CN118045595A - Reversed phase metal oxide catalyst for preparing methanol by carbon dioxide hydrogenation - Google Patents
Reversed phase metal oxide catalyst for preparing methanol by carbon dioxide hydrogenation Download PDFInfo
- Publication number
- CN118045595A CN118045595A CN202410202042.7A CN202410202042A CN118045595A CN 118045595 A CN118045595 A CN 118045595A CN 202410202042 A CN202410202042 A CN 202410202042A CN 118045595 A CN118045595 A CN 118045595A
- Authority
- CN
- China
- Prior art keywords
- methanol
- catalyst
- temperature
- hydrogenation
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 132
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 92
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 46
- 239000003054 catalyst Substances 0.000 title claims abstract description 38
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 24
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 23
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 17
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000002360 preparation method Methods 0.000 claims abstract description 15
- 238000004817 gas chromatography Methods 0.000 claims abstract description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 105
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- 239000013078 crystal Substances 0.000 claims description 19
- 239000012298 atmosphere Substances 0.000 claims description 15
- 239000002243 precursor Substances 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 8
- 238000006555 catalytic reaction Methods 0.000 claims description 8
- LKOVPWSSZFDYPG-WUKNDPDISA-N trans-octadec-2-enoic acid Chemical compound CCCCCCCCCCCCCCC\C=C\C(O)=O LKOVPWSSZFDYPG-WUKNDPDISA-N 0.000 claims description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 6
- 239000003638 chemical reducing agent Substances 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000008103 glucose Substances 0.000 claims description 6
- 238000001291 vacuum drying Methods 0.000 claims description 6
- 229960005070 ascorbic acid Drugs 0.000 claims description 4
- 239000012691 Cu precursor Substances 0.000 claims description 3
- 239000002211 L-ascorbic acid Substances 0.000 claims description 3
- 235000000069 L-ascorbic acid Nutrition 0.000 claims description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 3
- 239000001509 sodium citrate Substances 0.000 claims description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims 4
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims 2
- 238000001035 drying Methods 0.000 claims 2
- 238000003756 stirring Methods 0.000 claims 2
- 229910021592 Copper(II) chloride Inorganic materials 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 claims 1
- 230000001747 exhibiting effect Effects 0.000 claims 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 238000006386 neutralization reaction Methods 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 abstract 1
- 239000010949 copper Substances 0.000 description 72
- 239000011787 zinc oxide Substances 0.000 description 48
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 35
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 33
- 229940112669 cuprous oxide Drugs 0.000 description 19
- 239000002184 metal Substances 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000000047 product Substances 0.000 description 12
- 239000011701 zinc Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 230000004913 activation Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012847 fine chemical Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- -1 precipitant Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- LLJOGUQSRXUDCC-UHFFFAOYSA-N methyl formate Chemical compound COC=O.COC=O LLJOGUQSRXUDCC-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/153—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
- C07C29/154—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及一种稳定的氧化亚铜表面负载氧化锌的反相金属氧化物催化剂在二氧化碳加氢制甲醇过程中的应用,属于碳中和领域。The invention relates to application of a reverse metal oxide catalyst with zinc oxide loaded on the surface of stable cuprous oxide in a process of producing methanol by hydrogenation of carbon dioxide, and belongs to the field of carbon neutralization.
背景技术Background technique
大气中CO2含量的增加和可再生能源技术的发展极大地促进了CO2捕集与利用研究的发展。液体产物甲醇具有较高的经济价值,可作为制备精细化工产品的原料。甲醇是重要的基本有机原料,在制造硫酸二甲酯,二甲酸二甲酯,农药以及医药等产品中起到了关键作用。甲醇也是用来生产甲醛,醋酸,甲酸甲酯等精细化工产品的重要原料。在化工、制药、农药、涂料等方面的广泛的用途,极大地促进了甲醇生产的发展和市场需求。因此,CO2加氢制甲醇的催化反应备受关注。The increase in the CO2 content in the atmosphere and the development of renewable energy technology have greatly promoted the development of CO2 capture and utilization research. The liquid product methanol has a high economic value and can be used as a raw material for the preparation of fine chemical products. Methanol is an important basic organic raw material and plays a key role in the manufacture of dimethyl sulfate, dimethyl diformate, pesticides and pharmaceuticals. Methanol is also an important raw material for the production of fine chemical products such as formaldehyde, acetic acid, and methyl formate. Its wide range of uses in chemicals, pharmaceuticals, pesticides, coatings, etc. has greatly promoted the development of methanol production and market demand. Therefore, the catalytic reaction of CO2 hydrogenation to methanol has attracted much attention.
本发明催化剂在催化反应途径和结构上的创新,形成了对CO2和H2分子具有优良的活化转化能力,促进了甲醇产物的生成,并降低了对副产物CO的选择性。该催化剂应用于CO2加氢反应的活性测试结果也表明了本发明催化剂相比于金属Cu表面负载ZnO具有更加优异的CO2活性和甲醇选择性。可见本发明制备的氧化亚铜负载氧化锌的反相金属氧化物催化剂,利用了Cu+-O-Zn之间的协同效应,有效提高了H2和CO2的吸附和活化作用。因此,合成具有高CO2转化率和高甲醇选择性的Cu-Zn催化剂具有重大的意义。The catalyst of the present invention is innovative in the catalytic reaction pathway and structure, and has excellent activation and conversion capabilities for CO2 and H2 molecules, promotes the generation of methanol products, and reduces the selectivity for byproduct CO. The activity test results of the catalyst applied to CO2 hydrogenation reaction also show that the catalyst of the present invention has more excellent CO2 activity and methanol selectivity than ZnO loaded on the surface of metal Cu. It can be seen that the reverse metal oxide catalyst of cuprous oxide loaded zinc oxide prepared by the present invention utilizes the synergistic effect between Cu + -O-Zn, and effectively improves the adsorption and activation of H2 and CO2 . Therefore, it is of great significance to synthesize a Cu-Zn catalyst with high CO2 conversion rate and high methanol selectivity.
发明内容Summary of the invention
本发明针对合成稳定的二氧化碳加氢制甲醇的反相金属氧化物催化剂中Cu+在还原性气氛或有水存在的酸性环境中热力学不稳定存在等不足,提供了一种氧化亚铜表面负载氧化锌的反相金属氧化物催化剂,该催化剂为一种新型的CO2加氢制甲醇的催化剂,其可有效地提高CO2转化率以及甲醇的选择性。The present invention aims at the shortcomings of Cu + in the reverse metal oxide catalyst for synthesizing stable carbon dioxide hydrogenation to produce methanol, such as thermodynamic instability in a reducing atmosphere or an acidic environment with water, and provides a reverse metal oxide catalyst with zinc oxide loaded on the surface of cuprous oxide. The catalyst is a new catalyst for CO2 hydrogenation to produce methanol, which can effectively improve the CO2 conversion rate and the selectivity of methanol.
第一方面该反相金属氧化物催化剂在二氧化碳加氢制甲醇过程中的应用,该催化剂填充在固定床反应器中,随后通入摩尔比为CO2/H2/N2=1/(1.0-5.0)/(0.5-5),混合气体的流速控制在5-100mL/min,通过催化剂固定床反应器进行CO2加氢反应,反应温度为180-340℃,反应压力为0.1-5MPa,产物通过气相色谱检测并通过计算获得CO2的转化率和甲醇的选择性。In the first aspect, the reverse metal oxide catalyst is used in the process of producing methanol by hydrogenating carbon dioxide. The catalyst is filled in a fixed bed reactor, and then a mixed gas with a molar ratio of CO2 / H2 / N2 =1/(1.0-5.0)/(0.5-5) is introduced. The flow rate of the mixed gas is controlled at 5-100mL/min. The CO2 hydrogenation reaction is carried out in the catalyst fixed bed reactor. The reaction temperature is 180-340°C and the reaction pressure is 0.1-5MPa. The product is detected by gas chromatography and the CO2 conversion rate and methanol selectivity are obtained by calculation.
第二方面,本发明实施例提供一种上述第一方面实施例提供的二氧化碳加氢制甲醇的反相金属氧化物催化剂的制备方法,该制备方法包含以下步骤:In a second aspect, an embodiment of the present invention provides a method for preparing the reverse metal oxide catalyst for hydrogenating carbon dioxide to methanol provided in the embodiment of the first aspect above, the preparation method comprising the following steps:
步骤1:Cu2+前驱体、十八烯酸、无水乙醇和水按质量比例(0.01~5):(0~10):(0~10):(5~20)混合均匀,在(20-35)℃条件搅拌(0.5~6)h。Step 1: Cu 2+ precursor, octadecenoic acid, anhydrous ethanol and water are mixed evenly in a mass ratio of (0.01-5): (0-10): (0-10): (5-20), and stirred at (20-35) ° C for (0.5-6) h.
步骤2:步骤1含Cu2+溶液、沉淀剂,还原剂和水按质量比例(1~10):(1~20):(1~20):(1~200)混合均匀,在(50~150)℃条件搅拌反应(0.5~20)h,冷却到(20-35)℃,采用水进行多次离心和洗涤,然后在(50~120)℃的真空干燥箱中干燥(5~48)h,得到Cu2O。Step 2: The Cu2+ solution, precipitant, reducing agent and water in step 1 are uniformly mixed in a mass ratio of (1-10): (1-20): (1-20): (1-200), stirred for reaction at (50-150)°C for (0.5-20)h, cooled to (20-35)°C, centrifuged and washed with water for multiple times, and then dried in a vacuum drying oven at (50-120)°C for (5-48)h to obtain Cu2O .
步骤3:将步骤2所得的Cu2O、Zn2+前驱体和水按质量比例(1~10):(0.1~2):(1:10)混合均匀,在(25~150)℃反应(0.5~20)h,然后在(50~120)℃的真空干燥箱中干燥(5~48)h,将干燥后的产物在N2或Ar气体气氛下(300~800℃)焙烧以及焙烧时间为1~10h,得到ZnO/Cu2O。Step 3: The Cu2O , Zn2 + precursor and water obtained in step 2 are uniformly mixed in a mass ratio of (1-10): (0.1-2): (1:10), reacted at (25-150)°C for (0.5-20)h, and then dried in a vacuum drying oven at (50-120)°C for (5-48)h, and the dried product is calcined in a N2 or Ar gas atmosphere at (300-800°C) for 1-10h to obtain ZnO/ Cu2O .
可选的,合成的氧化亚铜,可调暴露某一特定晶面,晶体分别体现菱形十二面体(110),立方体(100),八面体(111),尺寸约为0.5~6μm。Optionally, the synthesized cuprous oxide can be tuned to expose a specific crystal face, and the crystals respectively embody rhombic dodecahedron (110), cube (100), octahedron (111), and the size is about 0.5 to 6 μm.
可选地,步骤1所述Cu的前驱体,包括下述化合物中的一种:Optionally, the Cu precursor in step 1 includes one of the following compounds:
CuCl2·2H2O、Cu(CH3COO)2、CuSO4、Cu(NO3)2·3H2OCuCl 2 ·2H 2 O, Cu(CH 3 COO) 2 , CuSO 4 , Cu(NO 3 ) 2 ·3H 2 O
可选地,步骤1所述的还原剂,包括下属化合物中的一种:Optionally, the reducing agent in step 1 comprises one of the following compounds:
葡萄糖、L-抗坏血酸、柠檬酸钠Glucose, L-ascorbic acid, sodium citrate
可选地,步骤1所述的沉淀剂,为Optionally, the precipitant described in step 1 is
NaOHNaOH
可选地,步骤2中所加入的Zn金属前驱体的质量为Cu2O质量的0.01~0.2倍。Optionally, the mass of the Zn metal precursor added in step 2 is 0.01 to 0.2 times the mass of Cu 2 O.
与已有的技术相比,本发明实施例提供的方案能够产生如下有益效果:Compared with the existing technology, the solution provided by the embodiment of the present invention can produce the following beneficial effects:
本申请实施例所提供的氧化亚铜负载氧化锌反相金属氧化物结构具有可调的暴露特定的单一晶面的特点;该选择性暴露特定晶面的Cu2O结构能够保持Cu+的稳定存在,提供有效地Cu+-O-Zn活性界面,促进反应物CO2和H2在表面活性位点的吸附和活化。The cuprous oxide-loaded zinc oxide inverse metal oxide structure provided in the embodiments of the present application has the characteristic of adjustable exposure of a specific single crystal face; the Cu2O structure that selectively exposes a specific crystal face can maintain the stable presence of Cu + , provide an effective Cu + -O-Zn active interface, and promote the adsorption and activation of reactants CO2 and H2 at the surface active sites.
另外,该实施例提供的制备方法简单,条件温和,容易规模化推广应用。该氧化亚铜负载氧化锌反相金属氧化物的制备原理,首先通过简单的液相还原法制备稳定的暴露某一特定晶面的Cu2O,然后在Cu2O表面浸渍一层Zn2+的前驱体,在N2或者Ar气氛下焙烧形成ZnO/Cu2O材料。In addition, the preparation method provided in this embodiment is simple, the conditions are mild, and it is easy to promote and apply on a large scale. The preparation principle of the cuprous oxide-loaded zinc oxide reverse metal oxide is to first prepare a stable Cu2O with a certain crystal face exposed by a simple liquid phase reduction method, then impregnate a layer of Zn2 + precursor on the surface of Cu2O , and calcine in N2 or Ar atmosphere to form ZnO/ Cu2O material.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为实施例1中所制备的Cu2O的SEM图;FIG1 is a SEM image of Cu 2 O prepared in Example 1;
图2为实施例1中所制备的Cu2O的XRD图;FIG2 is an XRD pattern of Cu 2 O prepared in Example 1;
图3为实施例1中所制备的Cu2O表面负载ZnO的XRD图;FIG3 is an XRD diagram of ZnO loaded on the surface of Cu 2 O prepared in Example 1;
图4为实施例1中所制备的Cu2O表面负载ZnO以及对比例金属Cu颗粒表面负载ZnO样品的CO2加氢反应性能图;FIG4 is a graph showing the CO 2 hydrogenation reaction performance of the Cu 2 O surface loaded with ZnO prepared in Example 1 and the comparative example metal Cu particle surface loaded with ZnO;
图5为实施例1中所制备的Cu2O表面负载ZnO以及对比例金属Cu颗粒表面负载ZnO样品的甲醇选择性性能图。FIG5 is a graph showing the methanol selectivity performance of the ZnO loaded on the surface of Cu 2 O prepared in Example 1 and the ZnO loaded on the surface of the metal Cu particles of the comparative example.
具体实施方式Detailed ways
Cu基催化剂由于具有较高的CO2活化转化能力而被广泛应用于催化过程。然而近年来关于Cu的活性物种的研究仍然备受争论。在催化反应过程中,Cu物种的价态、形貌、暴露晶面、氧空位浓度以及有效活性界面对产物的活性和选择性有很大影响。ZnO、ZrO2、CeO2等可作为结构修饰剂、储氢、氢键和CO2活化的直接促进剂,研究者认为Cu基负载金属氧化物催化剂优异的CO2加氢活性可能是由于界面处Cu和金属氧化物之间存在紧密的协同效应,这种界面能够产生大量的Cu+-O-M活性位点,该活性位点能够同时吸附和活化H2和CO2,促进甲醇的生成,从而提高甲醇的选择性和CO2的转化率。Cu-based catalysts are widely used in catalytic processes due to their high CO2 activation and conversion capabilities. However, research on active species of Cu is still controversial in recent years. During the catalytic reaction, the valence state, morphology, exposed crystal surface, oxygen vacancy concentration and effective active interface of Cu species have a great influence on the activity and selectivity of the product. ZnO, ZrO2 , CeO2 , etc. can be used as structure modifiers, hydrogen storage, hydrogen bonding and direct promoters of CO2 activation. Researchers believe that the excellent CO2 hydrogenation activity of Cu-based supported metal oxide catalysts may be due to the close synergistic effect between Cu and metal oxides at the interface. This interface can produce a large number of Cu + -OM active sites, which can simultaneously adsorb and activate H2 and CO2 , promote the formation of methanol, and thus improve the selectivity of methanol and the conversion rate of CO2 .
通常氧化亚铜在干燥的空气中能够稳定存在,几乎不受温度的影响。但是由于亚铜离子在有H2的还原性气氛或CO2和水存在的酸性环境中容易被还原为金属铜。因此,本发明直接通过简单的液相还原法合成较为稳定的氧化亚铜,随后浸渍锌物种的前驱体,在N2或者Ar气氛下焙烧得到稳定的氧化锌负载氧化亚铜催化剂。本发明催化剂具有大量的Zn-O-Cu+活性位点。而且在CO2加氢反应过程中容易产生副产物CO,Cu+对CO具有较强的吸附能力,能够促进CO加氢制甲醇的路径,从而提高甲醇的选择性。Usually cuprous oxide can stably exist in dry air and is almost unaffected by temperature. However, cuprous ions are easily reduced to metallic copper in a reducing atmosphere with H2 or an acidic environment with CO2 and water. Therefore, the present invention directly synthesizes relatively stable cuprous oxide by a simple liquid phase reduction method, then impregnates a precursor of a zinc species, and roasts in an N2 or Ar atmosphere to obtain a stable zinc oxide-supported cuprous oxide catalyst. The catalyst of the present invention has a large number of Zn-O-Cu + active sites. Moreover, a byproduct CO is easily generated during the CO2 hydrogenation reaction, and Cu + has a strong adsorption capacity for CO, which can promote the path of CO hydrogenation to methanol, thereby improving the selectivity of methanol.
本申请实施例所提供的催化剂具体为氧化亚铜载体表面负载氧化锌的反相金属氧化物催化剂。The catalyst provided in the examples of the present application is specifically a reverse metal oxide catalyst in which zinc oxide is loaded on the surface of a cuprous oxide carrier.
本申请实施例所提供的催化剂中十八烯酸、作为表面活性剂的十八烯酸的加入对(110)晶面的形成着不可或缺的影响,无水乙醇作为十八烯酸的溶剂。Cu2O的(100)和(111)晶面的合成过程中无需添加。The addition of octadecenoic acid and octadecenoic acid as a surfactant in the catalyst provided in the examples of the present application has an indispensable influence on the formation of the (110) crystal face, and anhydrous ethanol is used as a solvent for octadecenoic acid. No addition is required during the synthesis of the (100) and (111) crystal faces of Cu 2 O.
本申请实施例所提供的催化剂具有可调的暴露特定的单一晶面的特点,该选择性暴露特定晶面的Cu2O结构能够保持Cu+的稳定存在,提供有效地Zn-O-Cu+活性界面,促进反应物CO2和H2在表面活性位点的吸附和活化。The catalyst provided in the embodiments of the present application has the characteristic of adjustable exposure of a specific single crystal face. The Cu2O structure that selectively exposes a specific crystal face can maintain the stable existence of Cu + , provide an effective Zn-O-Cu + active interface, and promote the adsorption and activation of reactants CO2 and H2 at the surface active sites.
另外,该实施例提供的制备方法简单,条件温和,容易规模化推广应用。该氧化亚铜表面负载氧化锌反相金属氧化物的制备原理,首先通过简单的液相还原法制备稳定的暴露某一特定晶面的Cu2O,然后在Cu2O表面浸渍一层Zn2+的前驱体,在N2或者Ar气氛下焙烧形成ZnO/Cu2O材料。In addition, the preparation method provided in this embodiment is simple, the conditions are mild, and it is easy to promote and apply on a large scale. The preparation principle of the cuprous oxide surface-loaded zinc oxide reverse metal oxide is to first prepare a stable Cu2O with a certain crystal face exposed by a simple liquid phase reduction method, then impregnate a layer of Zn2 + precursor on the surface of Cu2O , and calcine in N2 or Ar atmosphere to form ZnO/ Cu2O material.
氧化亚铜表面负载氧化锌反相金属氧化物催化剂在二氧化碳加氢制甲醇过程中的应用,催化剂填充在固定床反应器中,随后通入摩尔比为CO2/H2/N2=1/(1.0-5.0)/(0.5-5),混合气体的流速控制在5-100mL/min,通过催化剂固定床反应器进行CO2加氢反应,反应温度为180-340℃,反应压力为0.1-5MPa,产物通过气相色谱检测并通过计算获得CO2的转化率和甲醇的选择性。The invention discloses an application of a zinc oxide reverse metal oxide catalyst supported on the surface of cuprous oxide in a process of preparing methanol by hydrogenation of carbon dioxide. The catalyst is filled in a fixed bed reactor, and then a mixture of CO2 / H2 / N2 having a molar ratio of 1/(1.0-5.0)/(0.5-5) is introduced, and the flow rate of the mixed gas is controlled at 5-100 mL/min. The CO2 hydrogenation reaction is carried out in the catalyst fixed bed reactor, the reaction temperature is 180-340°C, the reaction pressure is 0.1-5 MPa, the product is detected by gas chromatography, and the CO2 conversion rate and methanol selectivity are obtained by calculation.
本发明实施例提供的氧化亚铜表面负载氧化锌反相金属氧化物催化剂的制备方法,该制备方法包含以下步骤:The preparation method of the cuprous oxide surface-supported zinc oxide reverse metal oxide catalyst provided in an embodiment of the present invention comprises the following steps:
步骤1:Cu2+前驱体、十八烯酸、无水乙醇和水按质量比例(0.01~5):(0~10):(0~10):(5~20)混合均匀,在(20-35)℃条件搅拌(0.5~6)h。Step 1: Cu 2+ precursor, octadecenoic acid, anhydrous ethanol and water are mixed evenly in a mass ratio of (0.01-5): (0-10): (0-10): (5-20), and stirred at (20-35) ° C for (0.5-6) h.
步骤2:步骤1含Cu2+溶液、沉淀剂,还原剂和水按质量比例(1~10):(1~20):(1~20):(1~200)混合均匀,在(50~150)℃条件搅拌反应(0.5~20)h,冷却到(20-35)℃,采用水进行多次离心和洗涤,然后在(50~120)℃的真空干燥箱中干燥(5~48)h,得到Cu2O。Step 2: The Cu2+ solution, precipitant, reducing agent and water in step 1 are uniformly mixed in a mass ratio of (1-10): (1-20): (1-20): (1-200), stirred for reaction at (50-150)°C for (0.5-20)h, cooled to (20-35)°C, centrifuged and washed with water for multiple times, and then dried in a vacuum drying oven at (50-120)°C for (5-48)h to obtain Cu2O .
步骤3:将步骤2所得的Cu2O、Zn2+前驱体和水按质量比例(1~10):(0.1~2):(1:10)混合均匀,在(25~150)℃反应(0.5~20)h,然后在(50~120)℃的真空干燥箱中干燥(5~48)h,将干燥后的产物在N2或Ar气体气氛下(300~800℃)焙烧以及焙烧时间为1~10h,得到ZnO/Cu2O。Step 3: The Cu2O , Zn2 + precursor and water obtained in step 2 are uniformly mixed in a mass ratio of (1-10): (0.1-2): (1:10), reacted at (25-150)°C for (0.5-20)h, and then dried in a vacuum drying oven at (50-120)°C for (5-48)h, and the dried product is calcined in a N2 or Ar gas atmosphere at (300-800°C) for 1-10h to obtain ZnO/ Cu2O .
可选的,合成的氧化亚铜,可调暴露某一特定晶面,晶体分别体现菱形十二面体(110),立方体(100),八面体(111),尺寸约为0.5~6μm。Optionally, the synthesized cuprous oxide can be tuned to expose a specific crystal face, and the crystals respectively embody rhombic dodecahedron (110), cube (100), octahedron (111), and the size is about 0.5 to 6 μm.
可选地,步骤1所述Cu的前驱体,包括下述化合物中的一种:Optionally, the Cu precursor in step 1 includes one of the following compounds:
CuCl2·2H2O、Cu(CH3COO)2、CuSO4、Cu(NO3)2·3H2OCuCl 2 ·2H 2 O, Cu(CH 3 COO) 2 , CuSO 4 , Cu(NO 3 ) 2 ·3H 2 O
可选地,步骤1所述的还原剂,包括下属化合物中的一种:Optionally, the reducing agent in step 1 comprises one of the following compounds:
葡萄糖、L-抗坏血酸、柠檬酸钠Glucose, L-ascorbic acid, sodium citrate
可选地,步骤1所述的沉淀剂,为Optionally, the precipitant described in step 1 is
NaOHNaOH
可选地,步骤2中所加入的Zn金属前驱体的质量为Cu2O质量的0.01~0.2倍。Optionally, the mass of the Zn metal precursor added in step 2 is 0.01 to 0.2 times the mass of Cu 2 O.
下面以几个具体实施例详细说明氧化亚铜负载氧化锌反相金属氧化物结构的制备过程。The preparation process of the cuprous oxide-loaded zinc oxide reverse metal oxide structure is described in detail below with reference to several specific examples.
实施例1:制备氧化亚铜表面负载氧化锌反相金属氧化物结构Example 1: Preparation of a reverse metal oxide structure with zinc oxide loaded on the surface of cuprous oxide
0.36g无水CuSO4、12mL十八烯酸、60mL无水乙醇和120mL水加入到反应器中在90℃混合均匀,然后,上述混合溶液、0.32gNaOH、3.4g葡萄糖和120mL水混合均匀,在90℃反应1h,冷却到25℃,水和无水乙醇离心、洗涤、60℃真空干燥10h,得到约1.2μm的暴露(110)晶面的Cu2O。Cu2O形貌如图1所示,Cu2O表现出完美的菱形十二面体形貌,Cu2O表面光滑。尺寸为1.2μm。Cu2O结构如图2所示,可以观察到Cu2O的衍射峰。通过图1和图2证明了Cu2O成功的被合成。0.36g of anhydrous CuSO 4 , 12mL of octadecenoic acid, 60mL of anhydrous ethanol and 120mL of water were added to the reactor and mixed evenly at 90°C. Then, the mixed solution, 0.32g of NaOH, 3.4g of glucose and 120mL of water were mixed evenly, reacted at 90°C for 1h, cooled to 25°C, centrifuged, washed with water and anhydrous ethanol, and vacuum dried at 60°C for 10h to obtain Cu 2 O with an exposed (110) crystal face of about 1.2μm. The morphology of Cu 2 O is shown in Figure 1. Cu 2 O exhibits a perfect rhombic dodecahedron morphology and a smooth surface. The size is 1.2μm . The structure of Cu 2 O is shown in Figure 2. The diffraction peak of Cu 2 O can be observed. Figures 1 and 2 prove that Cu 2 O was successfully synthesized.
将上述所得的Cu2O称取1g和1mL水超声混合均匀,加入到容器中25℃搅拌6h,再加入0.0916g的Zn(NO3)2·6H2O浸渍12h,随后在35℃搅拌10h,60℃真空干燥6h。然后,在Ar气氛下350℃焙烧3h,得到ZnO/Cu2O-(110)结构,ZnO/Cu2O菱形十二面体结构如图3所示。负载ZnO后,我们并没有发现Zn的衍射峰,说明ZnO纳米团簇尺寸较小且分散均一。1 g of the Cu 2 O obtained above was weighed and mixed with 1 mL of water by ultrasonic, added to a container and stirred at 25°C for 6 h, then 0.0916 g of Zn(NO 3 ) 2 ·6H 2 O was added and impregnated for 12 h, then stirred at 35°C for 10 h, and vacuum dried at 60°C for 6 h. Then, it was calcined at 350°C for 3 h under Ar atmosphere to obtain a ZnO/Cu 2 O-(110) structure. The ZnO/Cu 2 O rhombic dodecahedron structure is shown in Figure 3. After loading ZnO, we did not find the diffraction peak of Zn, indicating that the ZnO nanoclusters are small in size and uniformly dispersed.
对比例1:制备金属Cu表面负载ZnO结构Comparative Example 1: Preparation of ZnO structure loaded on metal Cu surface
直接称取2g实施例中合成的Cu2O置于磁舟中,随后采用管式炉在10% H2/Ar混合气气氛(流量为30mL/min)条件下400℃焙烧4h,升温速率控制在5℃/min。冷却至25℃,得到金属Cu催化剂载体。2 g of Cu 2 O synthesized in the example was weighed directly and placed in a magnetic boat, then calcined in a tube furnace at 400° C. for 4 h in a 10% H 2 /Ar mixed gas atmosphere (flow rate of 30 mL/min) with a heating rate of 5° C./min. Cooled to 25° C. to obtain a metal Cu catalyst carrier.
将得到的金属Cu载体称取1g超声分散在1mL水中,并加入0.1g的Zn(NO3)2·6H2O在25℃条件下浸渍搅拌10h,随后置于烘箱中干燥6h。最后将样品在N2或Ar气氛中400℃焙烧4h,升温速率控制在5℃/min,得到金属Cu表面负载ZnO结构(ZnO/Cu)。1 g of the obtained metal Cu carrier was weighed and ultrasonically dispersed in 1 mL of water, and 0.1 g of Zn(NO 3 ) 2 ·6H 2 O was added and impregnated and stirred at 25°C for 10 h, and then placed in an oven to dry for 6 h. Finally, the sample was calcined at 400°C in a N 2 or Ar atmosphere for 4 h, with the heating rate controlled at 5°C/min to obtain a metal Cu surface-loaded ZnO structure (ZnO/Cu).
通过对实施例1所得到的Cu2O-(110)表面负载ZnO以及金属Cu表面负载ZnO样品进行CO2加氢催化反应,将0.2g的Cu2O表面负载ZnO样品置于固定床反应器中,在CO2/H2/N2(VCO2:VH2:VN2=22%:66%:12%))混合气,3MPa压力,180-300℃反应温度,15000mL gcat -1h-1空速条件下制甲醇,产物通过气相色谱检测获得CO2转化率和甲醇选择性,得到如图4所示的实施例1和对比例的催化性能图。所制备的Cu2O表面负载ZnO样品比金属Cu表面负载ZnO样品的CO2加氢催化性能显著提高。在300℃时CO2的转化率高达21.15%,要高于金属Cu表面负载ZnO(17.35%)。图5所示为甲醇的选择性随温度的变化,所制备的Cu2O表面负载ZnO样品比金属Cu颗粒表面负载ZnO样品的甲醇选择性要高10%。通过图4和图5说明Cu2O表面负载ZnO样品具有良好的CO2转化率和甲醇选择性。The Cu 2 O-(110) surface-supported ZnO and metal Cu surface-supported ZnO samples obtained in Example 1 were subjected to CO 2 hydrogenation catalytic reaction. 0.2 g of the Cu 2 O surface-supported ZnO sample was placed in a fixed bed reactor. Methanol was produced under the conditions of CO 2 /H 2 /N 2 (V CO2 :V H2 :V N2 =22%:66%:12%) mixed gas, 3 MPa pressure, 180-300°C reaction temperature, and 15000 mL g cat -1 h -1 space velocity. The product was detected by gas chromatography to obtain CO 2 conversion rate and methanol selectivity, and the catalytic performance diagram of Example 1 and the comparative example as shown in FIG4 was obtained. The prepared Cu 2 O surface-supported ZnO sample had significantly improved CO 2 hydrogenation catalytic performance than the metal Cu surface-supported ZnO sample. At 300°C, the CO 2 conversion rate was as high as 21.15%, which was higher than that of the metal Cu surface-supported ZnO (17.35%). Figure 5 shows the change of methanol selectivity with temperature. The prepared Cu 2 O surface-supported ZnO sample has a methanol selectivity 10% higher than that of the metal Cu particle surface-supported ZnO sample. Figures 4 and 5 show that the Cu 2 O surface-supported ZnO sample has good CO 2 conversion rate and methanol selectivity.
实施例2Example 2
氧化亚铜表面负载氧化锌反相金属氧化物结构的制备方法,包括以下步骤:The preparation method of a cuprous oxide surface-loaded zinc oxide reverse metal oxide structure comprises the following steps:
0.171g无水CuCl2·2H2O和100mL水加入到反应器中混合均匀,在90℃油浴锅中混合均匀,然后,上述溶液、1gNaOH、1.06g抗坏血酸和22mL水混合均匀,反应3h,冷却到25℃,水和无水乙醇离心、洗涤、60℃真空干燥12h,得到约0.8μm的暴露(100)晶面的Cu2O立方体。0.171 g of anhydrous CuCl 2 ·2H 2 O and 100 mL of water were added to the reactor and mixed evenly in an oil bath at 90°C. Then, the above solution, 1 g of NaOH, 1.06 g of ascorbic acid and 22 mL of water were mixed evenly, reacted for 3 h, cooled to 25°C, centrifuged with water and anhydrous ethanol, washed, and dried in a vacuum at 60°C for 12 h to obtain Cu 2 O cubes with an exposed (100) crystal face of about 0.8 μm.
将上述所得的Cu2O称取1g和1mL水超声混合均匀,加入到容器中35℃搅拌,再加入0.1g的Zn(NO3)2·6H2O在35℃搅拌浸渍12h,60℃真空干燥12h。然后,在Ar气氛下350℃焙烧3h,得到ZnO/Cu2O-(100)结构。1 g of the Cu 2 O obtained above was weighed and mixed with 1 mL of water by ultrasonic, added to a container and stirred at 35°C, then 0.1 g of Zn(NO 3 ) 2 ·6H 2 O was added and stirred and impregnated at 35°C for 12 h, and vacuum dried at 60°C for 12 h. Then, it was calcined at 350°C for 3 h in an Ar atmosphere to obtain a ZnO/Cu 2 O-(100) structure.
通过对实施例2所得到的Cu2O-(100)表面负载ZnO样品进行CO2加氢催化反应,将0.2g的Cu2O-(100)表面负载ZnO样品置于固定床反应器中,在CO2/H2/N2(VCO2:VH2:VN2=22%:66%:12%))混合气,3MPa压力,180-300℃反应温度,15000mL gcat -1h-1空速条件下制甲醇,产物通过气相色谱检测获得CO2转化率和甲醇选择性,在300℃时,Cu2O表面负载ZnO结构的CO2转化率相比于金属Cu颗粒表面负载ZnO结构的CO2转化率提高了5%,甲醇的选择性提高了10%。By carrying out CO2 hydrogenation catalytic reaction on the Cu2O- (100) surface-loaded ZnO sample obtained in Example 2, 0.2 g of the Cu2O- (100) surface-loaded ZnO sample was placed in a fixed bed reactor, and methanol was produced under the conditions of CO2 / H2 / N2 ( VCO2 : VH2 : VN2 =22%:66%:12%) mixed gas, 3 MPa pressure, 180-300°C reaction temperature, and 15000 mL gcat -1 h -1 space velocity. The CO2 conversion rate and methanol selectivity of the product were obtained by gas chromatography. At 300°C, the CO2 conversion rate of the Cu2O surface-loaded ZnO structure was increased by 5% compared with the CO2 conversion rate of the metal Cu particle surface-loaded ZnO structure, and the methanol selectivity was increased by 10%.
实施例3Example 3
氧化亚铜表面负载氧化锌反相金属氧化物结构的制备方法,包括以下步骤:The preparation method of a cuprous oxide surface-loaded zinc oxide reverse metal oxide structure comprises the following steps:
0.24g无水CuSO4、16mL十八烯酸、60mL无水乙醇和120mL水加入到三扣烧瓶中混合均匀,在90℃油浴锅中混合均匀,然后,上述溶液、0.32gNaOH、3.2g葡萄糖和120mL水混合均匀,反应5h,冷却到25℃,水和无水乙醇离心、洗涤、60℃真空干燥过夜,得到约1.0μm暴露(110)晶面的Cu2O菱形十二面体。0.24 g of anhydrous CuSO 4 , 16 mL of octadecenoic acid, 60 mL of anhydrous ethanol and 120 mL of water were added to a three-flask and mixed evenly, and then mixed evenly in a 90°C oil bath. Then, the above solution, 0.32 g of NaOH, 3.2 g of glucose and 120 mL of water were mixed evenly, reacted for 5 h, cooled to 25°C, and the water and anhydrous ethanol were centrifuged, washed, and vacuum dried at 60°C overnight to obtain Cu 2 O rhombic dodecahedrons with an exposed (110) crystal face of about 1.0 μm.
将上述所得的Cu2O称取1g和1mL水超声混合均匀,加入到容器中25℃搅拌6h,再加入0.2g的Zn(NO3)2·6H2O浸渍12h,随后在35℃搅拌10h,60℃真空干燥6h。然后,在Ar气氛下350℃焙烧3h,得到ZnO/Cu2O-(110)结构。1 g of the Cu 2 O obtained above was weighed and mixed with 1 mL of water by ultrasonication, added into a container and stirred at 25°C for 6 h, then 0.2 g of Zn(NO 3 ) 2 ·6H 2 O was added and impregnated for 12 h, then stirred at 35°C for 10 h, and vacuum dried at 60°C for 6 h. Then, it was calcined at 350°C for 3 h in an Ar atmosphere to obtain a ZnO/Cu 2 O-(110) structure.
通过对实施例3所得到的Cu2O-(100)表面负载ZnO样品进行CO2加氢催化反应,将0.2g的Cu2O-(110)表面负载ZnO样品置于固定床反应器中,在CO2/H2/N2(VCO2:VH2:VN2=22%:66%:12%))混合气,3MPa压力,180-300℃反应温度,15000mL gcat -1h-1空速条件下制甲醇,产物通过气相色谱检测获得CO2转化率和甲醇选择性,在300℃时,Cu2O表面负载ZnO结构的CO2转化率相比于金属Cu颗粒表面负载ZnO结构的CO2转化率提高了6%,甲醇的选择性提高了12%。By carrying out CO2 hydrogenation catalytic reaction on the Cu2O- (100) surface-loaded ZnO sample obtained in Example 3, 0.2 g of the Cu2O- (110) surface-loaded ZnO sample was placed in a fixed bed reactor, and methanol was produced under the conditions of CO2 / H2 / N2 ( VCO2 : VH2 : VN2 =22%:66%:12%) mixed gas, 3 MPa pressure, 180-300°C reaction temperature, and 15000 mL gcat -1 h -1 space velocity. The CO2 conversion rate and methanol selectivity of the product were obtained by gas chromatography. At 300°C, the CO2 conversion rate of the Cu2O surface-loaded ZnO structure was increased by 6% compared with the CO2 conversion rate of the metal Cu particle surface-loaded ZnO structure, and the methanol selectivity was increased by 12%.
实施例4Example 4
氧化亚铜表面负载氧化锌反相金属氧化物结构的制备方法,包括以下步骤:The preparation method of a cuprous oxide surface-loaded zinc oxide reverse metal oxide structure comprises the following steps:
3g无水Cu(CH3COO)2和20mL水加入到反应器中混合搅拌1h,然后上述溶液、5gNaOH、0.58g葡萄糖和30mL水,在70℃油浴锅中混合搅拌3h,冷却到35℃,水和无水乙醇离心、洗涤、60℃真空干燥10h,得到约1.5μm的暴露(111)晶面的Cu2O八面体。3 g of anhydrous Cu(CH 3 COO) 2 and 20 mL of water were added to the reactor and mixed and stirred for 1 h. Then the above solution, 5 g of NaOH, 0.58 g of glucose and 30 mL of water were mixed and stirred in a 70°C oil bath for 3 h, cooled to 35°C, centrifuged with water and anhydrous ethanol, washed, and vacuum dried at 60°C for 10 h to obtain Cu 2 O octahedra with exposed (111) crystal faces of about 1.5 μm.
将上述所得的1gCu2O-(111)和1mL水超声混合均匀,加入到容器中35℃搅拌,再加入0.1g的Zn(NO3)2·6H2O在35℃搅拌浸渍12h,60℃真空干燥6h。然后,在Ar气氛下350℃焙烧3h,得到ZnO/Cu2O-(111)结构。1g of Cu 2 O-(111) obtained above and 1mL of water were ultrasonically mixed and added to a container and stirred at 35°C, and then 0.1g of Zn(NO 3 ) 2 ·6H 2 O was added and stirred and impregnated at 35°C for 12h, and vacuum dried at 60°C for 6h. Then, it was calcined at 350°C for 3h in an Ar atmosphere to obtain a ZnO/Cu 2 O-(111) structure.
通过对实施例4所得到的Cu2O-(111)表面负载ZnO样品进行CO2加氢催化反应,将0.2g的Cu2O-(111)表面负载ZnO样品置于固定床反应器中,在CO2/H2/N2(VCO2:VH2:VN2=22%:66%:12%))混合气,3MPa压力,180-300℃反应温度,15000mL gcat -1h-1空速条件下制甲醇,产物通过气相色谱检测获得CO2转化率和甲醇选择性,在300℃时,Cu2O表面负载ZnO结构的CO2转化率相比于金属Cu颗粒表面负载ZnO结构的CO2转化率提高了4%,甲醇的选择性提高了8%。The Cu 2 O-(111) surface-loaded ZnO sample obtained in Example 4 was subjected to a CO 2 hydrogenation catalytic reaction, and 0.2 g of the Cu 2 O-(111) surface-loaded ZnO sample was placed in a fixed bed reactor. Methanol was produced under the conditions of a CO 2 /H 2 /N 2 (V CO2 :V H2 :V N2 =22%:66%:12%) mixed gas, 3 MPa pressure, 180-300°C reaction temperature, and 15000 mL g cat -1 h -1 space velocity. The CO 2 conversion rate and methanol selectivity of the product were obtained by gas chromatography. At 300°C, the CO 2 conversion rate of the Cu 2 O surface-loaded ZnO structure was increased by 4% compared with the CO 2 conversion rate of the metal Cu particle surface-loaded ZnO structure, and the methanol selectivity was increased by 8%.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410202042.7A CN118045595A (en) | 2024-02-23 | 2024-02-23 | Reversed phase metal oxide catalyst for preparing methanol by carbon dioxide hydrogenation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410202042.7A CN118045595A (en) | 2024-02-23 | 2024-02-23 | Reversed phase metal oxide catalyst for preparing methanol by carbon dioxide hydrogenation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118045595A true CN118045595A (en) | 2024-05-17 |
Family
ID=91051631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410202042.7A Pending CN118045595A (en) | 2024-02-23 | 2024-02-23 | Reversed phase metal oxide catalyst for preparing methanol by carbon dioxide hydrogenation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118045595A (en) |
-
2024
- 2024-02-23 CN CN202410202042.7A patent/CN118045595A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107497437B (en) | An iron-based catalyst for CO2 hydrogenation to produce light olefins and its application | |
WO2020107539A1 (en) | Preparation method for catalyst for producing methyl methacrylate, and application thereof | |
CN107899575B (en) | Nano-gold catalyst for one-step oxidative esterification of aldehydes and alcohols to generate esters, preparation method and application thereof | |
CN112823879B (en) | Application of cerium-based catalyst in preparation of dimethyl carbonate through direct conversion of carbon dioxide and methanol | |
JPH0336571B2 (en) | ||
CN111659402B (en) | CO (carbon monoxide) 2 Catalyst for preparing low-carbon alcohol by hydrogenation, preparation method and application thereof | |
CN111097416A (en) | Preparation of a carbon-supported cobalt heterogeneous catalyst and its application in catalyzing the hydroformylation of olefins | |
CN111215084A (en) | Copper-based catalyst for preparing methanol by carbon dioxide hydrogenation, preparation and application thereof | |
CN110479258A (en) | A kind of high stability catalyst of levulic acid hydrogenation synthesis gamma-valerolactone and preparation method thereof | |
CN104014345B (en) | For the CuO-CeO of water gas shift reaction2Catalysts and its preparation method | |
CN103933978A (en) | Supported nanocatalyst for catalytic conversion of carbon dioxide as well as preparation method and application thereof | |
CN113385171A (en) | Metal-based catalyst protected by few-layer carbon and application thereof in ethylene oxide carbonylation | |
CN113019393B (en) | Platinum nano catalyst, preparation method thereof and method for synthesizing aromatic amine by selective hydrogenation of aromatic nitro compound | |
CN110252298B (en) | A kind of metal oxide supported gold catalyst for efficiently catalyzing glycerol to prepare DHA and preparation method thereof | |
JP7227564B2 (en) | Catalyst for alcohol synthesis and method for producing alcohol using the same | |
CN113694929B (en) | Supported single-atom copper-based metal oxide catalyst, and preparation method and application thereof | |
CN109569650B (en) | Catalyst for synthesizing oxalate through CO coupling and preparation method thereof | |
CN115155600A (en) | A catalyst for synthesizing methanol and its preparation method and application | |
CN114853567A (en) | A kind of carbon dioxide conversion to prepare low carbon alcohol catalyst and its preparation method and application | |
CN1390640A (en) | Nano CuZnAl catalyst for synthesizing methanol and dimethylether and its preparing process | |
CN107349922B (en) | A kind of copper/zirconia-graphene composite carrier catalyst and its preparation method and application | |
CN118045595A (en) | Reversed phase metal oxide catalyst for preparing methanol by carbon dioxide hydrogenation | |
CN107824199B (en) | Magnetic nano gold catalyst for synthesizing ester by aldehyde one-step oxidative esterification and preparation method and application thereof | |
CN115646498B (en) | A highly stable copper-based catalyst for ethanol dehydrogenation and its preparation method | |
CN117160463A (en) | Preparation method and application of cerium oxide supported copper-based catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |