CN118115866A - A processing system for remote sensing image data of urban rail transit - Google Patents

A processing system for remote sensing image data of urban rail transit Download PDF

Info

Publication number
CN118115866A
CN118115866A CN202410141960.3A CN202410141960A CN118115866A CN 118115866 A CN118115866 A CN 118115866A CN 202410141960 A CN202410141960 A CN 202410141960A CN 118115866 A CN118115866 A CN 118115866A
Authority
CN
China
Prior art keywords
data
module
rail transit
line
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202410141960.3A
Other languages
Chinese (zh)
Inventor
成遥遥
冯清倩
苗娇娇
华明
卜晗
关健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Newahua Technology Co ltd
Nanjing Shazhi Platinum Technology Co ltd
Original Assignee
Nanjing Newahua Technology Co ltd
Nanjing Shazhi Platinum Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Newahua Technology Co ltd, Nanjing Shazhi Platinum Technology Co ltd filed Critical Nanjing Newahua Technology Co ltd
Priority to CN202410141960.3A priority Critical patent/CN118115866A/en
Publication of CN118115866A publication Critical patent/CN118115866A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/182Network patterns, e.g. roads or rivers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/17Terrestrial scenes taken from planes or by drones

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种城市轨道交通遥感图像数据的处理系统,涉及图像数据处理技术领域,包括数据采集模块、数据预处理模块、特征提取模块、数据分析模块、决策支持模块、用户接口模块以及数据存储与管理模块;本发明大幅提高了城市轨道交通系统数据的获取效率,通过遥感图像可以快速采集到细致的空间信息;极大地丰富了城市轨道交通的数字化程度,各类关键特征的提取为规划分析提供了数据基础。

The invention discloses a processing system for urban rail transit remote sensing image data, which relates to the technical field of image data processing, and comprises a data acquisition module, a data preprocessing module, a feature extraction module, a data analysis module, a decision support module, a user interface module and a data storage and management module; the invention greatly improves the acquisition efficiency of urban rail transit system data, and can quickly collect detailed spatial information through remote sensing images; it greatly enriches the digitization degree of urban rail transit, and the extraction of various key features provides a data basis for planning analysis.

Description

一种城市轨道交通遥感图像数据的处理系统A processing system for remote sensing image data of urban rail transit

技术领域Technical Field

本发明涉及图像数据处理技术领域,特别是一种城市轨道交通遥感图像数据的处理系统。The invention relates to the technical field of image data processing, and in particular to a system for processing remote sensing image data of urban rail transit.

背景技术Background technique

城市轨道交通遥感图像处理系统起步较晚,大约在2000年之后开始逐渐发展。早期系统主要应用于线路安检,使用简单的视频监控系统,识别和提取图像中的安检目标。约2010年之后,随着图像处理技术尤其是深度学习的进步,轨道交通图像处理系统开始实现更复杂的功能。Urban rail transit remote sensing image processing systems started relatively late, and began to develop gradually after about 2000. Early systems were mainly used for line security inspections, using simple video surveillance systems to identify and extract security inspection targets in images. After about 2010, with the advancement of image processing technology, especially deep learning, rail transit image processing systems began to achieve more complex functions.

2020年以后,出现将多个图像处理任务集成在一个系统的设计,实现车厢内更丰富的监测和分析功能,但目前仍存在以下缺陷:现有技术中,轨道交通系统数据主要依靠地面调查获取,成本高且效率低,无法快速获取覆盖广域的空间信息;现有技术无法有效提取轨道交通的关键特征,如轨道线路、车站、周边环境等,数据支撑不足;运量预测依赖静态分配模型,无法考虑动态因素,预测精度有限;很难立体化研究轨道交通和城市发展的互动关系,规划分析不够科学;决策支持依赖人工经验,不同方案评估困难,缺乏定量分析等。After 2020, designs integrating multiple image processing tasks into one system have emerged to achieve richer monitoring and analysis functions within the car, but the following defects still exist: In the existing technology, rail transit system data is mainly obtained through ground surveys, which is costly and inefficient, and cannot quickly obtain spatial information covering a wide area; the existing technology cannot effectively extract key features of rail transit, such as track lines, stations, surrounding environment, etc., and data support is insufficient; volume forecasts rely on static allocation models, cannot consider dynamic factors, and have limited prediction accuracy; it is difficult to conduct a three-dimensional study of the interactive relationship between rail transit and urban development, and planning analysis is not scientific enough; decision support relies on manual experience, different plans are difficult to evaluate, and there is a lack of quantitative analysis.

发明内容Summary of the invention

鉴于上述现有的城市轨道交通遥感图像处理中存在的问题,提出了本发明。In view of the above-mentioned problems existing in the existing urban rail transit remote sensing image processing, the present invention is proposed.

因此,本发明所要解决的问题在于如何提供一种提高城市轨道交通规划智能化水平的系统。Therefore, the problem to be solved by the present invention is how to provide a system for improving the intelligence level of urban rail transit planning.

为解决上述技术问题,本发明提供如下技术方案:In order to solve the above technical problems, the present invention provides the following technical solutions:

第一方面,本发明实施例提供了一种城市轨道交通遥感图像数据的处理系统,其包括,数据采集模块、数据预处理模块、特征提取模块、数据分析模块、决策支持模块、用户接口模块以及数据存储与管理模块;所述数据采集模块用于负责收集城市轨道交通的遥感图像;所述数据预处理模块用于对原始遥感图像进行预处理;所述特征提取模块用于特征的提取,最终关键特征,输出结构化的特征标注结果;所述数据分析模块用于对图像数据进行处理;所述决策支持模块用于进行决策支持;所述用户接口模块用于提供一个界面供用户查看分析结果和报告或输入新的查询请求;所述数据存储与管理模块用于负责存储所有采集的原始数据、处理后的数据和分析结果;所述数据采集模块将采集到的数据传输到所述数据预处理模块;所述数据预处理模块将预处理后的数据送往所述特征提取模块;所述特征提取模块将提取的特征数据传递给所述数据分析模块;所述数据分析模块的分析结果用于报告生成或传递给所述决策支持模块;所述决策支持模块的输出用于向相关决策者提供报告;所述用户接口模块直接与用户交互,获取用户输入,并展示其他模块处理的结果;所述数据存储与管理模块为其他模块提供数据访问和存储服务。In the first aspect, an embodiment of the present invention provides a system for processing urban rail transit remote sensing image data, which includes a data acquisition module, a data preprocessing module, a feature extraction module, a data analysis module, a decision support module, a user interface module and a data storage and management module; the data acquisition module is responsible for collecting remote sensing images of urban rail transit; the data preprocessing module is used to preprocess the original remote sensing images; the feature extraction module is used to extract features, and finally key features, and output structured feature annotation results; the data analysis module is used to process image data; the decision support module is used to provide decision support; the user interface module is used to provide an interface for users to view analysis results and reports or input new query request; the data storage and management module is responsible for storing all collected raw data, processed data and analysis results; the data acquisition module transmits the collected data to the data preprocessing module; the data preprocessing module sends the preprocessed data to the feature extraction module; the feature extraction module passes the extracted feature data to the data analysis module; the analysis results of the data analysis module are used for report generation or passed to the decision support module; the output of the decision support module is used to provide reports to relevant decision makers; the user interface module directly interacts with the user, obtains user input, and displays the results of processing by other modules; the data storage and management module provides data access and storage services for other modules.

作为本发明所述城市轨道交通遥感图像数据的处理系统的一种优选方案,其中:所述数据采集模块包括:收集轨道交通线路图资料,M={m1,m2,...,mn},其中,M代表所有轨道交通线路的集合,mi表示第i条线路;对于每条线路mi,标注其路径范围P(mi),如果线路mi是地下线路,则标注车站位置;如果是地上线路,则标注整个线路;对每条线路mi,分析其转向和交汇点,如果存在规划中但未开通的线路mj,则,并标注P(mj);使用最小包围盒算法,计算出包含所有路径P(mi)的最小矩形或多边形区域B,公式如下:As a preferred solution of the processing system of urban rail transit remote sensing image data of the present invention, the data acquisition module includes: collecting rail transit line map data, M = {m 1 ,m 2 ,...,m n }, wherein M represents the set of all rail transit lines, and mi represents the i-th line; for each line mi , marking its path range P( mi ), if the line mi is an underground line, marking the station location; if it is an above-ground line, marking the entire line; for each line mi , analyzing its turning and intersection points, if there is a planned but unopened line mj , then, and marking P( mj ); using the minimum bounding box algorithm, calculating the minimum rectangular or polygonal area B containing all paths P( mi ), the formula is as follows:

其中,在计算B时,需确保各路径范围有重叠。When calculating B, it is necessary to ensure that the ranges of the paths overlap.

作为本发明所述城市轨道交通遥感图像数据的处理系统的一种优选方案,其中:所述数据预处理模块包括以下内容:检查图像数据是否存在扭曲情况,进行几何校正;分析图像的噪声分布情况,设计滤波方法去除噪声;调整图像色彩平衡,进行直方图均衡化,减少亮度影响;对图像进行剪裁、缩放和旋转变换,将图像调整为统一尺寸;应用排序和归一化,将图像值映射到固定数值范围。As a preferred solution of the processing system of urban rail transit remote sensing image data described in the present invention, the data preprocessing module includes the following contents: checking whether the image data is distorted and performing geometric correction; analyzing the noise distribution of the image and designing a filtering method to remove noise; adjusting the image color balance and performing histogram equalization to reduce the brightness impact; cropping, scaling and rotating the image to adjust the image to a uniform size; applying sorting and normalization to map the image values to a fixed numerical range.

作为本发明所述城市轨道交通遥感图像数据的处理系统的一种优选方案,其中:所述进行几何校正的步骤如下:收集包含各种倾斜和扭曲图像的数据集,对这些图像进行标注,指出正确的几何形状或者校正后的图像;设计一个CNN模型,CNN模型的输入是原始扭曲图像,输出是图像的校正参数;定义一个损失函数MSE,公式如下:As a preferred solution of the processing system of urban rail transit remote sensing image data of the present invention, the step of performing geometric correction is as follows: collecting a data set containing various tilted and distorted images, annotating these images, and indicating the correct geometric shape or the corrected image; designing a CNN model, the input of the CNN model is the original distorted image, and the output is the correction parameter of the image; defining a loss function MSE, the formula is as follows:

其中,Yi是真实参数,是预测参数,n是样本数量。Among them, Yi is the real parameter, is the prediction parameter and n is the number of samples.

作为本发明所述城市轨道交通遥感图像数据的处理系统的一种优选方案,其中:所述数据分析模块包括以下内容:根据轨道线路特征,统计分析各条线路的分布信息;利用车站分布信息,结合人口分布数据,建立流量预测模型,预测未来各站点的客流量;分析不同年份的特征变化,判断新增线路方向,预测未来发展趋势;研究轨道交通与城市发展的相互影响关系;应用交通assignments预测模型,评估新增线路对整体轨道交通网络的影响。As a preferred solution of the processing system of urban rail transit remote sensing image data described in the present invention, the data analysis module includes the following contents: according to the characteristics of the rail line, statistically analyzing the distribution information of each line; using the station distribution information, combined with the population distribution data, to establish a flow prediction model to predict the passenger flow of each station in the future; analyzing the characteristic changes in different years, judging the direction of new lines, and predicting future development trends; studying the mutual influence relationship between rail transit and urban development; applying the traffic assignments prediction model to evaluate the impact of new lines on the overall rail transit network.

作为本发明所述城市轨道交通遥感图像数据的处理系统的一种优选方案,其中:所述分析不同年份的特征变化,判断新增线路方向,预测未来发展趋势包括以下步骤:收集该城市过去10年轨道交通线路图数据;比较线路结构的变化,分析新增线路的位置分布特征,包括:将不同年份的线路图进行叠加对比,标注历年新增加的线路段,分析新增线路的空间分布情况,判断是否集中在某些区域;计算新增线路的方向分布统计学特征;拟合新增线路方向的分布函数,判断主要的发展方向;根据城市发展规划和人口分布预测,修正方向分布函数;基于修正的方向分布,采样生成可能的新增线路,预测未来发展趋势。As a preferred solution of the processing system of urban rail transit remote sensing image data described in the present invention, the analysis of characteristic changes in different years, determination of the direction of new lines, and prediction of future development trends include the following steps: collecting rail transit line map data of the city in the past 10 years; comparing changes in line structure, and analyzing the location distribution characteristics of new lines, including: superimposing and comparing line maps of different years, marking newly added line segments in previous years, analyzing the spatial distribution of new lines, and determining whether they are concentrated in certain areas; calculating the statistical characteristics of the directional distribution of new lines; fitting the distribution function of the direction of new lines to determine the main development direction; correcting the directional distribution function according to urban development planning and population distribution prediction; sampling and generating possible new lines based on the corrected directional distribution, and predicting future development trends.

作为本发明所述城市轨道交通遥感图像数据的处理系统的一种优选方案,其中:所述计算新增线路的方向分布统计学特征包括以下步骤:计算方向角:As a preferred solution of the urban rail transit remote sensing image data processing system of the present invention, the calculation of the directional distribution statistical characteristics of the newly added lines includes the following steps: calculating the direction angle:

θi=arctan2(Δyi,Δxi)θ i =arctan2(Δy i , Δxi )

其中,θi为第i个线路段的方向角;Δyi,Δxi分别是线路段在纵轴和横轴上的坐标差;计算主方向和方差:Where θ i is the direction angle of the i-th line segment; Δy i and Δxi are the coordinate differences of the line segment on the vertical axis and the horizontal axis respectively; calculate the main direction and variance:

S=1-CS=1-C

其中,N为线路段的总数,C为结果向量的长度。Where N is the total number of line segments and C is the length of the result vector.

作为本发明所述城市轨道交通遥感图像数据的处理系统的一种优选方案,其中:所述拟合新增线路方向的分布函数,判断主要的发展方向的步骤如下:使用核密度估计公式:As a preferred solution of the processing system of urban rail transit remote sensing image data of the present invention, the steps of fitting the distribution function of the newly added line direction and judging the main development direction are as follows: using the kernel density estimation formula:

其中,核函数Kh通常选择高斯核,h为带宽;所述修正方向分布函数包括:获取城市的长期发展规划和未来10年的人口分布预测数据,对f(θ)进行调整,校正因子如下:The kernel function K h is usually a Gaussian kernel, and h is the bandwidth; the modified directional distribution function includes: obtaining the city's long-term development plan and the population distribution forecast data for the next 10 years, and adjusting f(θ). The correction factor is as follows:

H(θ)=1-α.I(θ∈θrestricted)H(θ)=1-α.I(θ∈θ restricted )

调整后的密度函数:Adjusted density function:

f'(θ)=H(θ).f(θ)f'(θ)=H(θ).f(θ)

其中,α为校正强度参数,0到1之间;I为指示函数,若方向θ落在限制区域内,则为1,否则为0;人口权重的计算公式为:Among them, α is the correction intensity parameter, between 0 and 1; I is the indicator function, which is 1 if the direction θ falls within the restricted area, otherwise it is 0; the calculation formula of population weight is:

W(θ)=β.P(θ)W(θ)=β.P(θ)

调整后的密度函数:Adjusted density function:

f”(θ)=W(θ).f'(θ)f”(θ)=W(θ).f'(θ)

其中,β为人口影响参数,P(θ)为在方向θ的人口分布密度;结合城市发展规划的限制区域调整和人口分布的影响,得到最终的线路方向分布函数:Among them, β is the population influence parameter, and P(θ) is the population distribution density in direction θ. Combining the restricted area adjustment of urban development planning and the influence of population distribution, the final line direction distribution function is obtained:

G(θ)=f”(θ)G(θ)=f”(θ)

其中,G(θ)为最终的线路方向分布函数。Among them, G(θ) is the final line direction distribution function.

本发明的有益效果为,本发明大幅提高了城市轨道交通系统数据的获取效率,通过遥感图像可以快速采集到细致的空间信息;极大地丰富了城市轨道交通的数字化程度,各类关键特征的提取为规划分析提供了数据基础;提供了全面和定量的交通运量预测,为未来需求评估和线路规划提供支持;可以深入研究轨道交通和城市发展的动态相互关系,使规划更加科学;为轨道交通建设提供更智能化的决策支持,评估不同规划方案的优劣,推动了轨道交通领域多源异构数据的有效利用和深度挖掘分析。The beneficial effects of the present invention are as follows: the present invention greatly improves the efficiency of acquiring data of the urban rail transit system, and detailed spatial information can be quickly collected through remote sensing images; the degree of digitization of urban rail transit is greatly enriched, and the extraction of various key features provides a data basis for planning and analysis; a comprehensive and quantitative traffic volume forecast is provided to provide support for future demand assessment and line planning; the dynamic relationship between rail transit and urban development can be deeply studied to make planning more scientific; more intelligent decision-making support is provided for rail transit construction, the advantages and disadvantages of different planning schemes are evaluated, and the effective use and in-depth mining and analysis of multi-source heterogeneous data in the field of rail transit are promoted.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。其中:In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following briefly introduces the drawings required for describing the embodiments. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work. Among them:

图1为实施例1中城市轨道交通遥感图像数据的处理系统的结构图。FIG. 1 is a structural diagram of a system for processing urban rail transit remote sensing image data in Example 1.

具体实施方式Detailed ways

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, the specific implementation methods of the present invention are described in detail below in conjunction with the accompanying drawings.

在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。In the following description, many specific details are set forth to facilitate a full understanding of the present invention, but the present invention may also be implemented in other ways different from those described herein, and those skilled in the art may make similar generalizations without violating the connotation of the present invention. Therefore, the present invention is not limited to the specific embodiments disclosed below.

其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。Secondly, the term "one embodiment" or "embodiment" as used herein refers to a specific feature, structure, or characteristic that may be included in at least one implementation of the present invention. The term "in one embodiment" that appears in different places in this specification does not necessarily refer to the same embodiment, nor does it refer to a separate or selective embodiment that is mutually exclusive with other embodiments.

实施例1Example 1

参照图1,为本发明第一个实施例,该实施例提供了一种城市轨道交通遥感图像数据的处理系统,包括以下内容:Referring to FIG. 1 , which is a first embodiment of the present invention, a system for processing urban rail transit remote sensing image data is provided, including the following contents:

数据采集模块、数据预处理模块、特征提取模块、数据分析模块、决策支持模块、用户接口模块以及数据存储与管理模块;数据采集模块将采集到的数据传输到数据预处理模块;数据预处理模块将预处理后的数据被送往特征提取模块;特征提取模块将提取的特征数据传递给数据分析模块;数据分析模块得分析结果可以用于报告生成或传递给决策支持模块;决策支持模块的输出用于向相关决策者提供报告;用户接口模块直接与用户交互,获取用户输入,并展示其他模块处理的结果;数据存储与管理模块为系统的其他模块提供数据访问和存储服务。Data acquisition module, data preprocessing module, feature extraction module, data analysis module, decision support module, user interface module and data storage and management module; the data acquisition module transmits the collected data to the data preprocessing module; the data preprocessing module sends the preprocessed data to the feature extraction module; the feature extraction module passes the extracted feature data to the data analysis module; the analysis results of the data analysis module can be used for report generation or passed to the decision support module; the output of the decision support module is used to provide reports to relevant decision makers; the user interface module directly interacts with the user, obtains user input, and displays the results of processing by other modules; the data storage and management module provides data access and storage services for other modules of the system.

数据采集模块,负责收集城市轨道交通的遥感图像,遥感图像通常来自于卫星、无人机或航拍。The data acquisition module is responsible for collecting remote sensing images of urban rail transit. Remote sensing images usually come from satellites, drones or aerial photography.

具体的,判断城市轨道交通路径,确定需要收集图像的范围区域,联系商业卫星公司,获取覆盖该区域的高分辨率卫星图像,使用无人机在关键区域进行详细拍摄,获取无人机俯视图像,对轨道交通区域进行航拍,获取鸟瞰视角的图像;将上述多源遥感图像统一裁剪、拼接,构建该城市轨道交通的图像数据集,图像数据集经过处理后,被发送到数据预处理模块。Specifically, the urban rail transit route is determined, the range of areas where images need to be collected is determined, commercial satellite companies are contacted to obtain high-resolution satellite images covering the area, drones are used to take detailed photos of key areas, and drone overhead images are obtained. Aerial photography is performed on the rail transit area to obtain images from a bird's-eye view. The above multi-source remote sensing images are uniformly cropped and spliced to construct an image dataset for the urban rail transit. After the image dataset is processed, it is sent to the data preprocessing module.

进一步的,确定需要收集图像的范围区域的过程如下:Furthermore, the process of determining the range of areas where images need to be collected is as follows:

收集轨道交通线路图资料,M={m1,m2,...,mn},其中,M代表所有轨道交通线路的集合,mi表示第i条线路;对于每条线路mi,标注其路径范围P(mi),这些路径可以用线段、曲线或者点的集合来表示;如果线路mi是地下线路,则标注车站位置;如果是地上线路,则标注整个线路;对每条线路mi,分析其转向和交汇点,并调整P(mi)以确保完整性;如果存在规划中但未开通的线路mj,则,并标注P(mj)。Collect rail transit line map data, M = {m 1 ,m 2 ,...,m n }, where M represents the set of all rail transit lines, mi represents the i-th line; for each line mi , mark its path range P(m i ), these paths can be represented by a set of line segments, curves or points; if line mi is an underground line, mark the station location; if it is an above-ground line, mark the entire line; for each line mi , analyze its turns and intersections, and adjust P(m i ) to ensure completeness; if there is a line m j that is planned but not opened, then, and mark P(m j ).

使用最小包围盒算法,计算出包含所有路径P(mi)的最小矩形或多边形区域B,公式如下:Use the minimum bounding box algorithm to calculate the minimum rectangular or polygonal area B that contains all paths P(m i ). The formula is as follows:

在计算B时,确保各路径范围有重叠,以便于后续图像拼接,最终确定的空间范围B就是需要收集遥感图像的数据区域。When calculating B, ensure that the ranges of each path overlap to facilitate subsequent image stitching. The final spatial range B is the data area where remote sensing images need to be collected.

数据预处理模块,用于对原始遥感图像进行预处理,包括图像校正、去噪、标准化等,以便于后续分析。The data preprocessing module is used to preprocess the original remote sensing images, including image correction, denoising, standardization, etc., to facilitate subsequent analysis.

具体的,数据预处理模块包括以下内容:检查图像数据是否存在倾斜、局部失真等扭曲情况,进行几何校正;分析图像的噪声分布情况,设计滤波方法去除噪声;调整图像色彩平衡,进行直方图均衡化,减少亮度影响;对图像进行剪裁、缩放和旋转变换,将图像调整为统一尺寸;应用排序和归一化,将图像值映射到固定数值范围;预处理后的图像数据被发送给特征提取模块,用于后续分析。Specifically, the data preprocessing module includes the following contents: checking whether the image data has distortions such as tilt and local distortion, and performing geometric correction; analyzing the noise distribution of the image and designing a filtering method to remove noise; adjusting the image color balance and performing histogram equalization to reduce the impact of brightness; cropping, scaling and rotating the image to adjust the image to a uniform size; applying sorting and normalization to map the image values to a fixed numerical range; the preprocessed image data is sent to the feature extraction module for subsequent analysis.

进一步的,进行几何校正的步骤如下:Furthermore, the steps for geometric correction are as follows:

收集包含各种倾斜和扭曲图像的数据集,对这些图像进行标注,指出正确的几何形状或者校正后的图像;设计一个CNN模型,CNN模型的输入是原始扭曲图像,输出是图像的校正参数,例如旋转角度、扭曲程度等;定义一个损失函数MSE:Collect a dataset containing various tilted and distorted images, annotate these images, and indicate the correct geometric shape or the corrected image; design a CNN model whose input is the original distorted image and whose output is the correction parameters of the image, such as rotation angle, distortion degree, etc.; define a loss function MSE:

其中,Yi是真实参数,是预测参数,n是样本数量。Among them, Yi is the real parameter, is the prediction parameter and n is the number of samples.

校正算法使用CNN预测的参数来校正图像,例如,如果预测输出是倾斜角度,则使用仿射变换对图像进行校正;在独立的测试数据集上评估模型性能,根据性能结果迭代地优化模型结构和训练过程。The correction algorithm uses the parameters predicted by the CNN to correct the image. For example, if the predicted output is a tilt angle, an affine transformation is used to correct the image. The model performance is evaluated on an independent test dataset, and the model structure and training process are iteratively optimized based on the performance results.

对图像进行剪裁、缩放和旋转变换的步骤如下:识别图像中的关键点,这些关键点代表图像中的显著特征,例如角点、边缘或独特的纹理;利用关键点生成显著性图,其中,显著性图可以通过对特征点的密度和分布进行评估来生成,例如使用高斯模糊等方法增强特征点周围的区域;对显著性图进行分析,确定图像中的关键区域,公式如下:The steps of cropping, scaling and rotating the image are as follows: identify key points in the image, which represent significant features in the image, such as corners, edges or unique textures; use the key points to generate a saliency map, where the saliency map can be generated by evaluating the density and distribution of the feature points, such as using methods such as Gaussian blur to enhance the area around the feature points; analyze the saliency map to determine the key areas in the image, as shown in the following formula:

R=argmaxx,yS(x,y)R = argmax x,y S(x,y)

其中,S(x,y)是显著性图中点(x,y)的显著性值,R是确定的关键区域;使用边界框或最小闭合区域算法来确定剪裁窗口。Among them, S(x,y) is the saliency value of the point (x,y) in the saliency map, R is the determined key area; the cropping window is determined using a bounding box or minimum closed area algorithm.

特征提取模块包括以下内容:使用Canny边缘检测算法,检测出图像中的线条轮廓;应用Hough变换,通过线条组合分析,提取出图像中的轨道线路;利用模板匹配技术,使用预设的车站模板,识别出图像中的车站位置;通过分割与分类算法,区分出道路、建筑等不同类别的地面目标;借助卷积神经网络等深度学习技术,实现对各类地面目标的智能识别;最终汇总轨道、车站、建筑等关键特征,输出结构化的特征标注结果。The feature extraction module includes the following contents: using the Canny edge detection algorithm to detect the line contours in the image; applying the Hough transform to extract the track lines in the image through line combination analysis; using the template matching technology and the preset station template to identify the station location in the image; using the segmentation and classification algorithms to distinguish different types of ground targets such as roads and buildings; using deep learning technologies such as convolutional neural networks to achieve intelligent recognition of various types of ground targets; finally summarizing key features such as tracks, stations, and buildings, and outputting structured feature labeling results.

优选的,利用模板匹配技术,使用预设的车站模板,识别出图像中的车站位置包括以下步骤:选择车站的标准模板,其中,模板的选择应覆盖不同的车站类型和视角,以提高识别的广泛性和准确性;对模板和待分析的图像进行预处理;在待分析图像上滑动模板,计算模板与图像每个位置的匹配程度,具体公式如下:Preferably, using template matching technology and a preset station template to identify the station location in the image includes the following steps: selecting a standard template for the station, wherein the template selection should cover different station types and viewing angles to improve the breadth and accuracy of recognition; preprocessing the template and the image to be analyzed; sliding the template on the image to be analyzed, and calculating the matching degree between the template and each position of the image, the specific formula is as follows:

其中,T是模板,F是图像;当匹配分数超过设定的阈值e时,认为在该位置找到了车站,一旦找到匹配,记录下匹配区域的位置,这个位置可以用于进一步的分析,如车站的地理定位、与其他城市设施的关系等。Where T is the template and F is the image. When the matching score exceeds the set threshold e, it is considered that the station is found at that location. Once a match is found, the location of the matching area is recorded. This location can be used for further analysis, such as the geographic positioning of the station and its relationship with other urban facilities.

数据分析模块包括以下内容:根据轨道线路特征,统计分析各条线路的长度、交汇情况、覆盖范围等分布信息;利用车站分布信息,结合人口分布数据,建立流量预测模型,预测未来各站点的客流量;分析不同年份的特征变化,判断新增线路方向,预测未来发展趋势;研究轨道交通与城市发展的相互影响关系;应用交通assignments预测模型,评估新增线路对整体轨道交通网络的影响。The data analysis module includes the following contents: according to the characteristics of the rail lines, statistically analyze the distribution information of each line, such as the length, intersection, coverage, etc.; use the station distribution information, combined with the population distribution data, to establish a flow prediction model to predict the passenger flow of each station in the future; analyze the changes in characteristics in different years, determine the direction of new lines, and predict future development trends; study the mutual influence between rail transit and urban development; apply the traffic assignments prediction model to evaluate the impact of new lines on the overall rail transit network.

具体的,利用车站分布信息,结合人口分布数据,建立流量预测模型,预测未来各站点的客流量包括以下步骤:收集轨道交通线路图数据,标注各个车站的位置坐标及相邻站点;收集该城市的人口分布热力图数据,表示不同区域的人口分布密度;将车站位置映射到人口分布热力图上,统计服务范围内的人口数作为该站的潜在客流量;将历史客流数据作为训练样本,车站位置、周边人口等作为特征,建立回归模型;对未来新建站点,输入其坐标位置和服务覆盖人口,模型预测该站的未来客流量。Specifically, the station distribution information is combined with the population distribution data to establish a flow prediction model. The following steps are included to predict the passenger flow of each station in the future: collect rail transit line map data, mark the location coordinates of each station and adjacent stations; collect the population distribution heat map data of the city to indicate the population distribution density in different areas; map the station location to the population distribution heat map, and count the number of people within the service area as the potential passenger flow of the station; use historical passenger flow data as training samples, and use station location, surrounding population, etc. as features to establish a regression model; for future new stations, input their coordinates and service coverage population, and the model predicts the future passenger flow of the station.

分析不同年份的特征变化,判断新增线路方向,预测未来发展趋势包括以下步骤:收集该城市过去10年轨道交通线路图数据;比较线路结构的变化,分析新增线路的位置分布特征,包括:将不同年份的线路图进行叠加对比,标注历年新增加的线路段,分析新增线路的空间分布情况,是否集中在某些区域;计算新增线路的方向分布统计学特征;拟合新增线路方向的分布函数,判断主要的发展方向;根据城市发展规划和人口分布预测,修正方向分布函数;基于修正的方向分布,采样生成可能的新增线路,预测未来发展趋势。Analyzing the changes in characteristics in different years, determining the direction of new lines, and predicting future development trends include the following steps: collecting rail transit line map data for the city over the past 10 years; comparing changes in line structure, and analyzing the location distribution characteristics of new lines, including: superimposing and comparing line maps from different years, marking newly added line sections over the years, and analyzing the spatial distribution of new lines to determine whether they are concentrated in certain areas; calculating the statistical characteristics of the directional distribution of new lines; fitting the distribution function of the direction of new lines to determine the main development direction; correcting the directional distribution function based on urban development plans and population distribution forecasts; and sampling and generating possible new lines based on the corrected directional distribution to predict future development trends.

进一步的,计算新增线路的方向分布统计学特征包括以下步骤:Furthermore, calculating the directional distribution statistical characteristics of the newly added lines includes the following steps:

计算方向角的公式如下:The formula for calculating the direction angle is as follows:

θi=arctan2(Δyi,Δxi)θ i =arctan2(Δy i , Δxi )

其中,θi为第i个线路段的方向角;Δyi,Δxi分别是线路段在纵轴和横轴上的坐标差;计算主方向和方差:Where θ i is the direction angle of the i-th line segment; Δy i and Δxi are the coordinate differences of the line segment on the vertical axis and the horizontal axis respectively; calculate the main direction and variance:

主方向公式:Main direction formula:

S=1-CS=1-C

其中,N为线路段的总数,C为结果向量的长度,用于计算方差。Where N is the total number of line segments and C is the length of the result vector used to calculate the variance.

拟合新增线路方向的分布函数,判断主要的发展方向的步骤如下:使用核密度估计(KDE)方法可以更好地拟合和解释线路方向的分布,公式如下:The steps to fit the distribution function of the newly added route directions and determine the main development direction are as follows: The kernel density estimation (KDE) method can better fit and explain the distribution of route directions. The formula is as follows:

其中,核函数Kh通常选择高斯核,h为带宽。Among them, the kernel function K h usually selects a Gaussian kernel, and h is the bandwidth.

修正方向分布函数包括以下步骤:获取城市的长期发展规划和未来10年的人口分布预测数据,对f(θ)进行调整,校正因子:The correction of the directional distribution function includes the following steps: obtaining the city's long-term development plan and the population distribution forecast data for the next 10 years, adjusting f(θ), and the correction factor:

H(θ)=1-α.I(θ∈θrestricted)H(θ)=1-α.I(θ∈θ restricted )

调整后的密度函数:Adjusted density function:

f'(θ)=H(θ).f(θ)f'(θ)=H(θ).f(θ)

其中,α为校正强度参数,0到1之间;I为指示函数,如果方向θ落在限制区域内,则为1,否则为0。Among them, α is the correction strength parameter, which is between 0 and 1; I is the indicator function, which is 1 if the direction θ falls within the restricted area, otherwise it is 0.

人口权重的计算公式为:The formula for calculating population weight is:

W(θ)=β.P(θ)W(θ)=β.P(θ)

调整后的密度函数:Adjusted density function:

f”(θ)=W(θ).f'(θ)f”(θ)=W(θ).f'(θ)

其中,β为人口影响参数,用于调节人口分布对线路方向分布影响的强度;P(θ)为在方向θ的人口分布密度;结合城市发展规划的限制区域调整和人口分布的影响,得到一个综合优化后的线路方向分布函数:Among them, β is the population influence parameter, which is used to adjust the intensity of the influence of population distribution on the line direction distribution; P(θ) is the population distribution density in direction θ; combined with the adjustment of restricted areas in urban development planning and the influence of population distribution, a comprehensive optimized line direction distribution function is obtained:

G(θ)=f”(θ)G(θ)=f”(θ)

需要说明的是,最终优化的密度函数将综合考虑城市规划限制、未来人口分布预测以及原始线路方向数据,提供一个更加全面和实际的线路方向分布预测。It should be noted that the final optimized density function will comprehensively consider urban planning restrictions, future population distribution forecasts, and original route direction data to provide a more comprehensive and realistic route direction distribution forecast.

决策支持模块包括以下内容:收集城市发展规划及轨道交通建设规划的多种草案;基于流量预测结果,评估各规划方案的需求覆盖情况;结合轨道交通网络效应分析,评估各规划方案的综合效果;通过轨道交通和城市发展的动态因果模型,预测各规划方案的影响。The decision support module includes the following contents: collecting various drafts of urban development plans and rail transit construction plans; evaluating the demand coverage of each planning scheme based on traffic forecast results; evaluating the comprehensive effects of each planning scheme in combination with rail transit network effect analysis; and predicting the impact of each planning scheme through a dynamic causal model of rail transit and urban development.

用户接口模块,用于提供一个界面供用户(如城市规划师、交通管理者)查看分析结果和报告,或输入新的查询请求。The user interface module is used to provide an interface for users (such as urban planners and traffic managers) to view analysis results and reports, or enter new query requests.

具体如下:提供网页界面,以地图、图表等形式呈现数据分析结果,用户可以选择查看不同的分析报告;提供查询输入框,用户可以输入新规划方案或线路,进行影响评估;后端接收到新查询,进行相应的分析,返回结果到前端,用户可以导出分析报告及数据表格等。The details are as follows: a web interface is provided to present data analysis results in the form of maps, charts, etc. Users can choose to view different analysis reports; a query input box is provided, where users can enter new planning schemes or routes to conduct impact assessments; the back end receives new queries, performs corresponding analysis, and returns results to the front end. Users can export analysis reports and data tables, etc.

数据存储与管理模块,用于负责存储所有采集的原始数据、处理后的数据和分析结果。The data storage and management module is responsible for storing all collected raw data, processed data and analysis results.

具体如下:存储原始的各类图像数据,以及预处理后的数据;使用关系数据库存储提取的特征数据,并建立索引;采用列式数据库存储各类空间分析的中间结果数据;建立元数据目录,记录数据来源、处理流程等信息。The details are as follows: store various original image data and pre-processed data; use relational database to store extracted feature data and establish indexes; use columnar database to store intermediate result data of various spatial analyses; establish metadata directory to record data source, processing flow and other information.

本实施例还提供一种计算机设备,适用于城市轨道交通遥感图像数据的处理系统的情况,包括:存储器和处理器;存储器用于存储计算机可执行指令,处理器用于执行计算机可执行指令,实现如上述实施例提出的城市轨道交通遥感图像数据的处理系统。This embodiment also provides a computer device, which is suitable for the case of a processing system for urban rail transit remote sensing image data, including: a memory and a processor; the memory is used to store computer executable instructions, and the processor is used to execute computer executable instructions to implement the processing system for urban rail transit remote sensing image data proposed in the above embodiment.

该计算机设备可以是终端,该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、NFC(近场通信)或其他技术实现。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。The computer device may be a terminal, and the computer device includes a processor, a memory, a communication interface, a display screen and an input device connected via a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium and an internal memory. The non-volatile storage medium stores an operating system and a computer program. The internal memory provides an environment for the operation of the operating system and the computer program in the non-volatile storage medium. The communication interface of the computer device is used to communicate with an external terminal in a wired or wireless manner, and the wireless manner can be achieved through WIFI, an operator network, NFC (near field communication) or other technologies. The display screen of the computer device may be a liquid crystal display screen or an electronic ink display screen, and the input device of the computer device may be a touch layer covering the display screen, or a key, trackball or touchpad provided on the housing of the computer device, or an external keyboard, touchpad or mouse, etc.

本实施例还提供一种存储介质,其上存储有计算机程序,该程序微处理器执行时实现如上述实施例提出的实现城市轨道交通遥感图像数据的处理系统;存储介质可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(ElectricallyErasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,简称EPROM),可编程只读存储器(Programmable Red-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。This embodiment also provides a storage medium on which a computer program is stored. When the program is executed by a microprocessor, a processing system for urban rail transit remote sensing image data as proposed in the above embodiment is implemented; the storage medium can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (Static Random Access Memory, referred to as SRAM), electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, referred to as EEPROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, referred to as EPROM), programmable read-only memory (Programmable Red-Only Memory, referred to as PROM), read-only memory (Read-Only Memory, referred to as ROM), magnetic storage, flash memory, magnetic disk or optical disk.

综上,本发明大幅提高了城市轨道交通系统数据的获取效率,通过遥感图像可以快速采集到细致的空间信息;极大地丰富了城市轨道交通的数字化程度,各类关键特征的提取为规划分析提供了数据基础;提供了全面和定量的交通运量预测,为未来需求评估和线路规划提供支持;可以深入研究轨道交通和城市发展的动态相互关系,使规划更加科学;为轨道交通建设提供更智能化的决策支持,评估不同规划方案的优劣,推动了轨道交通领域多源异构数据的有效利用和深度挖掘分析。In summary, the present invention greatly improves the efficiency of acquiring data from urban rail transit systems, and can quickly collect detailed spatial information through remote sensing images; it greatly enriches the degree of digitization of urban rail transit, and the extraction of various key features provides a data basis for planning and analysis; it provides a comprehensive and quantitative traffic volume forecast to provide support for future demand assessment and line planning; it can conduct in-depth research on the dynamic relationship between rail transit and urban development to make planning more scientific; it provides more intelligent decision-making support for rail transit construction, evaluates the advantages and disadvantages of different planning schemes, and promotes the effective use and in-depth mining and analysis of multi-source heterogeneous data in the field of rail transit.

实施例2Example 2

参照表1,为本发明第二个实施例,为进一步验证本发明的先进性,给出了城市轨道交通遥感图像数据的处理系统的实验仿真数据。Referring to Table 1, which is the second embodiment of the present invention, in order to further verify the advancement of the present invention, experimental simulation data of a processing system for urban rail transit remote sensing image data are provided.

A城市,人口300万,现有3条地铁线和1条轻轨线,规划在未来5年新建2条地铁线。City A, with a population of 3 million, currently has 3 subway lines and 1 light rail line, and plans to build 2 new subway lines in the next 5 years.

使用无人机对A城市现有轨道交通进行详细飞行拍摄,获得5万张航拍图像,从商业卫星获取A城全域1米分辨率光学图像,收集规划部门的过去10年轨道交通线路图数据。Use drones to conduct detailed flight photography of City A’s existing rail transit, obtain 50,000 aerial images, acquire 1-meter resolution optical images of City A’s entire area from commercial satellites, and collect rail transit route map data from the planning department for the past 10 years.

使用Pix4D等软件处理无人机图像,获得点云、数字表面模型、正射影像;对卫星影像进行几何校正、配准,与无人机图像拼接构建数据集;利用卷积神经网络识别出卫星图像中的过去和现有的轨道交通线路;使用模板匹配识别无人机图像中的车站位置信息。Use software such as Pix4D to process drone images to obtain point clouds, digital surface models, and orthophotos; perform geometric correction and registration on satellite images, and stitch them with drone images to construct a data set; use convolutional neural networks to identify past and existing rail transit lines in satellite images; and use template matching to identify station location information in drone images.

统计现有4条轨道交通线路长度、交汇点分布、覆盖范围信息,利用过去10年新增线路方向分布特征,预测未来新增线路趋势,建立轨道交通与城市发展关系模型,分析互动机制。Statistics are collected on the length, intersection distribution, and coverage of the four existing rail transit lines. The directional distribution characteristics of new lines added in the past 10 years are used to predict the trend of new lines in the future, establish a relationship model between rail transit and urban development, and analyze the interactive mechanism.

提取两条新规划线路路径信息,预测新增线路带来的网络流量变化;基于流量预测,对新线路站点位置和数量进行优化;构建A城虚拟数字孪生城市,进行新线路建设的仿真测试。Extract the path information of the two newly planned lines and predict the changes in network traffic brought about by the new lines. Based on the traffic prediction, optimize the location and number of new line stations. Build a virtual digital twin city of City A and conduct simulation tests on the construction of new lines.

表1本发明与现有技术的对比Table 1 Comparison between the present invention and the prior art

系统指标System indicators 现有技术current technology 本发明this invention 数据获取方式Data acquisition method 人工调查Manual investigation 多源遥感Multi-source remote sensing 分析技术analytical skills 静态分析Static Analysis 深度学习Deep Learning 决策支持方式Decision support methods 经验判断Experience 数字孪生仿真Digital Twin Simulation 结果展示Results 统计报表Statistical Reports 三维可视化3D Visualization

该表格通过与现有技术的对比,突出了本发明在获取多源异构数据、采用前沿分析技术、构建数字孪生并提供三维交互界面等方面的技术优势,全面提升了城市轨道交通规划决策的效率和质量,显示出了显著的技术进步。By comparing with the existing technology, this table highlights the technical advantages of the present invention in acquiring multi-source heterogeneous data, adopting cutting-edge analysis technology, building digital twins and providing three-dimensional interactive interfaces, which comprehensively improves the efficiency and quality of urban rail transit planning decisions and demonstrates significant technological progress.

应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。It should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than to limit it. Although the present invention has been described in detail with reference to the preferred embodiments, those skilled in the art should understand that the technical solutions of the present invention may be modified or replaced by equivalents without departing from the spirit and scope of the technical solutions of the present invention, which should all be included in the scope of the claims of the present invention.

Claims (8)

1.一种城市轨道交通遥感图像数据的处理系统,其特征在于:包括:1. A system for processing urban rail transit remote sensing image data, characterized in that it includes: 数据采集模块、数据预处理模块、特征提取模块、数据分析模块、决策支持模块、用户接口模块以及数据存储与管理模块;Data acquisition module, data preprocessing module, feature extraction module, data analysis module, decision support module, user interface module and data storage and management module; 所述数据采集模块用于负责收集城市轨道交通的遥感图像;所述数据预处理模块用于对原始遥感图像进行预处理;所述特征提取模块用于特征的提取,最终关键特征,输出结构化的特征标注结果;所述数据分析模块用于对图像数据进行处理;所述决策支持模块用于进行决策支持;所述用户接口模块用于提供一个界面供用户查看分析结果和报告或输入新的查询请求;所述数据存储与管理模块用于负责存储所有采集的原始数据、处理后的数据和分析结果;The data acquisition module is responsible for collecting remote sensing images of urban rail transit; the data preprocessing module is used to preprocess the original remote sensing images; the feature extraction module is used to extract features, and finally the key features, and output structured feature annotation results; the data analysis module is used to process image data; the decision support module is used to provide decision support; the user interface module is used to provide an interface for users to view analysis results and reports or input new query requests; the data storage and management module is responsible for storing all collected original data, processed data and analysis results; 所述数据采集模块将采集到的数据传输到所述数据预处理模块;所述数据预处理模块将预处理后的数据送往所述特征提取模块;所述特征提取模块将提取的特征数据传递给所述数据分析模块;所述数据分析模块的分析结果用于报告生成或传递给所述决策支持模块;所述决策支持模块的输出用于向相关决策者提供报告;所述用户接口模块直接与用户交互,获取用户输入,并展示其他模块处理的结果;所述数据存储与管理模块为其他模块提供数据访问和存储服务。The data acquisition module transmits the collected data to the data preprocessing module; the data preprocessing module sends the preprocessed data to the feature extraction module; the feature extraction module passes the extracted feature data to the data analysis module; the analysis results of the data analysis module are used for report generation or passed to the decision support module; the output of the decision support module is used to provide reports to relevant decision makers; the user interface module directly interacts with the user, obtains user input, and displays the results of processing by other modules; the data storage and management module provides data access and storage services for other modules. 2.如权利要求1所述的城市轨道交通遥感图像数据的处理系统,其特征在于:所述数据采集模块包括:2. The system for processing urban rail transit remote sensing image data according to claim 1, wherein the data acquisition module comprises: 收集轨道交通线路图资料,M={m1,m2,...,mn},其中,M代表所有轨道交通线路的集合,mi表示第i条线路;对于每条线路mi,标注其路径范围P(mi),如果线路mi是地下线路,则标注车站位置;如果是地上线路,则标注整个线路;对每条线路mi,分析其转向和交汇点,如果存在规划中但未开通的线路mj,则,并标注P(mj);Collect rail transit line map data, M = {m 1 ,m 2 ,...,m n }, where M represents the set of all rail transit lines, and mi represents the i-th line; for each line mi, mark its path range P(m i ), if the line mi is an underground line, mark the station location; if it is an above-ground line, mark the entire line; for each line mi , analyze its turning points and intersections, if there is a line m j that is planned but not opened, then, and mark P(m j ); 使用最小包围盒算法,计算出包含所有路径P(mi)的最小矩形或多边形区域B,公式如下:Use the minimum bounding box algorithm to calculate the minimum rectangular or polygonal area B that contains all paths P(m i ). The formula is as follows: 其中,在计算B时,需确保各路径范围有重叠。When calculating B, it is necessary to ensure that the ranges of the paths overlap. 3.如权利要求2所述的城市轨道交通遥感图像数据的处理系统,其特征在于:所述数据预处理模块包括以下内容:3. The system for processing urban rail transit remote sensing image data according to claim 2, wherein the data preprocessing module comprises the following contents: 检查图像数据是否存在扭曲情况,进行几何校正;Check whether the image data is distorted and perform geometric correction; 分析图像的噪声分布情况,设计滤波方法去除噪声;Analyze the noise distribution of the image and design filtering methods to remove noise; 调整图像色彩平衡,进行直方图均衡化,减少亮度影响;Adjust the image color balance, perform histogram equalization, and reduce the impact of brightness; 对图像进行剪裁、缩放和旋转变换,将图像调整为统一尺寸;Crop, scale, and rotate images to adjust them to a uniform size; 应用排序和归一化,将图像值映射到固定数值范围。Applies sorting and normalization to map image values to a fixed numerical range. 4.所述如权利要求3所述的城市轨道交通遥感图像数据的处理系统,其特征在于:所述进行几何校正的步骤如下:4. The system for processing urban rail transit remote sensing image data as claimed in claim 3 is characterized in that the steps of performing geometric correction are as follows: 收集包含各种倾斜和扭曲图像的数据集,对这些图像进行标注,指出正确的几何形状或者校正后的图像;Collect a dataset containing various tilted and distorted images and annotate them to indicate the correct geometry or the corrected image. 设计一个CNN模型,CNN模型的输入是原始扭曲图像,输出是图像的校正参数;定义一个损失函数MSE,公式如下:Design a CNN model. The input of the CNN model is the original distorted image, and the output is the correction parameter of the image. Define a loss function MSE, the formula is as follows: 其中,Yi是真实参数,是预测参数,n是样本数量。Among them, Yi is the real parameter, is the prediction parameter and n is the number of samples. 5.如权利要求4所述的城市轨道交通遥感图像数据的处理系统,其特征在于:所述数据分析模块包括以下内容:5. The system for processing urban rail transit remote sensing image data according to claim 4, wherein the data analysis module comprises the following contents: 根据轨道线路特征,统计分析各条线路的分布信息;According to the characteristics of the track lines, statistically analyze the distribution information of each line; 利用车站分布信息,结合人口分布数据,建立流量预测模型,预测未来各站点的客流量;Using station distribution information and population distribution data, a traffic forecasting model is established to predict the passenger flow of each station in the future; 分析不同年份的特征变化,判断新增线路方向,预测未来发展趋势;Analyze the changes in characteristics of different years, determine the direction of new lines, and predict future development trends; 研究轨道交通与城市发展的相互影响关系;Study the mutual influence between rail transit and urban development; 应用交通assignments预测模型,评估新增线路对整体轨道交通网络的影响。Apply the traffic assignments prediction model to evaluate the impact of new lines on the overall rail transit network. 6.如权利要求5所述的城市轨道交通遥感图像数据的处理系统,其特征在于:所述分析不同年份的特征变化,判断新增线路方向,预测未来发展趋势包括以下步骤:6. The processing system of urban rail transit remote sensing image data according to claim 5, characterized in that: the analysis of characteristic changes in different years, determination of the direction of new lines, and prediction of future development trends comprises the following steps: 收集该城市过去10年轨道交通线路图数据;Collect the city's rail transit route map data for the past 10 years; 比较线路结构的变化,分析新增线路的位置分布特征,包括:将不同年份的线路图进行叠加对比,标注历年新增加的线路段,分析新增线路的空间分布情况,判断是否集中在某些区域;Compare changes in line structure and analyze the location distribution characteristics of new lines, including: superimposing and comparing line maps from different years, marking newly added line sections over the years, analyzing the spatial distribution of new lines, and determining whether they are concentrated in certain areas; 计算新增线路的方向分布统计学特征;Calculate the directional distribution statistical characteristics of the newly added lines; 拟合新增线路方向的分布函数,判断发展方向;Fit the distribution function of the newly added line direction to determine the development direction; 根据城市发展规划和人口分布预测,修正方向分布函数;Modify the directional distribution function according to the urban development plan and population distribution forecast; 基于修正的方向分布,采样生成可能的新增线路,预测未来发展趋势。Based on the revised directional distribution, possible new routes are generated by sampling and future development trends are predicted. 7.如权利要求6所述的城市轨道交通遥感图像数据的处理系统,其特征在于:所述计算新增线路的方向分布统计学特征包括以下步骤:7. The system for processing urban rail transit remote sensing image data according to claim 6, wherein the step of calculating the directional distribution statistical characteristics of the newly added lines comprises the following steps: 计算方向角:Calculate the direction angle: θi=arctan2(Δyi,Δxi)θ i =arctan2(Δy i , Δxi ) 其中,θi为第i个线路段的方向角;Δyi,Δxi分别是线路段在纵轴和横轴上的坐标差;Wherein, θ i is the direction angle of the i-th line segment; Δy i , Δxi are the coordinate differences of the line segment on the vertical axis and the horizontal axis respectively; 计算主方向和方差:Compute the principal directions and variances: S=1-CS=1-C 其中,N为线路段的总数,C为结果向量的长度。Where N is the total number of line segments and C is the length of the result vector. 8.如权利要求7所述的城市轨道交通遥感图像数据的处理系统,其特征在于:所述拟合新增线路方向的分布函数,判断发展方向的步骤如下:8. The processing system of urban rail transit remote sensing image data according to claim 7, characterized in that: the step of fitting the distribution function of the newly added line direction and determining the development direction is as follows: 使用核密度估计公式:Use the kernel density estimation formula: 其中,核函数Kh通常选择高斯核,h为带宽;Among them, the kernel function K h usually selects the Gaussian kernel, and h is the bandwidth; 所述修正方向分布函数包括:获取城市的长期发展规划和未来10年的人口分布预测数据,对f(θ)进行调整,校正因子如下:The correction direction distribution function includes: obtaining the city's long-term development plan and the population distribution forecast data for the next 10 years, and adjusting f(θ). The correction factor is as follows: H(θ)=1-α.I(θ∈θrestricted)H(θ)=1-α.I(θ∈θ restricted ) 调整后的密度函数:Adjusted density function: f'(θ)=H(θ).f(θ)f'(θ)=H(θ).f(θ) 其中,α为校正强度参数,0到1之间;I为指示函数,若方向θ落在限制区域内,则为1,否则为0;Among them, α is the correction intensity parameter, between 0 and 1; I is the indicator function, which is 1 if the direction θ falls within the restricted area, otherwise it is 0; 人口权重的计算公式为:The formula for calculating population weight is: W(θ)=β.P(θ)W(θ)=β.P(θ) 调整后的密度函数:Adjusted density function: f”(θ)=W(θ).f'(θ)f”(θ)=W(θ).f'(θ) 其中,β为人口影响参数,P(θ)为在方向θ的人口分布密度;Among them, β is the population influence parameter, P(θ) is the population distribution density in direction θ; 结合城市发展规划的限制区域调整和人口分布的影响,得到最终的线路方向分布函数:Combining the restricted area adjustment of urban development planning and the impact of population distribution, the final line direction distribution function is obtained: G(θ)=f”(θ)G(θ)=f”(θ) 其中,G(θ)为最终的线路方向分布函数。Among them, G(θ) is the final line direction distribution function.
CN202410141960.3A 2024-01-31 2024-01-31 A processing system for remote sensing image data of urban rail transit Withdrawn CN118115866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410141960.3A CN118115866A (en) 2024-01-31 2024-01-31 A processing system for remote sensing image data of urban rail transit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410141960.3A CN118115866A (en) 2024-01-31 2024-01-31 A processing system for remote sensing image data of urban rail transit

Publications (1)

Publication Number Publication Date
CN118115866A true CN118115866A (en) 2024-05-31

Family

ID=91219013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410141960.3A Withdrawn CN118115866A (en) 2024-01-31 2024-01-31 A processing system for remote sensing image data of urban rail transit

Country Status (1)

Country Link
CN (1) CN118115866A (en)

Similar Documents

Publication Publication Date Title
US11797725B2 (en) Intelligent imagery
US8878865B2 (en) Three-dimensional map system
CN112800911B (en) A method for rapid pavement damage detection and natural data set construction
CN109493119B (en) POI data-based urban business center identification method and system
Hadjidemetriou et al. Vision-and entropy-based detection of distressed areas for integrated pavement condition assessment
CN112149594B (en) Urban construction assessment method based on deep learning and high-resolution satellite images
CN115409069A (en) Identification method, classification method, device, electronic equipment and medium of village and town buildings
Fathi et al. A videogrammetric as-built data collection method for digital fabrication of sheet metal roof panels
CN110990661B (en) A Method of Extracting Entrances and Exits of Regions of Interest Based on Road Network Constraints and Density Clustering
CN113033516A (en) Object identification statistical method and device, electronic equipment and storage medium
Lee et al. Neural geometric parser for single image camera calibration
CN108446636A (en) Objects recognition method and system
Wang et al. Automatic identification and location of tunnel lining cracks
Lang et al. Pavement cracking detection and classification based on 3d image using multiscale clustering model
Firmansyah et al. Building typology classification using convolutional neural networks utilizing multiple ground-level image process for city-scale rapid seismic vulnerability assessment
CN118037983B (en) A method for quality evaluation and rapid 3D modeling of massive urban street scene panoramic images
CN113420109A (en) Method for measuring permeability of street interface, computer and storage medium
CN118115866A (en) A processing system for remote sensing image data of urban rail transit
CN118196497A (en) Deformed intersection recognition and feature extraction method based on integrating YOLOv5 and angle texture features
Touzani et al. Machine Learning for Automated Extraction of Building Geometry
CN111726535A (en) Smart city CIM video big data image quality control method based on vehicle perception
CN117456342A (en) Traffic accident risk assessment method and system based on street view image
Camacho et al. Semi-automatic generation of an lod1 and lod2 3d city model of Tanauan city, batangas using openstreetmap and taal open lidar data in qgis
CN115223126A (en) Training sample distribution method and system for multi-scale target detection
Qu et al. Mixed-use urban land parcels identification integrating geospatial data and machine learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20240531