CN118022833A - 一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法 - Google Patents

一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法 Download PDF

Info

Publication number
CN118022833A
CN118022833A CN202311836433.6A CN202311836433A CN118022833A CN 118022833 A CN118022833 A CN 118022833A CN 202311836433 A CN202311836433 A CN 202311836433A CN 118022833 A CN118022833 A CN 118022833A
Authority
CN
China
Prior art keywords
aged
cephalosporin
polystyrene
cephalosporin antibiotics
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311836433.6A
Other languages
English (en)
Inventor
王超
白利华
谷成
季荣
邓东阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanzhou Institute For Environmental Protection Industry Nanjing University
Nanjing University
Original Assignee
Quanzhou Institute For Environmental Protection Industry Nanjing University
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanzhou Institute For Environmental Protection Industry Nanjing University, Nanjing University filed Critical Quanzhou Institute For Environmental Protection Industry Nanjing University
Publication of CN118022833A publication Critical patent/CN118022833A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Cephalosporin Compounds (AREA)

Abstract

本发明公开了一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法,包括如下步骤:将聚苯乙烯微塑料颗粒溶于水中得到悬浮液进行光老化处理,离心后得到老化聚苯乙烯微塑料(PS‑MPs)固体,将其加入到头孢抗生素的水溶液,然后将两者混合;调节所述混合液的pH值,而后进行光辐照反应,促进头孢类抗生素的降解。本发明首次利用PS微塑料充当抗生素降解的催化剂,介导水生环境中不同头孢的选择性降解,同时老化的PS‑MPs能显著增强常用头孢菌素类抗生素的光转化过程。

Description

一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的 方法
技术领域
本发明属于微塑料降解领域,具体涉及一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法。
背景技术
目前,每年丢弃的塑料估计超过3.2亿吨(Wright,S.L.;Kelly,F.J.,Plastic andHuman Health:A Micro Issue?Environmental Science&Technology 2017,51,(12),6634-6647.),大量被丢弃的塑料碎片在暴露于机械磨损、热降解、太阳辐射和生物影响下,经过破碎、降解和脆化,将变成微塑料(MPs,尺寸小于5毫米),甚至纳米塑料(NPs,尺寸小于1微米)(Cole,M.;Lindeque,P.;Halsband,C.;Galloway,T.S.,Microplastics ascontaminants in the marine environment:A review.Marine Pollution Bulletin2011,62,(12),2588-2597.Dang,F.;Wang,Q.;Huang,Y.;Wang,Y.;Xing,B.,Key knowledgegaps for One Health approach to mitigate nanoplastic risks.Eco-Environment&Health 2022,1,(1),11-22.Su,Y.;Hu,X.;Tang,H.;Lu,K.;Li,H.;Liu,S.;Xing,B.;Ji,R.,Steam disinfection releases micro(nano)plastics from silicone-rubber babyteats as examined by optical photothermal infrared microspectroscopy.Naturenanotechnology 2021,1-10.)。摄取MPs可能会导致各种生物的摄食活动、生存率和繁殖力下降,例如浮游动物、拖网虫、鱼、海龟甚至鲸鱼(Besseling,E.;Wegner,A.;Foekema,E.M.;van den Heuvel-Greve,M.J.;Koelmans,A.A.,Effects of Microplastic on Fitnessand PCB Bioaccumulation by the Lugworm Arenicola marina(L.).EnvironmentalScience&Technology 2013,47,(1),593-600.Cole,M.;Lindeque,P.;Fileman,E.;Halsband,C.;Galloway,T.S.,The Impact of Polystyrene Microplastics on Feeding,Function and Fecundity in the Marine Copepod Calanushelgolandicus.Environmental Science&Technology 2015,49,(2),1130-1137.Chua,E.M.;Shimeta,J.;Nugegoda,D.;Morrison,P.D.;Clarke,B.O.,Assimilation ofPolybrominated Diphenyl Ethers from Microplastics by the Marine Amphipod,Allorchestes Compressa.Environmental Science&Technology 2014,48,(14),8127-8134)。MPs已被广泛报道为吸附POPs(持久性有机污染物)(Rios,L.M.;Moore,C.;Jones,P.R.,Persistent organic pollutants carried by synthetic polymers in the oceanenvironment.Marine Pollution Bulletin 2007,54,(8),1230-1237.Velzeboer,I.;Kwadijk,C.J.A.F.;Koelmans,A.A.,Strong Sorption of PCBs to Nanoplastics,Microplastics,Carbon Nanotubes,and Fullerenes.Environmental Science&Technology 2014,48,(9),4869-4876)、PPCPs(药品和个人护理产品)(Xiong,Y.;Zhao,J.;Li,L.;Wang,Y.;Dai,X.;Yu,F.;Ma,J.,Interfacial interaction between micro/nanoplastics and typical PPCPs and nanoplastics removal via electrosorptionfrom an aqueous solution.Water Research 2020,184,116100.Liu,P.;Qian,L.;Wang,H.;Zhan,X.;Lu,K.;Gu,C.;Gao,S.,New Insights into the Aging Behavior ofMicroplastics Accelerated by Advanced Oxidation Processes.EnvironmentalScience&Technology 2019,53,(7),3579-3588.Wang,C.;Xian,Z.;Jin,X.;Liang,S.;Chen,Z.;Pan,B.;Wu,B.;Ok,Y.S.;Gu,C.,Photo-aging of polyvinyl chloridemicroplastic in the presence of natural organic acids.Water Research 2020,183,116082.)和重金属(Hodson,M.E.;Duffus-Hodson,C.A.;Clark,A.;Prendergast-Miller,M.T.;Thorpe,K.L.,Plastic Bag Derived-Microplastics as a Vector forMetal Exposure in Terrestrial Invertebrates.Environmental Science&Technology2017,51,(8),4714-4721.)。此外,在工业生产过程中,塑料中加入了大量的增塑剂、颜料和阻燃剂,从而导致MPs充满了有机和无机添加剂(Gigault,J.;El Hadri,H.;Nguyen,B.;Grassl,B.;Rowenczyk,L.;Tufenkji,N.;Feng,S.;Wiesner,M.,Nanoplastics areneither microplastics nor engineered nanoparticles.Nature nanotechnology2021,16,(5),501-507.Vega-Herrera,A.;Llorca,M.;Savva,K.;León,V.M.;Abad,E.;Farré,M.,Screening and quantification of Micro(Nano)plastics and plasticadditives in the seawater of Mar Menor Lagoon.Frontiers in Marine Science2021,8,697424.)。当MPs被摄入和同化时,由于其在肠道系统中的快速解吸率,被吸附的污染物或负载的添加剂将对相应的生物体表现出更大的生物利用率。
老化过程能够改变MPs的理化性质,从而导致MPs的环境行为发生变化,包括添加剂的释放(Talsness Chris,E.;Andrade Anderson,J.M.;Kuriyama Sergio,N.;TaylorJulia,A.;vom Saal Frederick,S.,Components of plastic:experimental studies inanimals and relevance for human health.Philosophical Transactions of theRoyal Society B:Biological Sciences 2009,364,(1526),2079-2096.Rochman,C.M.;Manzano,C.;Hentschel,B.T.;Simonich,S.L.M.;Hoh,E.,Polystyrene Plastic:A Sourceand Sink for Polycyclic Aromatic Hydrocarbons in the MarineEnvironment.Environmental Science&Technology 2013,47,(24),13976-13984.)和污染物的吸附。最近,关于原始和老化的MPs和NPs吸附高极性药物的研究数量增加,包括氟喹诺酮、磺胺、四环素和β-内酰胺类抗生素(Li,J.;Zhang,K.;Zhang,H.,Adsorption ofantibiotics on microplastics.Environmental Pollution 2018,237,460-467.Zhang,H.;Wang,J.;Zhou,B.;Zhou,Y.;Dai,Z.;Zhou,Q.;Chriestie,P.;Luo,Y.,Enhancedadsorption of oxytetracycline to weathered microplastic polystyrene:Kinetics,isotherms and influencing factors.Environmental Pollution 2018,243,1550-1557.Liu,G.;Zhu,Z.;Yang,Y.;Sun,Y.;Yu,F.;Ma,J.,Sorption behavior and mechanismof hydrophilic organic chemicals to virgin and aged microplastics infreshwater and seawater.Environmental Pollution 2019,246,26-33.)。与原始的MPs相比,由于药物分子与MPs表面的含氧分子之间的分子间氢键,老化颗粒对抗生素表现出更大的吸附能力。Zhu等人报告说,光照可以诱导聚苯乙烯MPs(PS-MPs)的键裂解,并形成环境持久性自由基,这些自由基可以进一步参与活性氧(ROS)的产生(Zhu,K.;Jia,H.;Sun,Y.;Dai,Y.;Zhang,C.;Guo,X.;Wang,T.;Zhu,L.,Long-term phototransformation ofmicroplastics under simulated sunlight irradiation in aquatic environments:roles of reactive oxygen species.Water research 2020,173,115564.Zhu,K.;Jia,H.;Zhao,S.;Xia,T.;Guo,X.;Wang,T.;Zhu,L.,Formation of EnvironmentallyPersistent Free Radicals on Microplastics under LightIrradiation.Environmental Science&Technology 2019,53,(14),8177-8186.)。例如,Wang等人研究了不同老化程度的PS-MPs对降脂药物(即阿托伐他汀)光降解的影响,发现老化的PS-MPs能够促进药物的光转化,并且降解率与PS-MPs的老化程度呈线性关系(Wang,H.;Liu,P.;Wang,M.;Wu,X.;Shi,Y.;Huang,H.;Gao,S.,Enhanced phototransformationof atorvastatin by polystyrene microplastics:Critical role of aging.Journalof Hazardous Materials 2021,408,124756.)。Ding等人探讨了四环素在PS-MPs存在下的光解过程,发现PS-MPs可以通过光产生的ROS(包括O2-、OH-和单线态氧(1O2))增强四环素的光解作用(Ding,R.;Ouyang,Z.;Bai,L.;Zuo,X.;Xiao,C.;Guo,X.,What are thedrivers of tetracycline photolysis induced by polystyrene microplastic?Chemical Engineering Journal 2022,435,134827.Liu,P.;Li,H.;Wu,J.;Wu,X.;Shi,Y.;Yang,Z.;Huang,K.;Guo,X.;Gao,S.,Polystyrene microplastics acceleratedphotodegradation of co-existed polypropylene via photosensitization ofpolymer itself and released organic compounds.Water Research 2022,214,118209.)。最近的研究报告指出,老化的MP表面和头孢菌素分子之间的界面氢键可以通过降低水解能隙促进头孢菌素β-内酰胺环的水解(Wang,C.;Liang,S.;Bai,L.;Gu,X.;Jin,X.;Xian,Z.;Wu,B.;Ok,Y.S.;Li,K.;Wang,R.;Zhong,H.;Gu,C.,Structure-dependentsurface catalytic degradation of cephalosporin antibiotics on the agedpolyvinyl chloride microplastics.Water research 2021,206,117732.)。这表明,PS-M/NPs和抗生素之间的界面相互作用在提高药品的转化率方面起着重要作用。目前,PS-M/NPs诱导的PPCP光转化的增强主要归因于PS-M/NP的光敏化产生的ROS。然而,关于界面相互作用在加速PPCP在PS-M/NP表面的光降解方面的作用,可获得的信息有限。
头孢类抗生素作为高度优先的抗菌剂,是半合成β-内酰胺类药物的代表,已被广泛用于人类和动物的疾病治疗。由于大量的生产和消费,头孢类抗生素在水生环境中无处不在,其浓度从ng L-1到mg L-1不等(Guo,X.;Wang,J.,Sorption of antibiotics ontoaged microplastics in freshwater and seawater.Mar Pollut Bull 2019,149,110511.Wang,J.;Zhuan,R.;Chu,L.,The occurrence,distribution and degradation ofantibiotics by ionizing radiation:An overview.Science of the TotalEnvironment 2019,646,1385-1397.)。综上,现有技术中对于聚苯乙烯微塑料和头孢类抗生素去除处理成本高、有机物难降解。
发明内容
发明目的:针对现有头孢类抗生素和聚苯乙烯微塑料大量使用造成水体污染严重的问题,本发明提供一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法。本发明通过采用一定光辐照条件,对聚苯乙烯微塑料进行有效光老化,从而得到老化72h的微塑料。本发明合成得到的老化聚苯乙烯微塑料可用于催化转化头孢类抗生素,有利于促进头孢类抗生素的光降解过程。
技术方案:为了实现上述目的,本发明提供了一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法,包括如下步骤:
将聚苯乙烯微塑料颗粒溶于水中得到悬浮液进行光老化处理,离心后得到老化聚苯乙烯微塑料(PS-MPs)固体,将其加入到头孢抗生素的水溶液,然后将两者混合;调节所述混合液的pH值,而后进行光辐照反应,促进头孢类抗生素的降解。
其中,所述光老化处理的反应时间为3-4天,反应温度为20~30℃,光辐照强度为2.0-2.1mW/cm2
作为优选,所述光老化反应的反应时间为3天,反应温度为20~30℃,光辐照强度为2.1mW/cm2
其中,将老化的聚苯乙烯微塑料(PS-MPs)固体加入到头孢抗生素的水溶液,两者混合后老化的聚苯乙烯微塑料的浓度为0.8~1.2g L-1,头孢类抗生素的浓度为4-5mg L-1
作为优选,两者混合后老化的聚苯乙烯微塑料的浓度为0.8~1.2g L-1,头孢类抗生素的浓度为5mg L-1
其中,所述调节所述混合液的pH值控制为5.8-6.2。
其中,所述光辐照反应过程中保持进行搅拌,转速为400 -500rpm。
作为优选,所述搅拌的转速为400rpm。
其中,所述光降解反应的反应时间为20-24h,光辐照源为500-600W氙灯加上260-280nm滤光片。
作为优选,所述光降解反应的反应时间为24h,光辐照源为500W氙灯加上280nm滤光片。
进一步地,采用配备有500W氙灯加280nm滤光片的旋转式XPA-7模型反应器进行模拟太阳照射实验,将老化的聚苯乙烯微塑料悬浮液加入到头孢类抗生素溶液的石英管中,并保持持续的磁力搅拌以获得稳定的悬浮液,在反应期间监测溶液的pH值,并通过加入NaOH或HClO4将其保持在5.8-6.2的范围内。
本发明所述的老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法在处理环境中头孢类抗生素和聚苯乙烯微塑料污染中的应用。
其中,所述老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法在处理天然水体环境中头孢类抗生素和聚苯乙烯微塑料污染中的应用。
本发明所述头孢类抗生素包括头孢菌素(CPX)、头孢硫脒(CFN)、头孢唑肟(CFZW)、7-氨基头孢烷酸(7-ACA)、头孢唑啉钠(CFZ)和头孢替唑钠(CFTZ)中的任意一种或者多种。
本发明所述聚苯乙烯微塑料或者老化聚苯乙烯微塑料作为催化剂在催化降解孢类抗生素中的应用。
本发明中采用老化的PS-MP能显著增强常用头孢菌素类抗生素的光转化过程,并且这种增强强烈依赖于头孢菌素的分子结构。此外,电子顺磁共振和猝灭实验为羟基自由基(OH·)作为促进头孢菌素降解的主导物质提供了充分的支持。此外,原位FTIR、批量吸附和理论计算结果表明,结构依赖性增强与氢结合位点密切相关,而不是吸附量,其中对于老化PS表面与-OOH而不是-OH氢键结合的头孢菌素类抗生素可以获得更大的增强。因此,污染物与MPs之间的特定结合模式使得老化的PS可以作为催化剂,介导水生环境中药物的选择性降解。
本发明首次利用PS微塑料充当了抗生素降解的催化剂,介导水生环境中不同头孢的选择性降解,同时老化的PS-MP能显著增强常用头孢菌素类抗生素的光转化过程,并且这种增强强烈依赖于头孢菌素的分子结构。本发明中主要是催化降解头孢类抗生素,其中聚苯乙烯微塑料主要是通过形成分子间氢键起了催化剂的作用,但这种催化作用与现有实际中的头孢类抗生素吸附作用相反,即微塑料对头孢的吸附作用越强,其促进头孢的降解反而越弱,降解主要与分子之间的结合位点有关,本发明首次利用老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化。根据拟合的kobs值,老化PS-MPs对CPX、7-ACA、CFZW和CFN的降解率分别比裸头孢菌素提高了6.4倍、2.4倍、1.7倍和1.5倍。
有益效果:相比于现有技术,本发明具有如下优点:
(1)本发明利用老化聚苯乙烯微塑料作为催化界面诱导头孢类抗生素催化转化的方法,无需添加外源催化剂,在一定pH值和光辐照条件下能够有效降解广泛使用的头孢类抗生素。
(2)本发明的一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法,可直接应用于天然水体环境中头孢类抗生素和聚苯乙烯微塑料的污染问题。
附图说明
图1为本发明的降解机理图
图2为本发明中PSpristine(a)和PSaged(b)的SEM图像;PSpristine(c)和PSaged(d)的θW数字图像。PSpristine和PSaged(e)的光生官能团的FTIR光谱。PSpristine和PSaged颗粒的XPS光谱(f);
图3为本发明中裸头孢类药物和头孢类药物在PSpristine和PSaged存在下的降解情况与反应时间的关系;
图4为本发明中不同光老化时间的PS-MPs的EPR测量,(a)在黑暗条件下和(b)在光照10分钟后;
图5为本发明中头孢类药物的猝灭实验;
图6为本发明中头孢菌素在原始和光老化的PS-MPs上的吸附等温线;
图7为本发明在头孢菌素在原始和老化的PS-MPs存在下的原位FTIR光谱;
图8为本发明中头孢类药物和老化的PS-MP(即P1和P2+头孢类药物)的静电势图;
图9为本发明中头孢菌素在模拟阳光照射下的光催化降解途径。(a)CPX;(b)7ACA;(c)CFZW;(d)CFN。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
实施例中所述实验方法,如无特殊说明,均为常规方法。药品和试剂如无特殊说明,均为常规药品。
无添加剂的分析级PS-MPs(100μm)购自南京久泽有限公司,即实施例中的PS微塑料(聚苯乙烯微塑料),其他市售微米级聚苯乙烯微塑料均可。
DMPO购自上海百灵威科技有限公司,CAS号:3317-61-1。
DMSO购自上海百灵威科技有限公司,CAS号:67-68-5。
TEMP购自上海百灵威科技有限公司,CAS号:2564-83-2。
捕获剂IPA购自南京晚晴化玻仪器有限公司,CAS号:67-63-0。
O2 -淬灭剂SOD购自南京库仑生物有限公司,CAS号:9054-89-1。
捕获剂TMP购自南京晚晴化玻仪器有限公司,CAS号:77-99-6。
本发明的一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法,包括将一定纯度(AR)的0.04g PS微塑料颗粒溶于40mL水(超纯水,18.2MΩcm)中,配置得到0.8~1.2g L-1(优选1g L-1)的PS微塑料悬浮母液,而后采用2.1mW/cm2(500W)汞灯进行光辐照反应,光辐照反应过程中保持对PS微塑料进行搅拌,搅拌速率为400rpm,并且光辐照反应的反应时间为3天,反应温度为25℃,离心取沉淀从而合成得到老化聚苯乙烯微塑料(PS-MPs)。
采用配备有500W氙灯加280nm滤光片的旋转式XPA-7模型反应器进行模拟太阳照射实验。在每个实验中,将20mg老化的PS-MPs加入到含有20mL 5mg L-1头孢菌素溶液的石英管中,并保持持续的磁力搅拌(400rpm)以获得稳定的悬浮液。并通过加入10mM NaOH或HClO4将其保持在5.8-6.2的范围内。
实施例1
本实施例的一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法,其具体步骤为:
(1)制备PS微塑料悬浮液(1g L-1)的模拟天然水溶液(40mL);
(2)将PS微塑料悬浮液置于XPA-7型旋转反应器中进行光辐照反应,以2.1mW/cm2(500W)汞灯(北京电光源研究所)为辐照源,反应温度维持在25℃,在光照射周期3天内保持磁搅拌400rpm,使PS微塑料颗粒变化均匀,离心取沉淀得到老化聚苯乙烯微塑料(PS-MPs),后续实施例均采用本实施例制备得到的老化PS-MPs。
(3)将20mg老化的PS-MPs加入到含有20mL 5mg L-1头孢菌素(CPX)溶液的石英管中,并保持持续的磁力搅拌(400rpm)以获得稳定的悬浮液,采用配备有500W氙灯加280nm滤光片的旋转式XPA-7模型反应器进行照射24h。在反应期间监测溶液的pH值,并通过加入10mM NaOH或HClO4将其保持在5.8-6.2的范围内。
使用扫描电子显微镜(FEG Quanta 250,FEI Co.,Netherland)对本实施例的老化聚苯乙烯微塑料进行表征,观察PSpristine(聚苯乙烯微塑料)和PSaged(老化聚苯乙烯微塑料)的外观结构,在图像收集之前,通过溅射涂布器在微塑料表面涂上一层一层的黄金,以优化光学对比度。SEM图像如图2(a)和图2(b)所示,PSpristine微塑料表面平整光滑,而PSaged表面变得粗糙。
图2c和d显示了PS-MP盘上水滴的数字图像。原始PS和老化PS的θW值分别为93.76°和78.81°,表明老化PS聚合物表面具有很强的亲水特性。通过FTIR分析了紫外线照射对老化PS-MP表面官能团的影响。图2e显示了不同紫外线照射时间(0-72小时)的PS-MPs在600-4000cm-1波长范围内的FTIR光谱对比。原始PS-MPs的主要红外特征峰如下。在3021和2918cm-1的吸收峰分别归因于苯环的C-H拉伸振动和-CH2的不对称拉伸振动,而在1596、1487和1451cm-1的峰则归因于芳香族的C-C拉伸振动。随着老化时间的增加,1725cm-1的羰基(C=O)峰和3450cm-1的羟基(-OH)峰增加,表明PS-MPs在紫外光下发生光氧化。此外,XPS技术被用来进行PS-MP粉末的元素分析。如图2(f)所示,O 1s峰的强度在老化的PS-MPs上大大增加。从XPS光谱中,在老化的PS-MPs上发现了两个代表含氧官能团的峰,286.56eV(C-O)和288.15eV(C=O),而在原始的PS-MPs上没有观察到对应含氧官能团的峰,上述实验证明说明成功得到了老化的聚苯乙烯微塑料。
实施例2
本实施例的基本内容同实施例1,不同之处在于:采用原始PS-MPs(即未老化的原始PS微塑料)按同样的方法进行处理不同的裸头孢类抗生素(CPX、7ACA、CFZW和CFN),同时与裸头孢类抗生素作为对照,并计算裸头孢类抗生素去除率。
去除率=(C0-Ct)/C0,其中C0为0时刻头孢的浓度,Ct为t时刻头孢的浓度,本实验t=24h,用HPLC测定0时刻和t时刻的响应信号,然后根据标准曲线计算t时刻的浓度值。
如图3所示,与裸头孢类抗生素或头孢类抗生素在原始PS-MPs存在下的去除率相比,老化PS-MPs对CPX、7ACA、CFZW和CFN的降解表现出更大的促进作用。而原始和老化的PS-MPs对CFTZ和CFZ的分解都表现出可忽略不计的影响。经过伪一阶动力学拟合,计算出头孢菌素的光降解速率常数(kobs)。CPX、7ACA、CFZW和CFN的裸头孢菌素光降解的kobs值分别为4×10-3h-1、57.2×10-3h-1、21.2×10-3h-1和11.3×10-3h-1。在原始PS-MPs的存在下,CPX、7ACA、CFZW和CFN的单个kobs值分别为6.3×10-3h-1、70.0×10-3h-1、20.1×10-3h-1、13.7×10- 3h-1,这表明抗生素的去除可以忽略不计。有趣的是,老化的PS-MPs显著增加了CPX、7ACA、CFZW和CFN各自的kobs值,分别达到25.4×10-3h-1、136.8×10-3h-1、35.9×10-3h-1、17.5×10- 3h-1。根据拟合的kobs值,老化的PS-MPs使CPX、7ACA、CFZW和CFN的降解率分别提高了6.4、2.4、1.7和1.5倍,提高的顺序为CPX>7ACA>CFZW>CFN。本发明采用老化PS-MP对不同头孢的催化促进光解作用是不同的,这与头孢的分子结构有关。同时上述实验也证明本发明老化的PS-MP对于头孢类抗生素具有显著的降解效果。
实施例3
为了准确识别PS光解产生的ROS,通过添加选择性的探针分子进行EPR测量。为了确定活性物种,在5mL 10g L-1老化的或者原始的PS-MPs水悬浮液中加入500μL DMPO(1M)以捕获OH自由基。在DMSO溶液中也进行了类似的ROS捕获实验,以实现O2 -的测量。EPR仪器参数,即中心场、微波功率、扫描宽度、时间常数、扫描时间和扫描次数,分别设置为3500G、2.0mW、100G、15.0ms、10s和10次扫描。如图4所示,老化的和原始的PS-MPs都观察到了强度比为1:2:2:1的DMPO-OH加合物的清晰信号,这表明·OH可以通过PS颗粒的光照而产生。虽然,老化的PS-MPs的·OH信号强度比PSpris的弱,这可能是由于PS老化的表面羟基对·OH的淬灭作用,老化的PS-MPs表面的含氧分子(即羟基和羰基)的存在被FTIR和XPS的结果证实。当PS-MPs被辐照时,除了·OH,还检测到O2 ·-1O2,证明准确识别了老化PS-MPs光解产生的ROS。实施例3也表明光照会产生ROS,且老化程度越高,产生的ROS越多。
实施例4
为了确定老化PS-MPs诱导头孢菌素降解增强的关键ROS,通过添加IPA、SOD和TMP分别清除O2 ·-、·OH和1O2,进行了淬灭实验。
老化PS诱导的反应体系为:(i)5mg L-1头孢菌素和1g L-1老化PS;(ii)5mg L-1头孢菌素、1g L-1老化PS和300mM OH-捕获剂IPA;(iii)5mg L-1头孢菌素、1g L-1老化PS和1000UO2 -淬灭剂SOD;(iv)5mg L-1头孢菌素、1g L-1老化PS和200μM捕获剂TMP。所有ROS鉴定试验均经过500W氙灯加280nm滤光片的旋转式XPA-7模型反应器进行照射24h,并在预定时间取样0.5mL反应液与1mL超纯水混合,用于随后的HPLC分析。如图5所示,添加清除剂可以有效地抑制老化PS-MPs促进头孢类抗生素(即CPX、7ACA、CFZW、CFN)降解的作用。而IPA、SOD和TMP对头孢菌素分子光解的抑制效率存在明显差异。与老化的PS-MPs存在下头孢菌素抗生素降解的kobs值相比较,通过计算加入ROS淬灭试剂前后的差异来量化ROS的贡献。值得注意的是,羟基清除剂(即IPA)对PSaged诱导的CPX、7ACA、CFZW和CFN降解的抑制率分别为69.6%、57.1%、40.1%和36.5%。与IPA相比,SOD和TMP在老化的PS-MPs存在下,对头孢类药物的去除表现出较弱的抑制作用。对于TMP来说,对CPX、7ACA、CFZW和CFN的抑制率分别为52.2%、50.6%、29.0%和23.3%。此外,对于β-内酰胺类抗生素,即CPX、7ACA、CFZW和CFN,其对SOD的抑制率分别为26.9%、32.3%、7.8%和8.9%。因此,·OH在加速头孢类抗生素的分解中起主导作用,而ROS的贡献能力依次为·OH>1O2>O2 ·-,上述实验确定了老化PS-MPs诱导头孢菌素降解增强的关键ROS,其中·OH在加速头孢类抗生素的分解中起主导作用。
实施例5
老化的PS-MPs诱导的头孢类抗生素的光降解增强显示出强烈的结构依赖性。为了揭示内在机制,研究了头孢菌素在原始和老化PS-MPs上的吸附情况。每次吸附实验,将原始或者老化PS-MPs微球10.0mg加入到含有10.0mL头孢菌素溶液的玻璃离心管中,头孢菌素初始浓度为0.5~50.0mg L-1。然后将离心管置于旋转激振器(400rpm,IS-RDVI,Crystal,USA)中,在黑暗中25℃摇12小时。对照实验的回收率为>99.2%,在吸附过程中由于在瓶盖和玻璃表面的转化和吸附造成的损失可以忽略不计。上清液中头孢菌素浓度的测定方法如上所述。PS-MPs中空白(无PS-MPs)和含有PS颗粒样品上清液中头孢菌素浓度的差值计算PS-MPs中头孢菌素抗生素的吸附量。如图6所示,这些β-内酰胺类抗生素在PS-MPs上的吸附等温线遵循Langmuir模型,表明在PS表面发生了单层吸附。CFZ、CFTZ、CFN、7ACA、CFZW和CPX的头孢类抗生素在原始PS-MPs上的最大吸附量分别为8.4、5.0、13.5、7.9、3.3和0.3mg g-1。而老化的PS-MPs对CFZ、CFTZ、CFN、7ACA、CFZW和CPX的单个最大吸附量计算为31.3、19.4、15.8、12.5、5.2和0.6mg g-1,按照CFZ>CFTZ>CFN>7ACA>CFZW>CPX的顺序。然而,吸附结果为增强头孢类抗生素的去除提供了可忽略不计的支持,这表现在一个明显的矛盾上,即更大的吸附量导致更弱的增强。因此,提出抗生素与老化的PS-M/NP表面之间的表面结合模式在促进头孢菌素的分解方面起着重要作用。
实施例6
采用了原位液体池傅立叶变换红外光谱法来研究头孢菌素和PS粉末之间的相互作用。使用Tensor 27FTIR光谱仪(Bruker,Germany)监测原位FTIR光谱,该光谱仪配备了汞镉碲化探测器和ATR液池(Pike Technology,USA)。在收集FTIR光谱之前,将原始和老化的PS颗粒分别涂覆在液体电池的晶体表面(ZnSe)。如图7所示,对于非钠盐形式的头孢菌素类抗生素,观察到1247、1386、1599、1697和1760cm-1附近的吸收带,对应于β-内酰胺环上C-N的弯曲振动(vC-N,bend)。羧基的对称拉伸模式(vCOO,sym),羧基的不对称拉伸模式(vCOO,as),酰胺基的羰基(vC=O,ami)和β-内酰胺环上的羰基的拉伸振动(vC=O)。值得注意的是,当液态细胞晶体被PSaged粉末包裹时,头孢菌素的羰基峰发生红移。例如,当CPX与老化的PS粉末相互作用时,CPX的vC=O峰变宽并红移了,这可能是由于β-内酰胺环中的羰基与老化PS表面的羟基之间的氢键作用。作为比较,从涂有原始PS颗粒的液体电池中收集的光谱变化可以忽略不计。对于7ACA、CFZW和CFN也得到了类似的结果。然而,钠盐形式的头孢菌素,即CFZ和CFTZ的峰(包括vC=O)没有得到明显的移动,这表明范德华力作为主要的分子间作用。因此,药品和老化的PS-MPs之间的分子间结合模式与PS老化诱导的头孢类抗生素降解的增强明显相关,其中氢键力起着主导作用。
实施例7
测定本发明中头孢类药物和老化的PS-MP(即P1和P2+头孢类药物)的静电势图;基于高斯09W程序,对头孢菌素类抗生素和PS聚合物的几何和化学性质进行了理论计算,其中密度泛函理论(DFT)方法在B3LYP水平上进行了研究值得注意的是,采用具有六个特征聚苯乙烯单体序列长度的聚合物来模拟PS,简化了计算,其中P1和P2是制备老化的PS-MP的两种形态,通过红外分峰了反应后的PS-MP,将羟基基团分成了-OH和-OOH,其中P1是指表面形成-OOH的老化PS-MP,P2是指表面形成-OH的老化PS-MP,本实施例考虑的两种形态仅用于本实验的模拟计算,两种形态实际不影响催化降解效果,实际催化降解过程中不用考虑两种形态。此外,对原始/老化PS聚合物与头孢菌素抗生素组成的二元体系(保证头孢表面的羰基与老化PS表面的羟基基团(-OH和-OOH)形成界面氢键)进行了分子模拟基于优化的几何结构,计算并可视化了结合能(BE)和静电势(ESP)的分布,揭示了头孢菌素与PS-MPs的结合模式。BEOOH和BEOH分别表示老化PS表面β-内酰胺C=O与-OOH/和-OH基团之间的氢键能值。此外,BEOOH和BEOH之间的区别(即BEOOH-BEOH)被称为ΔBE。如静电势图(图8)所示,显然,老化PS(P1和P2)的-OOH和-OH(正)的H原子与头孢菌素β-内酰胺环的C=O基团(负)之间存在静电吸引。图8是P1+头孢类和P2+头孢类的双分子结构。P1中的-OOH与头孢菌素β-内酰胺环中的C=O之间的静电电位被中和,P2中的羟基结构与头孢菌素β-内酰胺环之间的静电电位也被中和,说明这些基团容易相互接近,通过形成氢键实现电子中和。实施例6和7进一步表明老化的PS-MP只是作为一种催化剂,并未与头孢反应。
实施例8
为了阐明头孢类抗生素(即CPX、7ACA、CFZW和CFN)在老化的PS-MPs存在下的反应途径,对降解产物进行了鉴定。为了检测反应产物,用Waters Qasis@HLB固相萃取柱对样品进行纯化富集。先用6mL甲醇和6mL超纯水活化HLB柱,然后加入2mL降解水样,控制流速0.5ml min-1。用6mL超纯水清洗后,排干色谱柱,最后用2mL甲醇洗脱,将洗脱液收集到液瓶中。飞行时间质谱联用高效液相色谱进行质谱分析。质谱计配备电喷雾离子源,样品在正离子模式下测量。用质谱法测定了50~1000离子的质荷比(M/Z)。HPLC-QTOF-MS中的参数值设置如下:离子气体压力1、离子气体压力2、ESI源温度、离子源喷雾电压浮子、簇去除电压、碰撞能量分别设置为55psi、55psi、550℃、5500V、100v、10v。采用Waters T3反相色谱柱(粒径3.5μm,2.1mm×100mm)进行化合物分离,流动相为0.1%甲酸水溶液(a相)和甲醇(B相),流速为0.2mL min-1。如图9所示,CPX(m/z=347.09)被·OH攻击,其β-内酰胺被羟基化开环,甲基被羟基去甲基化,得到光催化产物(m/z=385.09)。此外,CPX被活性物质(·OH)攻击,产生氨基乙酰胺(m/z=150.08)(图9a)。7-ACA去除乙酰基后的部分是其降解产物(图9b)。CFZW裂解并去除一个氨基和羧基以及一个五元环,形成一个质量与电荷比为211.04的片段峰(图9c)。对于CFN,m/z=430.13的片段峰是去除乙酰基后的剩余部分(图9d)。
通过上述实施例5-8有效证明用老化的聚苯乙烯微塑料充当催化剂来促进不同头孢的光降解在机理层面也是完全可行,本发明反应条件简单,降解速率快,PS-MPs可重复使用,且随着反应的进行,PS-MPs促进效果会越来越好,并且PS-MP老化程度越高,产生的ROS越多,头孢的降解速率越快。

Claims (10)

1.一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法,其特征在于,包括如下步骤:
将聚苯乙烯微塑料颗粒溶于水中得到悬浮液进行光老化处理,离心后得到老化聚苯乙烯微塑料(PS-MPs)固体,将其加入到头孢抗生素的水溶液,然后将两者混合;调节所述混合液的pH值,而后进行光辐照反应,促进头孢类抗生素的降解。
2.根据权利要求1所述的老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法,其特征在于,所述光老化处理的反应时间为3-4天,反应温度为20~30℃,光辐照强度为2.0-2.1mW/cm2
3.根据权利要求1所述的老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法,其特征在于,将老化的聚苯乙烯微塑料(PS-MPs)固体加入到头孢抗生素的水溶液,两者混合后老化的聚苯乙烯微塑料的浓度优选为0.8~1.2gL-1,头孢类抗生素的浓度为4-5mgL-1
4.根据权利要求1所述的老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法,其特征在于,所述调节所述混合液的pH值控制为5.8-6.2。
5.根据权利要求1所述的老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法,其特征在于,所述光辐照反应过程中保持进行搅拌,转速为400-500rpm。
6.根据权利要求1所述的老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法,其特征在于,所述光降解反应的反应时间为20-24h,光辐照源为500-600W氙灯加上260-280nm滤光片。
7.根据权利要求1所述的老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法,其特征在于,采用配备有氙灯加滤光片的旋转式XPA-7模型反应器进行模拟太阳照射实验,将老化的聚苯乙烯微塑料颗粒加入到头孢类抗生素溶液的石英管中,并保持持续的磁力搅拌以获得稳定的悬浮液,在反应期间监测溶液的pH值,并通过加入NaOH或HClO4将其保持在5.8-6.2的范围内。
8.一种权利要求1所述的老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法在处理环境中头孢类抗生素和聚苯乙烯微塑料污染中的应用。
9.根据权利要求8所述的应用,其特征在于,所述老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法在处理天然水体环境中头孢类抗生素和聚苯乙烯微塑料污染中的应用。
10.根据权利要求8所述的应用,其特征在于,所述头孢类抗生素包括头孢菌素(CPX)、头孢硫脒(CFN)、头孢唑肟(CFZW)、7-氨基头孢烷酸(7-ACA)、头孢唑啉钠(CFZ)和头孢替唑钠(CFTZ)中的任意一种或者多种。
CN202311836433.6A 2023-11-10 2023-12-28 一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法 Pending CN118022833A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2023114965733 2023-11-10
CN202311496573 2023-11-10

Publications (1)

Publication Number Publication Date
CN118022833A true CN118022833A (zh) 2024-05-14

Family

ID=90984738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311836433.6A Pending CN118022833A (zh) 2023-11-10 2023-12-28 一种老化聚苯乙烯微塑料界面诱导头孢类抗生素催化转化的方法

Country Status (1)

Country Link
CN (1) CN118022833A (zh)

Similar Documents

Publication Publication Date Title
Pan et al. Degradation of aqueous 2, 4, 4′-Trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products
Ma et al. Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride
Guo et al. UV and chemical aging alter the adsorption behavior of microplastics for tetracycline
Wei et al. Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: A DFT and MD simulation study
Li et al. Molecularly imprinted carbon nanosheets supported TiO2: Strong selectivity and synergic adsorption-photocatalysis for antibiotics removal
Saleh et al. Removal of poly-and per-fluoroalkyl substances from aqueous systems by nano-enabled water treatment strategies
Yu et al. Degradation of sulfamethoxazole by Co3O4-palygorskite composites activated peroxymonosulfate oxidation
Wang et al. Catalytic degradation of sulfamethoxazole by peroxymonosulfate activation system composed of nitrogen-doped biochar from pomelo peel: Important roles of defects and nitrogen, and detoxification of intermediates
Zhu et al. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2
Ciesielczyk et al. Treatment of model and galvanic waste solutions of copper (II) ions using a lignin/inorganic oxide hybrid as an effective sorbent
Al-Kahtani et al. Photocatalytic degradation of Maxilon CI basic dye using CS/CoFe2O4/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation
Shandilya et al. Synthesis of Eu3+− doped ZnO/Bi2O3 heterojunction photocatalyst on graphene oxide sheets for visible light-assisted degradation of 2, 4-dimethyl phenol and bacteria killing
Zheng et al. Adsorption/desorption behavior of ciprofloxacin on aged biodegradable plastic PLA under different exposure conditions
Zhang et al. Oxidation of sulfamethazine by peracetic acid activated with biochar: Reactive oxygen species contribution and toxicity change
Song et al. Adsorption behaviors and mechanisms of humic acid on virgin and aging microplastics
Al-Onazi et al. Using pomegranate peel and date pit activated carbon for the removal of cadmium and lead ions from aqueous solution
Liu et al. Activation of peroxydisulfate by biogenic nanocomposites of reduced graphene oxide and goethite for non-radical selective oxidation of organic contaminants: Production of singlet oxygen and direct electron transfer
CN116675285B (zh) 一种全氟化合物的降解方法
Suzie et al. Photocatalytic performance of N–TiO2@ SiO2 composite obtained under gliding arc plasma processing at atmospheric pressure
Al Masud et al. Degradation of phenol by ball-milled activated carbon (ACBM) activated dual oxidant (persulfate/calcium peroxide) system: Effect of preadsorption and sequential injection
Valizadeh et al. Adsorption and photocatalytic degradation of organic dyes onto crystalline and amorphous hydroxyapatite: Optimization, kinetic and isotherm studies
CN116573711B (zh) 一种聚吲哚-蒙脱石复合体及其制备方法和应用
Wang et al. Montmorillonite promoted photodegradation of amlodipine in natural water via formation of surface complexes
Chung et al. Degradation of Di-(2-ethylhexyl) phthalate (DEHP) by TiO 2 photocatalysis
Liu et al. Role of structural characteristics of MoS2 nanosheets on Pb2+ removal in aqueous solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination