CN118109729A - 一种生物相容性镁合金骨板及其制备方法 - Google Patents

一种生物相容性镁合金骨板及其制备方法 Download PDF

Info

Publication number
CN118109729A
CN118109729A CN202410068879.7A CN202410068879A CN118109729A CN 118109729 A CN118109729 A CN 118109729A CN 202410068879 A CN202410068879 A CN 202410068879A CN 118109729 A CN118109729 A CN 118109729A
Authority
CN
China
Prior art keywords
magnesium alloy
bone plate
casting
preparing
pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410068879.7A
Other languages
English (en)
Inventor
彭秋明
邹国栋
卢桐桐
任立群
金宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202410068879.7A priority Critical patent/CN118109729A/zh
Publication of CN118109729A publication Critical patent/CN118109729A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本申请涉及生物医用材料制备技术领域,更具体地说,它涉及一种生物相容性镁合金骨板及其制备方法。所述生物相容性镁合金骨板化学组成表达式为:Mg‑0.15Ca‑0.1Mn‑0.3Ge‑xRe,其中Re代表La、Ce、Pr稀土元素,0.1≤x≤0.4。制得的生物相容性镁合金骨板具有生物相容性好、力学性能好、质量轻等一系列优点,同时兼有制备方法简单、生产周期短、节能环保等特点,因而,可广泛用于生物医疗等领域。

Description

一种生物相容性镁合金骨板及其制备方法
技术领域
本申请涉及生物医用材料制备技术领域,更具体地说,它涉及一种生物相容性镁合金骨板及其制备方法。
背景技术
镁是最轻的金属结构材料,其密度约为铝的60%,钢的20%,具有比刚度高、高导热、耐腐蚀和生物友好等优点,被公认为是一种可减重、节能、有利于可持续发展的理想结构材料,在电子产品及生物医用等领域具有广阔的应用前景。但纯镁绝对强度不足,常温塑性差,严重制约其广泛应用。
材料的生物相容性是指材料在生物体内服役期间对宿主不产生有害作用的能力如:服役期间的稳定性,具有和被替代组织相似的性质,不产生对人体有害的腐蚀或摩擦产物等。镁作为人体不可或缺的常量元素,其合金的机械性能与人体骨骼相似,在人体可以降解吸收,因此,镁合金作为生物医用材料一直是学术界所关注的中点。但当镁合金作为植入材料使用时,仍面临着由于骨骼系统产生的交变应力与体内腐蚀性环境共同作用导致植入金属材料的腐蚀疲劳失效等问题。
文献“可降解稀土改性镁合金及其羟基磷灰石涂层在骨再生的应用研究”通过在ZK60的基础上,添加了少量稀土Nd,制备出ZNdK610系列稀土改性的镁合金材料。通过对ZNdK610的挤压态的微观组织,力学性能以及耐腐蚀性能进行研究,发现ZNdK610的微观组织主要由ZK60合金MgZn2相变为W相和T相,挤压的ZNdK610合金的可再生晶粒得到明显的细化,晶粒的平均尺寸大约为460nm,比挤压的ZK60合金(大约4.2μm)的尺寸小。但是作者只通过稀土改性即通过调整稀土成分来增强合金的耐蚀性能,增幅相当有限。
CN101209355B发明专利“一种用于骨板、骨钉、骨块的材料的制备方法”,该发明所述的骨板由生物医学纤维、羟基磷灰石、聚乳酸、相容剂置于双螺杆挤出机或转矩流变仪中熔融共混;或者将聚乳酸及用聚乳酸大分子单体接枝的羟基磷灰石溶解在氯仿中,加入生物医学纤维均匀分散,待氯仿挥发后真空干燥制得薄膜;或者将聚乳酸和生物医学纤维编织成网状结构,再加入用聚乳酸大分子单体接枝的羟基磷灰石粉末和聚乳酸的混合溶液,待溶剂挥发后真空干燥;最后将上述方式得到的材料在平板硫化机上加压成型或用精密注射机注射成型。该发明的用于骨板、骨钉、骨块的材料的制备方法实用性强,易于工业化生产。但是机械性能差,不及人体骨的力学性能。
CN106381431B发明专利“一种含有Sr和Zn的WE43镁合金医用接骨板”,该发明是由以下质量百分比的原料采用热压烧结工艺成型,Y:4%,RE:3%,Sr:0.5%~2%,Zn:0.5%~2%,Zr:0.5%,余量为Mg;其制造工艺特征在于采用热压烧结工艺成型,此医用齿型接骨板为圆弧状,包括接骨板基体,设置于骨板基体两侧的骨板翼,设置于骨板翼上的B类螺钉孔,和设置于骨板基体两端的A类螺钉孔;所述B类螺钉孔和A类螺钉孔内均设有螺纹,用于与相应的固定螺钉配合,本发明结构简单,避免了较复杂的热处理工艺,且合理的组分添加具有更加良好的机械性能和耐腐蚀性能。但是此镁合金没有表面涂层来保护基体不被腐蚀,生物相容性不足。
发明内容
本公开提供了一种生物相容性镁合金骨板及其制备方法,制得的生物相容性镁合金骨板具有生物相容性好、力学性能好、质量轻等一系列优点,同时兼有制备方法简单、生产周期短、节能环保等特点,因而,可广泛用于生物医疗等领域。
第一方面,本公开提供一种生物相容性镁合金骨板,所述生物相容性镁合金骨板化学组成表达式为:Mg-0.15Ca-0.1Mn-0.3Ge-xRe,其中Re代表La、Ce、Pr稀土元素,0.1≤x≤0.4。
第二方面,本公开提供一种生物相容性镁合金骨板的制备方法,包括以下步骤:
S1、将原料金属和合金在电阻感应炉中熔炼,将原料加热至730~750℃熔炼,将液体搅拌均匀,然后在模具中浇铸;
S2、再对铸件进行分级固溶处理;
S3、进行脉冲轧制和加工成型,把铸件加工成所需骨板的形状;
S4、用砂纸和酒精将成型件进行打磨清洗,利用沉积法将生物相容性溶液喷涂于成型件表面并在紫外灯光下照射固化;
S5、带有涂层的镁合金置于氩氢混合气中进行退火,最终得到涂有50-200μm的致密涂层的镁合金骨板。
优选的,步骤S1的具体方法为:称取所需原料,纯度为99.99%,将纯Mg、纯Mn、纯Ge、Mg-Ca中间合金和Mg-La中间合金按照重量百分比进行配料,将装有SF6和CO2混合气氛的熔炼容器加热后加入RJ-2熔炼熔剂,所述熔剂熔解后升温至780℃并依次加入镁锭、纯Mn、纯Ge、Mg-Ca中间合金和Mg-RE中间合金进行温度为780℃、时间为12-18min的精炼;精炼结束后降温至700-720℃搅拌8-12min,再升温静置使得熔渣沉淀;降温进行除渣,随后立即进行浇铸获得铸造镁合金。
优选的,步骤S1中SF6和CO2混合气氛中,所述SF6占1vol.%。
优选的,步骤S1中,所述浇铸过程中在浇口上方10cm处均匀的撒硫磺粉。
优选的,步骤S2的具体方法为:将所述S1所得的铸件放入坩埚中用细沙覆盖,将马弗炉升温至460~480℃,放入坩埚进行对6~8h的低温固溶处理;完成后将马弗炉升温至510~530℃,再进行6~8h的高温固溶处理。
优选的,步骤S3的具体方法为:将所述S2所得的分级固溶处理之后的铸件冷却后进行脉冲轧制,加工成型,加工成所需骨板的形状。
优选的,步骤S4的具体方法为:分三次采用不同型号的砂纸对所述S3所得的镁合金成型件进行打磨;
第一次采用400#的砂纸对镁合金成型件进行打磨,
第二次采用800#的砂纸对镁合金成型件进行打磨,
第三次采用1500#的砂纸对镁合金成型件进行打磨,用无水乙醇将打磨好的镁合金成型件清洗干净;
利用沉积法将浓度为0.5-2mol/mL的HA羟基磷灰石喷涂20-100次获得厚度为50-200μm的图层,于紫外灯光下照射固化10-14h。
优选的,步骤S5的具体方法为:将所述S4所得带有涂层的镁合金置于氩氢混合气,其中氢气占5-15vol.%,进行300-600℃、30-240min的退火,最终得到涂有50-200μm的致密涂层的镁合金骨板。
优选的,所述步骤S2中,生物相容性溶液为HA羟基磷灰石、MXene、Mg(OH)2中的种或多种。
综上所述,本申请具有以下有益效果:
1、本申请中各元素配比实现了既保证力学性能又保证生物相容性;
2、本申请中通过微量添加合金元素Mn,Mn会与合金中Fe等杂质元素结合,净化熔体,提高合金铸造品质和耐腐蚀能力;
3、本申请中分级固溶处理改善镁合金的组织并提高其力学性能;
4、本申请中羟基磷灰石表面涂层是镁合金骨板生物相容性好,在体内耐蚀性能优,在人体中缓慢降解且易被吸收;
5、本申请制备总过程简单、对环境友好、生产周期短、适合大规模生产。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开的保护范围。
附图说明
1、图一是本申请实施例1中Mg-0.15Ca-0.1Mn-0.3Ge-0.1La骨板的金相图;
2、图二是本申请实施例2中Mg-0.15Ca-0.1Mn-0.3Ge-0.4La骨板的耐蚀性能图;
3、图三是本申请实施例3中Mg-0.15Ca-0.1Mn-0.3Ge-0.1Sm骨板的扫描图。
具体实施方式
以下结合实施例对本申请作进一步详细说明,予以特别说明的是:以下实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行,以下实施例中所用原料除特殊说明外均可来源于普通市售。
实施例
实施例1:Mg-0.15Ca-0.1Mn-0.3Ge-0.1La
S1、称取所需原料,纯度为99.99%。将796g纯Mg、1g纯Mn、3g纯Ge、100gMg-1.5Ca合金和100gMg-1La合金按照重量百分比进行配料,将装有SF6和CO2混合气氛(其中SF6占1vol.%)的熔炼容器加热后加入RJ-2熔炼熔剂,所述熔剂熔解后升温至780℃并依次加入镁锭、纯Mn、纯Ge、Mg-1.5Ca合金和Mg-1La合金进行温度为780℃、时间为15min的精炼;精炼结束后降温至700℃搅拌10min,再升温静置使得熔渣沉淀;降温进行除渣,随后立即进行浇铸获得铸造镁合金。
S2、将S1所得的铸件放入坩埚中用细沙覆盖,将马弗炉升温至470℃,放入坩埚进行对7h的低温固溶处理;完成后将马弗炉升温至520℃,再进行7h的高温固溶处理;
S3、将S2所得的分级固溶处理之后的铸件冷却后进行脉冲轧制,加工成型,加工成所需骨板的形状;
S4、分三次采用不同型号的砂纸对S3所得的镁合金成型件进行打磨,第一次采用400#的砂纸对镁合金成型件进行打磨,第二次采用800#的砂纸对镁合金成型件进行打磨,第三次采用1500#的砂纸对镁合金成型件进行打磨,用无水乙醇将打磨好的镁合金成型件清洗干净;利用沉积法将浓度为1mol/mL的HA羟基磷灰石喷涂50次获得厚度为100μm的图层,于紫外灯光下照射固化12h。
S5、将S4所得带有涂层的镁合金置于氩氢混合气(其中氢气占10vol.%)中,进行450℃、120min的退火,最终得到涂有100μm的致密涂层的镁合金骨板。
实施例2:Mg-0.15Ca-0.1Mn-0.3Ge-0.4La
S1、称取所需原料,纯度为99.99%。将496g纯Mg、1g纯Mn、3g纯Ge、100gMg-4Ca合金和400gMg-1La合金按照重量百分比进行配料,将装有SF6和CO2混合气氛(其中SF6占1vol.%)的熔炼容器加热后加入RJ-2熔炼熔剂,所述熔剂熔解后升温至780℃并依次加入镁锭、纯Mn、纯Ge、Mg-1.5Ca合金和Mg-1La合金进行温度为780℃、时间为15min的精炼;精炼结束后降温至700℃搅拌10min,再升温静置使得熔渣沉淀;降温进行除渣,随后立即进行浇铸获得铸造镁合金。
S2、将S1所得的铸件放入坩埚中用细沙覆盖,将马弗炉升温至470℃,放入坩埚进行对7h的低温固溶处理;完成后将马弗炉升温至520℃,再进行7h的高温固溶处理;
S3、将S2所得的分级固溶处理之后的铸件冷却后进行脉冲轧制,加工成型,加工成所需骨板的形状;
S4、分三次采用不同型号的砂纸对S3所得的镁合金成型件进行打磨,第一次采用400#的砂纸对镁合金成型件进行打磨,第二次采用800#的砂纸对镁合金成型件进行打磨,第三次采用1500#的砂纸对镁合金成型件进行打磨,用无水乙醇将打磨好的镁合金成型件清洗干净;利用沉积法将浓度为1mol/mL的HA羟基磷灰石喷涂50次获得厚度为100μm的图层,于紫外灯光下照射固化12h。
S5、将S4所得带有涂层的镁合金置于氩氢混合气(其中氢气占10vol.%)中,进行450℃、120min的退火,最终得到涂有100μm的致密涂层的镁合金骨板。
实施例3:Mg-0.15Ca-0.1Mn-0.3Ge-0.1Sm
S1、称取所需原料,纯度为99.99%。将796g纯Mg、1g纯Mn、3g纯Ge、100gMg-4Ca合金和100gMg-1Sm合金按照重量百分比进行配料,将装有SF6和CO2混合气氛(其中SF6占1vol.%)的熔炼容器加热后加入RJ-2熔炼熔剂,所述熔剂熔解后升温至780℃并依次加入镁锭、纯Mn、纯Ge、Mg-1.5Ca合金和Mg-1 Sm合金进行温度为780℃、时间为15min的精炼;精炼结束后降温至700℃搅拌10min,再升温静置使得熔渣沉淀;降温进行除渣,随后立即进行浇铸获得铸造镁合金。
S2、将S1所得的铸件放入坩埚中用细沙覆盖,将马弗炉升温至470℃,放入坩埚进行对7h的低温固溶处理;完成后将马弗炉升温至520℃,再进行7h的高温固溶处理;
S3、将S2所得的分级固溶处理之后的铸件冷却后进行脉冲轧制,加工成型,加工成所需骨板的形状;
S4、分三次采用不同型号的砂纸对S3所得的镁合金成型件进行打磨,第一次采用400#的砂纸对镁合金成型件进行打磨,第二次采用800#的砂纸对镁合金成型件进行打磨,第三次采用1500#的砂纸对镁合金成型件进行打磨,用无水乙醇将打磨好的镁合金成型件清洗干净;利用沉积法将浓度为1mol/mL的HA羟基磷灰石喷涂50次获得厚度为100μm的图层,于紫外灯光下照射固化12h。
S5、将S4所得带有涂层的镁合金置于氩氢混合气(其中氢气占10vol.%)中,进行450℃、120min的退火,最终得到涂有100μm的致密涂层的镁合金骨板。
以上所述,仅为本公开示例性的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应该以权利要求的保护范围为准。

Claims (10)

1.一种生物相容性镁合金骨板,其特征在于,所述生物相容性镁合金骨板化学组成表达式为:Mg-0.15Ca-0.1Mn-0.3Ge-xRe,其中Re代表La、Ce、Pr稀土元素,0.1≤x≤0.4。
2.根据权利要求1所述的一种生物相容性镁合金骨板的制备方法,其特征在于,包括以下步骤:
S1、将原料金属和合金在电阻感应炉中熔炼,将原料加热至730~750℃熔炼,将液体搅拌均匀,然后在模具中浇铸;
S2、再对铸件进行分级固溶处理;
S3、进行脉冲轧制和加工成型,把铸件加工成所需骨板的形状;
S4、用砂纸和酒精将成型件进行打磨清洗,利用沉积法将生物相容性溶液喷涂于成型件表面并在紫外灯光下照射固化;
S5、带有涂层的镁合金置于氩氢混合气中进行退火,最终得到涂有50-200μm的致密涂层的镁合金骨板。
3.根据权利要求2所述的一种生物可降解抗菌镁合金吻合钉的制备方法,其特征在于,步骤S1的具体方法为:称取所需原料,纯度为99.99%,将纯Mg、纯Mn、纯Ge、Mg-Ca中间合金和Mg-La中间合金按照重量百分比进行配料,将装有SF6和CO2混合气氛的熔炼容器加热后加入RJ-2熔炼熔剂,所述熔剂熔解后升温至780℃并依次加入镁锭、纯Mn、纯Ge、Mg-Ca中间合金和Mg-RE中间合金进行温度为780℃、时间为12-18min的精炼;精炼结束后降温至700-720℃搅拌8-12min,再升温静置使得熔渣沉淀;降温进行除渣,随后立即进行浇铸获得铸造镁合金。
4.根据权利要求3所述的一种生物可降解抗菌镁合金吻合钉的制备方法,其特征在于,步骤S1中SF6和CO2混合气氛中,所述SF6占1vol.%。
5.根据权利要求3所述的一种生物可降解抗菌镁合金吻合钉的制备方法,其特征在于,步骤S1中,所述浇铸过程中在浇口上方10cm处均匀的撒硫磺粉。
6.根据权利要求2所述的一种生物可降解抗菌镁合金吻合钉的制备方法,其特征在于,步骤S2的具体方法为:将所述S1所得的铸件放入坩埚中用细沙覆盖,将马弗炉升温至460~480℃,放入坩埚进行对6~8h的低温固溶处理;完成后将马弗炉升温至510~530℃,再进行6~8h的高温固溶处理。
7.根据权利要求2所述的一种生物可降解抗菌镁合金吻合钉的制备方法,其特征在于,步骤S3的具体方法为:将所述S2所得的分级固溶处理之后的铸件冷却后进行脉冲轧制,加工成型,加工成所需骨板的形状。
8.根据权利要求2所述的一种生物可降解抗菌镁合金吻合钉的制备方法,其特征在于,步骤S4的具体方法为:分三次采用不同型号的砂纸对所述S3所得的镁合金成型件进行打磨;
第一次采用400#的砂纸对镁合金成型件进行打磨,
第二次采用800#的砂纸对镁合金成型件进行打磨,
第三次采用1500#的砂纸对镁合金成型件进行打磨,用无水乙醇将打磨好的镁合金成型件清洗干净;
利用沉积法将浓度为0.5-2mol/mL的HA羟基磷灰石喷涂20-100次获得厚度为50-200μm的图层,于紫外灯光下照射固化10-14h。
9.根据权利要求2所述的一种生物可降解抗菌镁合金吻合钉的制备方法,其特征在于,步骤S5的具体方法为:将所述S4所得带有涂层的镁合金置于氩氢混合气,其中氢气占5-15vol.%,进行300-600℃、30-240min的退火,最终得到涂有50-200μm的致密涂层的镁合金骨板。
10.根据权利要求2所述的一种生物可降解抗菌镁合金吻合钉的制备方法,其特征在于,所述步骤S2中,生物相容性溶液为HA羟基磷灰石、MXene、Mg(OH)2中的种或多种。
CN202410068879.7A 2024-01-17 2024-01-17 一种生物相容性镁合金骨板及其制备方法 Pending CN118109729A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410068879.7A CN118109729A (zh) 2024-01-17 2024-01-17 一种生物相容性镁合金骨板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410068879.7A CN118109729A (zh) 2024-01-17 2024-01-17 一种生物相容性镁合金骨板及其制备方法

Publications (1)

Publication Number Publication Date
CN118109729A true CN118109729A (zh) 2024-05-31

Family

ID=91211350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410068879.7A Pending CN118109729A (zh) 2024-01-17 2024-01-17 一种生物相容性镁合金骨板及其制备方法

Country Status (1)

Country Link
CN (1) CN118109729A (zh)

Similar Documents

Publication Publication Date Title
Krishnan et al. Biodegradable magnesium metal matrix composites for biomedical implants: synthesis, mechanical performance, and corrosion behavior–a review
Kabir et al. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives
Khorashadizade et al. Overview of magnesium-ceramic composites: mechanical, corrosion and biological properties
Chandra et al. Preparation strategies for Mg-alloys for biodegradable orthopaedic implants and other biomedical applications: a review
Nasr Azadani et al. A review of current challenges and prospects of magnesium and its alloy for bone implant applications
Zhang et al. Advances in hydroxyapatite coatings on biodegradable magnesium and its alloys
Pan et al. The effects of β-TCP on mechanical properties, corrosion behavior and biocompatibility of β-TCP/Zn-Mg composites
WO2015171585A1 (en) Biodegradable magnesium alloys and composites
CN102258806B (zh) 一种可降解镁基骨科植入生物医用材料及制备方法
CN110317973B (zh) 一种生物可降解LiZn4-Zn复相材料及其制备方法
Tipan et al. Selection and preparation strategies of Mg-alloys and other biodegradable materials for orthopaedic applications: A review
Jaiswal et al. In vitro biodegradation and biocompatibility of Mg–HA-based composites for orthopaedic applications: a review
Machio et al. A comparison of the microstructures, thermal and mechanical properties of pressed and sintered Ti–Cu, Ti–Ni and Ti–Cu–Ni alloys intended for dental applications
Peng et al. Mechanical performance and in-vitro biological behaviors of boronized Ti6Al4V/HA composites synthesized by microwave sintering
Thakur et al. Magnesium-based nanocomposites for biomedical applications
Ma et al. Microstructure, mechanical and corrosion properties of novel quaternary biodegradable extruded Mg–1Zn–0.2 Ca-xAg alloys
CN107198796B (zh) 一种生物医用Zn-Mn-Cu系锌合金及其制备方法
Yemisci et al. Experimentation and analysis of powder injection molded Ti10Nb10Zr alloy: A promising candidate for electrochemical and biomedical application
Xie et al. Ti-10Mo/Hydroxyapatite composites for orthopedic applications: Microstructure, mechanical properties and biological activity
JP2012192016A (ja) 高強度・低弾性に優れるチタン−マグネシウム材料
An et al. Influences of the Ag content on microstructures and properties of Zn–3Mg–xAg alloy by spark plasma sintering
CN118109729A (zh) 一种生物相容性镁合金骨板及其制备方法
Deevil et al. International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications
de Castro et al. Mg-based composites for biomedical applications
Chauhan et al. Recent advances in magnesium alloys and its composites for bioimplant applications: Processing, matrix, reinforcement, and corrosion perspectives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination