CN117994007A - Social recommendation method based on multi-view fusion heterogeneous graph neural network - Google Patents

Social recommendation method based on multi-view fusion heterogeneous graph neural network Download PDF

Info

Publication number
CN117994007A
CN117994007A CN202410398812.XA CN202410398812A CN117994007A CN 117994007 A CN117994007 A CN 117994007A CN 202410398812 A CN202410398812 A CN 202410398812A CN 117994007 A CN117994007 A CN 117994007A
Authority
CN
China
Prior art keywords
node
user
view
nodes
semantic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410398812.XA
Other languages
Chinese (zh)
Other versions
CN117994007B (en
Inventor
李超
朱祥凯
赵中英
付金虎
刘润硕
苏令涛
曾庆田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN202410398812.XA priority Critical patent/CN117994007B/en
Publication of CN117994007A publication Critical patent/CN117994007A/en
Application granted granted Critical
Publication of CN117994007B publication Critical patent/CN117994007B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0631Item recommendations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9536Search customisation based on social or collaborative filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/042Knowledge-based neural networks; Logical representations of neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Business, Economics & Management (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明公开了一种基于多视图融合异质图神经网络的社交推荐方法,属于社交网络推荐技术领域,包括如下步骤:步骤1、获取社交网络中用户与商品之间的关系,根据用户与商品之间是否存在链接关系建立异质图;步骤2、建立节点视图中的属性拓扑解耦模块,将建立的矩阵输入属性拓扑解耦模块,到节点视图下的用户的嵌入表示;步骤3、建立网络模式视图中的节点编码模块,得到网络模式视图下的用户的嵌入表示;步骤4、建立语义视图中的语义融合模块,得到语义视图下的用户的嵌入表示;步骤5、进行多视角节点表示的融合策略,到用户信息的向量表示,进行个性化的推荐。本发明从三个视角来探索社交网络中的多粒度信息,为用户推荐更准确的商品。

The present invention discloses a social recommendation method based on a multi-view fusion heterogeneous graph neural network, which belongs to the technical field of social network recommendation, and includes the following steps: step 1, obtaining the relationship between users and commodities in the social network, and establishing a heterogeneous graph according to whether there is a link relationship between the user and the commodity; step 2, establishing an attribute topology decoupling module in the node view, inputting the established matrix into the attribute topology decoupling module, to the embedded representation of the user under the node view; step 3, establishing a node encoding module in the network mode view, and obtaining the embedded representation of the user under the network mode view; step 4, establishing a semantic fusion module in the semantic view, and obtaining the embedded representation of the user under the semantic view; step 5, performing a fusion strategy of multi-view node representation, to the vector representation of user information, and performing personalized recommendation. The present invention explores multi-granularity information in social networks from three perspectives to recommend more accurate commodities to users.

Description

一种基于多视图融合异质图神经网络的社交推荐方法A social recommendation method based on multi-view fusion heterogeneous graph neural network

技术领域Technical Field

本发明属于社交网络推荐技术领域,具体涉及一种基于多视图融合异质图神经网络的社交推荐方法。The present invention belongs to the technical field of social network recommendation, and in particular relates to a social recommendation method based on multi-view fusion heterogeneous graph neural network.

背景技术Background technique

社交网络通常呈现出复杂的拓扑结构,包括节点之间的连接方式、节点的度分布以及社区结构等。这些结构可能是稀疏的、密集的,也可能存在着高度的群聚性和小世界特性。在异质图神经网络中,节点可以包含不同类型的属性信息,例如在社交网络中,用户节点可能包含年龄、性别、兴趣爱好等属性,商品节点可能包含价格、类别、销量等属性。通过异质图神经网络,可以有效地将这些多样的属性信息结合起来,用于推荐任务或其他应用中。Social networks usually present complex topological structures, including the connection mode between nodes, the degree distribution of nodes, and community structure. These structures may be sparse, dense, or highly clustered and small-world. In heterogeneous graph neural networks, nodes can contain different types of attribute information. For example, in social networks, user nodes may contain attributes such as age, gender, interests, and hobbies, and product nodes may contain attributes such as price, category, and sales. Through heterogeneous graph neural networks, these diverse attribute information can be effectively combined for recommendation tasks or other applications.

在现有技术中,异质图结构学习(HGSL)将用户的属性图、语义图和原始结构图融合在一起,生成更全面的社交网络结构。ie-HGCN直接将社交网络的图数据作为输入,执行多层卷积来学习特定任务的用户节点表示。SR-HGN被精心设计用于学习社交信息网络中的节点表示。它通过在用户和类型级别聚合信息来实现分层学习,从而消除了在语义路径选择中对先验知识的需要。这些现有技术方法常常因为细粒度信息过度耦合和对多粒度信息未充分探索,导致社交网络中用户的分类和聚类效果差强人意。In the prior art, heterogeneous graph structure learning (HGSL) fuses the user's attribute graph, semantic graph, and original structure graph to generate a more comprehensive social network structure. ie-HGCN directly takes the graph data of the social network as input and performs multi-layer convolution to learn user node representations for specific tasks. SR-HGN is carefully designed to learn node representations in social information networks. It achieves hierarchical learning by aggregating information at the user and type levels, eliminating the need for prior knowledge in semantic path selection. These prior art methods often have unsatisfactory classification and clustering effects on users in social networks due to excessive coupling of fine-grained information and insufficient exploration of multi-granularity information.

发明内容Summary of the invention

为了解决上述问题,本发明提出了一种基于多视图融合异质图神经网络的社交推荐方法,首先设计了一种属性-拓扑解耦策略,该策略将用户的属性与其拓扑分别进行转换,从而保护了用户的细粒度信息,避免了多源信息在相邻节点之间的传输;同时,设计了一种新的社交网络结构学习策略,通过图级关注来融合不同语义关系下的子图,从而不仅可以识别不同语义的重要性,还可以捕获用户和商品之间的交互。In order to solve the above problems, the present invention proposes a social recommendation method based on multi-view fusion heterogeneous graph neural network. Firstly, an attribute-topology decoupling strategy is designed, which converts the user's attributes and its topology respectively, thereby protecting the user's fine-grained information and avoiding the transmission of multi-source information between adjacent nodes. At the same time, a new social network structure learning strategy is designed, which fuses subgraphs under different semantic relationships through graph-level attention, so as to not only identify the importance of different semantics, but also capture the interaction between users and products.

本发明的技术方案如下:The technical solution of the present invention is as follows:

一种基于多视图融合异质图神经网络的社交推荐方法,包括如下步骤:A social recommendation method based on multi-view fusion heterogeneous graph neural network includes the following steps:

步骤1、获取社交网络中用户与商品之间的关系,根据用户与商品之间是否存在链接关系建立异质图;Step 1: Obtain the relationship between users and products in the social network, and establish a heterogeneous graph based on whether there is a link relationship between users and products;

步骤2、建立节点视图中的属性拓扑解耦模块,将建立的矩阵输入属性拓扑解耦模块,进行特征和拓扑解耦编码,得到节点视图下的节点嵌入表示;Step 2: Establish an attribute topology decoupling module in the node view, input the established matrix into the attribute topology decoupling module, perform feature and topology decoupling encoding, and obtain the node embedding representation under the node view;

步骤3、建立网络模式视图中的节点编码模块,进行节点编码,得到网络模式视图下的节点嵌入表示;Step 3: Establish a node encoding module in the network mode view, perform node encoding, and obtain a node embedding representation in the network mode view;

步骤4、建立语义视图中的语义融合模块,进行语义融合,得到语义视图下的节点嵌入表示;Step 4: Establish a semantic fusion module in the semantic view, perform semantic fusion, and obtain a node embedding representation under the semantic view;

步骤5、进行多视角节点表示的融合策略,利用拼接策略融合社交网络不同粒度的信息,得到用户信息的向量表示,进行个性化的推荐。Step 5: Implement a fusion strategy for multi-perspective node representations, use a splicing strategy to fuse information of different granularities in the social network, obtain a vector representation of user information, and perform personalized recommendations.

进一步地,所述步骤1的具体过程为:建立的异质图用矩阵表示,/>代表用户节点总数,对应矩阵的总行数;/>表示商品节点总数,对应矩阵的总列数;矩阵的行代表用户节点,列代表商品节点,如果第/>个用户节点和第/>个商品节点之间存在链接,则矩阵的第/>行第/>列的值设为1,否则为0。Furthermore, the specific process of step 1 is as follows: the heterogeneous graph matrix is established Indicates, /> , Represents the total number of user nodes, corresponding to the total number of rows in the matrix; /> Indicates the total number of commodity nodes, corresponding to the total number of columns of the matrix; the rows of the matrix represent user nodes, and the columns represent commodity nodes. If the first/> User nodes and /> If there is a link between the commodity nodes, then the matrix's Line No./> The column value is set to 1 if yes, otherwise 0.

进一步地,所述步骤2的具体过程为:Furthermore, the specific process of step 2 is as follows:

步骤2.1、将矩阵输入属性拓扑解耦模块,对于一个类型为/>的用户节点/>,通过映射矩阵/>把用户节点/>的属性特征/>投影到公共的维度区间,具体如下:Step 2.1: The matrix Input attribute topology decoupling module, for a type of /> User node /> , through the mapping matrix/> Put the user node /> Attributes of /> Projected to a common dimension interval, as follows:

(1); (1);

其中,是用户节点/>的投影特征,/>为维度;/>是激活函数;/>代表矢量偏置;in, Is a user node/> The projection characteristics of is the dimension; /> is the activation function; /> represents vector offset;

步骤2.2、把用户节点的投影特征/>和拓扑结构/>通过多层感知机编码到公共的维度区间,具体如下:Step 2.2: User node Projection characteristics of /> and topology/> The multi-layer perceptron is used to encode the common dimension interval, as follows:

(2); (2);

(3); (3);

其中,是编码后的用户节点/>的属性信息表示;/>是编码后的用户节点/>的拓扑信息表示;/>是多层感知机;in, is the encoded user node/> The attribute information of is the encoded user node/> The topological information representation of It is a multi-layer perceptron;

步骤2.3、将两个编码后的表示拼接起来,再通过多层感知机和激活函数将用户和商品的属性信息映射到共享维度,最终得到节点视图下用户节点的嵌入表示/>,具体如下:Step 2.3: Concatenate the two encoded representations, and then map the attribute information of users and products to the shared dimension through a multi-layer perceptron and activation function, and finally obtain the user node in the node view. Embedded representation of /> ,details as follows:

(4); (4);

其中,表示拼接操作。in, Represents a concatenation operation.

进一步地,所述步骤3的具体过程为:Furthermore, the specific process of step 3 is as follows:

设用户节点与其它类型的的节点/>相连,/>、/>、/>表示不同的节点类型;Set user node With other types of nodes /> Connected, /> 、/> , 、/> Indicates different node types;

将节点级注意力应用于类型的周围邻居中:Apply node-level attention to Types of surrounding neighbors:

(5); (5);

其中,是用户节点/>连接的类型为/>的邻居节点嵌入表示;/>为用户节点/>连接的类型为/>的邻居节点;/>是邻居节点/>的投影特征;in, Is a user node/> The connection type is/> Neighbor node embedding representation; /> For user nodes/> The connection type is/> Neighbor nodes of; /> Is a neighbor node/> The projection characteristics of

为类型为/>的邻居节点/>对用户节点/>的注意力,计算如下: For type/> Neighbor nodes/> For user nodes/> The attention is calculated as follows:

(6); (6);

其中,为以自然常数e为底的指数函数;/>是激活函数;是类型为/>的节点级注意力向量;/>为转置符号;/>为用户节点/>的信息;/>为拼接符号;in, is an exponential function with the natural constant e as base;/> is the activation function; Is of type /> The node-level attention vector of is the transposition symbol; /> For user nodes/> Information; /> is the splicing symbol;

根据公式(5),得到用户节点连接的所有不同类型的邻居节点嵌入表示According to formula (5), we get the user node All different types of connected neighbor nodes are embedded ;

利用类型级别的注意力将所有不同类型的邻居节点嵌入表示融合在一起,以获得网络模式视图下用户节点的嵌入表示/>;公式如下:Using type-level attention, all different types of neighbor node embedding representations are fused together to obtain the user node under the network mode view. Embedded representation of /> ; The formula is as follows:

(7); (7);

其中,为类型总数,/>为类型索引。in, is the total number of types, /> The type index.

进一步地,所述步骤4的具体过程为:Furthermore, the specific process of step 4 is as follows:

步骤4.1、通过语义知识,将原始社交网络划分为不同的图结构,将建模的图数据分解为不同的子模块以学习不同的语义信息;通过图级注意力融合不同语义来作为整合后的社交网络结构,计算如下:Step 4.1: Divide the original social network into different graph structures through semantic knowledge, decompose the modeled graph data into different sub-modules to learn different semantic information; fuse different semantics through graph-level attention to form the integrated social network structure, which is calculated as follows:

(8); (8);

其中,为不同语义关系合并后得到的最终关系矩阵;/>表示带有参数/>的图级注意力层,用于为每个交换矩阵分配不同的权重;/>为语义关系/>的矩阵;/>为语义关系/>的矩阵;/>为语义关系/>的矩阵;in, It is the final relationship matrix obtained after merging different semantic relationships; /> Indicates that the parameter /> The graph-level attention layer is used to assign different weights to each exchange matrix; /> For semantic relations/> Matrix of; /> For semantic relations/> Matrix of; /> For semantic relations/> Matrix of

步骤4.2、将放入图卷积网络GCN中获取节点表示,计算如下:Step 4.2: Put it into the graph convolutional network GCN to obtain the node representation, and the calculation is as follows:

(9); (9);

其中,为语义视图下用户节点/>的嵌入表示;/>为归一化的关系矩阵;/>是用户特征;/>为权重参数。in, It is the user node in the semantic view/> Embedded representation of ; /> is the normalized relationship matrix; /> is a user feature; /> is the weight parameter.

进一步地,所述步骤5的具体过程为:Furthermore, the specific process of step 5 is as follows:

将得到的三个视图下的用户节点的嵌入表示拼接在一起,并通过多层感知机得到节点最终的嵌入表示:The embedded representations of the user nodes under the three views are spliced together, and the final embedded representation of the node is obtained through a multi-layer perceptron:

(10); (10);

其中,为用户节点/>的最终嵌入表示,该嵌入表示即为学习到的用户信息表示,然后根据用户的行为和属性信息进行个性化的推荐或者预测用户的喜好。in, For user nodes/> The final embedding representation is the learned user information representation, and then personalized recommendations or predictions of user preferences are made based on the user's behavior and attribute information.

本发明所带来的有益技术效果:通过对用户的特征和拓扑信息分单独处理,可以解耦由于多源异质信息的消息传递导致的细粒度信息的过度耦合,因此实现了对用户属性信息和拓扑信息单独建模,解耦了用户自身细粒度信息的过度耦合,将该技术应用异质图神经网络模型中,能够提高节点的分类和聚类的性能;设计了三个视角来探索社交网络中的多粒度信息,通过节点视角来实现用户自身细粒度信息的抽取,通过网络模式视角实现对用户周围邻居的拓扑信息提取,通过语义视角实现对用户高阶异质信息的捕获,进而实现了对社交网络中多粒度信息的探索。本发明利用异质图神经网络能够同时学习用户和商品之间的简单拓扑结构和复杂语义关系,通过拼接策略实现不同信息的融合,从而提高了用户分类和聚类的准确性,进而为用户推荐更准确的商品。The beneficial technical effects brought by the present invention are as follows: by processing the user's features and topological information separately, the excessive coupling of fine-grained information caused by the message transmission of multi-source heterogeneous information can be decoupled, thereby realizing the separate modeling of user attribute information and topological information, decoupling the excessive coupling of the user's own fine-grained information, and applying this technology to the heterogeneous graph neural network model to improve the performance of node classification and clustering; three perspectives are designed to explore the multi-granular information in the social network, the user's own fine-grained information is extracted through the node perspective, the topological information of the user's neighbors is extracted through the network mode perspective, and the user's high-order heterogeneous information is captured through the semantic perspective, thereby realizing the exploration of multi-granular information in the social network. The present invention uses heterogeneous graph neural networks to simultaneously learn the simple topological structure and complex semantic relationship between users and commodities, and realizes the fusion of different information through splicing strategies, thereby improving the accuracy of user classification and clustering, and recommending more accurate commodities to users.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明基于多视图融合异质图神经网络的社交推荐方法流程图。FIG1 is a flow chart of a social recommendation method based on a multi-view fusion heterogeneous graph neural network according to the present invention.

图2为本发明模型与其他模型复杂性对比结果示意图。FIG. 2 is a schematic diagram showing the complexity comparison results of the model of the present invention and other models.

具体实施方式Detailed ways

下面结合附图以及具体实施方式对本发明作进一步详细说明:The present invention is further described in detail below with reference to the accompanying drawings and specific embodiments:

本发明以社交网络为研究对象,提高社交网络中用户的分类和聚类为核心目标,需要解决的关键技术问题包括:第一:用户的属性信息是耦合的。第二:未充分挖掘社交网络的多粒度信息。解决这两个方面的问题能够完成对复杂的社交网络的建模。The present invention takes social networks as the research object, and improves the classification and clustering of users in social networks as the core goal. The key technical problems that need to be solved include: first, the attribute information of users is coupled. Second, the multi-granularity information of social networks is not fully mined. Solving these two problems can complete the modeling of complex social networks.

因此,本发明要解决的具体关键问题是:Therefore, the specific key issues to be solved by the present invention are:

关键技术问题1:用户的属性信息是耦合的;Key technical issue 1: User attribute information is coupled;

本发明设计了节点视角和网络模式视角来解耦了异构性导致的用户和商品之间的纠缠。具体来说,节点视图分别为用户的属性和解耦信息建模,以获取用户的细粒度信息。网络模式视图通过对用户周围邻域的商品属性和结构信息建模,获取用户的局部拓扑信息。The present invention designs the node perspective and the network mode perspective to decouple the entanglement between users and commodities caused by heterogeneity. Specifically, the node view models the user's attributes and decoupled information respectively to obtain the user's fine-grained information. The network mode view obtains the user's local topological information by modeling the commodity attributes and structural information of the user's surrounding area.

关键技术问题2:未充分挖掘的社交网络中多粒度信息;Key technical issue 2: Multi-granular information in social networks that is not fully mined;

本发明设计了节点视角、网络模式视角和语义视角三个视角来学习不同的语义信息,挖掘社交网络中用户的不同粒度信息。节点视角解耦学习用户和商品各自的语义结构;网络模式视角学习用户和商品之间的网络模式,语义视角学习用户和商品的复杂语义。通过这三个视角,捕获了社交网络中用户的属性信息和拓扑结构信息,以及高阶异质结构信息,实现了对社交网络中多粒度信息的挖掘。The present invention designs three perspectives: node perspective, network pattern perspective and semantic perspective to learn different semantic information and mine different granular information of users in social networks. The node perspective decouples and learns the semantic structures of users and commodities respectively; the network pattern perspective learns the network pattern between users and commodities, and the semantic perspective learns the complex semantics of users and commodities. Through these three perspectives, the attribute information and topological structure information of users in social networks, as well as high-order heterogeneous structure information, are captured, realizing the mining of multi-granular information in social networks.

如图1所示,本发明提出了一种基于多视图融合的异质图神经网络的社交推荐方法,该方法包含以下步骤:As shown in FIG1 , the present invention proposes a social recommendation method based on a heterogeneous graph neural network with multi-view fusion, which comprises the following steps:

步骤1、获取社交网络中用户与商品之间的关系,根据用户与商品之间是否存在链接关系建立异质图。具体过程为:异质图是一种网络,表示复杂的关系网络。异质图是一种抽象的表示,需要将网络数据建模成矩阵向量的形式,才能把抽象的转化为具体的,才能去应用知识学习。因此,本发明建立的异质图用矩阵表示,/>,/>代表用户节点总数,对应矩阵的总行数;/>表示商品节点总数,对应矩阵的总列数。矩阵的行代表用户节点,列代表商品节点,如果第/>个用户节点和第/>个商品节点之间存在链接,则矩阵的第/>行第列的值设为1,否则为0。Step 1: Obtain the relationship between users and products in the social network, and establish a heterogeneous graph based on whether there is a link relationship between users and products. The specific process is: a heterogeneous graph is a network that represents a complex relationship network. A heterogeneous graph is an abstract representation, and the network data needs to be modeled in the form of a matrix vector to transform the abstract into the concrete, so that knowledge can be applied to learning. Therefore, the heterogeneous graph established by the present invention is represented by a matrix. Indicates, /> ,/> Represents the total number of user nodes, corresponding to the total number of rows in the matrix; /> Indicates the total number of commodity nodes, corresponding to the total number of columns of the matrix. The rows of the matrix represent user nodes, and the columns represent commodity nodes. If the first/> User nodes and /> If there is a link between the commodity nodes, then the matrix's Line The column value is set to 1 if yes, otherwise 0.

步骤2、建立节点视图中的属性拓扑解耦模块,将建立的矩阵输入属性拓扑解耦模块,进行特征和拓扑解耦编码,得到节点视图下的节点嵌入表示。节点视图分别为用户属性和拓扑建模,以获取细粒度信息。为了避免用户的属性和拓扑过耦合,将异构消息传递拆分为两个模块进行单独处理。在属性-拓扑解耦模块中,仅对用户的属性和相邻拓扑分别进行变换。这样,只保留了用户的细粒度信息,避免了来自相邻结构的多源异构信息的传输。具体过程为:Step 2: Establish an attribute topology decoupling module in the node view, input the established matrix into the attribute topology decoupling module, perform feature and topology decoupling encoding, and obtain the node embedding representation under the node view. The node view models user attributes and topology respectively to obtain fine-grained information. In order to avoid over-coupling of user attributes and topology, heterogeneous message passing is split into two modules for separate processing. In the attribute-topology decoupling module, only the user's attributes and adjacent topologies are transformed respectively. In this way, only the user's fine-grained information is retained, avoiding the transmission of multi-source heterogeneous information from adjacent structures. The specific process is:

步骤2.1、将矩阵输入属性拓扑解耦模块。因为社交网络中有不同类型的用户节点,所以用户节点的目标特征通常位于不用的空间中,因此,首先需要将所有类型的用户节点特征投影到一个公共潜在向量空间中,具体来说,对于一个类型为/>的用户节点/>,通过特定类型的映射矩阵/>把用户节点/>的属性特征/>投影到公共的维度区间,具体如下:Step 2.1: The matrix Input attribute topology decoupling module. Because there are different types of user nodes in social networks, the target features of user nodes are usually located in different spaces. Therefore, we first need to project all types of user node features into a common latent vector space. Specifically, for a type of/> User node /> , through a specific type of mapping matrix/> Put the user node /> Attributes of /> Projected to a common dimension interval, as follows:

(1); (1);

其中,是用户节点/>的投影特征,/>为维度;/>是激活函数;/>代表矢量偏置。in, Is a user node/> The projection characteristics of is the dimension; /> is the activation function; /> Stands for vector offset.

属性嵌入能够将用户节点的属性信息和拓扑结构信息结合在一起,得到更全面的用户节点表示,这能够使得用户节点嵌入更准确和可靠。Attribute embedding can combine the attribute information and topological structure information of user nodes to obtain a more comprehensive user node representation, which can make user node embedding more accurate and reliable.

步骤2.2、把用户节点的投影特征/>和拓扑结构/>通过多层感知机(MLP)编码到公共的维度区间,具体如下:Step 2.2: User node Projection characteristics of /> and topology/> Encoded into a common dimension interval through a multi-layer perceptron (MLP), as follows:

(2); (2);

(3); (3);

其中,是编码后的用户节点/>的属性信息表示;/>是编码后的用户节点/>的拓扑信息表示;/>是多层感知机。in, is the encoded user node/> The attribute information of is the encoded user node/> The topological information representation of It is a multi-layer perceptron.

步骤2.3、将两个编码后的表示拼接起来,再通过多层感知机和激活函数将用户和商品的属性信息映射到共享维度,最终得到节点视图下用户节点的嵌入表示/>,具体如下:Step 2.3: Concatenate the two encoded representations, and then map the attribute information of users and products to the shared dimension through a multi-layer perceptron and activation function, and finally obtain the user node in the node view. Embedded representation of /> ,details as follows:

(4); (4);

其中,表示拼接操作。in, Represents a concatenation operation.

步骤3、建立网络模式视图中的节点编码模块,进行节点编码,得到网络模式视图下的节点嵌入表示。网络模式视图通过对用户周围邻域的属性和结构信息建模,获取用户的局部信息。在网络模式的节点编码模块中,采用两级关注机制聚合用户的信息。具体过程为:Step 3: Establish a node encoding module in the network model view, perform node encoding, and obtain the node embedding representation under the network model view. The network model view obtains the user's local information by modeling the attributes and structural information of the user's surrounding neighborhood. In the node encoding module of the network model, a two-level attention mechanism is used to aggregate the user's information. The specific process is:

节点编码模块的目标是学习在网络模式下的用户节点嵌入。假设用户节点与其它类型的的节点/>相连,/>、/>、/>、/>表示不同的节点类型,/>为类型总数,/>为类型索引,则用户节点/>连接的类型为/>的邻居节点可以表示为。对于用户节点/>,不同类型的邻居对用户节点的表示贡献不同,同类型的邻居节点的贡献也有区别,因此,采用节点级和类型级注意力机制,以分层的方式聚合从其他类型的邻居到用户节点/>的消息。The goal of the node encoding module is to learn the user node embedding in the network mode. Assuming that the user node With other types of nodes /> Connected, /> 、/> 、/> 、/> Indicates different node types, /> is the total number of types, /> is the type index, then the user node/> The connection type is/> The neighbor nodes of can be expressed as . For user nodes/> Different types of neighbors contribute differently to the representation of user nodes, and the contributions of neighbor nodes of the same type are also different. Therefore, node-level and type-level attention mechanisms are used to aggregate information from other types of neighbors to user nodes in a hierarchical manner. news.

具体来说,首先将节点级注意力应用于类型的周围邻居中:Specifically, we first apply node-level attention to Types of surrounding neighbors:

(5); (5);

其中,是用户节点/>连接的类型为/>的邻居节点嵌入表示;/>为用户节点/>连接的类型为/>的邻居节点;/>是邻居节点/>的投影特征;in, Is a user node/> The connection type is/> Neighbor node embedding representation; /> For user nodes/> The connection type is/> Neighbor nodes of; /> Is a neighbor node/> The projection characteristics of

为类型为/>的邻居节点/>对用户节点/>的注意力,计算如下: For type/> Neighbor nodes/> For user nodes/> The attention is calculated as follows:

(6); (6);

其中,为以自然常数e为底的指数函数;/>是激活函数;是类型为/>的节点级注意力向量;/>为转置符号;/>为用户节点/>的信息;/>为拼接符号。in, is an exponential function with the natural constant e as base;/> is the activation function; Is of type /> The node-level attention vector of is the transposition symbol; /> For user nodes/> Information; /> A splicing symbol.

在实际应用中不会聚合来自的所有邻居节点的信息,而是在每个epoch中随机抽取部分周围邻居信息进行聚合,一个epoch表示学习中所有训练数据均被使用过一次时的更新次数。具体的说,如果类型为/>的周围邻居的数量超过了预先设定的阈值/>,随机选择邻居类型为/>作为/>,而不会选择全部邻居节点;如果邻居节点的数量小于阈值/>,则会重复选取类型为/>的邻居节点,直到达到阈值。通过这种方式,保证每个节点聚合来自邻居的相同数量的信息,并且在每个epoch中增加节点嵌入的多样性。In practical applications, no aggregation from Instead of collecting all neighboring nodes' information, some surrounding neighbor information is randomly selected for aggregation in each epoch. An epoch represents the number of updates when all training data in learning are used once. Specifically, if the type is /> The number of surrounding neighbors exceeds a preset threshold/> , randomly select neighbor type as/> As/> , and not all neighbor nodes will be selected; if the number of neighbor nodes is less than the threshold /> , then the type will be repeatedly selected as/> The neighbor nodes of are collected until a threshold is reached. In this way, each node is guaranteed to aggregate the same amount of information from its neighbors and the diversity of node embeddings is increased in each epoch.

根据公式(5),得到用户节点连接的所有不同类型的邻居节点嵌入表示According to formula (5), we get the user node All different types of connected neighbor nodes are embedded ;

利用均值融合将它们融合在一起,以获得网络模式视图下用户节点的嵌入表示;公式如下:Use mean fusion to fuse them together to obtain the user nodes in the network model view The embedding representation of ; The formula is as follows:

(7); (7);

这种分层注意力机制可以区分不同类型节点以及同类型节点的贡献,实现细粒度的表示学习。This hierarchical attention mechanism can distinguish the contributions of different types of nodes and nodes of the same type, achieving fine-grained representation learning.

步骤4、建立语义视图中的语义融合模块,进行语义融合,得到语义视图下的嵌入表示。语义视图通过图级关注将不同的子图合并成单个图来理解用户的高级异构信息。为了挖掘多粒度信息,在语义融合模块中使用语义知识聚合高阶信息,通过通道关注来融合不同的语义知识,实现语义交互。具体过程为:Step 4: Establish a semantic fusion module in the semantic view, perform semantic fusion, and obtain an embedded representation under the semantic view. The semantic view uses graph-level attention to merge different subgraphs into a single graph to understand the user's high-level heterogeneous information. In order to mine multi-granular information, semantic knowledge is used in the semantic fusion module to aggregate high-order information, and channel attention is used to fuse different semantic knowledge to achieve semantic interaction. The specific process is as follows:

步骤4.1、通过语义知识,将原始社交网络划分为不同的图结构,将建模的图数据分解为不同的子模块以学习不同的语义信息;通过图级注意力融合它们来作为整合后的社交网络结构,计算如下:Step 4.1: Divide the original social network into different graph structures through semantic knowledge, decompose the modeled graph data into different sub-modules to learn different semantic information; fuse them through graph-level attention to form the integrated social network structure, which is calculated as follows:

(8); (8);

其中,为不同语义关系合并后得到的最终关系矩阵;/>表示带有参数/>的图级注意力层,它用于为每个交换矩阵分配不同的权重;/>为语义关系/>的矩阵;/>为语义关系/>的矩阵;/>为语义关系/>的矩阵。in, It is the final relationship matrix obtained after merging different semantic relationships; /> Indicates that the parameter /> The graph-level attention layer is used to assign different weights to each exchange matrix; /> For semantic relations/> Matrix of; /> For semantic relations/> Matrix of; /> For semantic relations/> The matrix of .

步骤4.2、将放入图卷积网络GCN中获取节点表示(事实上,/>可以应用于任意的图神经网络GNN编码器中),计算如下:Step 4.2: Put it into the graph convolutional network GCN to get the node representation (in fact,/> It can be applied to any graph neural network GNN encoder), and is calculated as follows:

(9); (9);

其中,为语义视图下用户节点/>的嵌入表示;/>为归一化的关系矩阵;/>是用户特征;/>为权重参数。in, It is the user node in the semantic view/> Embedded representation of ; /> is the normalized relationship matrix; /> is a user feature; /> is the weight parameter.

步骤5、进行多视角节点表示的融合策略,利用拼接策略融合社交网络的不同粒度信息,得到用户信息的向量表示,进行个性化的推荐。具体过程为:Step 5: Implement a fusion strategy for multi-perspective node representations, use a splicing strategy to fuse information of different granularities in social networks, obtain a vector representation of user information, and perform personalized recommendations. The specific process is as follows:

将得到的三个视图下的用户节点的嵌入表示有效拼接在一起,并通过多层感知机得到节点最终的嵌入表示:The embedded representations of the user nodes under the three views are effectively spliced together, and the final embedded representation of the node is obtained through a multi-layer perceptron:

(10); (10);

其中,为用户节点/>的最终嵌入表示,该嵌入表示即为学习到的用户信息表示,然后根据用户的行为和属性信息进行个性化的推荐或者预测用户的喜好。in, For user nodes/> The final embedding representation is the learned user information representation, and then personalized recommendations or predictions of user preferences are made based on the user's behavior and attribute information.

为了证明本发明的可行性与优越性,进行了如下对比实验。In order to prove the feasibility and superiority of the present invention, the following comparative experiments were carried out.

实验1:上述属性拓扑解耦模块、节点编码模块、语义融合模块,以及多视角节点表示的融合策略实质上构成了本发明模型MHGNN。本发明本发明实验数据集包括ACM、IMDB、DBLP、YELP四个数据集。每个数据集都采用了20%、40%、60%、80%四种分割率。首先评估了本发明模型MHGNN与HAN、GTN、MAGNN、HGSL、HPN、RoHe、ie-HGCN七个基线模型在半监督节点分类上的结果,评估指标方法选取Macro-F1和Micro-F1,具体数据结果如表1所示。将其和七个代表性的算法模型进行比较,将Macro-F1和Micro-F1是F1-score的两种计算方式,F1-score是用来衡量二分类模型精确度的一种指标,用于测量不均衡数据的精度。Macro-F1或Micro-F1的取值越高,表示模型精度越高。其中,HAN通过用户和商品之间不同的语义关系,划分为不同的语义子图然后将不同子图通过注意力融合不同子图下的用户表征。GTN通过用户和商品之间的关系矩阵,迭代卷积用户信息。MAGNN通过将用户和商品的关系编码成序列的形式,保留了所有节点属性信息,但编码过程中,用户信息被多次重复编码,造成信息冗余。HGSL通过利用用户属性和邻域结构,学习正确的链接关系,消除原始图拓扑中存在的噪声信息。HPN通过在每层保留初始关系矩阵,减轻了多层卷积之后的语义混淆问题。RoHe通过引入注意力边的形式,在噪声攻击情况下任然高效工作。ie-HGCN通过关系卷积,一层一层的迭代耦合周围邻域的信息。本发明将社交网络数据处理成合适的格式,反馈到模型中,测试我们所提出方法的优越性。Experiment 1: The above-mentioned attribute topology decoupling module, node encoding module, semantic fusion module, and fusion strategy of multi-view node representation essentially constitute the model MHGNN of the present invention. The experimental data sets of the present invention include four data sets of ACM, IMDB, DBLP, and YELP. Each data set adopts four segmentation rates of 20%, 40%, 60%, and 80%. First, the results of the model MHGNN of the present invention and the seven baseline models of HAN, GTN, MAGNN, HGSL, HPN, RoHe, and ie-HGCN in semi-supervised node classification were evaluated. Macro-F1 and Micro-F1 were selected as the evaluation index method. The specific data results are shown in Table 1. It is compared with seven representative algorithm models. Macro-F1 and Micro-F1 are two calculation methods of F1-score. F1-score is an indicator used to measure the accuracy of the binary classification model, which is used to measure the accuracy of unbalanced data. The higher the value of Macro-F1 or Micro-F1, the higher the accuracy of the model. Among them, HAN is divided into different semantic subgraphs by different semantic relationships between users and commodities, and then different subgraphs are fused with user representations under different subgraphs through attention. GTN iteratively convolves user information through the relationship matrix between users and products. MAGNN retains all node attribute information by encoding the relationship between users and products in the form of sequences, but during the encoding process, user information is repeatedly encoded multiple times, resulting in information redundancy. HGSL learns the correct link relationship by utilizing user attributes and neighborhood structure to eliminate the noise information in the original graph topology. HPN alleviates the semantic confusion problem after multi-layer convolution by retaining the initial relationship matrix at each layer. RoHe still works efficiently under noise attacks by introducing the form of attention edges. ie-HGCN iteratively couples the information of the surrounding neighborhood layer by layer through relational convolution. The present invention processes social network data into a suitable format and feeds it back to the model to test the superiority of our proposed method.

表1 各个模型在半监督节点分类上的结果(%);Table 1 Results of each model on semi-supervised node classification (%);

.

由表1可知,本发明模型MHGNN在ACM、IMDB、DBLP、YELP四个数据集上有不错的表现。总体而言,本发明模模型MHGNN通过聚合三个视角下的不同粒度的信息,得到的用户表示比单一视角下通过语义路径或者对用户自身信息建模得到的表示表现要好,这是由于MHGNN模型不仅利用语义视角去捕获高阶异质信息,还通过网络模式视角和利用对特征和拓扑解耦使得学习出的用户表示具有更强的表征能力。As shown in Table 1, the MHGNN model of the present invention performs well on the four datasets of ACM, IMDB, DBLP, and YELP. In general, the user representation obtained by the MHGNN model of the present invention by aggregating information of different granularities from three perspectives is better than the representation obtained from a single perspective through semantic paths or modeling the user's own information. This is because the MHGNN model not only uses the semantic perspective to capture high-order heterogeneous information, but also uses the network model perspective and decoupling of features and topology to make the learned user representation have stronger representation capabilities.

实验2:本发明还进行了节点聚类实验以验证本发明模型MHGNN的性能。具体来说,将得到的用户表示放入K-means进行聚类,并将聚类数设置为节点真实的类别数。报告了平均归一化互信息(NMI)和调整后的兰德指数(ARI)两种评价指标方法的结果。NMI或ARI的取值越高,模型性能越好。Experiment 2: The present invention also conducts a node clustering experiment to verify the performance of the MHGNN model of the present invention. Specifically, the obtained user representation is put into K-means for clustering, and the number of clusters is set to the actual number of categories of the node. The results of two evaluation index methods, the average normalized mutual information (NMI) and the adjusted Rand index (ARI), are reported. The higher the value of NMI or ARI, the better the model performance.

表2 MHGNN在节点聚类上的结果(%);Table 2 Results of MHGNN on node clustering (%);

.

从表2可以看出,MHGNN相比于其他基线模型均取得了不错的表现。相比于其他单一视角的模型,MHGNN充分抓取节点和周围邻域的语义关系,使得用户和邻域节点之间的区分度更高,聚类效果更明显。As can be seen from Table 2, MHGNN has achieved good performance compared with other baseline models. Compared with other single-view models, MHGNN fully captures the semantic relationship between nodes and surrounding neighborhoods, making the distinction between users and neighborhood nodes higher and the clustering effect more obvious.

图2比较和分析了本发明模型MHGNN和HAN、MAGNN、HGSL、HPN、RoHe、ie-HGCN六种模型的复杂性。从图2中可以看出,虽然MHGNN使用三个视角学习用户的表示,但是没有耗费太大的内存和时间,因为三个视图最后采用了拼接操作,并且利用注意力将不同语义路径下的子图合并为一个元图,节省了每个子图计算的时间,减少了计算量,提高了计算效率。Figure 2 compares and analyzes the complexity of the proposed model MHGNN and six models including HAN, MAGNN, HGSL, HPN, RoHe, and ie-HGCN. As can be seen from Figure 2, although MHGNN uses three perspectives to learn the representation of users, it does not consume too much memory and time, because the three views are finally concatenated, and the subgraphs under different semantic paths are merged into a metagraph using attention, which saves the calculation time of each subgraph, reduces the amount of calculation, and improves the calculation efficiency.

当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。Of course, the above description is not a limitation of the present invention, and the present invention is not limited to the above examples. Changes, modifications, additions or substitutions made by technicians in this technical field within the essential scope of the present invention should also fall within the protection scope of the present invention.

Claims (6)

1.一种基于多视图融合异质图神经网络的社交推荐方法,其特征在于,包括如下步骤:1. A social recommendation method based on multi-view fusion heterogeneous graph neural network, characterized by comprising the following steps: 步骤1、获取社交网络中用户与商品之间的关系,根据用户与商品之间是否存在链接关系建立异质图;Step 1: Obtain the relationship between users and products in the social network, and establish a heterogeneous graph based on whether there is a link relationship between users and products; 步骤2、建立节点视图中的属性拓扑解耦模块,将建立的矩阵输入属性拓扑解耦模块,进行特征和拓扑解耦编码,得到节点视图下的节点嵌入表示;Step 2: Establish an attribute topology decoupling module in the node view, input the established matrix into the attribute topology decoupling module, perform feature and topology decoupling encoding, and obtain the node embedding representation under the node view; 步骤3、建立网络模式视图中的节点编码模块,进行节点编码,得到网络模式视图下的节点嵌入表示;Step 3: Establish a node encoding module in the network mode view, perform node encoding, and obtain a node embedding representation in the network mode view; 步骤4、建立语义视图中的语义融合模块,进行语义融合,得到语义视图下的节点嵌入表示;Step 4: Establish a semantic fusion module in the semantic view, perform semantic fusion, and obtain a node embedding representation under the semantic view; 步骤5、进行多视角节点表示的融合策略,利用拼接策略融合社交网络不同粒度的信息,得到用户信息的向量表示,进行个性化的推荐。Step 5: Implement a fusion strategy for multi-perspective node representations, use a splicing strategy to fuse information of different granularities in the social network, obtain a vector representation of user information, and perform personalized recommendations. 2.根据权利要求1所述基于多视图融合异质图神经网络的社交推荐方法,其特征在于,所述步骤1的具体过程为:建立的异质图用矩阵表示,/>,/>代表用户节点总数,对应矩阵的总行数;/>表示商品节点总数,对应矩阵的总列数;矩阵的行代表用户节点,列代表商品节点,如果第/>个用户节点和第/>个商品节点之间存在链接,则矩阵的第/>行第列的值设为1,否则为0。2. According to the social recommendation method based on multi-view fusion heterogeneous graph neural network in claim 1, the specific process of step 1 is: the heterogeneous graph matrix established Indicates, /> ,/> Represents the total number of user nodes, corresponding to the total number of rows in the matrix; /> Indicates the total number of commodity nodes, corresponding to the total number of columns of the matrix; the rows of the matrix represent user nodes, and the columns represent commodity nodes. If the first/> User nodes and /> If there is a link between the commodity nodes, then the matrix's Line The column value is set to 1 if yes, otherwise 0. 3.根据权利要求2所述基于多视图融合异质图神经网络的社交推荐方法,其特征在于,所述步骤2的具体过程为:3. According to claim 2, the social recommendation method based on multi-view fusion heterogeneous graph neural network is characterized in that the specific process of step 2 is: 步骤2.1、将矩阵输入属性拓扑解耦模块,对于一个类型为/>的用户节点/>,通过映射矩阵/>把用户节点/>的属性特征/>投影到公共的维度区间,具体如下:Step 2.1: The matrix Input attribute topology decoupling module, for a type of /> User node /> , through the mapping matrix/> Put the user node /> Attributes of /> Projected to a common dimension interval, as follows: (1); (1); 其中,是用户节点/>的投影特征,/>为维度;/>是激活函数;/>代表矢量偏置;in, Is a user node/> The projection characteristics of is the dimension; /> is the activation function; /> represents vector offset; 步骤2.2、把用户节点的投影特征/>和拓扑结构/>通过多层感知机编码到公共的维度区间,具体如下:Step 2.2: User node Projection characteristics of /> and topology/> The multi-layer perceptron is used to encode the common dimension interval, as follows: (2); (2); (3); (3); 其中,是编码后的用户节点/>的属性信息表示;/>是编码后的用户节点/>的拓扑信息表示;/>是多层感知机;in, is the encoded user node/> The attribute information of is the encoded user node/> The topological information representation of It is a multi-layer perceptron; 步骤2.3、将两个编码后的表示拼接起来,再通过多层感知机和激活函数将用户和商品的属性信息映射到共享维度,最终得到节点视图下用户节点的嵌入表示/>,具体如下:Step 2.3: Concatenate the two encoded representations, and then map the attribute information of users and products to the shared dimension through a multi-layer perceptron and activation function, and finally obtain the user node in the node view. Embedded representation of /> ,details as follows: (4); (4); 其中,表示拼接操作。in, Represents a concatenation operation. 4.根据权利要求3所述基于多视图融合异质图神经网络的社交推荐方法,其特征在于,所述步骤3的具体过程为:4. According to claim 3, the social recommendation method based on multi-view fusion heterogeneous graph neural network is characterized in that the specific process of step 3 is: 设用户节点与其它类型的的节点/>相连,/>、/>、/>表示不同的节点类型;Set user node With other types of nodes /> Connected, /> 、/> 、/> , Indicates different node types; 将节点级注意力应用于类型的周围邻居中:Apply node-level attention to Types of surrounding neighbors: (5); (5); 其中,是用户节点/>连接的类型为/>的邻居节点嵌入表示;/>为用户节点/>连接的类型为/>的邻居节点;/>是邻居节点/>的投影特征;in, Is a user node/> The connection type is/> Neighbor node embedding representation; /> For user nodes/> The connection type is/> Neighbor nodes of; /> Is a neighbor node/> The projection characteristics of 为类型为/>的邻居节点/>对用户节点/>的注意力,计算如下: For type/> Neighbor nodes/> For user nodes/> The attention is calculated as follows: (6); (6); 其中,为以自然常数e为底的指数函数;/>是激活函数;是类型为/>的节点级注意力向量;/>为转置符号;/>为用户节点/>的信息;/>为拼接符号;in, is an exponential function with the natural constant e as base;/> is the activation function; Is of type /> The node-level attention vector of is the transposition symbol; /> For user nodes/> Information; /> is the splicing symbol; 根据公式(5),得到用户节点连接的所有不同类型的邻居节点嵌入表示According to formula (5), we get the user node All different types of connected neighbor nodes are embedded ; 利用类型级别的注意力将所有不同类型的邻居节点嵌入表示融合在一起,以获得网络模式视图下用户节点的嵌入表示/>;公式如下:Using type-level attention, all different types of neighbor node embedding representations are fused together to obtain the user node under the network mode view. Embedded representation of /> ; The formula is as follows: (7); (7); 其中,为类型总数,/>为类型索引。in, is the total number of types, /> The type index. 5.根据权利要求4所述基于多视图融合异质图神经网络的社交推荐方法,其特征在于,所述步骤4的具体过程为:5. According to claim 4, the social recommendation method based on multi-view fusion heterogeneous graph neural network is characterized in that the specific process of step 4 is: 步骤4.1、通过语义知识,将原始社交网络划分为不同的图结构,将建模的图数据分解为不同的子模块以学习不同的语义信息;通过图级注意力融合不同语义来作为整合后的社交网络结构,计算如下:Step 4.1: Divide the original social network into different graph structures through semantic knowledge, decompose the modeled graph data into different sub-modules to learn different semantic information; fuse different semantics through graph-level attention to form the integrated social network structure, which is calculated as follows: (8); (8); 其中,为不同语义关系合并后得到的最终关系矩阵;/>表示带有参数/>的图级注意力层,用于为每个交换矩阵分配不同的权重;/>为语义关系/>的矩阵;/>为语义关系的矩阵;/>为语义关系/>的矩阵;in, It is the final relationship matrix obtained after merging different semantic relationships; /> Indicates that the parameter /> The graph-level attention layer is used to assign different weights to each exchange matrix; /> For semantic relations/> Matrix of; /> For semantic relations Matrix of; /> For semantic relations/> Matrix of 步骤4.2、将放入图卷积网络GCN中获取节点表示,计算如下:Step 4.2: Put it into the graph convolutional network GCN to obtain the node representation, and the calculation is as follows: (9); (9); 其中,为语义视图下用户节点/>的嵌入表示;/>为归一化的关系矩阵;/>是用户特征;/>为权重参数。in, It is the user node in the semantic view/> Embedded representation of ; /> is the normalized relationship matrix; /> is a user feature; /> is the weight parameter. 6.根据权利要求5所述基于多视图融合异质图神经网络的社交推荐方法,其特征在于,所述步骤5的具体过程为:6. According to claim 5, the social recommendation method based on multi-view fusion heterogeneous graph neural network is characterized in that the specific process of step 5 is: 将得到的三个视图下的用户节点的嵌入表示拼接在一起,并通过多层感知机得到节点最终的嵌入表示:The embedded representations of the user nodes under the three views are spliced together, and the final embedded representation of the node is obtained through a multi-layer perceptron: (10); (10); 其中,为用户节点/>的最终嵌入表示,该嵌入表示即为学习到的用户信息表示,然后根据用户的行为和属性信息进行个性化的推荐或者预测用户的喜好。in, For user nodes/> The final embedding representation is the learned user information representation, and then personalized recommendations or predictions of user preferences are made based on the user's behavior and attribute information.
CN202410398812.XA 2024-04-03 2024-04-03 Social recommendation method based on multi-view fusion heterogeneous graph neural network Active CN117994007B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410398812.XA CN117994007B (en) 2024-04-03 2024-04-03 Social recommendation method based on multi-view fusion heterogeneous graph neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410398812.XA CN117994007B (en) 2024-04-03 2024-04-03 Social recommendation method based on multi-view fusion heterogeneous graph neural network

Publications (2)

Publication Number Publication Date
CN117994007A true CN117994007A (en) 2024-05-07
CN117994007B CN117994007B (en) 2024-07-05

Family

ID=90896347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410398812.XA Active CN117994007B (en) 2024-04-03 2024-04-03 Social recommendation method based on multi-view fusion heterogeneous graph neural network

Country Status (1)

Country Link
CN (1) CN117994007B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118734120A (en) * 2024-05-21 2024-10-01 北京普巴大数据有限公司 Recognition Model in Knowledge Management Artificial Intelligence System
CN119046541A (en) * 2024-10-31 2024-11-29 山东科技大学 Recommendation method based on community perception and multi-scale graph contrast learning
CN119415732A (en) * 2025-01-07 2025-02-11 山东科技大学 A graph neural network music recommendation method based on large and small path independence partitioning and aggregation

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090957A (en) * 2014-03-10 2014-10-08 中国科学院软件研究所 Heterogeneous network interactive visualization method
CN108491680A (en) * 2018-03-07 2018-09-04 安庆师范大学 Drug relationship abstracting method based on residual error network and attention mechanism
CN108804677A (en) * 2018-06-12 2018-11-13 合肥工业大学 In conjunction with the deep learning question classification method and system of multi-layer attention mechanism
CN109754317A (en) * 2019-01-10 2019-05-14 山东大学 Interpretable clothing recommendation method, system, device and medium incorporating reviews
CN109862585A (en) * 2019-01-31 2019-06-07 湖北工业大学 A dynamic heterogeneous network traffic prediction method based on deep spatiotemporal neural network
CN111400560A (en) * 2020-03-10 2020-07-10 支付宝(杭州)信息技术有限公司 Method and system for predicting based on heterogeneous graph neural network model
US20210118073A1 (en) * 2019-10-22 2021-04-22 International Business Machines Corporation Land use planning recommendations using heterogeneous temporal datasets
CN113254803A (en) * 2021-06-24 2021-08-13 暨南大学 Social recommendation method based on multi-feature heterogeneous graph neural network
CN114090902A (en) * 2021-11-22 2022-02-25 中国人民解放军国防科技大学 Social network influence prediction method and device based on heterogeneous network
CN115082142A (en) * 2022-05-10 2022-09-20 华南理工大学 Recommendation method, device and medium based on heterogeneous relational graph neural network
CN115713386A (en) * 2022-11-24 2023-02-24 山东大学 Multi-source information fusion commodity recommendation method and system
CN115718826A (en) * 2022-11-29 2023-02-28 中国科学技术大学 Method, system, device and medium for classifying target nodes in graph structure data

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090957A (en) * 2014-03-10 2014-10-08 中国科学院软件研究所 Heterogeneous network interactive visualization method
CN108491680A (en) * 2018-03-07 2018-09-04 安庆师范大学 Drug relationship abstracting method based on residual error network and attention mechanism
CN108804677A (en) * 2018-06-12 2018-11-13 合肥工业大学 In conjunction with the deep learning question classification method and system of multi-layer attention mechanism
CN109754317A (en) * 2019-01-10 2019-05-14 山东大学 Interpretable clothing recommendation method, system, device and medium incorporating reviews
CN109862585A (en) * 2019-01-31 2019-06-07 湖北工业大学 A dynamic heterogeneous network traffic prediction method based on deep spatiotemporal neural network
US20210118073A1 (en) * 2019-10-22 2021-04-22 International Business Machines Corporation Land use planning recommendations using heterogeneous temporal datasets
CN111400560A (en) * 2020-03-10 2020-07-10 支付宝(杭州)信息技术有限公司 Method and system for predicting based on heterogeneous graph neural network model
CN113254803A (en) * 2021-06-24 2021-08-13 暨南大学 Social recommendation method based on multi-feature heterogeneous graph neural network
CN114090902A (en) * 2021-11-22 2022-02-25 中国人民解放军国防科技大学 Social network influence prediction method and device based on heterogeneous network
CN115082142A (en) * 2022-05-10 2022-09-20 华南理工大学 Recommendation method, device and medium based on heterogeneous relational graph neural network
CN115713386A (en) * 2022-11-24 2023-02-24 山东大学 Multi-source information fusion commodity recommendation method and system
CN115718826A (en) * 2022-11-29 2023-02-28 中国科学技术大学 Method, system, device and medium for classifying target nodes in graph structure data

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHAOLI等: "HetReGAT-FC: Heterogeneous Residual Graph Attention Network via Feature Completion", 《ELSEVIER》, 9 March 2023 (2023-03-09) *
ZHONGYING ZHAO等: "GuessUNeed: Recommending Courses via Neural Attention Network and Course Prerequisite Relation Embeddings", 《ACM》, 31 December 2020 (2020-12-31) *
贾霄生等: "互信息与多条元路径融合的异质网络表示学习方法", 《软件学报》, 31 December 2023 (2023-12-31) *
高莉: "基于图神经网络的社交推荐系统研究", 《信息科技》, 15 February 2023 (2023-02-15) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118734120A (en) * 2024-05-21 2024-10-01 北京普巴大数据有限公司 Recognition Model in Knowledge Management Artificial Intelligence System
CN119046541A (en) * 2024-10-31 2024-11-29 山东科技大学 Recommendation method based on community perception and multi-scale graph contrast learning
CN119415732A (en) * 2025-01-07 2025-02-11 山东科技大学 A graph neural network music recommendation method based on large and small path independence partitioning and aggregation

Also Published As

Publication number Publication date
CN117994007B (en) 2024-07-05

Similar Documents

Publication Publication Date Title
CN117994007B (en) Social recommendation method based on multi-view fusion heterogeneous graph neural network
Liu et al. Towards deeper graph neural networks
Sun et al. Attention-based graph neural networks: a survey
CN112541132B (en) Cross-domain recommendation method based on multi-view knowledge representation
CN108062551A (en) A kind of figure Feature Extraction System based on adjacency matrix, figure categorizing system and method
CN110347881A (en) A kind of group's discovery method for recalling figure insertion based on path
CN112784118A (en) Community discovery method and device in graph sensitive to triangle structure
Zhang et al. End‐to‐end generation of structural topology for complex architectural layouts with graph neural networks
Tan et al. Collaborative graph neural networks for attributed network embedding
CN115640842A (en) Network representation learning method based on graph attention self-encoder
CN118154282A (en) Multimodal personalized clothing recommendation method based on graph neural network
CN115130663B (en) Heterogeneous network attribute completion method based on graph neural network and attention mechanism
CN116467666A (en) Graph anomaly detection method and system based on integrated learning and active learning
CN115221413B (en) A sequential recommendation method and system based on interactive graph attention network
Liu et al. LMACL: improving graph collaborative filtering with learnable model augmentation contrastive learning
Peng et al. Unsupervised multiplex graph learning with complementary and consistent information
CN109039721A (en) Node Importance Evaluation Method Based on Error Reconstruction
CN118069828B (en) Article recommendation method based on heterogeneous graph and semantic fusion
Lin et al. Multi-View Block Matrix-Based Graph Convolutional Network.
Xing et al. Exploiting Two‐Level Information Entropy across Social Networks for User Identification
Yuan et al. Improving variational graph autoencoders with multi-order graph convolutions
Gao et al. Gcn-alp: Addressing matching collisions in anchor link prediction
CN118733788A (en) Knowledge graph embedding method and device based on multi-scale hole transformer
CN118194070A (en) Clustering model training method, device, equipment, and storage medium
CN117332811A (en) Graphic neural network method based on multi-level entity-two-way relation fusion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant