CN1180708A - Photochemistry gene recognition material and its preparing method and use - Google Patents

Photochemistry gene recognition material and its preparing method and use Download PDF

Info

Publication number
CN1180708A
CN1180708A CN 97120275 CN97120275A CN1180708A CN 1180708 A CN1180708 A CN 1180708A CN 97120275 CN97120275 CN 97120275 CN 97120275 A CN97120275 A CN 97120275A CN 1180708 A CN1180708 A CN 1180708A
Authority
CN
China
Prior art keywords
photochemical
gene
counterfeiting
recognition
recognition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 97120275
Other languages
Chinese (zh)
Other versions
CN1053671C (en
Inventor
孟继本
李晓陆
王淑芳
王咏梅
赵莉莉
董轶望
李明智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gede Anti-Fake Tech Co Nankai Univ
Original Assignee
Gede Anti-Fake Tech Co Nankai Univ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gede Anti-Fake Tech Co Nankai Univ filed Critical Gede Anti-Fake Tech Co Nankai Univ
Priority to CN97120275A priority Critical patent/CN1053671C/en
Publication of CN1180708A publication Critical patent/CN1180708A/en
Application granted granted Critical
Publication of CN1053671C publication Critical patent/CN1053671C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A photochemical gene recognizing material is a compound of [B] - [L] - [A] - [G] or [B] - [L] - [G], where [B] is fluorescence kind or photochromic kind of chemical function radicals, [A] is the radicals able to connect gene, [L] is the connecting arm able to connect [B] with [A] or [G], and [G] is gene. Mixing said material with binder of ink can make antiforge marker, which can be almost imitated impossibly, but can be detected by ultraviolet lamp or sunlight quickly, conveniently and correctly.

Description

Photochemical gene recognition material and preparation method and application thereof
The invention relates to a special material, in particular to a photochemical-gene recognition material.
Is currently in useMany chemical materials in anti-counterfeiting technology, such as thermochromic materials, photochromic materials, laser materials, fluorescent materials, etc., can play a certain anti-counterfeiting role, but counterfeiters can copy the materials quickly, thereby reducing the anti-counterfeiting reliability. For genes which are not known to encode, replication is difficult at the technological level of today, and if it is replicated synthetically by trial and error, the probability of success is only 4300-400And one-fourth. Therefore, it has been proposed to use genes for anti-counterfeit techniques. However, since the gene detection method (biochemical molecular pairing method or PCR amplification method) is very complicated and can only be used as an expert for gene detection, these methods are not practical for the application field of anti-counterfeit technology requiring both accuracy and rapid and convenient detection of authenticity, and thus the above-mentioned idea has not been implemented. Through the research and retrieval of Tianjin's scientific and technical information institute (report number 97-162), literature reports on photochemical gene identification materials, preparation and application of the gene and photochemical-gene identification materials in the anti-counterfeiting technical field are not seen so far.
The invention aims to provide a photochemical-gene identification material which can be detected and identified quickly and conveniently, is more difficult to decipher than genes and is difficult to copy, a preparation method of the photochemical-gene identification material and application of the photochemical-gene identification material in the technical field of anti-counterfeiting.
The purpose of the invention is realized as follows: the photochemical gene recognition material is a compound with the components of [ B]- [ L]- [ A]- [ G]or [ B]- [ L]- [ G], wherein [ B]is a fluorescence or photochromic chemical functional group, [ L]is a connecting arm capable of connecting [ B]with [ A]or [ G], [ A]is a group capable of connecting a gene, and [ G]is a gene.
[B]Can adopt fluorescent photochemical groups such as oxazole, benzoxazole or rare earth coordination compound, and also can adopt photochromic photochemical groups such as spiropyran, spirooxazine, fulgide or diheteroarylethene; [ L]]Linear polyamines, oligoamides, polyethylene glycols or rare earth metal ions (e.g., europium, gadolinium, terbium); [ A]]Comprises the following steps:
Figure A9712027500041
the photochemical-gene recognition material is prepared by adopting one method of the following A method or B method: a method:
in the first step, the photochemical recognition material is synthesized and prepared, and one of the following three synthetic routes can be selected:
Figure A9712027500051
the reaction temperature of the three synthetic routes is room temperature, and the reaction time is 8-48 hours. Where L is a linear polyamine, an oligomeric amide, or a polyethylene glycol.
And step two, synthesizingand preparing the photochemical-gene recognition material according to the following reaction formula:
the photochemical recognition material [ A]prepared in the first operation]-[L]-[B]Dissolved in C1~C2The photochemical-genetic identification material is prepared by the steps of (1) adding alcohol, acetone, DMSO or DMF (dimethyl formamide) into an organic solvent until the organic solvent is saturated, mixing the organic solvent with a gene buffer solution according to the weight ratio of 10-100: 1 (the ratio depends on the type of the used gene), irradiating for 10 minutes under 365nm ultraviolet light, and performing sedimentation separation. Method B:
gene G + L + B- → photochemical gene recognition material [ B]- [ L]- [ G]
Where L is a rare earth metal ion, such as: europium, gadolinium and terbium.
Dissolving the photochemical recognition compound B in an ethanol, cyclohexane, benzene or petroleum ether organic solvent at a concentration of 0.01-0.5 mol/l, and mixing the solution with a rare earth metal ion aqueous solution (at a concentration of 0.1-0.4 mol/l) and a gene at a ratio of 1: 4-7: 4-6 (solute weight ratio) to obtain the photochemical-gene recognition material with fluorescence and/or photochromic properties.
Detection of photochemical-genetic recognition material: the photochemical-gene identification material is separated by electrophoresis, and red, blue or purple spots can be observed under the irradiation of ultraviolet light or sunlight or fluorescent spots can be observed under the irradiation of ultraviolet light.
The photochemical-gene identification material is applied to the anti-counterfeiting technical field, and the specific application method is as follows: thephotochemical-genetic identification material prepared by the method is mixed into ink or stamp-pad ink binder according to the weight ratio of 4-25: 75-96 to prepare photochemical-genetic anti-counterfeiting ink or stamp-pad ink, and the anti-counterfeiting ink is printed into an invisible photochemical-genetic anti-counterfeiting mark by using a printer; or injecting the anti-counterfeiting stamp-pad ink into the penetration type atomic seal to form invisible (colorless) print. The fluorescent anti-counterfeiting performance can be detected by using an ultraviolet lamp, or the photochromic anti-counterfeiting performance can be detected by using sunlight or under the irradiation of the ultraviolet lamp, and the specific gene can be further detected by using a PCR instrument.
Compared with the prior art, the invention has the advantages that: because of the use of a specifically encoded photochemical-genetic identification material in the printing or imprinting of security markings, it is almost impossible for a counterfeiter to reproduce such a specifically encoded photochemical-genetic identification material (the probability of successful reproduction is less than 4)300-400One in one), this prevents the generation of counterfeit anti-counterfeit marks. On the other hand, the gene is connected with a specific photochemical functional group, so that the material has double anti-counterfeiting functions, and the detection and identification of the anti-counterfeiting mark become quick, convenient and accurate, namely, the anti-counterfeiting mark printed by the material can be observed to have photochromic effect under the irradiation of sunlight or ultraviolet light or fluorescent effect under the irradiation of an ultraviolet lamp.
Example 1:
in the first step, a photochemical recognition material SPGGP is synthesized.
1- (2- (N-oxysuccinimidyl) carboxyethyl) -3 ', 3 ' -dimethyl-6-nitro-spiro [ indoline-2, 2 ' [2H-1]]Benzopyrans](SPCOONHS) SynthesisBecome into
1-carboxyethyl-3 ', 3 ' -dimethyl-6-nitro-spiro [ indoline-2, 2 ' [2H-1]]Benzopyrans]SPCOOH0.76g (2mmole) was dissolved in 20ml of DMF, and after cooling, 0.29g N-hydroxysuccinimide (2.5mmole) and 0.52g DCC (2.5mmole) were added thereto, followed by stirring at room temperature for 24 hours. The solid was filtered off, the solvent was removed under reduced pressure, the residue was dissolved in ethyl acetate and saturated Na was added2CO3Washing with water solution, washing with water, and removing with anhydrous MgSO4Drying and standing to obtain 0.9g of light yellow solid product. MP: 140 to 141 ℃.
1- (2- (glycyl) carbonylethyl) -3 ', 3 ' -dimethyl-6-nitro-spiro [ indoline-2, 2 ' [2H-1]Benzopyrans]Synthesis of (2)
478mg (1mmole) of SPCOONHS was dissolved in 30ml of dry DMF, and 132mg (1mmole) of glycylglycine-dissolved 1M NaHCO was added dropwise3Solution (40 ml). Then, stirring for 24h at room temperature, evaporating the solvent under reduced pressure, adding 20ml of 10% citric acid aqueous solution into the residue, separating out light pink solid, precipitating and filtering, washing with water, and drying in vacuum to obtain 494mg of product.
1- (2- (N- (8- (1-aminoethyl) -4, 5 ' dimethylpsoralen) glycylglycinyl) carbonylethyl) -3 ', 3 ' -dimethyl-6-nitro-spiro]Indoline-2, 2' [2H-1]Benzopyrans]Synthesis of SPGGP
247mg (0.5mmole) of SPGGOH, 125mg (0.5mmole) of 8- (1-aminoethyl) -4, 5' -dimethylosteopontin, 150mg (0.75mmole) of DCC were dissolved in 15ml of CH2Cl2Stirring at room temperature for 24h, filtering to remove urea, and adding saturated Na2CO3Washing with aqueous solution, anhydrous Na2SO4Drying and silica gel column chromatography (acetone-petroleum ether) afforded 330mg of a pale pink solid product (89.9%), MP: 166 ℃ in weight percent.1HNMR:1.18,1.21(2s,6H),1.50,1.54(d,J=8.0,3H),2.47(s,6H),2.50~2.60(m,2H),3.43~3.73(m,6H),5.79~6.01(m,1H),6.14(s,1H),6.41(s, 1H), 6.65-7.42 (m, 7H), 7.57(s, 1H), 7.90(s, br, 2H). Elemental analysis (calculated): c65.12 (65.48), H5.40 (5.36), N9.66 (9.54). UV (acetone) lambdamax: 339nm before illumination and 571nm after illumination by light (365 nm); the acetone solution is colorless before illumination, and is purple red after being illuminated by ultraviolet light or sunlight. Second, synthesizing photochemical-gene recognition material DNA-SPGGP
Mu.l of DNA to be labeled (E.coli plasmid 153 DNA) (1. mu.g/. mu.l) was taken and put into a 1.5ml EP tube, Tris buffer (10mM Tris-HCl, pH 8.0, 0.1mM EDTA) was added, 10. mu.l (10. mu.g/. mu.l) of SPGGP solution was added, and the mixture was mixed well, the EP tube was not covered and irradiated perpendicularly under a 365nm ultraviolet lamp for 20min, and the distance between the sample and the ultraviolet lamp was less than 5 cm. Then, ethanol is added to settle DNA, and unreacted micromolecules are washed away, so that the photochemical-gene recognition substance is obtained. Third, detecting
The photochemistry-gene material DNA-SPGGP can directly observe purple red spots under the irradiation of ultraviolet light or sunlight after electrophoretic separation. Example 2:
first, synthesizing photochemical recognition material SPGGA
Synthesis of 1- (2- (N- (4 ' -aminomethyl-4, 5 ' -dimethylisopsoralen) glycylglycinyl) carbonylethyl) -3 ', 3 ' -dimethyl-6-nitro-spiro [ indoline-2, 2 ' [2H-1]using the same procedure as in example 1 in the former step]Benzopyrans]SPGGA, the third reaction process is as follows:
Figure A9712027500081
dissolving 247mg (0.5mmole) of SPGGOH, 122mg (0.5mmole) of 4 '-aminomethyl-4, 5' dimethylisopsoralen, 150mg (0.75mmole) of DCC in 15ml of CH2Cl2Stirring at room temperature for 24h, filtering to remove urea, and adding saturated Na2CO3Washing with aqueous solution, anhydrous Na2SO4Drying and chromatography on a silica gel column (acetone-petroleum ether) gave 251mg of a pale yellow solid product in 70% yield. MP: 159-160 ℃.1HNMR:1.18,1.23(2s,6H),2.50,2.56(2s,6H),3.50~3.92(m,8H),4.44~4.52(d,2H),5.84,5.95(2s,1H),6.15(s,1H),6.60~7.42(m,8H),7.86~8.00(m,2H) In that respect Elemental analysis (calculated): c64.97 (65.08), H5.32 (5.18), N9.88 (9.73). UV (acetone) lambdamax: 337nm before illumination and 566.5nm after illumination by 365 nm; the acetone solution is colorless before illumination, and is purple red after being irradiated by ultraviolet light or sunlight. And secondly, synthesizing photochemical-gene recognition material DNA-SPGGA.
The procedure was the same as in example 1 except that 10. mu.l of the Escherichia coli plasmid P11 DNA (0.5. mu.g/. mu.l) and 10. mu.l (10. mu.g/. mu.l) of SPGGA solution as the photochemical recognition material were added to the DNA to be labeled.
Third, detecting
The photochemistry-gene recognition material DNA-SPGGA can directly observe purple red spots under the irradiation of ultraviolet light or sunlight after electrophoretic separation. Example 3
In the first step, a photochemical recognition material OZGGP is synthesized.
1- (2- (N-succinimidyl) carboxyethyl) -3, 3-dimethylspiro [ indoline-naphthooxazine]Synthesis of OZCOONHS
Figure A9712027500091
1- (carboxyethyl) -3, 3-dimethyl spiro [ indoline-naphthooxazine]OZCOOH 0.77g (2mmole) was dissolved in 20ml of DMF, and after cooling, 0.29g N-hydroxysuccinimide (2.5mmole) and 0.52g DCC (2.5mmole) were added and stirred at room temperature for 24 hours. The solid was filtered off, the solvent was removed under reduced pressure, the residue was dissolved in ethyl acetate and saturated Na was added2CO3Washing with water solution, washing with water, and removing with anhydrous MgSO4After drying, 0.9g (93.2%) of the solid product was precipitated by standing. MP: 184-185 ℃.
1- (2- (glycyl) carbonylethyl) -3 ', 3' -dimethylspiro [ indoline-naphthoxazine]Synthesis of OZGGOH
Figure A9712027500092
483mg (1mmole) of OZCOONHS are dissolved in 30ml of DMF and 1M NaHCO dissolved in 132mg (1mmole) of glycylglycine is added dropwise with stirring3Solution (40 ml). Then, stirring at room temperature for 24h, evaporating the solvent under reduced pressure, adding 20ml of 10% citric acid aqueous solution to the residue, precipitating a solid, filtering out the precipitate, washing with water, and drying in vacuum to obtain 496mg of product (99%). MP: the temperature is 100-101 ℃,
1- (2- (N- (8- (1-aminoethyl) -4, 5 ' dimethylpsoralen) glycylglycinyl) carbonylethyl) -3 ', 3 ' -diyl-spiro [ indoline-naphthoxazine]Synthesis of OZGGP
Figure A9712027500101
240mg (0.48mmole) of OZGGOH, 126mg (0.49mmole) of 8- (1-aminoethyl) -4, 5' -dimethylosteopontin, 150mg (0.75mmole) of DCC were dissolved in 15ml of CH2Cl2Stirring at room temperature for 24h, filtering to remove urea, and adding saturated Na2CO3Washing with aqueous solution, anhydrous Na2SO4Drying and silica gel column chromatography (acetone-petroleum ether) afforded 360mg of light sky blue solid product (94.7%), MP: 177 to 178 ℃.1HNMR: 1.21, 1.25(2s, 6H), 1.50, 1.54(d, J ═ 8.0, 3H), 2.44, 2.48(2s, 6H), 2.58 to 2.63(m, 2H), 3.33 to 4.11(m, 6H), 5.85 to 6.05(m, 1H), 6.10 to 6.12(d, 1H), 6.40(s, 1H), 6.57 to 7.78(m, 11H), 8.45(m, 1H). Elemental analysis (calculated): c69.90(69.81), H5.70 (5.59), N9.32 (9.47). UV (acetone) lambdamax: 339nm before illumination and 576nm after illumination; the acetone solution is colorless before illumination, and is blue-violet after being irradiated by ultraviolet light or sunlight.
And secondly, synthesizing photochemical-gene recognition material DNA-OZGGP.
The procedure was the same as in example 1 except that 10. mu.l of Bacillus subtilis vector plasmid PNQ402 DNA (0.1. mu.g/. mu.l) and 10. mu.l (10. mu.g/. mu.l) of OZGGP solution as the photochemical recognition material were added.
And thirdly, detecting.
The photochemical-gene recognition material DNA-OZGGP can directly observe blue-violet spots under the irradiation of ultraviolet light or sunlight after electrophoretic separation. Example 4
In the first step, a photochemical recognition material OZGGA is synthesized.
Synthesis of 1- (2- (N- (4 '-aminomethyl-4, 5' dimethylisopsoralen) glycylglycinyl) carbonylethyl) -3 ', 3' -dimethylspiro [ indole-naphtho]in the same manner as in example 3 in the former reactionOxazines]OZGGA, the third step reaction process is as follows:
Figure A9712027500102
dissolving 240mg (0.48mmole) of OZGGOH, 119mg (0.49mmole) of 4 '-aminomethyl-4, 5' dimethylisopsoralen and 150mg (0.75mmole) of DCC in 15ml of CH2Cl2Stirring at room temperature for 24h, filtering to remove urea, and adding saturated Na2CO3Washing with aqueous solution, anhydrous Na2SO4Drying and chromatography on silica gel (acetone-petroleum ether) gave 244mg of a pale blue solid in 70% yield. MP: 168-170 ℃.1HNMR: 1.16, 1.21(2s, 6H), 2.46, 2.50(2s, 6H), 3.48-3.96 (m, 8H), 4.46-4.51 (d, 2H), 5.90-6.02 (m, 1H), 6.17(s, 1H), 6.68-7.76 (m, 11H), 8.50(m, 1H). Elemental analysis (calculated): c69.21 (69.50), H5.61 (5.42), N9.70 (9.65). UV (acetone) lambdamax: 344.5nm before illumination and 578nm after illumination; the acetone solution is colorless before illumination, and is blue-purple after being irradiated by ultraviolet light or sunlight. And secondly, synthesizing photochemical-gene recognition material DNA-OZGGA.
The procedure was the same as in example 1 except that the DNA added was 10. mu.l of Bacillus subtilis vector plasmid PNQ219 DNA (0.1. mu.g/. mu.l) and the photochemical recognition material was 10. mu.l (10. mu.g/. mu.l) of OZGGA solution. Third, detecting
The photochemical-gene recognition material DNA-OZGGA can directly observe blue-violet spots under the irradiation of ultraviolet light or sunlight after electrophoretic separation. Example 5 first step, synthesis of photochemical recognition material I.
To 20ml of an ethanol solution containing 0.5g (2.22mmole) of 5-hydroxy-6-nitroso-1, 10-phenanthroline was added 15ml of an ethanol solution containing 0.39g (2.22mmole) of 1, 3, 3-trimethyl-2-methyleneidenoindoline, and the mixture was refluxed under nitrogen for 2 hours, cooled and then the solvent was removed under reduced pressure, and the residue was separated by column chromatography (acetone-petroleum ether 1: 3) to obtain 0.20g of product (I), MP: 175 ℃. The reaction process is as follows:
Figure A9712027500111
and secondly, synthesizing photochemical-gene recognition material II.
To 4ml EuCl3Adding 0.8ml NaAc-HAc buffer solution (pH 5-6) into the aqueous solution (0.2M), adding 0.566g of (I), 0.456g of calf thymus DNA (G) and 8ml of cyclohexane, and stirring for 3-4 hours to obtain the photochemical-gene recognition material (II). The reaction process is as follows:and thirdly, detecting.
The acetone solution of (II) was colorless before UV irradiation, and was fluorescent red and changed to purple when UV irradiation was performed. Example 6
25 parts of the photochemical-genetic recognition substance DNA-SPGGP obtained in the example 1 and 75 parts of offset printing ink binder are mixed and ground on a three-roll grinder to obtain the uniform photochemical-genetic offset printing anti-counterfeiting ink. The ink is printed on special paper for invoices on an offset press to obtain the invisible anti-counterfeiting mark. The color is purple red under the irradiation of ultraviolet light or sunlight, and the color is recovered under the condition of keeping out of the sun; the specific gene is detected by a PCR amplification instrument. Example 7
4 parts of the photochemical-genetic recognition substance DNA-SPGGA obtained in the example 2 are dissolved in 96 parts of silk screen ink binder, and the photochemical-genetic silk screen anti-counterfeiting ink is obtained after uniform dissolution and dispersion. The ink is printed on non-setting adhesive coated paper on a screen printing machine to obtain the invisible anti-counterfeiting mark. The color is purple red under the irradiation of ultraviolet light or sunlight, and the color is recovered under the condition of keeping out of the sun; the specific gene is detected by a PCR amplification instrument. Example 8
8 parts of the photochemical-gene recognition substance DNA-OZGGP obtained in the example 3 are dissolved in 92 parts of gravure ink binder, and the photochemical-gene gravure anti-counterfeiting ink is obtained after uniform dissolution and dispersion. The ink is printed on a BOPP plastic film on a gravure press to obtain the invisible anti-counterfeiting mark. The color is bluish purple when the sunlight irradiates, and the color is recovered when the sunlight is protected from light; the specific gene is detected by a PCR amplification instrument. Example 9
6 parts of the photochemical-genetic recognition substance DNA-OZGGA obtained in the example 4 and 94 parts of stamp-pad ink binder of the permeable atomic stamp are mixed, ground and stirred to obtain the uniform photochemical-genetic anti-counterfeiting stamp-pad ink. The stamp-pad ink is injected into the ink storage pad to obtain the new anti-fake stamp. The seal stamp covered on the official document paper is invisible (colorless) in a natural state. The color is bluish purple when the sunlight irradiates, and the color is recovered when the sunlight is protected from light; the specific gene is detected by a PCR amplification instrument. Example 10
Preparing the photochemical-gene identification material II6 parts obtained in the example 5 into photochemical-gene anti-counterfeiting stamp-pad ink in the same manner as the example 9, injecting the stamp-pad ink into a seal to form an invisible (colorless) print, and generating bright red fluorescence under the irradiation of ultraviolet light and simultaneously changing the bright red fluorescence into purple; after being shielded from light, the fluorescence disappears, and the purple color becomes colorless. The specific gene is detected by a PCR amplification instrument.

Claims (4)

1. A photochemical gene recognizing material is a compound whose composition is [ B]- [ L]- [ A]- [ G]or [ B]- [ L]- [ G], in which [ B]is a fluorescent or photochromic chemical functional group, [ L]is a linking arm capable of linking [ B]with [ A]or [ G], [ A]is a group capable of linking gene, and [ G]is a gene.
2. The photochemical-gene recognition material according to claim 1, characterized in that: [ B]]The fluorescent photochemical group comprises an oxazole, a benzoxazole or a rare earth coordination compound, or the photochromic photochemical group comprises a spiropyran, a spirooxazine, fulgide or a diheteroarylethene compound; [ L]]Linear polyamines, oligoamides, polyethylene glycols, or rare earth metal ions (e.g., europium, gadolinium, terbium); [ A]]Is composed of
Figure A9712027500021
3. A method for producing the photochemical-gene-recognition material according to claim 1, characterized in that the photochemical-gene-recognition material is synthetically produced by one of the following A method or B method: a method:
in the first step, the photochemical recognition material is synthesized by one of the following three synthetic routes:
Figure A9712027500026
the reaction temperature of the three synthetic routes is room temperature, the reaction time is 8-48 hours, and L is straight-chain polyamine, oligomeric amide or polyethylene glycol;
secondly, synthesizing and preparing the photochemical recognition material according to the following reaction formula;
the photochemical recognition material [ A]prepared in the first operation]-[L]-[B]Dissolved in C1~C2The photochemical-genetic identification material is prepared by the steps of (1) adding the alcohol, acetone, DMSO or DMF organic solvent until the solution is saturated, mixing the solution with a linearized gene buffer solution according to the weight ratio of 10-100: 1 (the ratio depends on the type of the used gene), irradiating for 10 minutes under 365nm ultraviolet light, and performing sedimentation separation; method B:
gene G + L + B- → photochemical gene recognition material [ B]- [ L]- [ G]
Where L is a rare earth metal ion, such as: europium, gadolinium and terbium,
dissolving a photochemical recognition compound B in an ethanol, cyclohexane, benzene or petroleum ether organic solvent at a concentration of 0.01-0.5 mol/l, mixing the photochemical recognition compound B with a rare earth metal ion aqueous solution (at a concentration of 0.1-0.4 mol/l) and a gene at a ratio of 1: 4-7: 4-6 (solute weight ratio), and separating to obtain a photochemical-gene recognition material with fluorescence and photochromic properties;
detection of photochemical-genetic recognition material: the photochemical-gene identification material is separated by electrophoresis, and red, blue or purple spots can be observed under the irradiation of ultraviolet light or sunlight, or fluorescent spots can be observed under the irradiation of an ultraviolet lamp.
4. Use of the photochemical-gene recognition material of claim 1, wherein: the material is applied to the technical field of anti-counterfeiting, and the specific application method is as follows: mixing the photochemical-genetic identification material prepared by the preparation method of claim 2 into an ink or stamp-pad ink binder according to the weight ratio of 4-25: 75-96 to prepare photochemical-genetic anti-counterfeiting ink or stamp-pad ink, and printing the anti-counterfeiting ink into an invisible photochemical-genetic anti-counterfeiting mark by using a printer; or injecting the anti-counterfeiting stamp-pad ink into a permeable atomic stamp to form an invisible (colorless) print, detecting the fluorescent anti-counterfeiting performance of the anti-counterfeiting stamp-pad ink by using an ultraviolet lamp, or detecting the photochromic anti-counterfeiting performance of the anti-counterfeiting stamp-pad ink by using sunlight or under the irradiation of the ultraviolet lamp, and further detecting a specific gene by using a PCR instrument.
CN97120275A 1997-11-12 1997-11-12 Photochemistry gene recognition material and its preparing method and use Expired - Fee Related CN1053671C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN97120275A CN1053671C (en) 1997-11-12 1997-11-12 Photochemistry gene recognition material and its preparing method and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN97120275A CN1053671C (en) 1997-11-12 1997-11-12 Photochemistry gene recognition material and its preparing method and use

Publications (2)

Publication Number Publication Date
CN1180708A true CN1180708A (en) 1998-05-06
CN1053671C CN1053671C (en) 2000-06-21

Family

ID=5175861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97120275A Expired - Fee Related CN1053671C (en) 1997-11-12 1997-11-12 Photochemistry gene recognition material and its preparing method and use

Country Status (1)

Country Link
CN (1) CN1053671C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300146C (en) * 2004-05-31 2007-02-14 中国科学院理化技术研究所 Photochromic compound of spiro [indolerin-phenanthroline oxazine and its preparation and use
CN102272250A (en) * 2009-01-08 2011-12-07 巴斯夫欧洲公司 Preparation of a photochromic ink
CN106433313A (en) * 2016-09-29 2017-02-22 柳州增程材料科技有限公司 Preparation technology of salt anti-counterfeiting mark material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076958A (en) * 1992-04-02 1993-10-06 北京大学 High polymer rare earth fluorescent composition and uses thereof
FR2730499B1 (en) * 1995-02-14 2004-02-27 Imaje Sa INK COMPOSITION FOR MARKING AND AUTHENTICATING OBJECTS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300146C (en) * 2004-05-31 2007-02-14 中国科学院理化技术研究所 Photochromic compound of spiro [indolerin-phenanthroline oxazine and its preparation and use
CN102272250A (en) * 2009-01-08 2011-12-07 巴斯夫欧洲公司 Preparation of a photochromic ink
CN106433313A (en) * 2016-09-29 2017-02-22 柳州增程材料科技有限公司 Preparation technology of salt anti-counterfeiting mark material

Also Published As

Publication number Publication date
CN1053671C (en) 2000-06-21

Similar Documents

Publication Publication Date Title
EP1141137B1 (en) Water-soluble rhodamine dyes and conjugates thereof
DE69822855T2 (en) BY AROMATIC GROUPS SUBSTITUTED XANTHE DYES
US6191278B1 (en) Water-soluble rhodamine dyes and conjugates thereof
EP1792949B1 (en) Hydrophilic marker on the basis of diastereomeric cyanines
DE102006029454A1 (en) Hydrophilic markers based on diastereomeric
JPH0661280B2 (en) Improved nucleic acid sequence analysis using nucleoside-5'-O- (1-thiotriphosphate)
JPS62249049A (en) Method of detecting separated oligonucleotides in electrophoretic manner
US8114207B2 (en) Marker solution to be applied by means of an inkjet printer
CN112679518B (en) Pure organic room temperature phosphorescent material based on thiochromanone derivative and preparation method and application thereof
CN109627464B (en) Fluorescent probe polymer hydrogel and preparation method thereof
CN1053671C (en) Photochemistry gene recognition material and its preparing method and use
Becker et al. New Thermotropic Dyes Based on Amino‐Substituted Perylendicarboximides
CN112574739B (en) Hydrogel sensor based on modified fluorescein derivative and preparation method thereof
CN112341379B (en) Polyaryl thiopyridine cationic salt light-operated cell pyrophoric material and preparation method and application thereof
CN1142174C (en) Optical information gene material and its application in gene chip technology
CN110105256B (en) Alpha-aminoketone-stilbene sulfonium salt compound and preparation method and application thereof
CN111662709B (en) Nitrogen dot-based room temperature phosphorescent material and preparation method and application thereof
CN111333643B (en) High-brightness, high-light stability and environmental insensitivity nuclear fluorescent probe
JP7181594B2 (en) Fluorescent labeling reagents, probes and their intermediates
CN1376661A (en) Indandione compounds and its preparing process and application
CN1847321A (en) Solid phase synthesis process of thiazde orange cyanine dye
CN1472233A (en) Water soluble high molecular thioanthrone light initiator and its preparation
CN113135879A (en) Near-infrared fluorescent dye and preparation method and application thereof
CN117510524A (en) Preparation and application of six-membered O, O heterocyclic compound
CN115850099A (en) Photoinitiator with bis-diaryl ketone structure, and synthetic method and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee