CN118156728A - A composite diaphragm with pore size gradient effect and preparation method and application thereof - Google Patents
A composite diaphragm with pore size gradient effect and preparation method and application thereof Download PDFInfo
- Publication number
- CN118156728A CN118156728A CN202410564357.6A CN202410564357A CN118156728A CN 118156728 A CN118156728 A CN 118156728A CN 202410564357 A CN202410564357 A CN 202410564357A CN 118156728 A CN118156728 A CN 118156728A
- Authority
- CN
- China
- Prior art keywords
- membrane
- diaphragm
- composite
- pore size
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011148 porous material Substances 0.000 title claims abstract description 101
- 239000002131 composite material Substances 0.000 title claims abstract description 79
- 230000000694 effects Effects 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000000919 ceramic Substances 0.000 claims abstract description 50
- 229920000098 polyolefin Polymers 0.000 claims abstract description 43
- 239000001913 cellulose Substances 0.000 claims abstract description 36
- 229920002678 cellulose Polymers 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 17
- 239000002033 PVDF binder Substances 0.000 claims abstract description 15
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000012528 membrane Substances 0.000 claims description 111
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000000243 solution Substances 0.000 claims description 21
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 claims description 18
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 14
- 229910052744 lithium Inorganic materials 0.000 claims description 13
- 239000012621 metal-organic framework Substances 0.000 claims description 12
- 239000013310 covalent-organic framework Substances 0.000 claims description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 10
- 239000013207 UiO-66 Substances 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 9
- 229910001507 metal halide Inorganic materials 0.000 claims description 8
- 150000005309 metal halides Chemical class 0.000 claims description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 claims description 4
- 238000004146 energy storage Methods 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- 229920002125 Sokalan® Polymers 0.000 claims description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000000446 fuel Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 claims description 2
- 239000004584 polyacrylic acid Substances 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- 239000000661 sodium alginate Substances 0.000 claims description 2
- 235000010413 sodium alginate Nutrition 0.000 claims description 2
- 229940005550 sodium alginate Drugs 0.000 claims description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 2
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 238000001764 infiltration Methods 0.000 claims 1
- 230000008595 infiltration Effects 0.000 claims 1
- 238000000967 suction filtration Methods 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 24
- 229910001510 metal chloride Inorganic materials 0.000 abstract description 6
- 230000008859 change Effects 0.000 abstract description 2
- 238000004807 desolvation Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 238000013329 compounding Methods 0.000 abstract 1
- 238000005096 rolling process Methods 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 17
- 229910001416 lithium ion Inorganic materials 0.000 description 17
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 16
- 238000012360 testing method Methods 0.000 description 9
- 239000011592 zinc chloride Substances 0.000 description 8
- 235000005074 zinc chloride Nutrition 0.000 description 8
- 150000001450 anions Chemical class 0.000 description 6
- 210000001787 dendrite Anatomy 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 229920002577 polybenzoxazole Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920006310 Asahi-Kasei Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000002000 Electrolyte additive Substances 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229940096017 silver fluoride Drugs 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Cell Separators (AREA)
Abstract
Description
技术领域Technical Field
本发明属于隔膜改性技术领域,尤其涉及一种具有孔径梯度效应的复合隔膜及其制备方法和应用。The invention belongs to the technical field of membrane modification, and in particular relates to a composite membrane with pore size gradient effect and a preparation method and application thereof.
背景技术Background technique
随着全球对清洁能源需求的不断增长,新能源技术特别是高性能电池技术的发展成为了研究的热点。在众多电池技术中,以锂、钠、锌等金属为负极的电池,因其高理论比容量和低还原电位而备受关注,有望大幅提升电池的能量密度。然而,这些金属的高活性也带来了显著的挑战,尤其是金属负极表面枝晶的形成问题。这些枝晶的不断生长不仅会穿透电池隔膜,引起短路和潜在的安全事故,还会加速电解液的消耗,降低电池的充放电效率和寿命。因此,解决金属负极电池中的枝晶问题,提高电池的安全性和性能,成为了研究的重点。虽然目前许多研究集中在负极表面改性上,但是固液界面的均匀离子传输对于防止枝晶形成同样至关重要。目前的一些解决方案,如电解液添加剂或人工固态电解质,虽然在一定程度上有效,但高昂的成本和复杂的制备过程限制了它们的商业应用。因此,寻找一种简单、低成本且环境友好的改性方法显得尤为重要。在这方面,传统锂离子电池使用的聚烯烃隔膜(如聚乙烯)在锂离子和电解液亲和性、孔隙分布均匀性以及机械强度方面存在不足,这些问题都可能导致枝晶的形成和电池短路。因此,对电池隔膜进行改性不仅是必要的。但通常对于隔膜的改性主要针对于元素的掺杂或是包覆,很少有提及到对于隔膜本身结构的优化。而仅使用大孔隙率、大孔径的隔膜,但其在离子迁移中去溶剂化不高,其离子迁移率并不高效。With the growing global demand for clean energy, the development of new energy technologies, especially high-performance battery technologies, has become a research hotspot. Among the many battery technologies, batteries with metals such as lithium, sodium, and zinc as negative electrodes have attracted much attention due to their high theoretical specific capacity and low reduction potential, and are expected to significantly increase the energy density of batteries. However, the high activity of these metals also brings significant challenges, especially the formation of dendrites on the surface of metal negative electrodes. The continuous growth of these dendrites will not only penetrate the battery separator, causing short circuits and potential safety accidents, but also accelerate the consumption of electrolytes, reducing the charging and discharging efficiency and life of the battery. Therefore, solving the dendrite problem in metal negative electrode batteries and improving battery safety and performance have become the focus of research. Although many studies have focused on negative electrode surface modification, uniform ion transport at the solid-liquid interface is also crucial to preventing dendrite formation. Some current solutions, such as electrolyte additives or artificial solid electrolytes, are effective to a certain extent, but the high cost and complex preparation process limit their commercial application. Therefore, it is particularly important to find a simple, low-cost and environmentally friendly modification method. In this regard, the polyolefin separators (such as polyethylene) used in traditional lithium-ion batteries have deficiencies in lithium ion and electrolyte affinity, pore distribution uniformity, and mechanical strength, all of which may lead to the formation of dendrites and battery short circuits. Therefore, it is not only necessary to modify the battery separator. However, the modification of the separator is usually mainly aimed at the doping or coating of elements, and there is little mention of the optimization of the structure of the separator itself. Only large-porosity and large-pore-size separators are used, but their desolvation in ion migration is not high, and their ion mobility is not efficient.
发明内容Summary of the invention
基于上述问题,本发明的旨在提供一种具有孔径梯度效应的复合隔膜及其制备方法和应用,解决现有储能器件在大功率及高倍率所面临的低离子电导率的问题。Based on the above problems, the present invention aims to provide a composite diaphragm with pore gradient effect and a preparation method and application thereof, so as to solve the problem of low ionic conductivity faced by existing energy storage devices at high power and high rate.
本发明提供的复合隔膜是由三种不同孔径大小的隔膜复合而成从而形成完整的孔径梯度结构,所述复合隔膜由陶瓷隔膜、聚烯烃隔膜、纤维素膜通过粘结剂复合而成,所述陶瓷隔膜、聚烯烃隔膜、纤维素膜的孔径依次增大,所述复合隔膜的孔道孔径按陶瓷隔膜、聚烯烃隔膜、纤维素膜的复合顺序从10nm增加到5um,所述复合隔膜内还附着有金属卤化物,复合隔膜的厚度为10~35μm。The composite diaphragm provided by the present invention is composed of three diaphragms with different pore sizes to form a complete pore gradient structure. The composite diaphragm is composed of a ceramic diaphragm, a polyolefin diaphragm, and a cellulose membrane through a binder. The pore sizes of the ceramic diaphragm, the polyolefin diaphragm, and the cellulose membrane increase in sequence. The pore size of the composite diaphragm increases from 10nm to 5um in the composite order of the ceramic diaphragm, the polyolefin diaphragm, and the cellulose membrane. Metal halides are also attached to the composite diaphragm, and the thickness of the composite diaphragm is 10~35μm.
所述陶瓷隔膜、聚烯烃隔膜、纤维素膜的孔径范围分别为0.01~1μm、0.05~2μm、0.1~5μm。纤维素膜的厚度为4-30μm;所述聚烯烃隔膜的厚度为4-20μm;所述陶瓷隔膜的厚度为5-15μm。The pore sizes of the ceramic diaphragm, polyolefin diaphragm and cellulose membrane are 0.01-1 μm, 0.05-2 μm and 0.1-5 μm respectively. The thickness of the cellulose membrane is 4-30 μm; the thickness of the polyolefin diaphragm is 4-20 μm; and the thickness of the ceramic diaphragm is 5-15 μm.
所述的复合隔膜的陶瓷隔膜的表面和孔道内沉积一层具有亚纳米孔径的金属或共价有机框架材料。形成四层孔径梯度效应。A layer of metal or covalent organic framework material with sub-nanometer pore size is deposited on the surface and in the pores of the ceramic diaphragm of the composite diaphragm, forming a four-layer pore size gradient effect.
所述金属或共价有机框架材料包括但不限于ZIF-8,UiO-66、COF-Go,其中ZIF-8的孔径范围为0.34~1.16nm,COF-GO孔径范围为0.5~1.4nm,UiO-66孔径范围为0.8~1.1nm。The metal or covalent organic framework material includes but is not limited to ZIF-8, UiO-66, and COF-Go, wherein the pore size range of ZIF-8 is 0.34-1.16 nm, the pore size range of COF-GO is 0.5-1.4 nm, and the pore size range of UiO-66 is 0.8-1.1 nm.
制备上述三层孔径梯度效应的复合隔膜的方法,包括以下步骤,The method for preparing the above-mentioned three-layer composite diaphragm with pore size gradient effect comprises the following steps:
步骤1、分别配制粘结剂和金属卤化物溶液,将二者混合并搅拌均匀得到混合溶液;Step 1, preparing a binder and a metal halide solution respectively, mixing the two and stirring them evenly to obtain a mixed solution;
步骤2、将聚烯烃隔膜、纤维素膜、陶瓷隔膜加入到步骤1所制备的混合溶液中,并充分浸润;Step 2, adding the polyolefin membrane, the cellulose membrane, and the ceramic membrane into the mixed solution prepared in step 1, and fully soaking them;
步骤3、将步骤2中充分浸润后的隔膜混合物进行辊压,控制复合隔膜的厚度为10~35μm,随后将制备好的复合隔膜静置并真空干燥。Step 3: Roll the membrane mixture that has been fully infiltrated in step 2 to control the thickness of the composite membrane to be 10-35 μm, and then let the prepared composite membrane stand and vacuum dry.
进一步的,所述粘结剂的溶质为聚偏氟乙烯、海藻酸钠、聚丙烯酸钠、聚丙烯酸、聚乙烯醇、羧甲基纤维素钠、聚乙烯吡咯烷酮、苯乙烯丁二烯橡胶中的一种或多种,所述粘结剂的溶剂为无水乙醇、N-甲基吡咯烷酮、二甲基甲酰胺、二甲基亚砜、丙酮、四氢呋喃、环己酮中的一种或多种,所述粘结剂浓度为1-5mg/ml。Furthermore, the solute of the binder is one or more of polyvinylidene fluoride, sodium alginate, sodium polyacrylate, polyacrylic acid, polyvinyl alcohol, sodium carboxymethyl cellulose, polyvinyl pyrrolidone, and styrene butadiene rubber; the solvent of the binder is one or more of anhydrous ethanol, N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran, and cyclohexanone; and the concentration of the binder is 1-5 mg/ml.
进一步的,所述金属卤化物溶液的浓度为0.1-1mg/ml,所述金属卤化物中金属元素选自Ni、Al、Zn、Sn、Cu、Cr、Ti、Mg中的至少一种。Furthermore, the concentration of the metal halide solution is 0.1-1 mg/ml, and the metal element in the metal halide is selected from at least one of Ni, Al, Zn, Sn, Cu, Cr, Ti, and Mg.
进一步的,所述步骤2是在室温下将聚烯烃隔膜、与纤维素膜、陶瓷隔膜浸润在粘结剂与金属氯化物溶液的混合溶液中,所述浸润时间为4-8h。Furthermore, the step 2 is to immerse the polyolefin membrane, the cellulose membrane and the ceramic membrane in a mixed solution of a binder and a metal chloride solution at room temperature, and the immersion time is 4-8 hours.
进一步的,所述步骤2中的纤维素膜的厚度为4-30μm、孔径大小为0.1-5μm;所述聚烯烃隔膜的厚度为4-20μm、孔径大小为0.05-2μm;所述陶瓷隔膜的厚度为5-15μm、孔径大小为0.01-0.1μm。Furthermore, the cellulose membrane in step 2 has a thickness of 4-30 μm and a pore size of 0.1-5 μm; the polyolefin membrane has a thickness of 4-20 μm and a pore size of 0.05-2 μm; the ceramic membrane has a thickness of 5-15 μm and a pore size of 0.01-0.1 μm.
进一步的,所述步骤3中将制备好的复合隔膜静置12h后,于60 oC真空环境下放置12 h完全干燥。Furthermore, in step 3, the prepared composite membrane is left to stand for 12 hours and then placed in a vacuum environment at 60 ° C. for 12 hours to be completely dried.
制备上述具有四层孔径梯度效应的复合隔膜的制备方法,是在制备具有三层孔径梯度效应的复合隔膜的步骤之上,还包括,在得到的干燥的复合隔膜上通过抽滤或喷涂将亚纳米孔径的金属或共价有机框架材料沉积在陶瓷隔膜的表面和孔道内。The method for preparing the above-mentioned composite diaphragm with four-layer pore gradient effect is based on the step of preparing the composite diaphragm with three-layer pore gradient effect, and also includes depositing sub-nanometer pore size metal or covalent organic framework material on the surface and pores of the ceramic diaphragm by filtration or spraying on the obtained dried composite diaphragm.
所述金属或共价有机框架材料包括但不限于ZIF-8,UiO-66、COF-Go,其中ZIF-8的孔径范围为0.34~1.16nm,COF-GO孔径范围为0.5~1.4nm,UiO-66孔径范围为0.8~1.1nm。The metal or covalent organic framework material includes but is not limited to ZIF-8, UiO-66, and COF-Go, wherein the pore size range of ZIF-8 is 0.34-1.16 nm, the pore size range of COF-GO is 0.5-1.4 nm, and the pore size range of UiO-66 is 0.8-1.1 nm.
本发明所述的具有完整孔径梯度效应的复合隔膜,可以应用于包括锂/钠/锌的金属电池、燃料电池或超级电容器的储能器件,所述储能器件在大功率及不低于3C倍率下运行。The composite diaphragm with complete pore size gradient effect described in the present invention can be applied to energy storage devices including lithium/sodium/zinc metal batteries, fuel cells or supercapacitors, and the energy storage devices operate at high power and a rate not less than 3C.
相比于现有技术,本发明的优点和有益效果:Compared with the prior art, the advantages and beneficial effects of the present invention are as follows:
1、该复合隔膜以聚烯烃隔膜、与纤维素膜和陶瓷隔膜复合后为主体,浸润金属氯化物,引入金属元素与氯元素、氟元素,所采用的金属氯化物中,氯离子可以在很大程度上锚定电解液中存在的阴离子,亲锂元素氟元素可以减少锂离子的迁移能垒,与传统隔膜相比,该复合隔膜有着极强的电解液亲和性,能够很好的让离子进行脱溶剂化。1. The composite diaphragm is mainly composed of polyolefin diaphragm, cellulose membrane and ceramic diaphragm, which are impregnated with metal chloride, and metal elements, chlorine elements and fluorine elements are introduced. Among the metal chlorides used, chloride ions can anchor the anions in the electrolyte to a large extent, and the lithium-philic element fluorine can reduce the migration energy barrier of lithium ions. Compared with traditional diaphragms, the composite diaphragm has a very strong affinity for electrolytes and can desolvate ions well.
2、复合隔膜中含有丰富金属元素和梯度的孔径度(陶瓷隔膜、聚烯烃隔膜与纤维素膜以及纳米孔径的金属有机框架材料的孔径大小不一,形成孔径梯度效果),梯度孔径的设计,可以均化锂离子流动,可以在大功率情况下,发挥出极大的优势。在保证容纳大量离子的情况下,可以迅速传导离子。2. The composite diaphragm contains rich metal elements and gradient pore size (the pore sizes of ceramic diaphragms, polyolefin diaphragms, cellulose membranes, and metal organic framework materials with nanopores are different, forming a pore gradient effect). The gradient pore design can homogenize the flow of lithium ions and can play a great advantage under high power conditions. While ensuring that a large number of ions can be accommodated, ions can be quickly conducted.
3、在多种协同作用下,能有效调节锂离子分布,并促进锂金属负极能够实现均匀的沉积和剥离过程,抑制锂枝晶生长,显著提高其离子电导以及高倍率性能,在防燃耐高温上也有显著的提升。3. Under the synergistic effects of multiple factors, it can effectively regulate the distribution of lithium ions, promote the uniform deposition and stripping process of lithium metal negative electrode, inhibit the growth of lithium dendrites, significantly improve its ion conductivity and high-rate performance, and also significantly improve its flame retardancy and high-temperature resistance.
4、复合隔膜中,其中内外层的金属氯化物与金属氟化物可以在机械强度及防燃性上带来极大的改善,并且随着聚偏二氟乙烯的引入,极大增强了SEI膜有益成分的构成,使得整体液面改性得以呈现。4. In the composite diaphragm, the metal chloride and metal fluoride in the inner and outer layers can bring great improvements in mechanical strength and flame retardancy, and with the introduction of polyvinylidene fluoride, the composition of the beneficial components of the SEI membrane is greatly enhanced, so that the overall liquid surface modification can be presented.
5、该复合隔膜的制备工艺简单,制备成本,对电池的能量密度影响较小。5. The preparation process of the composite diaphragm is simple, the preparation cost is low, and the effect on the energy density of the battery is small.
6、该复合隔膜的改性制备方法能够有效解决成本和环境方面的挑战,为提高电池性能和安全性提供了新的途径。6. The modified preparation method of the composite diaphragm can effectively solve the challenges in cost and environment, and provide a new way to improve battery performance and safety.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是实施例1中复合隔膜的结构示意图;FIG1 is a schematic diagram of the structure of the composite diaphragm in Example 1;
图2是实施例8中的不同膜所制备的Li-NCM811电池0.5C下的循环性能图;FIG2 is a graph showing the cycle performance of Li-NCM811 batteries prepared with different membranes at 0.5C in Example 8;
图3是实施例9中,部分实施例在不同倍率下的性能图。FIG. 3 is a performance diagram of some embodiments at different magnifications in Example 9.
具体实施方式Detailed ways
为了更好的理解本发明的技术方案,下面将结合具体的实施方式以及说明书附图,对本发明上述技术方案进行详细说明,应当理解的是本发明的实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。In order to better understand the technical solution of the present invention, the above-mentioned technical solution of the present invention will be described in detail below in combination with specific implementation methods and the accompanying drawings of the specification. It should be understood that the embodiments of the present invention and the specific features in the embodiments are detailed descriptions of the technical solution of the present application, rather than limitations on the technical solution of the present application. In the absence of conflict, the embodiments of the present application and the technical features in the embodiments can be combined with each other.
下面将通过具体的实施方案以及产品检测结果予以说明。This will be explained below through a specific implementation plan and product test results.
以下实施例中所用陶瓷隔膜来源于河北金力新能源科技股份有限公司,它以氧化铝为主要成分,其他的成分包括硅氧化物和镁氧化物。该陶瓷隔膜厚度为5-15μm,陶瓷隔膜的平均孔径为0.01~1μm,孔隙率为40-50%。The ceramic diaphragm used in the following examples is from Hebei Jinli New Energy Technology Co., Ltd. It has aluminum oxide as the main component, and other components include silicon oxide and magnesium oxide. The thickness of the ceramic diaphragm is 5-15 μm, the average pore size of the ceramic diaphragm is 0.01-1 μm, and the porosity is 40-50%.
以下实施例中所用聚烯烃隔膜来源于AsahiKASEI公司,该聚烯烃隔膜的厚度为9-20μm。具有多孔结构,孔径大小为0.05-2μm,且孔和孔之间的连通性良好。此外,聚烯烃隔膜的孔隙率为40%。The polyolefin separator used in the following examples is from Asahi KASEI Co., Ltd. The thickness of the polyolefin separator is 9-20 μm. It has a porous structure with a pore size of 0.05-2 μm, and the connectivity between the pores is good. In addition, the porosity of the polyolefin separator is 40%.
以下实施例中所用纤维素膜(CN201911416124.7)为宁波柔创纳米科技有限公司自研,选取纤维素类天然纤维以及芳纶、聚酰亚胺纤维、聚对苯撑苯并二噁唑(PBO)纤维、聚丙烯腈等耐高温、电化学稳定的材料,通过化学酶催化、高压均质、机械研磨等加工方式将纤维进行径向剥离,实现纤维在细度上纳米化,同时保持良好的长径比、厚度和孔特征、孔隙率,等其他参数。然后,将上述多种纤维分散到水中抄造成湿膜,再在多孔纳米纤维组成的湿膜上,引入交联剂,使交联剂原位聚合,进一步提升基膜纤维节点处的强度,进而提升隔膜的力学性能。同时,溶剂挥发诱导交联剂自组装,在隔膜内部产生三维网状的均匀孔结构,进一步提升了隔膜的孔隙率和孔均匀性。最后,通过使纤维素膜涂布或浸渍聚合物固态电解质和无机陶瓷固态电解质提高锂离子电导率。纤维素膜厚度为5-30μm,孔隙率为40%-75%,孔径大小为0.1~5μm。The cellulose membrane (CN201911416124.7) used in the following examples is self-developed by Ningbo Rouchuang Nanotechnology Co., Ltd., and selects cellulose natural fibers and high temperature resistant and electrochemically stable materials such as aramid, polyimide fiber, polyphenylene benzobisoxazole (PBO) fiber, and polyacrylonitrile. The fibers are radially peeled off by chemical enzyme catalysis, high pressure homogenization, mechanical grinding and other processing methods to achieve nanofiberization in fineness, while maintaining good aspect ratio, thickness and pore characteristics, porosity, and other parameters. Then, the above-mentioned multiple fibers are dispersed in water to form a wet film, and then a cross-linking agent is introduced into the wet film composed of porous nanofibers to polymerize the cross-linking agent in situ, further improving the strength of the fiber nodes of the base membrane, thereby improving the mechanical properties of the diaphragm. At the same time, the solvent volatilization induces the cross-linking agent to self-assemble, and a three-dimensional mesh-like uniform pore structure is generated inside the diaphragm, further improving the porosity and pore uniformity of the diaphragm. Finally, the lithium ion conductivity is improved by coating or impregnating the cellulose membrane with a polymer solid electrolyte and an inorganic ceramic solid electrolyte. The cellulose membrane has a thickness of 5-30 μm, a porosity of 40%-75%, and a pore size of 0.1~5 μm.
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:One or more technical solutions provided in the embodiments of the present application have at least the following technical effects or advantages:
实施例1Example 1
梯度电池隔膜制备及电池组装。Gradient battery separator preparation and battery assembly.
按照陶瓷隔膜、聚烯烃隔膜、纤维素膜的顺序,将三种材料隔膜依次浸入到由氯化锌与PVDF组成的混合液中,氯化锌溶液浓度为1mg/ml,PVDF溶液浓度为2mg/ml。浸润8h后,纤维素隔膜、陶瓷隔膜、聚烯烃隔膜按照孔径由大到小顺序逐层复合在一起,然后进行辊压,直至复合隔膜厚度为35um以内。随后将辊压后的隔膜不受干扰的静置12h,得到改性隔膜,放入60℃烘箱备用。In the order of ceramic membrane, polyolefin membrane and cellulose membrane, the three material membranes are immersed in a mixture of zinc chloride and PVDF in turn. The concentration of zinc chloride solution is 1mg/ml and the concentration of PVDF solution is 2mg/ml. After 8 hours of immersion, the cellulose membrane, ceramic membrane and polyolefin membrane are compounded layer by layer in the order of pore size from large to small, and then rolled until the thickness of the composite membrane is within 35um. The rolled membrane is then left to stand for 12 hours without being disturbed to obtain a modified membrane, which is then placed in a 60℃ oven for standby use.
之后将改性隔膜分别与不同电池电极组合,装成半电池、对称电池及全电池进行电化学性能测试。The modified diaphragm was then combined with different battery electrodes to form half-cells, symmetrical cells and full cells for electrochemical performance testing.
图1中实施例1中一种梯度孔径电池隔膜设计电池隔膜的示意图,各层隔膜的孔径大小排序为:纤维素隔膜>聚烯烃隔膜>陶瓷隔膜。FIG1 is a schematic diagram of a battery separator designed with a gradient pore size battery separator in Example 1, wherein the pore sizes of the various layers of the separator are ranked as follows: cellulose separator>polyolefin separator>ceramic separator.
实施例2Example 2
将陶瓷隔膜、聚烯烃隔膜、纤维素膜浸入到由氯化锌与PVDF组成的混合液中,氯化锌溶液浓度为1mg/ml,PVDF溶液浓度为2mg/ml。浸润8h后,纤维素隔膜、陶瓷隔膜、聚烯烃隔膜按照孔径大小顺序逐层复合,然后进行辊压,直至复合隔膜厚度为35um以内。随后将辊压后的隔膜不受干扰的静置12h,放入60℃烘箱备用。The ceramic diaphragm, polyolefin diaphragm and cellulose membrane were immersed in a mixture of zinc chloride and PVDF, with a zinc chloride solution concentration of 1 mg/ml and a PVDF solution concentration of 2 mg/ml. After 8 hours of immersion, the cellulose diaphragm, ceramic diaphragm and polyolefin diaphragm were composited layer by layer in the order of pore size, and then rolled until the composite diaphragm thickness was within 35 um. The rolled diaphragm was then left undisturbed for 12 hours and placed in a 60°C oven for later use.
随后将改性后的复合隔膜通过抽滤或喷涂等方式,在复合隔膜孔径较小的陶瓷隔膜侧沉积一层具有纳米孔径的金属有机框架材料如ZIF-8。形成四层梯度效果:纤维素膜、聚烯烃隔膜、陶瓷隔膜、ZIF-8。ZIF-8孔径为:0.34~1.16nm。Then, the modified composite membrane is filtered or sprayed to deposit a layer of metal organic framework material with nanopore size, such as ZIF-8, on the ceramic membrane side with smaller pore size of the composite membrane. A four-layer gradient effect is formed: cellulose membrane, polyolefin membrane, ceramic membrane, and ZIF-8. The pore size of ZIF-8 is: 0.34~1.16nm.
陶瓷隔膜、聚烯烃隔膜、纤维素膜浸入氯化锌与PVDF组成的混合液后,孔径范围无显著变化,PVDF主要起到粘结剂的作用,氯化锌的引入起到锚定阴离子与阻燃作用。例如电解液中添加了多硫化物时,氯离子能抑制多硫化物的穿梭效应。改性隔膜上ZIF-8涂层与改性隔膜的梯度孔道结合,隔出了两端不同的溶液环境,ZIF-8孔道的两端一端是空间尺度很大的外界溶液,一端则是具有微米-纳米尺寸且表面带有氯化锌、金属氧化物的复合隔膜孔道。After the ceramic diaphragm, polyolefin diaphragm, and cellulose membrane were immersed in a mixture of zinc chloride and PVDF, the pore size range did not change significantly. PVDF mainly played the role of a binder, and the introduction of zinc chloride played a role in anchoring anions and flame retardant. For example, when polysulfides are added to the electrolyte, chloride ions can inhibit the shuttle effect of polysulfides. The ZIF-8 coating on the modified diaphragm is combined with the gradient pores of the modified diaphragm to separate different solution environments at both ends. One end of the ZIF-8 pore is an external solution with a large spatial scale, and the other end is a composite diaphragm pore with micrometer-nanometer size and zinc chloride and metal oxide on the surface.
实施例3-实施例4Example 3-Example 4
与实施例2操作基本相同,不同的地方在于采用的卤化物分别为氟化物-氟化银,溴化物-溴化镁。The operation is basically the same as that in Example 2, except that the halides used are fluoride-silver fluoride and bromide-magnesium bromide.
实施例5-实施例6Example 5-Example 6
与实施例2操作也基本相同,不同的地方为在复合隔膜孔径较小的陶瓷隔膜侧沉积的纳米材料不同。实施例5中,沉积一层具有亚纳米孔径的COF-GO共价有机骨架复合氧化石墨烯),COF-GO孔径为0.5~1.4nm。实施例6中,沉积一层具有亚纳米孔径的UiO-66(金属有机框架-Zr),UiO-66孔径大小为0.8~1.1nm。The operation is basically the same as that in Example 2, except that the nanomaterials deposited on the ceramic diaphragm side with a smaller pore size of the composite diaphragm are different. In Example 5, a layer of COF-GO covalent organic framework composite graphene oxide with a sub-nanometer pore size is deposited), and the pore size of COF-GO is 0.5~1.4nm. In Example 6, a layer of UiO-66 (metal organic framework-Zr) with a sub-nanometer pore size is deposited, and the pore size of UiO-66 is 0.8~1.1nm.
此处仅进行部分实施例测试,其他具有纳米孔径复合到梯度隔膜的修饰方法,同样为本专利所保护。Only some of the examples are tested here, and other modification methods with nanopores composited to gradient membranes are also protected by this patent.
实施例7Example 7
本实施例测试了基于实施例1与2所制备的孔径梯度设计的复合隔膜(制备方法参照发明内容),实施例3至实施例6所制备的复合隔膜,和纤维素膜、聚烯烃隔膜、陶瓷隔膜、纤维素膜与聚烯烃隔膜的复合隔膜、聚烯烃隔膜与陶瓷隔膜的复合隔膜,以及聚烯烃隔膜与陶瓷隔膜的复合后在陶瓷隔膜一侧涂覆金属或共价有机框架材料的改性隔膜,一共12种隔膜所组装的锂对称电池所反映出的锂离子迁移率,以及钢对钢电池所反映出的离子电导率的测试。This example tests the composite membranes designed based on the pore size gradient prepared in Examples 1 and 2 (the preparation method refers to the invention content), the composite membranes prepared in Examples 3 to 6, and cellulose membranes, polyolefin membranes, ceramic membranes, composite membranes of cellulose membranes and polyolefin membranes, composite membranes of polyolefin membranes and ceramic membranes, and modified membranes in which a metal or covalent organic framework material is coated on one side of the ceramic membrane after the composite of polyolefin membrane and ceramic membrane. A total of 12 types of membranes are used to assemble lithium symmetric batteries to test the lithium ion mobility and steel-to-steel batteries to test the ionic conductivity.
以上纤维素膜与聚烯烃隔膜的复合隔膜、聚烯烃隔膜与陶瓷隔膜的复合隔膜采用粘接剂将两种隔膜复合。本实施例中粘接剂是SBR乳胶、有机硅消泡剂、十二烷基磺酸钠润湿剂、去离子水以100:1:1:1000的比例配置混合并搅拌分散均匀,静置后得到粘接剂溶液,以上测试结果见表1。The composite membrane of the cellulose membrane and the polyolefin membrane, and the composite membrane of the polyolefin membrane and the ceramic membrane are composited with an adhesive. In this embodiment, the adhesive is SBR latex, silicone defoamer, sodium dodecyl sulfate wetting agent, and deionized water in a ratio of 100:1:1:1000, mixed and stirred to disperse evenly, and the adhesive solution is obtained after standing. The above test results are shown in Table 1.
表1Table 1
离子迁移率衡量了离子在电解质中的移动能力。较低的离子迁移率,不仅减少了电解质的离子电导能力,还可能导致严重的浓差极化效应。为了在能够容纳大量离子的同时保持高离子电导性,高离子迁移率对于适应大功率和高倍率电池工作条件至关重要。通过表1可以看出,实施例1~实施例6中由所制备得到的改性后的复合隔膜,相比于纤维素隔膜聚烯烃隔膜陶瓷隔膜,在离子电导率和离子迁移率均表现的更好。特别当引入孔径更小的金属或共价有机框架结构后,具有孔径梯度效应的复合隔膜所制备的电池的离子电导效果更加突出。Ion mobility measures the ability of ions to move in an electrolyte. Lower ion mobility not only reduces the ionic conductivity of the electrolyte, but may also lead to severe concentration polarization effects. In order to maintain high ionic conductivity while being able to accommodate a large number of ions, high ion mobility is essential for adapting to high-power and high-rate battery operating conditions. It can be seen from Table 1 that the modified composite diaphragms prepared in Examples 1 to 6 perform better in both ionic conductivity and ion mobility than cellulose diaphragms, polyolefin diaphragms, and ceramic diaphragms. Especially when a metal or covalent organic framework structure with a smaller pore size is introduced, the ionic conductivity effect of the battery prepared by the composite diaphragm with an pore size gradient effect is more prominent.
实施例8Example 8
本实施例测试了基于不同隔膜的NCM811电池的循环性能。This example tests the cycle performance of NCM811 batteries based on different separators.
以锂金属作为负极、NCM811为正极、1M LiPF6 EC/DEC(体积比为1:1)作为电解液,使用不同的隔膜,在氩气气氛手套箱中分别组装成NCM811电池。在组装NCM811电池时,实施例1~实施例6的隔膜孔径小的一侧面向负极,孔径大的一侧面向正极。Using lithium metal as the negative electrode, NCM811 as the positive electrode, 1M LiPF6 EC/DEC (volume ratio of 1:1) as the electrolyte, and using different diaphragms, NCM811 batteries were assembled in an argon atmosphere glove box. When assembling the NCM811 battery, the side with a small pore size of the diaphragm of Examples 1 to 6 faced the negative electrode, and the side with a large pore size faced the positive electrode.
NCM811正极电极片的制备方法为:镍钴锰(NCM)、SuperP(导电炭黑)、聚偏氟乙烯(PVDF)粘结剂按8:1:1的质量比混合,研磨均匀后分散在聚甲基吡咯烷酮(NMP)中,然后置于匀浆机中匀浆20min后得到均一浆料,用制备器将浆料刮涂到铝箔上,置于80℃真空干燥箱中干燥12h。The preparation method of the NCM811 positive electrode sheet is as follows: nickel cobalt manganese (NCM), SuperP (conductive carbon black), and polyvinylidene fluoride (PVDF) binder are mixed in a mass ratio of 8:1:1, ground evenly and dispersed in polymethylpyrrolidone (NMP), then placed in a homogenizer and homogenized for 20 minutes to obtain a uniform slurry, and the slurry is scraped onto aluminum foil with a preparation device and placed in a vacuum drying oven at 80°C for 12 hours.
以上述聚烯烃隔膜、陶瓷隔膜、实施例2的复合隔膜制成的CR2025型号纽扣电池为例,该型号电池直径为20mm,厚度为2.5mm,按负极壳、锂片、滴加电解液、隔膜、滴加电解液、正极电极片、垫片、弹片的顺序组装CR2025型号纽扣电池,电池压力为0.85兆帕。Taking the CR2025 button battery made of the above-mentioned polyolefin diaphragm, ceramic diaphragm, and composite diaphragm of Example 2 as an example, the diameter of this type of battery is 20 mm and the thickness is 2.5 mm. The CR2025 button battery is assembled in the order of negative electrode shell, lithium sheet, dripping electrolyte, diaphragm, dripping electrolyte, positive electrode sheet, gasket, and spring, and the battery pressure is 0.85 MPa.
以上3种隔膜所制备的Li-NCM811电池在0.5C下的循环性能图如图2所示。The cycling performance diagram of Li-NCM811 batteries prepared with the above three types of separators at 0.5C is shown in Figure 2.
实施例9Example 9
本实施例测试了实施例7中基于不同隔膜所制备的NCM811电池的循环倍率性能。This example tests the cycle rate performance of the NCM811 battery prepared based on different separators in Example 7.
以锂金属作为负极、NCM811为正极、1M LiPF6 EC/DEC(体积比为1:1)作为电解液,使用不同的隔膜,在氩气气氛手套箱中分别组装成NCM811电池。在组装NCM811电池时,实施例1或实施例2的隔膜孔径小的一侧面向负极,孔径大的一侧面向正极。Using lithium metal as the negative electrode, NCM811 as the positive electrode, 1M LiPF6 EC/DEC (volume ratio of 1:1) as the electrolyte, and using different diaphragms, NCM811 batteries were assembled in an argon atmosphere glove box. When assembling the NCM811 battery, the side with a small pore size of the diaphragm of Example 1 or Example 2 faced the negative electrode, and the side with a large pore size faced the positive electrode.
正极电极片的制备方法为:镍钴锰(NCM)、SuperP(导电炭黑)、聚偏氟乙烯(聚偏二氟乙烯)粘结剂按8:1:1的质量比混合,研磨均匀后分散在聚甲基吡咯烷酮(NMP)中,然后置于匀浆机中匀浆20min后得到均一浆料,用制备器将浆料刮涂到铝箔上,置于80℃真空干燥箱中干燥12h。The preparation method of the positive electrode sheet is as follows: nickel cobalt manganese (NCM), SuperP (conductive carbon black), and polyvinylidene fluoride (PVDF) binder are mixed in a mass ratio of 8:1:1, ground evenly and dispersed in polymethylpyrrolidone (NMP), and then placed in a homogenizer for 20 minutes to obtain a uniform slurry, and the slurry is scraped onto aluminum foil with a preparation device and placed in a vacuum drying oven at 80°C for 12 hours.
表2是实施例7中Li-NCM811电池在不同倍率下的循环性能表。使用复合隔膜的电池在倍率性能明显高于使用商业隔膜的电池。此正极全电池电压为3V-4.3V,测试温度为25℃,图3为本实施例中部分隔膜的循环性能倍率图。Table 2 is a table of the cycle performance of the Li-NCM811 battery at different rates in Example 7. The battery using the composite separator has significantly higher rate performance than the battery using the commercial separator. The positive electrode full battery voltage is 3V-4.3V, and the test temperature is 25°C. Figure 3 is a cycle performance rate diagram of some separators in this example.
表2Table 2
通过表1可以看出,单独的陶瓷隔膜中陶瓷颗粒表面的-OH等基团亲液性较强,从而提高隔膜对于电解液的浸润性。但由于聚烯烃隔膜孔径尺寸较大、陶瓷离子尺寸较小,涂覆粘结剂后,聚烯烃+陶瓷复合隔膜表面与电解液的接触受到限制,导致聚烯烃+陶瓷的复合隔膜的离子电导率提升并不明显。而通过PVDF将金属氯化物涂覆在纤维素隔膜+聚烯烃隔膜+陶瓷隔膜表面,如实施例1,氯化锌的引入起到锚定阴离子的作用,可以使得带正电荷的Li+在其中穿梭更加容易,从而提高了锂离子的迁移率。该复合隔膜孔道与电解液亲和较好,复合隔膜孔道内的金属氧化物对锂电解液中的锂离子具有亲和性,能使锂离子均匀通过复合隔膜孔道,使复合隔膜中每个孔道内的锂电解液均匀分布,避免锂离子只从复合隔膜的局部区域通过隔膜,导致在大电流下通过离子迁移的速率下降的问题。It can be seen from Table 1 that the -OH and other groups on the surface of the ceramic particles in the single ceramic diaphragm have strong lyophilicity, thereby improving the wettability of the diaphragm for the electrolyte. However, due to the large pore size of the polyolefin diaphragm and the small size of the ceramic ions, after the adhesive is applied, the contact between the surface of the polyolefin + ceramic composite diaphragm and the electrolyte is limited, resulting in the ion conductivity of the polyolefin + ceramic composite diaphragm not being significantly improved. By coating the metal chloride on the surface of the cellulose diaphragm + polyolefin diaphragm + ceramic diaphragm through PVDF, as in Example 1, the introduction of zinc chloride plays the role of anchoring anions, which can make it easier for positively charged Li + to shuttle therein, thereby improving the mobility of lithium ions. The composite diaphragm pores have good affinity with the electrolyte, and the metal oxides in the composite diaphragm pores have affinity for the lithium ions in the lithium electrolyte, which can make the lithium ions pass through the composite diaphragm pores evenly, so that the lithium electrolyte in each pore in the composite diaphragm is evenly distributed, avoiding the lithium ions from only passing through the diaphragm from the local area of the composite diaphragm, resulting in the problem of a decrease in the rate of ion migration under high current.
复合隔膜孔道的孔径大小梯度效应越是完整的复合隔膜,在高倍率性能中表现的更加优异。如实施例1中是由孔径依次增大的陶瓷隔膜、聚烯烃隔膜、纤维素隔膜复合而成的,而实施例2中是由孔径依次增大的纳米ZIF-8材料、陶瓷隔膜、聚烯烃隔膜、纤维素隔膜复合而成的,实施例2相对实施例1而言,复合隔膜孔道的孔径大小梯度更加完善,实施例2的隔膜在大电流下离子迁移的速率得到改善。这是因为独特的梯度孔径的设计,由于复合隔膜一侧的微米-纳米尺寸孔径较大可以容纳更多的离子,孔径直径随着隔膜复合次序不断的减少到纳米级,电解液中锂离子半径(0.2nm-0.3nm)、锂的水合离子半径(0.76nm),阴离子的水合离子半径(几埃-十几埃),纳米级允许锂离子半径、锂的水合离子自由穿梭。The more complete the composite membrane is, the better it performs in high rate performance. For example, in Example 1, the composite membrane is composed of a ceramic membrane, a polyolefin membrane, and a cellulose membrane with increasing pore sizes, while in Example 2, the composite membrane is composed of a nano ZIF-8 material, a ceramic membrane, a polyolefin membrane, and a cellulose membrane with increasing pore sizes. In Example 2, relative to Example 1, the pore size gradient of the composite membrane pore is more perfect, and the rate of ion migration of the membrane in Example 2 under high current is improved. This is because of the unique gradient pore size design. Since the micron-nanometer pore size on one side of the composite membrane is larger, it can accommodate more ions. The pore diameter is continuously reduced to the nanometer level as the membrane composite order is continuously reduced. The lithium ion radius (0.2nm-0.3nm) in the electrolyte, the hydrated ion radius of lithium (0.76nm), the hydrated ion radius of anions (several angstroms-more than ten angstroms), the nanometer level allows the lithium ion radius and the hydrated ions of lithium to shuttle freely.
在ZIF-8层中孔道尺寸减小到亚纳米级,复合隔膜孔道内的氯离子等阴离子能抑制电解液中的阴离子穿梭隔膜,使复合隔膜孔道能穿梭更多的锂离子,ZIF-8孔道的亚纳米级孔径小于溶剂的分子尺寸且大于锂离子半径,拥有亚纳米级孔径的ZIF-8层可以起到去除锂离子周围溶剂分子的效果,使锂离子可以自由在ZIF-8孔道结构中迁移,从而大幅度加速离子迁移的速率,梯度孔径构造在高功设备的应用中有着比较理想的效果。其他具有纳米孔径的材料同理。The pore size in the ZIF-8 layer is reduced to sub-nanometer level. Chloride ions and other anions in the composite diaphragm pores can inhibit anions in the electrolyte from shuttling through the diaphragm, allowing more lithium ions to pass through the composite diaphragm pores. The sub-nanometer pore size of the ZIF-8 pores is smaller than the molecular size of the solvent and larger than the radius of lithium ions. The ZIF-8 layer with sub-nanometer pores can remove the solvent molecules around lithium ions, allowing lithium ions to migrate freely in the ZIF-8 pore structure, thereby greatly accelerating the rate of ion migration. The gradient pore structure has a relatively ideal effect in the application of high-power equipment. The same is true for other materials with nanopores.
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above specific implementation methods are only used to illustrate the technical solution of the present invention rather than to limit it. Although the present invention has been described in detail with reference to examples, those skilled in the art should understand that the technical solution of the present invention can be modified or replaced by equivalents without departing from the spirit and scope of the technical solution of the present invention, which should be included in the scope of the claims of the present invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410564357.6A CN118156728B (en) | 2024-05-09 | 2024-05-09 | Composite diaphragm with aperture gradient effect and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410564357.6A CN118156728B (en) | 2024-05-09 | 2024-05-09 | Composite diaphragm with aperture gradient effect and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118156728A true CN118156728A (en) | 2024-06-07 |
CN118156728B CN118156728B (en) | 2024-07-23 |
Family
ID=91291964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410564357.6A Active CN118156728B (en) | 2024-05-09 | 2024-05-09 | Composite diaphragm with aperture gradient effect and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118156728B (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107275550B (en) * | 2017-06-20 | 2020-07-07 | 深圳市星源材质科技股份有限公司 | Ceramic and polymer composite coating lithium ion diaphragm and preparation method thereof |
CN116315437A (en) * | 2021-12-21 | 2023-06-23 | 北京宇程科技有限公司 | A modified composite diaphragm and its preparation method |
-
2024
- 2024-05-09 CN CN202410564357.6A patent/CN118156728B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN118156728B (en) | 2024-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105261721B (en) | A kind of asymmetry diaphragm and the application in lithium-sulfur rechargeable battery | |
Deng et al. | Functional double-layer membrane as separator for lithium-sulfur battery with strong catalytic conversion and excellent polysulfide-blocking | |
CN108520985A (en) | A kind of method and its application of improving cycle life of zinc battery | |
CN111312985A (en) | A kind of pole piece with step distribution of porosity and its preparation method and use | |
CN109786817B (en) | Solid lithium battery, application thereof and method for preparing non-woven fabric reinforced solid electrolyte membrane | |
CN103904291B (en) | Aquo-lithium ion battery electrode and preparation method thereof, aquo-lithium ion battery | |
CN111261913B (en) | Composite membrane for alkaline zinc-based flow battery and preparation and application thereof | |
CN110492045B (en) | Lithium-sulfur battery diaphragm and preparation method and application thereof | |
CN104347881A (en) | Preparation method and applications of battery graphene-base current collector | |
CN114335550B (en) | Preparation method of three-dimensional organic framework composite material, lithium metal cathode and battery | |
CN107482152B (en) | An organic polymer-reinforced graphene intercalation material for lithium-sulfur batteries | |
CN110350130A (en) | The asymmetric diaphragm of metal/sulfur rechargeable battery | |
CN114744367A (en) | Preparation and application of a modified ultrathin cellulose diaphragm | |
CN117080354A (en) | Electrode plate, preparation method thereof, electrochemical device and electronic equipment | |
CN112952292A (en) | Composite diaphragm capable of being used for metal lithium battery and metal sodium battery, and preparation method and application thereof | |
CN109546153B (en) | Preparation method of porous copper current collector, negative electrode and battery | |
CN115347323A (en) | A BC-loaded MOFs-derived CNF/CoP composite material and its preparation and application method | |
CN110048124A (en) | A kind of polysulfide barrier layer and preparation method thereof for lithium-sulfur cell | |
Luo et al. | A multifunctional polyimide nanofiber separator with a self-closing polyamide–polyvinyl alcohol top layer with a Turing structure for high-performance lithium–sulfur batteries | |
CN118156728B (en) | Composite diaphragm with aperture gradient effect and preparation method and application thereof | |
CN104362278B (en) | Compound lithium-ion battery diaphragm and preparation method thereof | |
CN114824646B (en) | Composite oil-based diaphragm, preparation method thereof and secondary battery | |
CN114221087B (en) | Battery diaphragm, lithium ion battery and preparation method of battery diaphragm | |
CN111416121B (en) | A kind of sulfur cathode material with functional intermediate layer and its preparation and application | |
CN116014225A (en) | Sodium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |