i , 1≤i≤j, j is the number of neurons in the first hidden layer; Ai =[ ], is the weight from the input layer to the first hidden layer; x=[x 1 ,x 2 ] is the input vector, x 1 = , x 2 = ; d 1i is the weight of the neuron bias value in the first hidden layer; a is a parameter, 0<a<1.
可选地,对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号,包括:Optionally, the intermediate result is corrected to obtain a current intensity control signal and a power-on time interval control signal, including:
根据所述中间结果,通过算式:According to the intermediate results, by formula:
确定偏差数据,其中,E为偏差数据;为预期结果;Determine deviation data, where E is the deviation data; For the expected results;
根据所述偏差数据,对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号。The intermediate result is corrected according to the deviation data to obtain a current intensity control signal and a power-on time interval control signal.
可选地,根据所述偏差数据,对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号,包括:Optionally, the intermediate result is corrected according to the deviation data to obtain a current intensity control signal and a power-on time interval control signal, including:
根据所述偏差数据,通过算式:According to the deviation data, by the formula:
确定第二隐藏层到输出层的权值和第二隐藏层中神经元偏置值的权重,其中,为第二隐藏层到输出层的权值,m=1,2;为第二隐藏层中神经元偏置值的权重;为学习率;Determine the weight from the second hidden layer to the output layer and the weight of the neuron bias value in the second hidden layer, where, is the weight from the second hidden layer to the output layer, m=1, 2; is the weight of the neuron bias value in the second hidden layer; is the learning rate;
根据所述第二隐藏层到输出层的权值和第二隐藏层中神经元偏置值的权重,通过所述神经元函数,得到电流强度控制信号和通电时间区间控制信号。According to the weight from the second hidden layer to the output layer and the weight of the neuron bias value in the second hidden layer, a current intensity control signal and a power-on time interval control signal are obtained through the neuron function.
可选地,根据所述输出信号控制所述仿生机器海豚的运行状态,包括:Optionally, controlling the operating state of the bionic robot dolphin according to the output signal includes:
根据所述电流强度控制信号和通电时间区间控制信号,生成控制脉冲信号;generating a control pulse signal according to the current intensity control signal and the power-on time interval control signal;
根据所述控制脉冲信号,控制所述仿生机器海豚的运行状态。The operating state of the bionic robot dolphin is controlled according to the control pulse signal.
本发明的实施例还提供一种计算设备,包括:处理器、存储有计算机程序的存储器,所述计算机程序被处理器运行时,执行上述的方法。An embodiment of the present invention further provides a computing device, comprising: a processor and a memory storing a computer program, wherein the computer program executes the above method when executed by the processor.
本发明的实施例还提供一种计算机可读存储介质,存储有指令,当所述指令在计算机上运行时,使得计算机执行上述的方法。An embodiment of the present invention further provides a computer-readable storage medium storing instructions, which, when executed on a computer, enable the computer to execute the above method.
本发明的上述方案至少包括以下有益效果:The above solution of the present invention includes at least the following beneficial effects:
本发明的方案通过获取仿生机器海豚的运动速度信息和坐标信息;根据运动速度信息和坐标信息,得到仿生机器海豚的控制参数;控制参数包括:目标速度增量和目标转角;将控制参数输入控制模型进行处理,得到输出信号;控制模型通过神经元函数对控制参数进行处理,得到中间结果,对中间结果进行校正,得到输出信号;根据输出信号控制仿生机器海豚的运行状态,实现了仿生机器海豚运动时能够对控制指令做出及时响应,提高了仿生机器海豚的运动性能,使仿生机器海豚的运动更加自然、高效和灵活。The scheme of the present invention obtains the movement speed information and coordinate information of the bionic robot dolphin; obtains the control parameters of the bionic robot dolphin according to the movement speed information and the coordinate information; the control parameters include: a target speed increment and a target rotation angle; the control parameters are input into a control model for processing to obtain an output signal; the control model processes the control parameters through a neuron function to obtain an intermediate result, corrects the intermediate result, and obtains an output signal; controls the running state of the bionic robot dolphin according to the output signal, so that the bionic robot dolphin can respond to the control instruction in time when moving, improves the movement performance of the bionic robot dolphin, and makes the movement of the bionic robot dolphin more natural, efficient and flexible.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明实施例提供的仿生机器海豚的控制方法的流程图;FIG1 is a flow chart of a method for controlling a bionic robot dolphin provided by an embodiment of the present invention;
图2是本发明实施例提供的仿生机器海豚的控制模型的架构示意图;FIG2 is a schematic diagram of the architecture of a control model of a bionic robot dolphin provided in an embodiment of the present invention;
图3是本发明实施例提供的仿生机器海豚的结构图;FIG3 is a structural diagram of a bionic robot dolphin provided in an embodiment of the present invention;
图4是本发明实施例提供的仿生机器海豚的控制系统框图;FIG4 is a block diagram of a control system of a bionic robot dolphin provided in an embodiment of the present invention;
图5是本发明实施例提供的仿生机器海豚的控制装置的结构图;FIG5 is a structural diagram of a control device for a bionic robot dolphin provided in an embodiment of the present invention;
图6是本发明实施例提供的计算设备的结构示意图;FIG6 is a schematic diagram of the structure of a computing device provided in an embodiment of the present invention;
其中,1、尾鳍水平驱动装置;2、尾鳍垂直驱动装置;3、胸鳍驱动装置;50、控制装置;51、获取模块;52、生产模块;53、确定模块;54、控制模块;60、计算设备;61、处理器;62、存储器。Among them, 1. horizontal tail fin drive device; 2. vertical tail fin drive device; 3. pectoral fin drive device; 50. control device; 51. acquisition module; 52. production module; 53. determination module; 54. control module; 60. computing device; 61. processor; 62. memory.
具体实施方式Detailed ways
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。The exemplary embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. Although the exemplary embodiments of the present invention are shown in the accompanying drawings, it should be understood that the present invention can be implemented in various forms and should not be limited by the embodiments set forth herein. On the contrary, these embodiments are provided in order to enable a more thorough understanding of the present invention and to enable the scope of the present invention to be fully communicated to those skilled in the art.
如图1所示,本发明的实施例提出一种仿生机器海豚的控制方法,包括:As shown in FIG1 , an embodiment of the present invention provides a control method for a bionic robot dolphin, comprising:
步骤11,获取仿生机器海豚的运动速度信息和坐标信息;Step 11, obtaining the movement speed information and coordinate information of the bionic robot dolphin;
具体实现时,所述获取仿生机器海豚的运动速度信息和坐标信息,包括:通过安装于所述仿生机器海豚头部位置的传感器,获取所述仿生机器海豚的运动速度信息;以及通过安装于所述仿生机器海豚头部位置的GPS定位器,获得所述仿生机器海豚的坐标信息;In a specific implementation, the obtaining of the movement speed information and coordinate information of the bionic robot dolphin includes: obtaining the movement speed information of the bionic robot dolphin through a sensor installed at the head position of the bionic robot dolphin; and obtaining the coordinate information of the bionic robot dolphin through a GPS locator installed at the head position of the bionic robot dolphin;
步骤12,根据运动速度信息和坐标信息,得到仿生机器海豚的控制参数;控制参数包括:目标速度增量和目标转角;Step 12, obtaining control parameters of the bionic robot dolphin according to the motion speed information and the coordinate information; the control parameters include: target speed increment and target rotation angle;
具体实现时,通过算式:When it is implemented specifically, the formula is:
,得到目标速度增量; , get the target speed increment;
通过算式:By formula:
,得到目标转角; , get the target turning angle;
其中,为目标速度增量,x2、y2、z2为目标位置坐标数据,x1、y1、z1为所述仿生机器海豚的当前位置坐标数据,t为预设时间数据,为所述仿生机器海豚的当前运动速度,为目标转角,为所述仿生机器海豚的当前运动速度向量,为所述仿生机器海豚的目标位置向量。in, is the target speed increment, x 2 , y 2 , z 2 are the target position coordinate data, x 1 , y 1 , z 1 are the current position coordinate data of the bionic robot dolphin, t is the preset time data, is the current movement speed of the bionic robot dolphin, is the target corner, is the current motion speed vector of the bionic robot dolphin, is the target position vector of the bionic robot dolphin.
步骤13,将控制参数输入控制模型进行处理,得到输出信号;控制模型通过神经元函数对控制参数进行处理,得到中间结果,对中间结果进行校正,得到输出信号;Step 13, inputting the control parameters into the control model for processing to obtain an output signal; the control model processes the control parameters through a neuron function to obtain an intermediate result, and corrects the intermediate result to obtain an output signal;
步骤14,根据输出信号控制仿生机器海豚的运行状态。Step 14, controlling the operating state of the bionic robot dolphin according to the output signal.
该实施例中,通过定位器和传感器获取仿生机器海豚的运动速度信息和坐标信息,根据仿生机器海豚的运动速度信息和坐标信息,得到仿生机器海豚的控制参数,控制参数包括目标速度增量和目标转角,将目标速度增量和目标转角输入控制模型,通过神经元函数对目标速度增量和目标转角进行处理,得到中间结果,对中间结果进行校正,得到输出信号,根据输出信号控制仿生机器海豚的运行状态,该技术方案实现了仿生机器海豚运动时能够对控制指令做出及时响应,提高了仿生机器海豚的运动性能,使仿生机器海豚的运动更加自然、高效和灵活。In this embodiment, the motion speed information and coordinate information of the bionic robot dolphin are obtained by the positioner and the sensor, and the control parameters of the bionic robot dolphin are obtained according to the motion speed information and coordinate information of the bionic robot dolphin. The control parameters include the target speed increment. and target angle , increase the target speed by and target angle Input control model, the target speed increment is calculated through the neuron function and target angle Processing is performed to obtain intermediate results, the intermediate results are corrected to obtain output signals, and the operating state of the bionic robot dolphin is controlled according to the output signals. This technical solution enables the bionic robot dolphin to respond to control instructions in a timely manner during movement, thereby improving the movement performance of the bionic robot dolphin and making the movement of the bionic robot dolphin more natural, efficient and flexible.
本发明的一可选的实施例中,步骤13,包括:In an optional embodiment of the present invention, step 13 includes:
步骤131,将所述控制参数,输入控制模型通过神经元函数进行加权处理,得到中间结果;Step 131, input the control parameters into the control model and perform weighted processing through the neuron function to obtain an intermediate result;
步骤132,对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号;所述电流强度控制信号和通电时间区间控制信号,用于控制所述仿生机器海豚的姿态调整装置和驱动装置运动。Step 132, correcting the intermediate result to obtain a current intensity control signal and a power-on time interval control signal; the current intensity control signal and the power-on time interval control signal are used to control the movement of the posture adjustment device and the driving device of the bionic robot dolphin.
该实施例中,将所述控制参数,输入控制模型通过神经元函数进行加权处理,得到中间结果;具体实现时,所述控制模型通过神经元函数:In this embodiment, the control parameters are input into the control model for weighted processing through the neuron function to obtain an intermediate result; in specific implementation, the control model uses the neuron function:
对控制参数进行处理,得到中间结果;Process the control parameters to obtain intermediate results;
其中,f (ni)为中间结果;ni=Ai∙x+d1i,1≤i≤j,j为第一隐藏层中的神经元数量;Ai=[],为输入层到第一隐藏层的权值;x=[x1,x2]为输入向量,x1=,x2=;d1i为第一隐藏层中神经元偏置值的权重;a为参量,0<a<1;Where f ( ni ) is the intermediate result; ni = Ai ∙x+ d1i , 1≤i≤j, j is the number of neurons in the first hidden layer; Ai =[ ], is the weight from the input layer to the first hidden layer; x=[x 1 ,x 2 ] is the input vector, x 1 = , x 2 = ; d 1i is the weight of the neuron bias value in the first hidden layer; a is a parameter, 0<a<1;
对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号;所述电流强度控制信号和通电时间区间控制信号,用于控制所述仿生机器海豚的姿态调整装置和驱动装置运动;具体实现时,根据所述中间结果,通过算式:The intermediate result is corrected to obtain a current intensity control signal and a power-on time interval control signal; the current intensity control signal and the power-on time interval control signal are used to control the movement of the posture adjustment device and the driving device of the bionic robot dolphin; in specific implementation, according to the intermediate result, through the formula:
确定偏差数据,其中,E为偏差数据;为预期结果;Determine deviation data, where E is the deviation data; For the expected results;
通过算式:By formula:
确定第二隐藏层到输出层的权值和第二隐藏层中神经元偏置值的权重,其中,为第二隐藏层到输出层的权值,m=1,2;为第二隐藏层中神经元偏置值的权重;为学习率;根据所述第二隐藏层到输出层的权值和第二隐藏层中神经元偏置值的权重,通过所述神经元函数,得到电流强度控制信号和通电时间区间控制信号。Determine the weight from the second hidden layer to the output layer and the weight of the neuron bias value in the second hidden layer, where, is the weight from the second hidden layer to the output layer, m=1, 2; is the weight of the neuron bias value in the second hidden layer; is the learning rate; according to the weight from the second hidden layer to the output layer and the weight of the neuron bias value in the second hidden layer, the current intensity control signal and the power-on time interval control signal are obtained through the neuron function.
如图2所示,一个包含2个输入向量、2个隐层和2个输出向量的目标控制模型,训练过程包括:As shown in Figure 2, a target control model contains 2 input vectors, 2 hidden layers and 2 output vectors. The training process includes:
步骤31,获取包括历史仿生机器海豚的运行状态参数的训练集数据;Step 31, obtaining training set data including operating status parameters of the historical bionic machine dolphin;
步骤32,对所述训练集数据进行特征提取处理,得到多个输入向量;Step 32, performing feature extraction processing on the training set data to obtain multiple input vectors;
步骤33,将所述输入向量输入控制模型的输入层,输入层输出第一中间结果;Step 33, inputting the input vector into an input layer of a control model, and the input layer outputs a first intermediate result;
步骤34,将输入层输出的第一中间结果输入控制模型的第一隐层进行局部响应处理,输出第二中间结果;Step 34, inputting the first intermediate result output by the input layer into the first hidden layer of the control model for local response processing, and outputting a second intermediate result;
步骤35,将所述第二中间结果输入控制模型的第二隐层进行校正处理,输出第三中间结果;Step 35, inputting the second intermediate result into the second hidden layer of the control model for correction processing, and outputting a third intermediate result;
步骤36,将所述第三中间结果输入控制模型的输出层,输出层输出网络结果;Step 36, inputting the third intermediate result into the output layer of the control model, and the output layer outputs the network result;
步骤37,获取网络结果与训练集中每个样本之间的误差;Step 37, obtaining the error between the network result and each sample in the training set;
步骤37,根据误差对所述隐层中神经网络函数进行加权处理并再次进行输入输出计算,直到所述误差控制在允许的精度范围内,得到所述控制模型。Step 37, weighting the neural network function in the hidden layer according to the error and performing input and output calculations again until the error is controlled within the allowable accuracy range, thereby obtaining the control model.
本发明的一可选的实施例中,步骤14,包括:In an optional embodiment of the present invention, step 14 includes:
步骤141,根据所述电流强度控制信号和通电时间区间控制信号,生成控制脉冲信号;Step 141, generating a control pulse signal according to the current intensity control signal and the power-on time interval control signal;
步骤142,根据所述控制脉冲信号,控制所述仿生机器海豚的运行状态。Step 142, controlling the operating state of the bionic robot dolphin according to the control pulse signal.
该实施例中,将仿生机器海豚的目标速度增量和目标转角作为目标控制模型的输入参数,获得电流强度和通电时间区间;将获得的电流强度和通电时间区间作为脉冲宽度调制电路的输入参数,获得控制仿生机器海豚运行的脉冲方波信号;将获得的脉冲方波信号作为功率放大设备的输入参数,控制仿生机器海豚的多个驱动装置运行,从而实现了仿生机器海豚的高精度速度控制,提高了仿生机器海豚的运动性能。In this embodiment, the target speed increment of the bionic robot dolphin is and target angle As input parameters of the target control model, the current intensity and the power-on time interval are obtained; the obtained current intensity and the power-on time interval are used as input parameters of the pulse width modulation circuit to obtain a pulse square wave signal for controlling the operation of the bionic robot dolphin; the obtained pulse square wave signal is used as an input parameter of the power amplification device to control the operation of multiple driving devices of the bionic robot dolphin, thereby achieving high-precision speed control of the bionic robot dolphin and improving the movement performance of the bionic robot dolphin.
本发明实施例提供的仿生机器海豚的控制方法的一个具体实施例为:A specific embodiment of the control method of the bionic robot dolphin provided by the embodiment of the present invention is:
如图3和图4所示,仿生机器海豚的驱动装置包括胸鳍驱动装置3、尾鳍水平驱动装置1、尾鳍垂直驱动装置2,其中胸鳍驱动装置3用于平衡仿生机器海豚的姿态,有助于仿生机器海豚完成各类灵活的动作;尾鳍水平驱动装置1用于调整仿生机器海豚的运动方向;尾鳍垂直驱动装置2由多个子驱动装置串联构成,可以产生类似正弦波的摆动以驱动仿生机器海豚前进;通过安装在仿生机器海豚头部的传感器,来采集仿生机器海豚当前的运动状态信息,包括运动速度信息和坐标信息,控制器根据目标位置,计算得到目标速度增量和目标转角,将目标速度增量和目标转角作为控制参数,输入控制器,控制器通过神经网络函数产生包含电流强度和通电时间区间的输出信号,将获得的电流强度和通电时间区间作为脉冲宽度调制电路的输入参数,获得控制仿生机器海豚驱动装置运行的脉冲方波信号;将获得的脉冲方波信号作为功率放大设备的输入参数,控制仿生机器海豚的多个驱动装置运动,使仿生机器海豚向目标位置移动。As shown in Figures 3 and 4, the driving device of the bionic robot dolphin includes a pectoral fin driving device 3, a tail fin horizontal driving device 1, and a tail fin vertical driving device 2, wherein the pectoral fin driving device 3 is used to balance the posture of the bionic robot dolphin, which helps the bionic robot dolphin to complete various flexible movements; the tail fin horizontal driving device 1 is used to adjust the movement direction of the bionic robot dolphin; the tail fin vertical driving device 2 is composed of a plurality of sub-driving devices connected in series, which can generate a sine wave-like swing to drive the bionic robot dolphin forward; the sensor installed on the head of the bionic robot dolphin is used to collect the current motion state information of the bionic robot dolphin, including motion speed information and coordinate information, and the controller calculates the target speed increment according to the target position. and target angle , increase the target speed by and target angle As control parameters, the controller is input, and the controller generates an output signal including current intensity and power-on time interval through a neural network function. The obtained current intensity and power-on time interval are used as input parameters of a pulse width modulation circuit to obtain a pulse square wave signal for controlling the operation of a bionic robot dolphin drive device; the obtained pulse square wave signal is used as an input parameter of a power amplification device to control the movement of multiple drive devices of the bionic robot dolphin, so that the bionic robot dolphin moves to a target position.
如图5所示,本发明实施例提供了一种仿生机器海豚的控制装置50,所述控制装置50包括:As shown in FIG5 , an embodiment of the present invention provides a control device 50 for a bionic robot dolphin, and the control device 50 includes:
获取模块51,用于获取仿生机器海豚的运动速度信息和坐标信息;An acquisition module 51 is used to acquire the movement speed information and coordinate information of the bionic robot dolphin;
生产模块52,用于根据所述运动速度信息和所述坐标信息,得到所述仿生机器海豚的控制参数;所述控制参数包括:目标速度增量和目标转角;A production module 52 is used to obtain control parameters of the bionic robot dolphin according to the motion speed information and the coordinate information; the control parameters include: a target speed increment and a target rotation angle;
确定模块53,用于将所述控制参数输入控制模型进行处理,得到输出信号;所述控制模型通过神经元函数对控制参数进行处理,得到中间结果,对所述中间结果进行校正,得到输出信号;The determination module 53 is used to input the control parameter into the control model for processing to obtain an output signal; the control model processes the control parameter through a neuron function to obtain an intermediate result, and corrects the intermediate result to obtain an output signal;
控制模块54,用于根据所述输出信号控制所述仿生机器海豚的运行状态。The control module 54 is used to control the operating state of the bionic robot dolphin according to the output signal.
可选地,根据所述运动速度信息和所述坐标信息,得到所述仿生机器海豚的控制参数,包括:Optionally, obtaining control parameters of the bionic robot dolphin according to the motion speed information and the coordinate information includes:
根据所述运动速度信息和所述坐标信息,通过算式:According to the motion speed information and the coordinate information, by the formula:
,得到目标速度增量; , get the target speed increment;
其中,为目标速度增量,x2、y2、z2为目标位置坐标数据,x1、y1、z1为所述仿生机器海豚的当前位置坐标数据,t为预设时间数据,为所述仿生机器海豚的当前运动速度;in, is the target speed increment, x 2 , y 2 , z 2 are the target position coordinate data, x 1 , y 1 , z 1 are the current position coordinate data of the bionic robot dolphin, t is the preset time data, is the current movement speed of the bionic robot dolphin;
通过算式:By formula:
,得到目标转角; , get the target turning angle;
其中,为目标转角,为所述仿生机器海豚的当前运动速度向量,为所述仿生机器海豚的目标位置向量。in, is the target corner, is the current motion speed vector of the bionic robot dolphin, is the target position vector of the bionic robot dolphin.
可选地,所述控制模型通过神经元函数对控制参数进行处理,得到中间结果,对所述中间结果进行校正,得到输出信号,包括:Optionally, the control model processes the control parameter by a neuron function to obtain an intermediate result, and corrects the intermediate result to obtain an output signal, including:
将所述控制参数,输入控制模型通过神经元函数进行加权处理,得到中间结果;The control parameters are input into the control model for weighted processing through a neuron function to obtain an intermediate result;
对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号;所述电流强度控制信号和通电时间区间控制信号,用于控制所述仿生机器海豚的姿态调整装置和驱动装置运动。The intermediate result is corrected to obtain a current intensity control signal and a power-on time interval control signal; the current intensity control signal and the power-on time interval control signal are used to control the movement of the posture adjustment device and the driving device of the bionic robot dolphin.
可选地,将所述控制参数,输入控制模型通过神经元函数进行加权处理,得到中间结果,包括:Optionally, the control parameters are input into the control model and weighted by a neuron function to obtain an intermediate result, including:
所述控制模型通过神经元函数:The control model is implemented by neuron function:
对控制参数进行处理,得到中间结果;Process the control parameters to obtain intermediate results;
其中,f (ni)为中间结果;ni=Ai∙x+d1i,1≤i≤j,j为第一隐藏层中的神经元数量;Ai=[],为输入层到第一隐藏层的权值;x=[x1,x2]为输入向量,x1=,x2=;d1i为第一隐藏层中神经元偏置值的权重;a为参量,0<a<1。Where f ( ni ) is the intermediate result; ni = Ai ∙x+ d1i , 1≤i≤j, j is the number of neurons in the first hidden layer; Ai =[ ], is the weight from the input layer to the first hidden layer; x=[x 1 ,x 2 ] is the input vector, x 1 = , x 2 = ; d 1i is the weight of the neuron bias value in the first hidden layer; a is a parameter, 0<a<1.
可选地,对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号,包括:Optionally, the intermediate result is corrected to obtain a current intensity control signal and a power-on time interval control signal, including:
根据所述中间结果,通过算式:According to the intermediate results, by formula:
确定偏差数据,其中,E为偏差数据;为预期结果;Determine deviation data, where E is the deviation data; For the expected results;
根据所述偏差数据,对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号。The intermediate result is corrected according to the deviation data to obtain a current intensity control signal and a power-on time interval control signal.
可选地,根据所述偏差数据,对所述中间结果进行校正,得到电流强度控制信号和通电时间区间控制信号,包括:Optionally, the intermediate result is corrected according to the deviation data to obtain a current intensity control signal and a power-on time interval control signal, including:
根据所述偏差数据,通过算式:According to the deviation data, by the formula:
确定第二隐藏层到输出层的权值和第二隐藏层中神经元偏置值的权重,其中,为第二隐藏层到输出层的权值,m=1,2;为第二隐藏层中神经元偏置值的权重;为学习率;Determine the weight from the second hidden layer to the output layer and the weight of the neuron bias value in the second hidden layer, where, is the weight from the second hidden layer to the output layer, m=1, 2; is the weight of the neuron bias value in the second hidden layer; is the learning rate;
根据所述第二隐藏层到输出层的权值和第二隐藏层中神经元偏置值的权重,通过所述神经元函数,得到电流强度控制信号和通电时间区间控制信号。According to the weight from the second hidden layer to the output layer and the weight of the neuron bias value in the second hidden layer, a current intensity control signal and a power-on time interval control signal are obtained through the neuron function.
可选地,根据所述输出信号控制所述仿生机器海豚的运行状态,包括:Optionally, controlling the operating state of the bionic robot dolphin according to the output signal includes:
根据所述电流强度控制信号和通电时间区间控制信号,生成控制脉冲信号;Generate a control pulse signal according to the current intensity control signal and the power-on time interval control signal;
根据所述控制脉冲信号,控制所述仿生机器海豚的运行状态。The operating state of the bionic robot dolphin is controlled according to the control pulse signal.
需要说明的是,该装置是与上述方法相对应的装置,上述方法实施例中的所有实现方式均适用于该实施例中,也能达到相同的技术效果。It should be noted that the device is a device corresponding to the above method, and all implementation methods in the above method embodiment are applicable to this embodiment and can achieve the same technical effect.
如图6所示,本发明实施例还提供一种计算设备60,包括处理器61,存储器62,存储在存储器62上并可在处理器61上运行的程序或指令,该程序或指令被处理器61执行时实现上述虚拟对象的同步信息处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。需要说明的是,本发明实施例中的计算设备包括上述的移动电子设备和非移动电子设备。As shown in FIG6 , an embodiment of the present invention further provides a computing device 60, including a processor 61, a memory 62, and a program or instruction stored in the memory 62 and executable on the processor 61. When the program or instruction is executed by the processor 61, each process of the embodiment of the synchronization information processing method of the virtual object described above is implemented, and the same technical effect can be achieved. To avoid repetition, it will not be described here. It should be noted that the computing device in the embodiment of the present invention includes the mobile electronic device and the non-mobile electronic device described above.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those of ordinary skill in the art will appreciate that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the present invention.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working processes of the systems, devices and units described above can refer to the corresponding processes in the aforementioned method embodiments and will not be repeated here.
在本发明所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the embodiments provided by the present invention, it should be understood that the disclosed devices and methods can be implemented in other ways. For example, the device embodiments described above are only schematic, for example, the division of units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed. Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。Stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present invention can be essentially or partly embodied in the form of a software product that contributes to the prior art. The computer software product is stored in a storage medium and includes several instructions for enabling a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods of various embodiments of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, ROM, RAM, disk or optical disk, etc., various media that can store program codes.
此外,需要指出的是,在本发明的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本发明的说明的情况下运用他们的基本编程技能就能实现的。In addition, it should be pointed out that in the apparatus and method of the present invention, it is obvious that each component or each step can be decomposed and/or recombined. These decompositions and/or recombinations should be regarded as equivalent schemes of the present invention. Moreover, the steps of performing the above series of processing can naturally be performed in chronological order according to the order of description, but it is not necessary to perform them in chronological order, and some steps can be performed in parallel or independently of each other. For those of ordinary skill in the art, it is understandable that all or any steps or components of the method and apparatus of the present invention can be implemented in hardware, firmware, software or a combination thereof in any computing device (including processors, storage media, etc.) or a network of computing devices, which can be achieved by those of ordinary skill in the art using their basic programming skills after reading the description of the present invention.
因此,本发明的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。计算装置可以是公知的通用装置。因此,本发明的目的也可以仅仅通过提供包含实现方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本发明,并且存储有这样的程序产品的存储介质也构成本发明。显然,存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本发明的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。Therefore, the purpose of the present invention can also be achieved by running a program or a group of programs on any computing device. The computing device can be a well-known general-purpose device. Therefore, the purpose of the present invention can also be achieved by simply providing a program product containing a program code for implementing a method or device. That is to say, such a program product also constitutes the present invention, and a storage medium storing such a program product also constitutes the present invention. Obviously, the storage medium can be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that in the device and method of the present invention, it is obvious that each component or each step can be decomposed and/or recombined. These decompositions and/or recombinations should be regarded as equivalent schemes of the present invention. In addition, the steps of performing the above-mentioned series of processing can naturally be performed in chronological order according to the order of description, but it is not necessary to perform them in chronological order. Some steps can be performed in parallel or independently of each other.
以上是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are preferred embodiments of the present invention. It should be pointed out that, for ordinary technicians in this technical field, several improvements and modifications can be made without departing from the principles of the present invention. These improvements and modifications should also be regarded as within the scope of protection of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410666955.4A CN118244805B (en) | 2024-05-28 | 2024-05-28 | A control method, device and equipment for a bionic robot dolphin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410666955.4A CN118244805B (en) | 2024-05-28 | 2024-05-28 | A control method, device and equipment for a bionic robot dolphin |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118244805A CN118244805A (en) | 2024-06-25 |
CN118244805B true CN118244805B (en) | 2024-07-30 |
Family
ID=91559176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410666955.4A Active CN118244805B (en) | 2024-05-28 | 2024-05-28 | A control method, device and equipment for a bionic robot dolphin |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118244805B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113867156A (en) * | 2021-12-02 | 2021-12-31 | 湖南工商大学 | Method and device for tracking robotic fish path by fusing BP-RBF neural network |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110909859B (en) * | 2019-11-29 | 2023-03-24 | 中国科学院自动化研究所 | Bionic robot fish motion control method and system based on antagonistic structured control |
CN111158385B (en) * | 2020-01-10 | 2023-06-30 | 南京工程学院 | Motion control method, device, equipment and readable storage medium of bionic robotic fish |
CN113311705B (en) * | 2021-05-19 | 2022-03-25 | 广州大学 | High-order iterative self-learning control method and device for robotic fish and storage medium |
-
2024
- 2024-05-28 CN CN202410666955.4A patent/CN118244805B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113867156A (en) * | 2021-12-02 | 2021-12-31 | 湖南工商大学 | Method and device for tracking robotic fish path by fusing BP-RBF neural network |
Also Published As
Publication number | Publication date |
---|---|
CN118244805A (en) | 2024-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11845186B2 (en) | Inverse kinematics solving method for redundant robot and redundant robot and computer readable storage medium using the same | |
WO2021103392A1 (en) | Confrontation structured control-based bionic robotic fish motion control method and system | |
US10962976B1 (en) | Motion control method and system for biomimetic robotic fish based on adversarial structured control | |
Wang et al. | Target tracking control of a biomimetic underwater vehicle through deep reinforcement learning | |
Psaltis et al. | A multilayered neural network controller | |
CN110286592B (en) | Multi-mode robot fish movement method and system based on BP neural network | |
CN114952868B (en) | 7-degree-of-freedom SRS (sounding reference Signal) type mechanical arm control method and device and piano playing robot | |
Yan et al. | Efficient cooperative structured control for a multijoint biomimetic robotic fish | |
CN111273677B (en) | Autonomous underwater robot speed and heading control method based on reinforcement learning technology | |
WO2022199146A1 (en) | Robot control method and robot based on spiking neural network, and storage medium | |
CN115657689A (en) | A Target Tracking Control Method for Autonomous Underwater Vehicle Based on Trajectory Prediction | |
CN112405542B (en) | Musculoskeletal robot control method and system based on brain inspiring multitask learning | |
CN117140527A (en) | A robotic arm control method and system based on deep reinforcement learning algorithm | |
CN114397899A (en) | Bionic robot fish three-dimensional path tracking control method and device | |
Ma et al. | Sample-observed soft actor-critic learning for path following of a biomimetic underwater vehicle | |
CN118244770A (en) | Repeated learning composite disturbance-resistant error-tolerant control method for unmanned ship | |
Lu et al. | Toward swimming speed optimization of a multi-flexible robotic fish with low cost of transport | |
CN1718378A (en) | S-plane control method for the motion of floating underwater robot | |
CN118244805B (en) | A control method, device and equipment for a bionic robot dolphin | |
CN110703792B (en) | Underwater robot attitude control method based on reinforcement learning | |
Wang et al. | Path planning of unmanned underwater vehicles based on deep reinforcement learning algorithm | |
Priandana et al. | SOM-based direct inverse trajectory control system for double-propeller boat maneuvers | |
Liu et al. | Representation reinforcement learning-based dense control for point following with state sparse sensing of 3-D snake robots | |
CN115808931B (en) | Motion control method, device, system, equipment and storage medium for underwater robot | |
CN119217384B (en) | Trajectory optimization method for unmanned underwater vehicle with boom based on speed maneuverability measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |