CN118013290B - Ionosphere TEC forecasting method, ionosphere TEC forecasting system, computer equipment and ionosphere TEC forecasting medium - Google Patents
Ionosphere TEC forecasting method, ionosphere TEC forecasting system, computer equipment and ionosphere TEC forecasting medium Download PDFInfo
- Publication number
- CN118013290B CN118013290B CN202410424074.1A CN202410424074A CN118013290B CN 118013290 B CN118013290 B CN 118013290B CN 202410424074 A CN202410424074 A CN 202410424074A CN 118013290 B CN118013290 B CN 118013290B
- Authority
- CN
- China
- Prior art keywords
- tec
- data
- ionospheric
- seagull
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/10—Devices for predicting weather conditions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Environmental & Geological Engineering (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical Field
本发明属于电离层电子含量预测技术领域,具体涉及一种电离层TEC预报方法、系统、计算机设备及介质。The invention belongs to the technical field of ionospheric electron content prediction, and in particular relates to an ionospheric TEC prediction method, system, computer equipment and medium.
背景技术Background technique
电离层总电子含量(Total Electronic Content, TEC)是单位面积上电离层的总电子含量,表征电离层自由电子的数量,是描述电离层结构、状态和变化的重要参量之一。无线电波传播时由于折射引起的时间延迟和相位延迟与电离层TEC紧密相关,而在卫星通信、导航定位等应用领域都离不开无线电波的传播,因此对电离层TEC进行分析研究具有重要的意义。The total electron content (TEC) of the ionosphere is the total electron content per unit area of the ionosphere. It characterizes the number of free electrons in the ionosphere and is one of the important parameters for describing the structure, state and changes of the ionosphere. The time delay and phase delay caused by refraction during radio wave propagation are closely related to the TEC of the ionosphere. The propagation of radio waves is indispensable in application fields such as satellite communications and navigation and positioning. Therefore, it is of great significance to analyze and study the TEC of the ionosphere.
为了评估使用不同方法对电离层参数预测的效果,进行了大量的研究。从预测方法的角度而言,电离层预测模型可以分为传统预测模型和神经网络预测模型。传统预测模型包括经验模型(国际参考电离层模型)和数学模型(时间序列分析模型、自回归移动平均模型、多元线性回归法、自相关分析法、区域电离层预报的插值法)。随着人工神经网络的迅速发展,为电离层预报提供了新的思路。许多学者采用神经网路对TEC进行有效预报,然而,神经网络在参数选择网络优化等方面较为复杂,容易陷入局部极小值。In order to evaluate the effect of using different methods to predict ionospheric parameters, a lot of research has been done. From the perspective of prediction methods, ionospheric prediction models can be divided into traditional prediction models and neural network prediction models. Traditional prediction models include empirical models (International Reference Ionosphere Model) and mathematical models (time series analysis model, autoregressive moving average model, multivariate linear regression method, autocorrelation analysis method, interpolation method for regional ionospheric forecast). With the rapid development of artificial neural networks, new ideas have been provided for ionospheric forecasting. Many scholars use neural networks to effectively predict TEC. However, neural networks are relatively complex in terms of parameter selection and network optimization, and are prone to fall into local minima.
发明内容Summary of the invention
本发明的目的在于提出一种电离层TEC预报方法,该方法基于CODE提供的TEC数据,利用增强型海鸥优化算法对传统的BP神经网络进行改进,从而解决BP神经网络搜索速度慢且易陷入局部最优的问题,进而提高神经网络模型预测电离层TEC时的准确度。The purpose of the present invention is to propose an ionospheric TEC prediction method, which is based on the TEC data provided by CODE and uses the enhanced Seagull optimization algorithm to improve the traditional BP neural network, thereby solving the problem that the BP neural network has a slow search speed and is prone to falling into local optimality, thereby improving the accuracy of the neural network model in predicting ionospheric TEC.
本发明为了实现上述目的,采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical scheme:
一种电离层TEC预报方法,包括如下步骤:An ionospheric TEC prediction method comprises the following steps:
步骤1. 获取CODE提供的标准IONEX文件格式生成的全球电离层TEC数据以及对应时间段的太阳活动指数F10.7和Dst参数数据;Step 1. Obtain the global ionospheric TEC data generated in the standard IONEX file format provided by CODE and the solar activity index F10.7 and Dst parameter data for the corresponding time period;
步骤2. 提取IONEX文件格式的TEC数据,将TEC数据、太阳活动指数F10.7和Dst参数数据组成时间序列数据,构建TEC数据集,作为模型训练的输入数据;Step 2. Extract TEC data in IONEX file format, combine TEC data, solar activity index F10.7 and Dst parameter data into time series data, and construct a TEC dataset as input data for model training;
步骤3. 基于增强型海鸥优化算法ESOA对BP神经网络的权值和阈值进行优化,并基于优化后的BP神经网络搭建电离层TEC预报模型;Step 3. Optimize the weights and thresholds of the BP neural network based on the enhanced Seagull Optimization Algorithm (ESOA), and build an ionospheric TEC prediction model based on the optimized BP neural network;
使用步骤2得到的TEC数据集,对该步骤3中构建的电离层TEC预报模型进行训练,然后利用训练好的电离层TEC预报模型对电离层TEC进行预报。The TEC data set obtained in step 2 is used to train the ionospheric TEC prediction model constructed in step 3, and then the ionospheric TEC is predicted using the trained ionospheric TEC prediction model.
此外,在上述电离层TEC预报方法的基础上,本发明还提出了一种与之对应的电离层TEC预报系统,其采用如下技术方案:In addition, based on the above-mentioned ionospheric TEC prediction method, the present invention also proposes a corresponding ionospheric TEC prediction system, which adopts the following technical solutions:
一种电离层TEC预报系统,包括:An ionospheric TEC prediction system, comprising:
数据采集模块,用于获取CODE提供的标准IONEX文件格式生成的全球电离层TEC数据以及对应时间段的太阳活动指数F10.7和Dst参数数据;Data acquisition module, used to obtain global ionospheric TEC data generated in the standard IONEX file format provided by CODE and the solar activity index F10.7 and Dst parameter data of the corresponding time period;
数据预处理模块,用于提取IONEX文件格式的TEC数据,将TEC数据、太阳活动指数F10.7和Dst参数数据组成时间序列数据,构建TEC数据集,作为模型训练的输入数据;The data preprocessing module is used to extract TEC data in IONEX file format, combine TEC data, solar activity index F10.7 and Dst parameter data into time series data, and construct a TEC data set as input data for model training;
以及电离层TEC预报模块,用于基于增强型海鸥优化算法ESOA对BP神经网络的权值和阈值进行优化,并基于优化后的BP神经网络搭建电离层TEC预报模型;and the ionospheric TEC prediction module, which is used to optimize the weights and thresholds of the BP neural network based on the enhanced Seagull Optimization Algorithm (ESOA), and to build an ionospheric TEC prediction model based on the optimized BP neural network;
其中,使用数据预处理模块得到的TEC数据集,对构建的电离层TEC预报模型进行训练,然后利用训练好的电离层TEC预报模型对电离层TEC进行预报。Among them, the TEC data set obtained by the data preprocessing module is used to train the constructed ionospheric TEC prediction model, and then the trained ionospheric TEC prediction model is used to predict the ionospheric TEC.
此外,在上述电离层TEC预报方法的基础上,本发明还提出了一种用于实现上述电离层TEC预报方法的计算机设备。In addition, based on the above ionospheric TEC prediction method, the present invention also proposes a computer device for implementing the above ionospheric TEC prediction method.
该计算机设备包括存储器和处理器,存储器中存储有可执行代码,处理器执行所述可执行代码时,用于实现上面述及的电离层TEC预报方法的步骤。The computer device includes a memory and a processor. The memory stores executable codes. When the processor executes the executable codes, the steps of the ionospheric TEC prediction method described above are implemented.
此外,在上述电离层TEC预报方法的基础上,本发明还提出了一种用于实现上述电离层TEC预报方法的计算机可读存储介质。该计算机可读存储介质,其上存储有程序,当该程序被处理器执行时,用于实现上面述及的电离层TEC预报方法的步骤。In addition, based on the above-mentioned ionospheric TEC prediction method, the present invention also proposes a computer-readable storage medium for implementing the above-mentioned ionospheric TEC prediction method. The computer-readable storage medium stores a program, and when the program is executed by a processor, it is used to implement the steps of the above-mentioned ionospheric TEC prediction method.
本发明具有如下优点:The present invention has the following advantages:
如上所述,本发明述及了一种电离层TEC预报方法,该方法基于CODE提供的TEC数据,利用增强型海鸥优化算法对传统的BP神经网络进行改进,以解决BP神经网络搜索速度慢且易陷入局部最优的问题。其中,BP神经网络通过多层神经元之间的非线性转换学习适应数据的能力,处理非线性数据十分有效。它的网络结构可以根据数据集调整,增减隐层节点数量或改变拓扑结构。此外,通过训练和调整参数可优化网络性能。而增强型海鸥优化算法(Enhanced Seagull Optimization Algorithm,ESOA)在搜索精度、收敛速度和稳定性方面具有一定的优势,因此本发明提出利用ESOA优化BP神经网络的模型对电离层进行预测,攻克了BP神经网络在进行非线性拟合时,容易陷入局部最优解和收敛速度慢的问题,提高了BP神经网络算法的全局寻优能力,并通过优化BP神经网络算法的权值和阈值来提高模型预测的准确度。本发明方法在没有增加传统BP神经网络模型复杂度的基础上,通过引入增强型海鸥优化算法进行优化,从而有效地解决了BP神经网络在处理大量数据时网络搜索速度降低的问题,使用稳定性强、收敛速度快的增强型海鸥优化算法与神经网络结合,可以寻找到最优权值与阈值,且能有效避免局部最优问题,提高了模型的性能和泛化能力。As described above, the present invention relates to a method for ionospheric TEC prediction, which is based on the TEC data provided by CODE and improves the traditional BP neural network using the enhanced seagull optimization algorithm to solve the problem that the BP neural network has a slow search speed and is prone to fall into the local optimum. Among them, the BP neural network learns to adapt to the data through the nonlinear transformation between multiple layers of neurons, and is very effective in processing nonlinear data. Its network structure can be adjusted according to the data set, increasing or decreasing the number of hidden layer nodes or changing the topological structure. In addition, the network performance can be optimized by training and adjusting parameters. The Enhanced Seagull Optimization Algorithm (ESOA) has certain advantages in search accuracy, convergence speed and stability. Therefore, the present invention proposes to use ESOA to optimize the BP neural network model to predict the ionosphere, overcome the problem that the BP neural network is prone to fall into the local optimal solution and slow convergence speed when performing nonlinear fitting, improve the global optimization ability of the BP neural network algorithm, and improve the accuracy of model prediction by optimizing the weights and thresholds of the BP neural network algorithm. The method of the present invention introduces an enhanced Seagull optimization algorithm for optimization without increasing the complexity of the traditional BP neural network model, thereby effectively solving the problem of reduced network search speed of the BP neural network when processing a large amount of data. The enhanced Seagull optimization algorithm with strong stability and fast convergence speed is combined with the neural network to find the optimal weights and thresholds, and effectively avoid the local optimal problem, thereby improving the performance and generalization ability of the model.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例1中电离层TEC预报方法的流程图。FIG1 is a flow chart of the ionospheric TEC prediction method in Example 1 of the present invention.
图2为本发明实施例1中通过ESOA优化的BP神经网络模型的训练示意图。FIG2 is a schematic diagram of training the BP neural network model optimized by ESOA in Example 1 of the present invention.
具体实施方式Detailed ways
下面结合附图以及具体实施方式对本发明作进一步详细说明:The present invention is further described in detail below with reference to the accompanying drawings and specific embodiments:
实施例1Example 1
本实施例1述及了一种电离层TEC预报方法,以解决传统BP神经网络过程中网络搜索速度慢且易陷入局部最优导致电离层TEC预报模型精度低的问题。This embodiment 1 describes an ionospheric TEC prediction method to solve the problem that the network search speed is slow and it is easy to fall into the local optimum in the traditional BP neural network process, resulting in low accuracy of the ionospheric TEC prediction model.
如图1所示,本实施例中电离层TEC预报方法,包括如下步骤:As shown in FIG1 , the ionospheric TEC prediction method in this embodiment includes the following steps:
步骤1. 获取CODE提供的标准IONEX(IONosphere map EXchange format)文件格式生成的全球电离层TEC数据以及对应时间段的太阳活动指数F10.7和Dst参数数据。Step 1. Obtain the global ionospheric TEC data generated in the standard IONEX (IONosphere map EXchange format) file format provided by CODE, as well as the solar activity index F10.7 and Dst parameter data for the corresponding time period.
步骤1.1. 下载CODE提供的IONEX格式、时间分辨率是1h的TEC数据。Step 1.1. Download the TEC data in IONEX format with a time resolution of 1 h provided by CODE.
其中下载的TEC数据,其空间经度范围从西经180°到东经180°且分辨率是5°,纬度范围从北纬87.5°到南纬87.5°且分辨率为2.5°。The downloaded TEC data has a spatial longitude range from 180° west longitude to 180° east longitude with a resolution of 5°, and a latitude range from 87.5° north latitude to 87.5° south latitude with a resolution of 2.5°.
步骤1.2. 选择地磁指数Dst作为整体地磁活动和磁暴的指标,借助F10.7指数,作为太阳活动的一个指标;获取对应时间的Dst和F10.7指数。Step 1.2. Select the geomagnetic index Dst as an indicator of overall geomagnetic activity and magnetic storms, and use the F10.7 index as an indicator of solar activity; obtain the Dst and F10.7 indices at the corresponding time.
其中,F10.7指数即10.7厘米,2800兆赫处的太阳射电通量。Among them, the F10.7 index is 10.7 cm, the solar radio flux at 2800 MHz.
步骤1.3. 计算LTS、LTC日变化因子和DOYS、DOYC季节变化因子作为电离层TEC预报模型的输入数据。该步骤1.3具体为:Step 1.3. Calculate the daily variation factors of LTS and LTC and the seasonal variation factors of DOYS and DOYC as the input data of the ionospheric TEC prediction model. The specific steps of step 1.3 are:
步骤1.3.1. 电离层TEC具有显著的24小时日变化特性,考虑到地方时在子夜发生跳变,将地方时LT拆分为两个正交输入LTS、LTC,日变化因子的计算公式如下:Step 1.3.1. The ionospheric TEC has a significant 24-hour diurnal variation characteristic. Considering that the local time jumps at midnight, the local time LT is split into two orthogonal inputs LTS and LTC. The calculation formula of the diurnal variation factor is as follows:
; ;
。 .
步骤1.3.2. 不同季节由于太阳天顶角不同,造成了TEC显著的季节变化。因此将年积日DOY 同样转换为两个正交分量,即DOYS和DOYC,季节变化因子的计算公式如下:Step 1.3.2. Due to the different solar zenith angles in different seasons, TEC has significant seasonal variations. Therefore, the annual daily DOY is also converted into two orthogonal components, namely DOYS and DOYC. The calculation formula for the seasonal variation factor is as follows:
; ;
。 .
步骤2. 提取IONEX文件格式的TEC数据,将TEC数据、太阳活动指数F10.7和Dst参数数据组成时间序列数据,构建TEC数据集,作为模型训练的输入数据。Step 2. Extract TEC data in IONEX file format, combine TEC data, solar activity index F10.7 and Dst parameter data into time series data, and construct a TEC dataset as input data for model training.
具体的,使用MATLAB对IONEX格式的TEC数据文件处理,筛选需要经纬度范围内的TEC值,将经纬度、TEC、F10.7和Dst等参数组成时间序列数据,并给TEC打上标签。Specifically, MATLAB is used to process the TEC data files in IONEX format, filter the TEC values within the required longitude and latitude range, combine the longitude and latitude, TEC, F10.7, Dst and other parameters into time series data, and label the TEC.
该步骤2具体为:The specific steps of step 2 are:
步骤2.1. 打开IONEX格式的TEC数据文件,读取文件头部信息,并检查是否有缺省值,确保数据完整性,防止因数据缺失造成的算法运行异常。Step 2.1. Open the TEC data file in IONEX format, read the file header information, and check whether there are default values to ensure data integrity and prevent algorithm operation abnormalities caused by missing data.
步骤2.2. 解析TEC数据,遍历IONEX文件格式生成的全球电离层TEC数据文件的每一行,并解析每行的内容。根据数据格式提取所需经纬度范围内的数值,将数据计算得到经纬度对应的TEC数据,将解析后的TEC数据存储到inx文件中,时间分辨率为1小时。Step 2.2. Parse TEC data, traverse each line of the global ionospheric TEC data file generated by the IONEX file format, and parse the content of each line. Extract the values within the required longitude and latitude range according to the data format, calculate the data to obtain the TEC data corresponding to the longitude and latitude, and store the parsed TEC data in the inx file with a time resolution of 1 hour.
步骤2.3. 提取inx文件的经纬度和对应的TEC的值,然后将时间、TEC、Dst和F10.7指数以及日变化因子和季节变化因子存储到数组中组成时间序列数据,构建TEC数据集。Step 2.3. Extract the latitude and longitude of the inx file and the corresponding TEC values, then store the time, TEC, Dst and F10.7 index as well as the daily variation factor and seasonal variation factor into an array to form time series data and construct a TEC dataset.
具体的,下载对应时间内的Dst和F10.7参数,将时间、经纬度、TEC、Dst、F10.7以及年参数和日参数一一对应变成时间序列,构建数据集,便于后续步骤中使用。Specifically, download the Dst and F10.7 parameters within the corresponding time, convert the time, longitude and latitude, TEC, Dst, F10.7, and annual parameters and daily parameters into a time series, and construct a data set for use in subsequent steps.
该模型的输入数据是包含7个电离层数据特征的数据集。The input data of the model is a dataset containing 7 ionospheric data features.
步骤3. 基于增强型海鸥优化算法ESOA对BP神经网络的权值和阈值进行优化,并基于优化后的BP神经网络搭建电离层TEC预报模型。Step 3. Optimize the weights and thresholds of the BP neural network based on the enhanced Seagull Optimization Algorithm (ESOA), and build an ionospheric TEC prediction model based on the optimized BP neural network.
使用步骤2得到的TEC数据集,对该步骤3中构建的电离层TEC预报模型进行训练,然后利用训练好的电离层TEC预报模型对电离层TEC进行预报。The TEC data set obtained in step 2 is used to train the ionospheric TEC prediction model constructed in step 3, and then the ionospheric TEC is predicted using the trained ionospheric TEC prediction model.
本发明在没有增加传统BP神经网络模型复杂度的基础上,通过引入增强型海鸥优化算法ESOA,对BP神经网络进行优化,有效地解决了神经网络在处理大量数据时网络搜索速度降低的问题,使用稳定性强、收敛速度快的增强型海鸥优化算法与BP神经网络结合可以寻找到最优权值与阈值,且能有效避免局部最优问题,提高了模型的性能和泛化能力。Without increasing the complexity of the traditional BP neural network model, the present invention optimizes the BP neural network by introducing the enhanced Seagull optimization algorithm ESOA, which effectively solves the problem of reduced network search speed when the neural network processes a large amount of data. The enhanced Seagull optimization algorithm with strong stability and fast convergence speed is combined with the BP neural network to find the optimal weights and thresholds, and can effectively avoid the local optimal problem, thereby improving the performance and generalization ability of the model.
该步骤3具体为:The specific steps of step 3 are:
步骤3.1. 导入由步骤2得到的TEC数据集作为电离层TEC预报模型的输入数据集,对电离层TEC预报模型的输入数据集划分训练集和测试集。Step 3.1. Import the TEC dataset obtained in step 2 as the input dataset of the ionospheric TEC prediction model, and divide the input dataset of the ionospheric TEC prediction model into a training set and a test set.
将TEC数据集中的80%的电离层数据作为训练集,20%的电离层数据作为测试集。80% of the ionospheric data in the TEC dataset is used as the training set, and 20% of the ionospheric data is used as the test set.
对TEC数据集中的数据进行归一化处理。The data in the TEC dataset were normalized.
步骤3.2. 确定由BP神经网络搭建的电离层TEC预报模型的拓扑结构,初始化BP神经网络的权值和阈值,将步骤2得到的TEC数据集输入模型进行训练。Step 3.2. Determine the topological structure of the ionospheric TEC prediction model built by the BP neural network, initialize the weights and thresholds of the BP neural network, and input the TEC data set obtained in step 2 into the model for training.
选取训练集和测试集的平均绝对误差作为寻优的适应度值函数。The mean absolute error of the training set and the test set is selected as the fitness value function for optimization.
步骤3.3. 初始化增强型海鸥优化算法ESOA的参数,其中,ESOA的维度数等于BP神经网络的参数总数;利用ESOA进行网络全局寻优,迭代结束后输出最优参数。Step 3.3. Initialize the parameters of the enhanced Seagull Optimization Algorithm ESOA, where the number of dimensions of ESOA is equal to the total number of parameters of the BP neural network; use ESOA to perform global optimization of the network and output the optimal parameters after the iteration.
构造增强型海鸥优化器,将BP神经网络初始权重和偏执矩阵设置为海鸥位置。Construct an enhanced seagull optimizer and set the initial weights and bias matrix of the BP neural network to the seagull position.
利用ESOA进行BP神经网络全局寻优是通过迁徙行为和攻击行为进行的,过程如下:The global optimization of BP neural network using ESOA is carried out through migration behavior and attack behavior. The process is as follows:
步骤3.3.1. 初始化参数,包括搜索空间的上下界、海鸥空间维度、海鸥规模和 。 Step 3.3.1. Initialize the parameters, including the upper and lower bounds of the search space, the dimension of the Seagull space, the scale of the Seagull, and .
步骤3.3.2. 随机生成海鸥初始种群,计算出所有海鸥的适应度值,并找出最优海鸥。Step 3.3.2. Randomly generate an initial population of seagulls, calculate the fitness values of all seagulls, and find the optimal seagull.
步骤3.3.3. 对于每个海鸥,根据公式(1)-公式(11)更新海鸥的位置信息,接着检查更新后的位置是否越界并做出相应的调整,最后计算出适应度值。Step 3.3.3. For each seagull, update the position information of the seagull according to formula (1)-formula (11), then check whether the updated position is out of bounds and make corresponding adjustments, and finally calculate the fitness value.
更新海鸥的位置的计算公式如下:The calculation formula for updating the position of the seagull is as follows:
(1) (1)
其中代表海鸥之间不发生碰撞的位置,保存最佳解并更新其他海鸥的位 置,C表示海鸥的运动行为;C的计算如公式(2)所示。 in represents the position where no collisions occur between seagulls. Save the best solution and update the positions of other seagulls. C represents the movement behavior of the seagull. The calculation of C is shown in formula (2).
(2) (2)
其中n表示ESOA算法的迭代次数,n=1,2…,表示ESOA算法的最大迭代次 数,用来控制C的频率,C从线性递减到0。 Where n represents the number of iterations of the ESOA algorithm, n=1,2… , Indicates the maximum number of iterations of the ESOA algorithm, Used to control the frequency of C, C from Decreases linearly to 0.
(3) (3)
其中表示海鸥当前的位置,表示最优的海鸥。 in Indicates the current position of the seagull. Indicates the best seagull.
(4) (4)
其中I表示在海鸥探索和开发之间进行平衡的参数,ran为[0,1]中的一个随机数。Where I represents the parameter for balancing exploration and exploitation in Seagull, and ran is a random number in [0,1].
(5) (5)
其中表示海鸥与最佳海鸥之间的距离,表示最优海鸥的方向。 in represents the distance between the seagull and the best seagull, represents the direction of the optimal seagull.
(6) (6)
(7) (7)
(8) (8)
其中R是螺旋每转的半径,k是范围[0,2π]内的随机数,代表攻击角度; 、 、分别表示海鸥在X、Y、Z方向上的运动轨迹。 Where R is the radius of each turn of the spiral, and k is a random number in the range [0, 2π], representing the attack angle; , , Respectively represent the movement trajectory of the seagull in the X, Y, and Z directions.
(9) (9)
其中A为动态收敛因子,u和v是与螺旋飞行轨迹形状相关的常数。Where A is the dynamic convergence factor, and u and v are constants related to the shape of the spiral flight trajectory.
(10) (10)
其中表示[-1,1]中的一个随机数,表示当前的迭代次数; in represents a random number in [-1,1], Indicates the current iteration number;
(11) (11)
其中,表示基于Levy分布的随机数向量; in, Represents a random number vector based on Levy distribution;
步骤3.3.4. 通过步骤3.3.3更新最优海鸥;重复步骤3.3.3,直到达到最大迭代次 数,输出最优海鸥的位置信息和适应度值。 Step 3.3.4. Update the optimal seagull through step 3.3.3; repeat step 3.3.3 until the maximum number of iterations is reached , output the location information and fitness value of the optimal seagull.
步骤3.4. 将ESOA的最优参数即最优海鸥位置,赋值给BP神经网络的初始权值和初始阈值,然后进行网络训练,更新神经网络的权值和阈值。Step 3.4. Assign the optimal parameters of ESOA, i.e. the optimal seagull position, to the initial weights and initial thresholds of the BP neural network, and then perform network training to update the weights and thresholds of the neural network.
将ESOA的最优海鸥的位置信息赋值给BP神经网络的初始权值和初始阈值的公式为:The formula for assigning the optimal seagull position information of ESOA to the initial weight and initial threshold of the BP neural network is:
(12) (12)
(13) (13)
(14) (14)
(15) (15)
其中,为初始输入层到隐藏层的权重矩阵,为初始隐藏层阈值矩阵,从初 始隐藏层到输出层的权重矩阵,为输出层的阈值矩阵;表示电离层TEC预测模型中ESOA 算法得到的最优海鸥的位置信息,表示电离层TEC预测模型中BP神经网络的输入 层节点数,表示电离层TEC预测模型中BP神经网络的隐藏层数,表示 电离层TEC预测模型中BP神经网络的输出层节点数。 in, is the weight matrix from the initial input layer to the hidden layer, is the initial hidden layer threshold matrix, The weight matrix from the initial hidden layer to the output layer, is the threshold matrix of the output layer; represents the optimal seagull position information obtained by the ESOA algorithm in the ionospheric TEC prediction model, represents the number of input layer nodes of the BP neural network in the ionospheric TEC prediction model, represents the number of hidden layers of the BP neural network in the ionospheric TEC prediction model, Represents the number of output layer nodes of the BP neural network in the ionospheric TEC prediction model.
该步骤3.4的具体过程如下:The specific process of step 3.4 is as follows:
步骤3.4.1. 确定BP神经网络的输入样本和期望输出数据。 Step 3.4.1. Determine the input sample of BP neural network And the expected output data .
,为n个输入数据,,为n个输出数据。 , For n input data, , is n output data.
步骤3.4.2. 对输入层电离层数据进行权值加成和计算,确定隐含层各节点的输 入和输出,和的计算公式如下: Step 3.4.2. Weight the input layer ionosphere data and calculate it to determine the input of each node in the hidden layer and output , and The calculation formula is as follows:
,;其中表示输入层各节点和隐含 层各节点的连接权值,表示隐含层的输入数据在隐含层中的计算。 , ;in represents the connection weights between each node in the input layer and each node in the hidden layer, Represents the calculation of the hidden layer's input data in the hidden layer.
步骤3.4.3. 经隐含层计算后,数据将会传至输出层,因此需要确定输出层的输入和输出,和的计算公式如下: Step 3.4.3. After the hidden layer is calculated, the data will be passed to the output layer, so it is necessary to determine the input of the output layer and output , and The calculation formula is as follows:
,;其中表示输出层各节点和隐 含层各节点的连接权值,表示输出层的输入数据在输出层的计算。 , ;in represents the connection weights between each node in the output layer and each node in the hidden layer, Represents the calculation of the input data of the output layer at the output layer.
上述步骤3.4.1-3.4.3完成了BP神经网络标准算法的正向传输阶段。The above steps 3.4.1-3.4.3 complete the forward transmission stage of the BP neural network standard algorithm.
接下来将进入逆向反馈阶段,即步骤3.4.4至步骤3.4.8,此阶段采用梯度下降法,通过每次调整权值使输出误差符合要求,而调整权值便是利用误差函数分别对隐含层至输出层、输入层至隐含层求偏导的方式进行修正。具体过程如下:Next, we will enter the reverse feedback stage, that is, step 3.4.4 to step 3.4.8. In this stage, the gradient descent method is used to adjust the weights each time to make the output error meet the requirements. The adjustment of weights is to use the error function to correct the partial derivatives from the hidden layer to the output layer and from the input layer to the hidden layer. The specific process is as follows:
步骤3.4.4. 首先调整隐含层至输出层的权值,即求误差函数对权值的偏导。 Step 3.4.4. First adjust the weights from the hidden layer to the output layer, that is, find the error function for the weights The partial derivative of .
; ;
其中,表示输出层的输出,表示输出层节点的误差项。 in, represents the output of the output layer, Represents the error term of the output layer nodes.
步骤3.4.5. 求输入层至隐含层间误差函数对权值的求导结果为:Step 3.4.5. Derivative of the error function from the input layer to the hidden layer with respect to the weights:
; ;
其中,表示输入值,表示隐含层节点的误差项。 in, Represents the input value, Represents the error term of the hidden layer nodes.
步骤3.4.6. 在对输入层至隐含层,隐含层至输出层分别对应的权值求偏导后,利用偏导结果对各层连接权值进行修正,首先对输出层各节点和隐含层各节点的连接权值进行修正。Step 3.4.6. After calculating the partial derivatives of the weights from the input layer to the hidden layer and from the hidden layer to the output layer, use the partial derivative results to correct the connection weights of each layer. First, correct the connection weights of each node in the output layer and each node in the hidden layer.
首先求得权值修改量: First, find the weight modification amount :
。 .
其中,表示输出层各节点和隐含层各节点的连接权值,表示控制权值更新 步长的超参数。因此更新后的权值为更新前权值和权值修改量之和。 in, represents the connection weights between each node in the output layer and each node in the hidden layer, represents the hyperparameter that controls the weight update step size. Therefore, the updated weight It is the sum of the weight before update and the weight modification amount.
。 .
步骤3.4.7. 对隐含层各节点和输入层各节点的连接权值进行修正。Step 3.4.7. Modify the connection weights of each node in the hidden layer and each node in the input layer.
首先求得权值修正量:First, we obtain the weight correction :
。 .
因此,更新后的权值为更新前权值和权值修正量之和。 Therefore, the updated weights It is the sum of the weight before updating and the weight correction.
。 .
步骤3.4.8. 在对BP神经网络内部各权值进行修正后,再次对网络误差进行计算。Step 3.4.8. After correcting the weights inside the BP neural network, calculate the network error again.
步骤3.5. 对基于优化后的BP神经网络搭建的电离层TEC预报模型进行模型训练。Step 3.5. Perform model training on the ionospheric TEC prediction model based on the optimized BP neural network.
当训练达到最大迭代次数后,输出结果,然后对结果进行反归一化,得到最终的预测结果,并通过RMSE、MAE和相关系数ρ三个不同的统计指标评估模型性能。When the training reaches the maximum number of iterations, the results are output and then denormalized to obtain the final prediction results. The model performance is evaluated using three different statistical indicators: RMSE, MAE, and correlation coefficient ρ.
评估指标公式如下:The evaluation index formula is as follows:
(16) (16)
(17) (17)
(18) (18)
其中,为CODE发布的电离层TEC的值,m表示电离层TEC值的数量,为电 离层TEC预报模型预测的电离层TEC值;和分别为CODE发布的电离层TEC值的 均值及模型预测值的均值。 in, is the ionospheric TEC value published by CODE, m represents the number of ionospheric TEC values, is the ionospheric TEC value predicted by the ionospheric TEC prediction model; and They are the mean of the ionospheric TEC values released by CODE and the mean of the model predicted values.
本发明方法通过利用增强型海鸥优化算法与BP神经网络结合进行电离层TEC预报建模,实现了给定日期和太阳活动指数等参数,对电离层TEC进行精确预报。并与传统BP神经网络构建的电离层TEC预测结果通过三种评估指标进行对比。结果如表1所示。The method of the present invention combines the enhanced Seagull optimization algorithm with the BP neural network to model the ionospheric TEC forecast, and achieves accurate forecasting of the ionospheric TEC given the date and solar activity index and other parameters. The ionospheric TEC forecast results constructed by the traditional BP neural network are compared with the three evaluation indicators. The results are shown in Table 1.
表1 二种预报模型指标对比Table 1 Comparison of indicators of two forecast models
由上述表1可知,本发明所提出的ESOA与BP神经网络相结合进行电离层TEC预报的方法,在各项指标下均表现出较优越的预测性能。具体而言,本发明采用ESOA与BP神经网络结合的方法,相对于传统BP神经网络,其RMES和MAE值更小,分别为6.35和5.65,而相关系数值则更高,达到0.93,这说明ESOA和BP神经网络结合进行电离层TEC预报,不仅在预测精度上更为准确,而且与实际值之间的线性关系更为紧密。It can be seen from Table 1 above that the method of combining ESOA with BP neural network for ionospheric TEC prediction proposed in the present invention shows superior prediction performance under various indicators. Specifically, the method of combining ESOA with BP neural network in the present invention has smaller RMES and MAE values, which are 6.35 and 5.65 respectively, and a higher correlation coefficient value of 0.93 compared with the traditional BP neural network, which shows that the combination of ESOA and BP neural network for ionospheric TEC prediction is not only more accurate in prediction accuracy, but also has a closer linear relationship with the actual value.
实施例2Example 2
本实施例2述及了一种电离层TEC预报系统,该系统与上述实施例1述及的电离层TEC预报方法基于相同发明构思。This embodiment 2 describes an ionospheric TEC prediction system, which is based on the same inventive concept as the ionospheric TEC prediction method described in the above embodiment 1.
具体的,电离层TEC预报系统,包括:Specifically, the ionospheric TEC forecast system includes:
数据采集模块,用于获取CODE提供的标准IONEX文件格式生成的全球电离层TEC数据以及对应时间段的太阳活动指数F10.7和Dst参数数据;Data acquisition module, used to obtain global ionospheric TEC data generated in the standard IONEX file format provided by CODE and the solar activity index F10.7 and Dst parameter data of the corresponding time period;
数据预处理模块,用于提取IONEX文件格式的TEC数据,将TEC数据、太阳活动指数F10.7和Dst参数数据组成时间序列数据,构建TEC数据集,作为模型训练的输入数据;The data preprocessing module is used to extract TEC data in IONEX file format, combine TEC data, solar activity index F10.7 and Dst parameter data into time series data, and construct a TEC data set as input data for model training;
以及电离层TEC预报模块,用于基于增强型海鸥优化算法ESOA对BP神经网络的权值和阈值进行优化,并基于优化后的BP神经网络搭建电离层TEC预报模型;and the ionospheric TEC prediction module, which is used to optimize the weights and thresholds of the BP neural network based on the enhanced Seagull Optimization Algorithm (ESOA), and to build an ionospheric TEC prediction model based on the optimized BP neural network;
其中,使用数据预处理模块得到的TEC数据集,对构建的电离层TEC预报模型进行训练,然后利用训练好的电离层TEC预报模型对电离层TEC进行预报。Among them, the TEC data set obtained by the data preprocessing module is used to train the constructed ionospheric TEC prediction model, and then the trained ionospheric TEC prediction model is used to predict the ionospheric TEC.
需要说明的是,本实施例2述及的电离层TEC预报系统中,各个功能模块的功能和作用的实现过程具体详见上述实施例1中方法中对应步骤的实现过程,在此不再赘述。It should be noted that, in the ionospheric TEC forecasting system described in this embodiment 2, the implementation process of the functions and effects of each functional module is specifically described in the implementation process of the corresponding steps in the method in the above embodiment 1, and will not be repeated here.
实施例3Example 3
本实施例3述及了一种计算机设备,该计算机设备用于实现上述实施例1中述及的电离层TEC预报方法。This embodiment 3 describes a computer device, which is used to implement the ionospheric TEC prediction method described in the above embodiment 1.
具体的,该计算机设备包括存储器和一个或多个处理器。在存储器中存储有可执行代码,当处理器执行可执行代码时,用于实现上述电离层TEC预报方法的步骤。Specifically, the computer device includes a memory and one or more processors. The memory stores executable codes, and when the processor executes the executable codes, the steps of the above-mentioned ionospheric TEC prediction method are implemented.
本实施例中计算机设备为任意具备数据数据处理能力的设备或装置,此处不再赘述。In this embodiment, the computer device is any device or apparatus with data processing capability, which will not be described in detail here.
实施例4Example 4
本实施例4述及了一种计算机可读存储介质,该计算机可读存储介质用于实现上述实施例1中述及的电离层TEC预报方法。This embodiment 4 describes a computer-readable storage medium, which is used to implement the ionospheric TEC prediction method described in the above embodiment 1.
具体的,本实施例4中的计算机可读存储介质,其上存储有程序,该程序被处理器执行时,用于实现上述电离层TEC预报方法的步骤。Specifically, the computer-readable storage medium in this embodiment 4 stores a program thereon, and when the program is executed by the processor, it is used to implement the steps of the above-mentioned ionospheric TEC prediction method.
该计算机可读存储介质可以是任意具备数据处理能力的设备或装置的内部存储单元,例如硬盘或内存,也可以是任意具备数据处理能力的设备的外部存储设备,例如设备上配备的插接式硬盘、智能存储卡(Smart Media Card,SMC)、SD卡、闪存卡(Flash Card)等。The computer-readable storage medium may be an internal storage unit of any device or apparatus with data processing capabilities, such as a hard disk or memory, or an external storage device of any device with data processing capabilities, such as a plug-in hard disk, a smart media card (SMC), an SD card, a flash card, etc., equipped on the device.
当然,以上说明仅仅为本发明的较佳实施例,本发明并不限于列举上述实施例,应当说明的是,任何熟悉本领域的技术人员在本说明书的教导下,所做出的所有等同替代、明显变形形式,均落在本说明书的实质范围之内,理应受到本发明的保护。Of course, the above description is only a preferred embodiment of the present invention, and the present invention is not limited to the above embodiments. It should be noted that all equivalent substitutions and obvious deformation forms made by any technician familiar with the field under the guidance of this specification fall within the essential scope of this specification and should be protected by the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410424074.1A CN118013290B (en) | 2024-04-10 | 2024-04-10 | Ionosphere TEC forecasting method, ionosphere TEC forecasting system, computer equipment and ionosphere TEC forecasting medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410424074.1A CN118013290B (en) | 2024-04-10 | 2024-04-10 | Ionosphere TEC forecasting method, ionosphere TEC forecasting system, computer equipment and ionosphere TEC forecasting medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118013290A CN118013290A (en) | 2024-05-10 |
CN118013290B true CN118013290B (en) | 2024-06-25 |
Family
ID=90947469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410424074.1A Active CN118013290B (en) | 2024-04-10 | 2024-04-10 | Ionosphere TEC forecasting method, ionosphere TEC forecasting system, computer equipment and ionosphere TEC forecasting medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118013290B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118884474B (en) * | 2024-09-26 | 2025-01-24 | 武汉大学 | Method and device for constructing and using TEC model considering the relationship between solar-terrestrial activities and space |
CN118967484B (en) * | 2024-10-16 | 2024-12-31 | 武汉大学 | Ionospheric image generation method and device based on CNN multi-factor channel input |
CN119989930A (en) * | 2025-04-11 | 2025-05-13 | 武汉大学 | A method, device, equipment and medium for enhancing ionospheric data over the ocean |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116805516A (en) * | 2023-06-29 | 2023-09-26 | 武汉大学 | Ionosphere intelligent forecasting and monitoring method and system based on integrated model |
CN117236746A (en) * | 2023-09-01 | 2023-12-15 | 安徽理工大学 | A method for evaluating the adjustable potential of air conditioning loads |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113139327B (en) * | 2020-01-19 | 2024-03-12 | 中国科学院国家空间科学中心 | Ionized layer TEC single-point prediction method and system based on GRU network model |
CN111967679B (en) * | 2020-08-20 | 2023-12-08 | 江苏师范大学 | Ionosphere total electron content forecasting method based on TCN model |
CN113379107B (en) * | 2021-05-26 | 2023-12-19 | 江苏师范大学 | Regional ionosphere TEC forecasting method based on LSTM and GCN |
CN115374710B (en) * | 2022-09-19 | 2025-05-09 | 兰州理工大学 | Wind speed prediction method based on improved seagull optimization algorithm and multi-core extreme learning machine |
CN117217069B (en) * | 2023-06-13 | 2025-03-18 | 哈尔滨工业大学 | A radar equipment system deployment point optimization method based on Seagull optimization algorithm |
-
2024
- 2024-04-10 CN CN202410424074.1A patent/CN118013290B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116805516A (en) * | 2023-06-29 | 2023-09-26 | 武汉大学 | Ionosphere intelligent forecasting and monitoring method and system based on integrated model |
CN117236746A (en) * | 2023-09-01 | 2023-12-15 | 安徽理工大学 | A method for evaluating the adjustable potential of air conditioning loads |
Also Published As
Publication number | Publication date |
---|---|
CN118013290A (en) | 2024-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN118013290B (en) | Ionosphere TEC forecasting method, ionosphere TEC forecasting system, computer equipment and ionosphere TEC forecasting medium | |
CN111784041B (en) | A wind power power prediction method and system based on graph convolutional neural network | |
CN117114192B (en) | Offshore wind power prediction method and device based on multi-scale space-time diagram transformation network | |
CN114493050B (en) | Multi-dimensional fusion new energy power parallel prediction method and device | |
CN103117546B (en) | A kind of Ultrashort-term slide prediction method for wind power | |
CN114006369B (en) | Regional wind and light station power joint prediction method and device, electronic equipment and storage medium | |
CN112330487B (en) | A short-term power prediction method for photovoltaic power generation | |
CN114331542A (en) | Method and device for predicting charging demand of electric vehicle | |
CN115327662B (en) | Regional ionosphere TEC prediction method based on statistical learning | |
CN112884236B (en) | A short-term load forecasting method and system based on VDM decomposition and LSTM improvement | |
CN117909888B (en) | Smart AI climate prediction methods | |
CN104732091A (en) | Cellular automaton river bed evolution prediction method based on natural selection ant colony algorithm | |
CN117494888A (en) | Distributed photovoltaic power prediction method and system based on optimized cascade | |
CN117293809A (en) | Multi-time space scale new energy generation power prediction method based on large model | |
CN117076738A (en) | Medium-long term weather prediction method, system and medium based on variable grid model | |
CN113449462A (en) | Ultra-short-term wind speed prediction method and system based on MALO-BiGRU | |
CN111798034B (en) | Wind power prediction system and prediction method based on wind flow field spatiotemporal image learning | |
CN116739172A (en) | A method and device for ultra-short-term offshore wind power power prediction based on slope recognition | |
CN117394350A (en) | Short-term power load prediction method, device, equipment and medium | |
CN113779861B (en) | Photovoltaic Power Prediction Method and Terminal Equipment | |
CN116796635A (en) | Short-term load prediction method based on CNN-CS-ILSTM model | |
CN116706903B (en) | Photovoltaic power generation amount prediction method, device, equipment and medium | |
CN112149349A (en) | Typhoon path forecasting method based on deep neural network | |
CN118040678A (en) | A short-term offshore wind power combination forecasting method | |
CN117057416A (en) | Sub-solar photovoltaic power generation prediction method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |