CN118166052A - Method for improving guanosine yield, engineering bacteria thereof and application thereof - Google Patents

Method for improving guanosine yield, engineering bacteria thereof and application thereof Download PDF

Info

Publication number
CN118166052A
CN118166052A CN202410321729.2A CN202410321729A CN118166052A CN 118166052 A CN118166052 A CN 118166052A CN 202410321729 A CN202410321729 A CN 202410321729A CN 118166052 A CN118166052 A CN 118166052A
Authority
CN
China
Prior art keywords
guanosine
strain
glck
recombinant plasmid
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410321729.2A
Other languages
Chinese (zh)
Inventor
付敏杰
张峰
肖舒卉
田锋
时铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Life Infinite Power Biotechnology Co ltd
Suzhou Biosynthetica Co ltd
Original Assignee
Suzhou Life Infinite Power Biotechnology Co ltd
Suzhou Biosynthetica Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Life Infinite Power Biotechnology Co ltd, Suzhou Biosynthetica Co ltd filed Critical Suzhou Life Infinite Power Biotechnology Co ltd
Priority to CN202410321729.2A priority Critical patent/CN118166052A/en
Publication of CN118166052A publication Critical patent/CN118166052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention belongs to the field of genetic engineering, and particularly relates to a method for improving guanosine yield, engineering bacteria thereof and application thereof. The method for improving the guanosine yield comprises the steps of carrying out seamless cloning recombination on a glucokinase gene glcK fragment to a pBG-BamHI enzyme fragment to form a recombinant plasmid, then converting the recombinant plasmid into a strain SHE166E to obtain a recombinant strain, producing guanosine by shake flask fermentation, and obviously improving the guanosine fermentation yield of the recombinant strain which overexpresses the glucokinase gene glcK in a final fermentation product, thereby providing data support for improving the guanosine yield and the acid yield by optimizing the carbon metabolism of the strain.

Description

Method for improving guanosine yield, engineering bacteria thereof and application thereof
Technical Field
The invention belongs to the field of genetic engineering, and particularly relates to a method for improving guanosine yield, engineering bacteria thereof and application thereof.
Background
Guanosine is one of purine nucleoside substances, and has a molecular formula of C 10H13N5O5, a relative molecular mass of 283.24, white crystalline powder, needle-like crystals of dihydrate, water loss at 110 ℃, a melting point of 240 ℃ (decomposition), a specific optical rotation of-60 ℃, and can be dissolved in dilute mineral acid, hot acetic acid and dilute alkali (1 g/33 mL), boiling water, and slightly dissolved in cold water (1 g/1320 mL), and is insoluble in alcohol, ether, chloroform and benzene.
The guanosine has very wide application, is an important intermediate of food and medical products, can be used for synthesizing food flavoring agents, namely, 5' -disodium guanylate, flavor disodium nucleotide, nucleoside antiviral drugs such as ribavirin, acyclovir and the like, and is also a main raw material for preparing drugs such as acyclovir (Acyclovir), ribavirin (ATC), guanosine Triphosphate (GTP) and the like.
Industrial guanosine production is mainly chemical synthesis, RNA hydrolysis and microbial fermentation. The guanylic acid is produced by chemical synthesis, and the nucleoside is usually subjected to phosphorylation reaction by phosphoric acid or active derivative of pyrophosphoric acid, so that the chemical synthesis is less and less dominant along with strict environmental protection requirements. The RNA hydrolysis method is to make RNA react in strong ammonia water at high temperature and high pressure of 175-180 ℃, or boil in pyridine water solution for several days, or heat lamp method in formamide water solution to obtain nucleotide, but the method has few adoption in modern industrial production because of the problems of complex process, low yield, high cost, environmental pollution of raw material source base and the like. The production of guanosine by a microbial fermentation method enters an industrial production scale and becomes a main development direction of guanosine production in the future; microbial fermentation studies of guanosine have now been carried out industrially, but the yield and conversion rate have yet to be improved. Based on the background, we plan to develop a genetically engineered bacillus subtilis with high guanosine yield, in the process, we find that glcK has great advantages in SHE166E genetically engineered strains, and is beneficial to improving the guanosine yield produced by fermenting the genetically engineered strains.
Disclosure of Invention
The method for producing the guanosine comprises the steps of carrying out seamless cloning recombination on a glucokinase gene glcK fragment to a pBG-BamHI restriction enzyme plasmid fragment to obtain a recombinant plasmid, then converting the recombinant plasmid into a strain SHE166E to obtain a recombinant strain, producing the guanosine through shake flask fermentation, and obviously improving the guanosine yield of the strain which overexpresses the glucokinase gene glcK in a final fermentation product.
In one aspect, the invention provides a method for increasing guanosine fermentation yield comprising: the glucokinase gene glcK is overexpressed in the basal strain.
The nucleotide fragment of the glucokinase gene glcK comprises SEQ ID NO.1 or a functional fragment thereof.
Specifically, the basic strain comprises bacillus, paenibacillus, brevibacillus and corynebacterium;
Preferably, the said base bacterial species is bacillus subtilis (Bacillus subtilis);
Preferably, the basic strain is bacillus subtilis SHE166E, and the preservation number is CGMCC No.29449.
Specifically, the overexpression of the glucokinase gene glcK is realized by constructing a recombinant plasmid or is directly integrated into a genome.
Preferably, the vector skeleton of the recombinant plasmid is pBG102,102 plasmid.
Preferably, the insertion site of the glucokinase gene glcK in pBG102 plasmid is BamHI.
SEQ ID NO.1:
TTCCCATATAAAGGAGGAAGGATCatggacgagatatggtttgcgggcattgacctgggaggaacgacgattaaactcgcttttattaatcaatatggcgaaattcagcataagtgggaagttccgacagataaaaccggcgacacgattactgtcacaattgcaaaaacaatcgacagcaagctggatgagctgcaaaaaccgaagcacatcatcaaatacatcggaatgggtgcaccaggccctgtagatatggcggcaggagtggtttatgaaacagtaaatctagggtggaaaaattatgctttgaaaaaccatctggagacagaaaccggcatcccagctgttatagaaaatgacgcgaatattgctgcgctcggggaaatgtggaagggagcgggtgatggcgcaaaagacgtcattctcgtgacgcttggcacaggagttggcggcggcatcattgcaaatggtgaaattgtacatggtataaatggcgccggcggagaaatcggccatatttgcagcatccctgaaggcggagcgccctgcaactgcggcaaaacgggctgtatcgaaacaattgcgtcagcaaccggaattgtaagaattgcaaaagaaaaaatagcaaatgctaaaaagacgacacgtttaaaagcaaccgaacaattgtcagcgcgagatgtgtttgaagcggcgggtgaaaatgatgaaattgcccttgaggtggttgattatgtagccaagcatcttggtttggtgctcggaaatttggcaagctcgcttaatccatccaaaatcgttcttggcggcggcgtatcgagagccggagaactgctgagatcaaaagtcgagaaaacattccgcaaatgcgcgtttccgcgggcagcccaagctgctgatatttcaatcgcagcacttggaaatgatgccggcgttatcggaggcgcttggatcgctaaaaatgaatggctgaaacatcaaaattgttaaGATCCTCTAGAGTCGACgtccc.
Specifically, the nucleotide sequence of the primer for amplifying the glucokinase gene glcK fragment comprises SEQ ID NO.2 and SEQ ID NO.3.
Specifically, amplification of the glcK fragment of the glucokinase gene was performed by PCR technique.
Specifically, the sequence length of the glucokinase gene glcK fragment is 1012bp.
SEQ ID NO.2:TTCCCATATAAAGGAGGAAGGATCatggacgagatatggtttgcgg。
SEQ ID NO.3:gggacGTCGACTCTAGAGGATCttaacaattttgatgtttcagccattc。
In yet another aspect, the present invention also provides a recombinant plasmid comprising the expression of the aforementioned glucokinase gene glcK.
Specifically, the backbone plasmid of the recombinant plasmid is a bacillus subtilis expression plasmid vector.
Specifically, the backbone plasmid is selected from pHT01, pHT254, pHT43, pMA5, pWB980 or pBG102.
Preferably, the backbone plasmid is pBG102,102.
Specifically, the nucleotide sequence of the recombinant plasmid comprises SEQ ID NO.4.
Specifically, the construction method of the recombinant plasmid comprises the following steps: and (3) recombining the glucokinase gene glcK onto pBG-BamHI enzyme fragments in a seamless cloning mode to obtain recombinant plasmids.
SEQ ID NO.4:gtaaaacgacggccagtgaattcgagctcaggccttaactcacattaattgcgttgcgctc actgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgccagggtggtttttcttttcaccagtgagacgggcaacagctgattgcccttcaccgcctggccctgagagagttgcagcaagcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggtggttgacggcgggatataacatgagctgtcttcggtatcgtcgtatcccactaccgagatatccgcaccaacgcgcagcccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttggcaaccagcatcgcagtgggaacgatgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttcccgttccgctatcggctgaatttgattgcgagtgagatatttatgccagccagccagacgcagacgcgccgagacagaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatgctccacgcccagtcgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataacgccggaacattagtgcaggcagcttccacagcaatggcatcctggtcatccagcggatagttaatgatcagcccactgacgcgttgcgcgagaagattgtgcaccgccgctttacaggcttcgacgccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcggcgcgagatttaatcgccgcgacaatttgcgacggcgcgtgcagggccagactggaggtggcaacgccaatcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattcagctccgccatcgccgcttccactttttcccgcgttttcgcagaaacgtggctggcctggttcaccacgcgggaaacggtctgataagagacaccggcatactctgcgacatcgtataacgttactggtttcatcaaaatcgtctccctccgtttgaatatttgattgatcgtaaccagatgaagcactctttccactatccctacagtgttatggcttgaacaatcacgaaacaataattggtacgtacgatctttcagccgactcaaacatcaaatcttacaaatgtagtctttgaaagtattacatatgtaagatttaaatgcaaccgttttttcggaaggaaatgatgacctcgtttccaccggaattagcttggtaccaaaggaggtaaggatcactagaaaattttttaaaaaatctcttgacattggaagggagatatgttattataagaattgcggAATTGTGAGCGGATAACAATTCCCATATAAAGGAGGAAGGATCatggacgagatatggtttgcgggcattgacctgggaggaacgacgattaaactcgcttttattaatcaatatggcgaaattcagcataagtgggaagttccgacagataaaaccggcgacacgattactgtcacaattgcaaaaacaatcgacagcaagctggatgagctgcaaaaaccgaagcacatcatcaaatacatcggaatgggtgcaccaggccctgtagatatggcggcaggagtggtttatgaaacagtaaatctagggtggaaaaattatgctttgaaaaaccatctggagacagaaaccggcatcccagctgttatagaaaatgacgcgaatattgctgcgctcggggaaatgtggaagggagcgggtgatggcgcaaaagacgtcattctcgtgacgcttggcacaggagttggcggcggcatcattgcaaatggtgaaattgtacatggtataaatggcgccggcggagaaatcggccatatttgcagcatccctgaaggcggagcgccctgcaactgcggcaaaacgggctgtatcgaaacaattgcgtcagcaaccggaattgtaagaattgcaaaagaaaaaatagcaaatgctaaaaagacgacacgtttaaaagcaaccgaacaattgtcagcgcgagatgtgtttgaagcggcgggtgaaaatgatgaaattgcccttgaggtggttgattatgtagccaagcatcttggtttggtgctcggaaatttggcaagctcgcttaatccatccaaaatcgttcttggcggcggcgtatcgagagccggagaactgctgagatcaaaagtcgagaaaacattccgcaaatgcgcgtttccgcgggcagcccaagctgctgatatttcaatcgcagcacttggaaatgatgccggcgttatcggaggcgcttggatcgctaaaaatgaatggctgaaacatcaaaattgttaaGATCCTCTAGAGTCGACgtccccggggcagcccgcctaatgagcgggcttttttcacgtcacgcgtccatggagatctttgtctgcaactgaaaagtttataccttacctggaacaaatggttgaaacatacgaggctaatatcggcttattaggaatagtccctgtactaataaaatcaggtggatcagttgatcagtatattttggacgaagctcggaaagaatttggagatgacttgcttaattccacaattaaattaagggaaagaataaagcgatttgatgttcaaggaatcacggaagaagatactcatgataaagaagctctaaaactattcaataaccttacaatggaattgatcgaaagggtggaaggttaatggtacgaaaattaggggatctacctagaaagccacaaggcgataggtcaagcttaaagaacccttacatggatcttacagattctgaaagtaaagaaacaacagaggttaaacaaacagaaccaaaaagaaaaaaagcattgttgaaaacaatgaaagttgatgtttcaatccataataagattaaatcgctgcacgaaattctggcagcatccgaagggaattcatattacttagaggatactattgagagagctattgataagatggttgagacattacctgagagccaaaaaactttttatgaatatgaattaaaaaaaagaaccaacaaaggctgagacagactccaaacgagtctgtttttttaaaaaaaatattaggagcattgaatatatattagagaattaagaaagacatgggaataaaaatattttaaatccagtaaaaatatgataagattatttcagaatatgaagaactctgtttgtttttgatgaaaaaacaaacaaaaaaaatccacctaacggaatctcaatttaactaacagcggccaaactgagaagttaaatttgagaaggggaaaaggcggatttatacttgtatttaactatctccattttaacattttattaaaccccatacaagtgaaaatcctcttttacactgttcctttaggtgatcgcggagggacattatgagtgaagtaaacctaaaaggaaatacagatgaattagtgtattatcgacagcaaaccactggaaataaaatcgccaggaagagaatcaaaaaagggaaagaagaagtttattatgttgctgaaacggaagagaagatatggacagaagagcaaataaaaaacttttctttagacaaatttggtacgcatataccttacatagaaggtcattatacaatcttaaataattacttctttgatttttggggctattttttaggtgctgaaggaattgcgctctatgctcacctaactcgttatgcatacggcagcaaagacttttgctttcctagtctacaaacaatcgctaaaaaaatggacaagactcctgttacagttagaggctacttgaaactgcttgaaaggtacggttttatttggaaggtaaacgtccgtaataaaaccaaggataacacagaggaatccccgatttttaagattagacgtaaggttcctttgctttcagaagaacttttaaatggaaaccctaatattgaaattccagatgacgaggaagcacatgtaaagaaggctttaaaaaaggaaaaagagggtcttccaaaggttttgaaaaaagagcacgatgaatttgttaaaaaaatgatggatgagtcagaaacaattaatattccagaggccttacaatatgacacaatgtatgaagatatactcagtaaaggagaaattcgaaaagaaatcaaaaaacaaatacctaatcctacaacatcttttgagagtatatcaatgacaactgaagaggaaaaagtcgacagtactttaaaaagcgaaatgcaaaatcgtgtctctaagccttcttttgatacctggtttaaaaacactaagatcaaaattgaaaataaaaattgtttattacttgtaccgagtgaatttgcatttgaatggattaagaaaagatatttagaaacaattaaaacagtccttgaagaagctggatatgttttcgaaaaaatcgaactaagaaaagtgcaataaactgctgaagtatttcagcagttttttttatttagaaatagtgaaaaaaatataatcagggaggtatcaatatttaatgagtactgatttaaatttatttagactggaattaataattaacacgtagactaattaaaatttaatgagggataaagaggatacaaaaatattaatttcaatccctattaaattttaacaagggggggattaaaatttaattagaggtttatccacaagaaaagaccctaataaaatttttactagggttataacactgattaatttcttaatgggggagggattaaaatttaatgacaaagaaaacaatcttttaagaaaagcttttaaaagataataataaaaagagctttgcgattaagcaaaactctttactttttcattgacattatcaaattcatcgatttcaaattgttgttgtatcataaagttaattctgttttgcacaaccttttcaggaatataaaacacatctgaggcttgttttataaactcagggtcgctaaagtcaatgtaacgtagcatatgatatggtatagcttccacccaagttagcctttctgcttcttctgaatgtttttcatatacttccatgggtatctctaaatgattttcctcatgtagcaaggtatgagcaaaaagtttatggaattgatagttcctctctttttcttcaacttttttatctaaaacaaacactttaacatctgagtcaatgtaagcataagatgtttttccagtcataatttcaatcccaaatcttttagacagaaattctggacgtaaatcttttggtgaaagaatttttttatgtagcaatatatccgatacagcaccttctaaaagcgttggtgaatagggcattttacctatctcctctcattttgtggaataaaaatagtcatattcgtccatctacctatcctattatcgaacagttgaactttttaatcaaggatcagtcctttttttcattattcttaaactgtgctcttaactttaacaactcgatttgtttttccagatctcgagggtaactagcctcgccgatcccgcaagaggcccggcagtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcatgcttaagttattggtatgactggttttaagcgcaaaaaaagttgctttttcgtacctattaatgtatcgttttagaaaaccgactgtaaaaagtacagtcggcattatctcatattataaaagccagtcattaggcctatctgacaattcctgaatagagttcataaacaatcctgcatgataaccatcacaaacagaatgatgtacctgtaaagatagcggtaaatatattgaattacctttattaatgaattttcctgctgtaataatgggtagaaggtaattactattattattgatatttaagttaaacccagtaaatgaagtccatggaataatagaaagagaaaaagcattttcaggtataggtgttttgggaaacaatttccccgaaccattatatttctctacatcagaaaggtataaatcataaaactctttgaagtcattctttacaggagtccaaataccagagaatgttttagatacaccatcaaaaattgtataaagtggctctaacttatcccaataacctaactctccgtcgctattgtaaccagttctaaaagctgtatttgagtttatcacccttgtcactaagaaaataaatgcagggtaaaatttatatccttcttgttttatgtttcggtataaaacactaatatcaatttctgtggttatactaaaagtcgtttgttggttcaaataatgattaaatatctcttttctcttccaattgtctaaatcaattttattaaagttcatttgatatgcctcctaaatttttatctaaagtgaatttaggaggcttacttgtctgctttcttcattagaatcaatccttttttaaaagtcaatattactgtaacataaatatatattttaaaaatatcccactttatccaattttcgtttgttgaactaatgggtgctttagttgaagaataaagaccacattaaaaaatgtggtcttttgtgtttttttaaaggatttgagcgtagcgaaaaatccttttctttcttatcttgataataagggtaactattgccgatcgtccattccgacagcatcgccagtcactatggcgtgctgctagcgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgtt.
In yet another aspect, the invention also provides a genetically engineered strain comprising the recombinant plasmid.
Specifically, the recombinant plasmid was transformed into the base strain SHE 166E.
Specifically, the genetically engineered strain in the present invention refers to a genetically engineered microorganism strain.
In yet another aspect, the invention also provides the use of the overexpression of the aforementioned glucokinase gene glcK for increasing the yield of guanosine fermentation.
In yet another aspect, the invention also claims the use of the aforementioned recombinant plasmid and/or the aforementioned genetically engineered bacterium in the production of guanosine.
In yet another aspect, the invention also provides a method for producing guanosine.
Specifically, guanosine is produced by a shake flask fermentation method.
The shaking flask fermentation: i.e. this is a laboratory scale fermentation process, typically used for small scale production or testing. In this method, the bottles containing microorganisms and nutrients are shaken under controlled conditions to promote growth and metabolism.
In the present invention, guanosine is produced by a shake flask fermentation method in which a genetically engineered microorganism such as bacteria or yeast is used to efficiently produce a target compound.
Specifically, the shake flask fermentation comprises the following steps:
(1) Activation of the aforementioned genetically engineered strain;
(2) Fermenting;
(3) Extracting guanosine.
Specifically, the step (1) includes: inoculating the genetic engineering strain to an LB culture medium containing antibiotics for culture, and transferring the cultured seed liquid to a liquid culture medium containing antibiotics for continuous culture;
The step (2) comprises the following steps: transferring the activated seeds into a fermentation medium, fermenting and culturing, adding IPTG, and continuing fermenting and culturing;
The step (3) comprises the following steps: taking fermentation liquor, adding NaOH, diluting, centrifuging, filtering supernatant by using an aqueous phase membrane, and detecting by HPLC.
The invention has the beneficial effects that:
After the glucose kinase gene glcK is overexpressed in the base strain bacillus subtilis SHE166E, the obtained recombinant strain has improved guanosine fermentation yield compared with the base strain SHE 166E. In the strain SHE166E, the glcK fragment of the glucokinase gene was overexpressed, and guanosine yield was increased by more than 20%.
Preservation certificate
Preserving the strain: SHE166E;
Classification naming: bacillus subtilis Bacillus subtilis;
Preservation number: CGMCC No.29449;
preservation time: 2023, 12, 28;
Preservation unit: china general microbiological culture Collection center (China Committee for culture Collection).
Drawings
FIG. 1 is a peak control plot of HPLC.
FIG. 2 shows the results of guanosine production after shake flask fermentation of the strain.
Detailed Description
The present invention will be described in further detail with reference to the following examples, which are not intended to limit the present invention, but are merely illustrative of the present invention. The experimental methods used in the following examples are not specifically described, but the experimental methods in which specific conditions are not specified in the examples are generally carried out under conventional conditions, and the materials, reagents, etc. used in the following examples are commercially available unless otherwise specified.
In the following examples:
basic example 1 method for producing guanosine by shake flask fermentation
1. Reagent:
(1) LB medium: each liter of the medium contained 5g of yeast powder, 10g of sodium chloride, 10g of peptone, and was fixed to a volume of 1L with deionized water (J.Sam Brookfield. Huang Peitang. TM., molecular cloning guide 2002,1595).
Sterilizing the above solution with high pressure steam at 121deg.C for 20-30min.
(2) Fermentation medium (per liter): 50g of glucose, 5g of corn steep liquor dry powder, 5g of yeast extract, 10g of monosodium glutamate, 5g of ammonium sulfate, 1g of monopotassium phosphate, 0.4g of magnesium sulfate heptahydrate and 20g of calcium carbonate, and after being dissolved by deionized water, regulating the pH value to 7.0, and fixing the volume to 1L by deionized water.
Sterilizing the above solution with high pressure steam at 121deg.C for 20-30min. Simultaneously preparing empty shake flasks, weighing 0.4g of calcium carbonate per flask, and fermenting at 121 ℃ for 20-30min to obtain final concentration of calcium carbonate.
2. Instrument: constant temperature shaking table, constant temperature incubator.
3. And (3) shaking and fermenting:
(1) The recombinant strain was inoculated into 3mL of LB medium containing the antibiotic, and cultured at 37℃with shaking table 250 rpm.
(2) After 16h of cultivation, 500. Mu.L of the seed solution was transferred to 1.5mL of LB liquid medium containing antibiotics, and cultured at 37℃for 4h with shaking table 250 rpm.
(3) 2ML of the secondary seeds were all transferred to a shake flask containing 18mL of fermentation medium, and incubated at 250rpm in a shaker at 37℃for 4h.
(4) The final concentration of IPTG was 0.1mM, and fermentation was continued at 37℃for about 40 hours.
(5) The OD 600 of the broth was determined after dilution with 0.1mL of broth and 2.9mL of 30mM dilute hydrochloric acid.
(6) After the rest of the fermentation broth was diluted with 0.2M NaOH at a multiple, it was centrifuged at 12000rpm for 1min, and the supernatant was filtered with a 0.22 μm filter membrane and then subjected to HPLC detection.
4. Determination of adenosine in fermentation broths by HPLC
(1) The HPLC parameters were as follows:
Chromatographic column: XBridge C18.6 x 150mm 5um
Mobile phase: a is methanol and B is 10mM ammonium acetate (pH 4.0)
Column temperature: 30 DEG C
Initial flow rate: 1.0mL/min
Detection wavelength: 260nm of
Time (min) Phase A (% v/v) Phase B (% v/v) Flow(mL/min)
0.01 2 98 1.0
3.50 15 85 1.0
4.00 22 98 1.0
8.00 2 98 1.0
(2) HPLC profile is shown in fig. 1, T (guanine) =3.1 min, T (guanosine) =5.9 min.
EXAMPLE 1 construction of glcK overexpression plasmid
(1) The Bacilllus subtilis genome (NCBI Reference Sequence: NC_ 000964.3) is used as a template, and a primer pair YHB1521 and YHB1522 is used for PCR to obtain 1012bp glucokinase gene glcK fragments, and the nucleotide sequence of the fragments comprises SEQ ID NO.1 or functional fragments thereof.
TABLE 1 sequences of primers used in the above (1)
(2) The expression vector was pBG as described in patent CN113755412B, and the glcK fragment of the glucokinase gene obtained above was recombined onto pBG-BamHI restriction enzyme fragment by a seamless cloning method (GBclonart seamless cloning kit, su zhou shenzhou gene limited) to obtain a recombinant plasmid pHB477 (the nucleic acid sequence is shown in SEQ ID No. 4).
EXAMPLE 2 overexpression of the glucokinase Gene glcK
(1) The recombinant plasmids pHB477 and pBG102,102 constructed in example 1 were transformed into SHE166E (preservation number: CGMCC No. 29449) and GA01 (guanosine industrial production strain), respectively, according to the transformation method described in patent CN113755412B, to obtain recombinant strains.
(2) Referring to the shake flask fermentation method in basic example 1, the recombinant strain obtained in the above (1) was subjected to shake flask fermentation to verify the guanosine yield, and the result is shown in fig. 2, in which the glcK fragment of the glucokinase gene was overexpressed in the strain SHE166E, and the guanosine yield was increased by 20% or more; in the strain GA01, the glucose kinase gene glcK is overexpressed, and the guanosine yield is improved by nearly one time, namely, the glucose kinase gene glcK has obvious advantages in the guanosine production strain, and data support is provided for improving the guanosine yield and the acid production rate by optimizing the carbon metabolism of the strain subsequently.

Claims (10)

1. A method for increasing guanosine fermentation yield comprising: the glucose kinase gene glcK is overexpressed in the basic strain, and the nucleotide sequence of the glucose kinase gene glcK comprises SEQ ID NO.1 or a functional fragment thereof.
2. The method of claim 1, wherein the base strain comprises bacillus, paenibacillus, brevibacillus, or corynebacterium.
3. The method of claim 2, wherein the base strain is bacillus subtilis (Bacillus subtilis) with a preservation number of CGMCC No.29449.
4. The method according to claim 1, wherein the overexpression of the glucokinase gene glcK is achieved by constructing a recombinant plasmid or directly integrating into the genome.
5. The recombinant plasmid for expressing the glucokinase gene glcK is characterized in that the backbone plasmid is a bacillus subtilis expression plasmid vector; the backbone plasmid is selected from pHT01, pHT254, pHT43, pMA5, pWB980 or pBG102.
6. The recombinant plasmid according to claim 5, wherein the nucleotide sequence of the glucokinase gene glcK comprises SEQ ID No.1 or a functional fragment thereof; the nucleotide sequence of the recombinant plasmid comprises SEQ ID NO.4.
7. A genetically engineered strain comprising the recombinant plasmid of claim 5.
8. Use of the overexpressed glucokinase gene glcK for increasing the production of guanosine, comprising overexpressing the glucokinase gene glcK in a base strain, said glucokinase gene glcK having a nucleotide sequence comprising SEQ ID No.1 or a functional fragment thereof.
9. Use of the recombinant plasmid of claim 5 and/or the genetically engineered strain of claim 7 for increasing guanosine production.
10. A method for producing guanosine, comprising the steps of:
(1) Activation of the genetically engineered strain of claim 7;
(2) Fermenting;
(3) Extracting guanosine.
CN202410321729.2A 2024-03-20 2024-03-20 Method for improving guanosine yield, engineering bacteria thereof and application thereof Pending CN118166052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410321729.2A CN118166052A (en) 2024-03-20 2024-03-20 Method for improving guanosine yield, engineering bacteria thereof and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410321729.2A CN118166052A (en) 2024-03-20 2024-03-20 Method for improving guanosine yield, engineering bacteria thereof and application thereof

Publications (1)

Publication Number Publication Date
CN118166052A true CN118166052A (en) 2024-06-11

Family

ID=91346704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410321729.2A Pending CN118166052A (en) 2024-03-20 2024-03-20 Method for improving guanosine yield, engineering bacteria thereof and application thereof

Country Status (1)

Country Link
CN (1) CN118166052A (en)

Similar Documents

Publication Publication Date Title
CN100491524C (en) Process and materials for production of glucosamine
CN112342176A (en) Genetic engineering bacterium for producing 2' -fucosyllactose and application thereof
CN114134093B (en) Recombinant microorganism producing cytosine and method for producing cytosine
CN108753669B (en) Adenine production strain and construction method and application thereof
CN107916283B (en) A kind of production technology of niacinamide
CN103409485A (en) Method for improving adenosine fermentation output through feeding organic nitrogen source
CN105154381A (en) Novel mutant microorganism producing succinic acid simultaneously using sucrose and glycerol, and method for preparing succinic acid using same
CN116463273A (en) Method for enhancing accumulation of 5' -cytidine acid and application thereof
CN104561195A (en) Preparation method of uridine diphosphate glucose
CN108018252A (en) A kind of preparation method of intermediate 2 '-deoxyguanosine
CN110551781A (en) Method for preparing 5' -guanylic acid by enzyme method
KR101371954B1 (en) Novel process
CN114480461B (en) Recombinant microorganism for producing beta-nicotinamide mononucleotide and construction method and application thereof
CN106834176B (en) Nucleoside phosphorylase, coding gene, high-yield strain thereof and application
CN118166052A (en) Method for improving guanosine yield, engineering bacteria thereof and application thereof
CN115851855A (en) Method and composition for enzymatic synthesis of purine nucleosides
CN113025550B (en) High yield of vitamin B2Bacillus subtilis engineering strain, construction and application thereof
Kang et al. Preparative synthesis of dTDP‐l‐rhamnose through combined enzymatic pathways
JP4066121B2 (en) Process for producing guanosine and its intermediate
CN114107143A (en) Method for producing 5' -cytidylic acid
Taran et al. Synthesis of 2-chloro-2′-deoxyadenosine by microbiological transglycosylation using a recombinant Escherichia coli strain
CN104894022B (en) The gene and application of a kind of organic solvent-resistant galactosidase Producing Strain and the galactosidase
CN116925993B (en) Genetically engineered strains and methods for enzyme-catalyzed production of cytidine acids
CN116948928B (en) Seed culture medium and fermentation production method of 2' -fucosyllactose without antibiotics and IPTG inducer
CN117106680B (en) Recombinant microorganism and method for producing cytosine

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination