CN117981381A - 集成地面/非地面网络中的联合波束管理 - Google Patents

集成地面/非地面网络中的联合波束管理 Download PDF

Info

Publication number
CN117981381A
CN117981381A CN202180102657.7A CN202180102657A CN117981381A CN 117981381 A CN117981381 A CN 117981381A CN 202180102657 A CN202180102657 A CN 202180102657A CN 117981381 A CN117981381 A CN 117981381A
Authority
CN
China
Prior art keywords
fault
terrestrial
pair link
beam pair
trp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180102657.7A
Other languages
English (en)
Inventor
阿曼·贾萨尔
阿民·玛瑞夫
马江镭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN117981381A publication Critical patent/CN117981381A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的一些实施例通过集成地面/非地面网络中的联合波束管理提供用于无线通信的波束管理。主动波束管理过程是结合场景驱动的波束故障实例权重定义的。网络设备可以对提供给用户设备的候选波束进行控制,这些候选波束在各种场景中被赋予更高的重要性。所述网络设备可以具有配置非地面波束对链路的能力,从而支持所述用户设备无缝地利用地面网络和非地面网络。启用了免中断服务,其中,支持所述用户设备在主动扫描候选波束的同时维持正常工作的波束对链路。例如,当只有一个波束对链路保持正常工作时,可以触发扫描。

Description

集成地面/非地面网络中的联合波束管理
技术领域
本发明大体上涉及无线通信的波束管理,具体的,涉及集成地面/非地面网络中的联合波束管理。
背景技术
如本文所讨论的,地面无线接入网络是指常见的蜂窝电话和数据网络。相比之下,非地面无线接入网络是指使用机载飞行器或星载飞行器进行信号发送和接收的网络或网段。
用于非地面无线接入网络的星载飞行器的示例包括:低地轨道(low earthorbiting,LEO)卫星;中地轨道(medium earth orbiting,MEO)卫星;地球静止轨道(geostationary earth orbiting,GEO)卫星;高椭圆轨道(highly elliptical orbiting,HEO)卫星。用于非地面无线接入网络的机载飞行器的示例包括高空平台(high altitudeplatform,HAP),例如无人机系统(unmanned aircraft system,UAS),包括比空气轻(lighter than air,LTA)UAS和比空气重(heavier than air,HTA)UAS。这些平台通常在8km至50km的高度运行,并且被认为是准静止的。
已知地面网络(terrestrial network,TN)使用机载传输接收点(transmit andreceive point,TRP)。机载TRP通常部署在无人机类飞行器上约100m处。机载TRP可以被认为是TN或非地面网络(non-terrestrial network,NTN)的一部分,这取决于机载TRP是通过TN直接连接到地面核心网还是通过NTN使用无线回程间接连接到地面核心网。
无线蜂窝通信的发展已经支持使用定向能量,通常称为“波束”,实现基站与用户设备通信以及用户设备与基站通信。因此,已知现代无线设备参与波束管理过程。
蜂窝系统中的当前波束管理过程包括用于初始接入的波束扫描、物理层波束测量、波束故障检测和波束故障恢复。具体地,物理层波束测量可以测量层1参考信号接收功率(layer 1reference signal received power,L1-RSRP)或层1信号干扰噪声比(layer1signal-to-interference-and-noise ratio,L1-SINR)。所有这些过程都与监控“小区内的移动性”相关,因此这些过程并不被设计为扩展到与特定基站服务的特定小区对应的覆盖区域之外。
蜂窝系统中的波束故障检测(beam failure detection,BFD)过程可以基于用户设备(user equipment,UE)监控到服务基站的链路的各种质量。UE可以检测和测量BFD参考信号(BFD reference signal,BFD-RS)。基于这些测量,UE可以将BFD-RS的误块率(blockerror rate,BLER)与假设的物理下行控制信道(physical downlink control channel,PDCCH)BLER进行比较。如果BFD-RS的BLER低于假设的PDCCH BLER,则可以认为发生了波束故障实例(beam failure instance,BFI)。当发生了几个连续的BFI时,可以认为检测到“波束故障”。
蜂窝系统中的波束故障恢复(beam failure recovery,BFR)过程可以基于UE发起对新服务波束的搜索。UE可以响应于在当前服务波束上检测到波束故障而发起搜索。UE可以预先配置有“候选波束”,其中,候选波束对应于在波束故障检测之后可以用于UE与网络建立新波束对链路的波束。波束通常指空间滤波,其中,空间滤波是由UE、TRP等设备用于定向通信的信号处理技术。作为搜索的一部分,UE可以尝试检测和测量候选波束。UE可以确定候选波束中的哪个波束是“最佳”波束。如果最佳波束的质量高于某个阈值,则UE可以发起随机接入过程,作为BFR过程的最后一个步骤。
5G NR中的当前波束管理过程包括固有的耗时方面。即使波束管理功能(例如BFD和BFR)仅限于服务小区,UE查找可用候选波束也可能需要相当长的时间。在时间敏感的场景下,该相当长的时间可能会导致数据会话被丢弃。
发明内容
本申请的各方面涉及结合场景驱动的波束故障实例权重定义的主动波束管理过程。
已知5G NR中的当前波束管理过程具有有限的范围,这限制了它们的效率。由于波束管理过程限于服务小区,候选波束也限于服务小区,因此,UE没有机会考虑与相邻地面TRP关联的候选波束或与非地面TRP关联的候选波束。如果没有找到合适的候选波束,则UE从地面服务小区的波束中随机选择一个候选波束。
附加地,已知5G NR中的当前波束管理过程在本质上是被动的。在本申请中,波束对链路是发送器与接收器(例如,TRP与UE)之间的无线链路,其中,发送器(例如,TRP)使用发送波束,接收器(例如,UE)使用接收波束进行通信。当最终可操作的服务波束对链路发生故障时,可能认为UE从影响中恢复为时已晚,因此,UE必须花费时间寻找合适的候选波束。此外,在所有波束对链路都发生故障之后,TRP无法协助UE进行波束管理过程。
方便地,当TRP和UE联合执行波束管理流程时,启用场景驱动的波束管理。TRP可以对在各种场景中被赋予更高重要性的候选波束进行控制。
联合TRP/UE波束管理还支持集成地面无线覆盖和非地面无线覆盖。TRP具有配置非地面波束对链路的能力,支持UE无缝地利用地面TRP和非地面TRP。TRP具有将非地面波束配置为候选波束的能力,支持UE在适当的时候建立非地面BPL。
联合TRP/UE波束管理还支持免中断服务,其中,支持UE在主动扫描候选波束的同时保持功能波束对链路。例如,当只有一个波束对链路保持正常工作时,可以触发扫描。
根据本发明的一个方面,提供了一种波束故障恢复的方法。该方法包括:在第一波束对链路上接收第一波束故障检测参考信号;在第二波束对链路上接收第二波束故障检测参考信号;基于测量第一波束故障检测参考信号,检测第一多个波束故障实例;基于测量第二波束故障检测参考信号,检测第二多个波束故障实例;形成波束故障实例的加权和,包括以第一权重加权的第一多个波束故障实例和以第二权重加权的第二多个波束故障实例;当加权和超过阈值时,发起波束故障恢复过程。
根据本发明的一个方面,提供了一种设备。该设备包括存储指令的存储器、接收器和处理器。接收器用于在第一波束对链路上接收第一波束故障检测参考信号,并在第二波束对链路上接收第二波束故障检测参考信号。处理器用于通过执行指令执行以下操作:基于测量第一波束故障检测参考信号,检测第一多个波束故障实例;基于测量第二波束故障检测参考信号,检测第二多个波束故障实例;形成波束故障实例的加权和包括以第一权重加权的第一多个波束故障实例和以第二权重加权的第二多个波束故障实例;当加权和超过阈值时,发起波束故障恢复过程。
根据本发明的一个方面,提供了一种防止波束故障的方法。该方法包括:在多个波束对链路上接收波束故障检测参考信号;基于测量波束故障检测参考信号,检测多个连续波束故障实例;基于检测多个连续波束故障实例,检测多个波束对链路中除一个波束对链路之外的所有波束对链路上的波束故障;响应于在多个波束对链路中除一个波束对链路之外的所有波束对链路上检测到波束故障,发起波束故障防止过程。波束故障防止过程包括在多个候选波束中选择候选波束,从而获得选定候选波束,并在选定候选波束上建立新波束对链路。
根据本发明的一个方面,提供了一种设备。该设备包括存储指令的存储器、接收器和处理器。接收器用于在多个波束对链路上接收波束故障检测参考信号。处理器用于通过执行指令执行以下操作:基于测量波束故障检测参考信号,检测多个连续波束故障实例;基于检测多个连续波束故障实例,检测多个波束对链路中除一个波束对链路之外的所有波束对链路上的波束故障;响应于在多个波束对链路中除一个波束对链路之外的所有波束对链路上检测到波束故障,发起波束故障防止过程。波束故障防止过程包括在多个候选波束中选择候选波束,从而获得选定候选波束,并在选定候选波束上建立新波束对链路。
根据本发明的一个方面,提供了一种防止波束故障的方法。该方法包括:在波束对链路上接收波束故障检测参考信号;在波束对链路上检测第一类型的波束故障,其中,检测第一类型的波束故障基于测量波束故障检测参考信号并检测第一多个连续波束故障实例,第一类型的波束故障定义为在波束故障防止过程不活动时发生的波束故障;响应于在多个波束对链路中除一个波束对链路之外的所有波束对链路上检测到波束故障,发起波束故障防止过程。波束故障防止过程包括:在波束对链路上继续接收波束故障检测参考信号的同时扫描候选波束,从多个候选波束中选择候选波束,从而获得选定候选波束,并在选定候选波束上建立新波束对链路。
根据本发明的一个方面,提供了一种设备。该设备包括存储指令的存储器、接收器和处理器。接收器用于在波束对链路上接收波束故障检测参考信号。处理器用于通过执行指令执行以下操作:基于测量波束故障检测参考信号并检测第一多个连续波束故障实例来检测波束对链路上的第一类型的波束故障,第一类型的波束故障定义为在波束故障防止过程不活动时发生的波束故障;响应于检测到第一类型的波束故障,发起波束故障防止过程。波束故障防止过程包括:在波束对链路上继续接收波束故障检测参考信号的同时,扫描候选波束,从多个候选波束中选择候选波束,从而获得选定候选波束,并在选定候选波束上建立新波束对链路。
附图说明
为了更完整地理解当前的实施例及其优点,现在以示例的方式参考以下结合附图的描述,在附图中:
图1在示意图中示出了本发明实施例可以出现的通信系统,该通信系统包括多个示例性电子设备和多个示例性传输接收点以及各种网络;
图2在框图中示出了图1的通信系统,该通信系统包括多个示例性电子设备、示例性地面传输接收点和示例性非地面传输接收点以及各种网络;
图3作为框图示出了根据本申请的各方面的图2的示例性电子设备的元件、图2的示例性地面传输接收点的元件和图2的示例性非地面传输接收点的元件;
图4作为框图示出了根据本申请的各方面的可以包括在示例性电子设备、示例性地面传输接收点和示例性非地面传输接收点中的各种模块;
图5作为框图示出了根据本申请的各方面的感测管理功能;
图6A示出了根据本申请各方面的以时分复用方式在不同波束对链路上执行的测量的表示;
图6B示出了根据本申请各方面的以同时方式在不同波束对链路上执行的测量的表示;
图7以信号流图示出了根据本申请的各方面的图2的示例性电子设备、图2的示例性地面传输接收点和图2的示例性非地面传输接收点之间的用于加权波束故障实例推导的交互;
图8示出了根据本申请的各方面的加权波束故障实例推导和使用的方法中的示例性步骤;
图9作为框图示出了用户设备使用三个波束对链路连接到地面传输接收点的场景;
图10以信号流图示出了根据本申请的各方面的图2的示例性电子设备、图2的示例性地面传输接收点和图2的示例性非地面传输接收点之间的用于波束故障防止的交互;
图11示出了根据本申请各方面的波束故障防止方法中的示例性步骤;
图12以信号流程图示出了根据本申请的各方面的图2的示例性电子设备、图2的示例性地面传输接收点和图2的示例性非地面传输接收点之间的用于波束故障防止的交互;
图13示出了根据本申请各方面的波束故障防止方法中的示例性步骤;
图14以信号流程图示出了根据本申请的各方面的图2的示例性电子设备、图2的示例性地面传输接收点和图2的示例性非地面传输接收点之间的用于波束故障恢复的交互;以及
图15示出了根据本申请各方面的具有分类的波束故障恢复方法中的示例性步骤。
具体实施方式
为了说明,结合附图详细解释具体的示例性实施例。
本文阐述的实施例代表了足以实践所要求保护的主题的信息,并说明了实践这种主题的方法。根据附图阅读以下描述后,本领域技术人员将理解所要求保护的主题的概念,并将认识到这些概念的应用在本文没有特别说明。应理解,这些概念和应用在本发明和所附权利要求的范围内。
此外,可以理解,本文所公开的执行指令的任何模块、组件或设备可以包括或以其它方式访问一个或多个非瞬时性计算机/处理器可读存储介质,以存储信息,例如计算机/处理器可读指令、数据结构,程序模块和/或其它数据。非瞬时性计算机/处理器可读存储介质的示例的非详尽列表包括磁带盒,磁带,磁盘存储器或其它磁存储设备,只读光盘(compact disc read-only memory,CD-ROM)、数字视频光盘或数字多功能光盘(即DVD)、Blu-ray DiscTM等光盘,或其它光存储器,在任何方法或技术中实现的易失性和非易失性、可移动和不可移动介质,随机存取存储器(random-access memory,RAM),只读存储器(read-only memory,ROM),电可擦除可编程只读存储器(electrically erasableprogrammable read-only memory,EEPROM),闪存或其它存储技术。任何这些非瞬时性计算机/处理器存储介质可以是设备的一部分,也可以接入或连接到设备。用于实现本文中描述的应用或模块的计算机/处理器可读/可执行指令可以由这种非瞬时性计算机/处理器可读存储介质存储或以其它方式保存。
参考图1,作为说明性示例而非限制,提供了通信系统的简化示意图。通信系统100包括无线接入网络120。无线接入网络120可以是下一代(例如,第六代,“6G”或更高版本)无线接入网络,或传统(例如,5G、4G、3G或2G)无线接入网络。在无线接入网络120中,一个或多个通信电子设备(electric device,ED)110a、110b、110c、110d、110e、110f、110g、110h、110i、110j(通常称为110)可以彼此互连或连接到一个或多个网络节点(170a、170b,通常称为170)。核心网130可以是通信系统的一部分,并且可以依赖于或独立于通信系统100中使用的无线接入技术。通信系统100还包括公共交换电话网(public switched telephonenetwork,PSTN)140、互联网150和其它网络160。
图2示出了示例性通信系统100。通常,通信系统100能够使多个无线或有线元件传输数据和其它内容。通信系统100的目的可以是通过广播、多播和单播等提供内容,例如语音、数据、视频和/或文本。通信系统100可以通过在其组成元件之间共享资源(例如载波频谱带宽)来操作。通信系统100可以包括地面通信系统和/或非地面通信系统。通信系统100可以提供广泛的通信服务和应用(例如地球监测、遥感、被动感测和定位、导航和跟踪、自主传送和移动性等)。通信系统100可以通过地面通信系统和非地面通信系统的联合操作提供高度的可用性和鲁棒性。例如,将非地面通信系统(或其组件)集成到地面通信系统中可以实现包括多个层的异构网络。与传统通信网络相比,异构网络可以通过高效的多链路联合操作、更灵活的功能共享以及地面网络与非地面网络之间更快的物理层链路切换来实现更好的整体性能。
地面通信系统和非地面通信系统可以被认为是通信系统的子系统。在图2所示的示例中,通信系统100包括电子设备(electronic device,ED)110a、110b、110c、110d(通常称为ED 110)、无线接入网络(radio access network,RAN)120a、120b、非地面通信网络120c、核心网130、公共交换电话网(public switched telephone network,PSTN)140、互联网150和其它网络160。RAN 120a、120b包括相应的基站(base station,BS)170a、170b,其通常可以称为地面传输接收点(terrestrial transmit and receive point,T-TRP)170a、170b。非地面通信网络120c包括接入节点172,其通常可以称为非地面传输接收点(non-terrestrial transmit and receive point,NT-TRP)172。
替代地或附加地,任何ED 110可以用于接入任何T-TRP 170a、170b和NT-TRP 172、互联网150、核心网130、PSTN 140、其它网络160或上述各项的任何组合,或与之连接或通信。在一些示例中,ED 110a可以通过地面空口190a与T-TRP 170a传输上行和/或下行传输。在一些示例中,ED 110a、110b、110c和110d还可以通过一个或多个侧行链路空口190b直接彼此通信。在一些示例中,ED 110d可以通过非地面空口190c与NT-TRP 172传输上行和/或下行传输。
空口190a和190b可以使用类似的通信技术,例如任何合适的无线接入技术。例如,通信系统100可以在空口190a和190b中实现一种或多种信道接入方法,例如码分多址(codedivision multiple access,CDMA)、空分多址(space division multiple access,SDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency divisionmultiple access,FDMA)、正交FDMA(orthogonal FDMA,OFDMA)或单载波FDMA(single-carrier FDMA,SC-FDMA)。空口190a和190b可以使用其它高维信号空间,其可以涉及正交和/或非正交维度的组合。
非地面空口190c可以通过无线链路(或简称为链路)实现ED 110d与一个或多个NT-TRP 172之间的通信。对于一些示例,链路是用于单播传输的专用连接、用于广播传输的连接或一组ED 110与用于多播传输的一个或多个NT-TRP 175之间的连接。
RAN 120a和120b与核心网130通信,以便向ED 110a、110b、110c提供各种服务,例如语音、数据和其它服务。RAN 120a和120b和/或核心网130可以与一个或多个其它RAN(未示出)直接或间接通信,该一个或多个其它RAN可以(或可以不)直接由核心网130服务,并且可以(或可以不)采用与RAN 120a、RAN 120b或两者相同的无线接入技术。核心网130还可以用作(i)RAN 120a和120b,或ED 110a、110b、110c,或两者与(ii)其它网络(例如PSTN 140、互联网150和其它网络160)之间的网关接入。此外,ED 110a、110b、110c中的部分或全部可以包括使用不同无线技术和/或协议通过不同无线链路与不同无线网络进行通信的功能。代替无线通信(或除无线通信之外),ED 110a、110b、110c还可以通过有线通信信道与服务提供商或交换机(未示出)通信以及与互联网150通信。PSTN 140可以包括用于提供传统电话业务(plain old telephone service,POTS)的电路交换电话网络。互联网150可以包括计算机网络和/或子网(内网),并包括互联网协议(Internet Protocol,IP)、传输控制协议(Transmission Control Protocol,TCP)、用户数据报协议(User Datagram Protocol,UDP)等协议。ED 110a、110b、110c可以是能够根据多个无线接入技术操作的多模设备,并可以包括支持这些技术所需的多个收发器。
图3示出了ED 110和基站170a、170b和/或170c的另一示例。ED 110用于连接人、物、机器等。ED 110可以广泛应用于各种场景,例如,蜂窝通信、设备到设备(device-to-device,D2D)、车联网(vehicle to everything,V2X)、对等(peer-to-peer,P2P)、机器到机器(machine-to-machine,M2M)、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实(virtual reality,VR)、增强现实(augmentedreality,AR)、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市、无人机、机器人、遥感、被动感测、定位、导航与跟踪、自主交付和移动性等。
每个ED 110表示用于无线操作的任何合适的终端用户设备,并且可以包括如下设备(或可以称为):用户设备(UE)、无线发送/接收单元(wireless transmit/receive unit,WTRU)、移动台、固定或移动用户单元、蜂窝电话、站点(station,STA)、机器类通信(machinetype communication,MTC)设备、个人数字助理(personal digital assistant,PDA)、智能手机、笔记本电脑、计算机、平板电脑、无线传感器、消费电子设备、智能本、车辆、汽车、卡车、公共汽车、火车或IoT设备、工业设备或上述设备中的装置(例如通信模块、调制解调器或芯片)等。下一代ED 110可以使用其它术语来指代。基站170a和170b都是T-TRP,并且在下文中被称为T-TRP 170。也如图3所示,NT-TRP在下文中被称为NT-TRP 172。连接到T-TRP170和/或NT-TRP 172的每个ED 110可以响应于以下中的一项或多项动态地或半静态地开启(即,建立、激活或启用)、关闭(即,释放、去激活或禁用)和/或配置:连接可用性和连接必要性。
ED 110包括耦合到一个或多个天线204的发送器201和接收器203。仅示出了一个天线204。替代地,其中一个、部分或全部天线204可以是面板。例如,发送器201和接收器203可以集成为收发器。收发器用于对数据或其它内容进行调制,以便由至少一个天线204或由网络接口控制器(network interface controller,NIC)发送。收发器还可以用于对至少一个天线204接收到的数据或其它内容进行解调。每个收发器包括任何合适的用于生成进行无线或有线传输的信号和/或用于处理通过无线或有线方式接收到的信号的结构。每个天线204包括任何合适的用于发送和/或接收无线或有线信号的结构。
ED 110包括至少一个存储器208。存储器208存储由ED 110使用、生成或收集的指令和数据。例如,存储器208可以存储由一个或多个处理单元(例如,处理器210)执行的软件指令或模块,该软件指令或模块用于实现本文所描述的一些或全部功能和/或实施例。每个存储器208包括任何合适的易失性和/或非易失性存储与检索设备。可以使用任何合适类型的存储器,例如随机存取存储器(random access memory,RAM)、只读存储器(read onlymemory,ROM)、硬盘、光盘、用户识别模块(subscriber identity module,SIM)卡、记忆棒、安全数字(secure digital,SD)存储卡、处理器上高速缓存等。
ED 110还可以包括一个或多个输入/输出设备(未示出)或接口(例如图1中的互联网150的有线接口)。输入/输出设备可以与网络中的用户或其它设备进行交互。每个输入/输出设备包括用于例如通过操作向用户提供信息或从用户接收信息的任何合适的结构,例如扬声器、麦克风、小键盘、键盘、显示器或触摸屏,包括网络接口通信。
ED 110包括用于执行操作的处理器210,这些操作包括:与准备用于到NT-TRP 172和/或T-TRP 170的上行传输的传输相关的那些操作、与处理从NT-TRP 172和/或T-TRP 170接收的下行传输相关的那些操作,以及与处理到另一个ED 110和来自另一个ED 110的侧行链路传输相关的那些操作。与准备用于上行传输的传输相关的处理操作可以包括编码、调制、发送波束成形和生成用于传输的符号等操作。与处理下行传输相关的处理操作可以包括诸如接收波束成形、解调和解码接收到的符号的操作。根据实施例,接收器203可以接收下行传输(可能使用接收波束成形),并且处理器210可以从下行传输中提取信令(例如通过检测和/或解码信令)。信令的示例可以是由NT-TRP 172和/或T-TRP 170发送的参考信号。在一些实施例中,处理器210根据从T-TRP 170接收的波束方向的指示(例如波束角度信息(beam angle information,BAI))实现发送波束成形和/或接收波束成形。在一些实施例中,处理器210可以执行与网络接入(例如初始接入)和/或下行同步相关的操作,例如与检测同步序列、解码和获取系统信息等相关的操作。在一些实施例中,处理器210可以使用从NT-TRP 172和/或从T-TRP 170接收的参考信号等执行信道估计。
尽管未示出,但处理器210可以形成发送器201的一部分和/或接收器203的一部分。尽管未示出,但存储器208可以形成处理器210的一部分。
处理器210、发送器201的处理组件和接收器203的处理组件各自可以由相同或不同的一个或多个处理器实现,一个或多个处理器用于执行存储在存储器(例如,存储器208)中的指令。替代地,处理器210、发送器201的处理组件和接收器203的处理组件中的一些或全部各自可以使用专用电路来实现,例如编程的现场可编程门阵列(field-programmablegate array,FPGA)、图形处理单元(graphical processing unit,GPU),或专用集成电路(application-specific integrated circuit,ASIC)。
T-TRP 170在一些实现方式中可以以其它名称已知,例如基站、基站收发站(basetransceiver station,BTS)、无线基站、网络节点、网络设备、网络侧设备、发送/接收节点、节点B、演进基站(eNodeB或eNB)、家庭基站、下一代基站(next generation NodeB,gNB)、传输点(transmission point,TP)、站点控制器、接入点(access point,AP)或无线路由器、中继站、远程射频头、地面节点、地面网络设备、地面基站、基带单元(base band unit,BBU)、远程射频单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、远程射频头(remote radio head,RRH)、中央单元(central unit,CU)、分布式单元(distribute unit,DU)、定位节点等。T-TRP 170可以是宏BS、微BS、中继节点、施主节点等或其组合。T-TRP 170可以指上述设备或指上述设备中的装置(例如,通信模块、调制解调器或芯片)。
在一些实施例中,T-TRP 170的部分可以是分布式的。例如,T-TRP 170的一些模块可以位于远离容纳用于T-TRP 170的天线256的设备的位置,并且可以通过有时称为前传的通信链路(未示出)(例如通用公共无线接口(common public radio interface,CPRI))耦合到容纳天线256的设备。因此,在一些实施例中,术语T-TRP 170还可以指网络侧上执行诸如确定ED 110的位置、资源分配(调度)、消息生成和编码/解码等处理操作的模块,并且不一定是容纳T-TRP 170的天线256的设备的一部分。这些模块也可以耦合到其它T-TRP。在一些实施例中,T-TRP 170实际上可以是多个T-TRP,它们例如通过使用协调的多点传输一起工作,以服务于ED 110。
如图3所示,T-TRP 170包括耦合到一个或多个天线256的至少一个发送器252和至少一个接收器254。仅示出了一个天线256。替代地,其中一个、部分或全部天线256可以是面板。发送器252和接收器254可以集成为收发器。T-TRP 170还包括处理器260,用于执行包括与以下相关的操作:准备用于到ED 110的下行传输的传输;处理从ED 110接收的上行传输;准备用于到NT-TRP 172的回程传输的传输;处理通过回程从NT-TRP 172接收的传输。与准备用于下行或回程传输的传输相关的处理操作可以包括编码、调制、预编码(例如,多输入多输出(multiple input multiple output,MIMO)预编码)、发送波束成形以及生成用于传输的符号等操作。与处理上行链路中接收的或通过回程接收的传输相关的处理操作可以包括接收波束成形、解调接收符号和解码接收符号等操作。处理器260还可以执行与网络接入(例如,初始接入)和/或下行同步相关的操作,例如生成同步信号块(synchronizationsignal block,SSB)的内容、生成系统信息等。在一些实施例中,处理器260还生成波束方向的指示,例如,BAI,其可以由调度器253调度来进行传输。处理器260执行本文描述的其它网络侧处理操作,例如确定ED 110的位置、确定将NT-TRP 172部署到何处等。在一些实施例中,处理器260可以生成信令,例如,以配置ED 110的一个或多个参数和/或NT-TRP 172的一个或多个参数。由处理器260生成的任何信令都由发送器252发送。需要说明的是,本文中使用的“信令”可以替代地称为控制信令。动态信令可以在控制信道(例如,物理下行控制信道(physical downlink control channel,PDCCH))中传输,静态或半静态的高层信令可以包括在数据信道(例如,物理下行共享信道(physical downlink shared channel,PDSCH))中传输的分组中。
调度器253可以耦合到处理器260。调度器253可以包括在T-TRP 170内,或者与T-TRP 170分开操作。调度器253可以调度上行传输、下行传输和/或回程传输,包括发布调度授权和/或配置免调度(“配置的授权”)资源。T-TRP 170还包括用于存储信息和数据的存储器258。存储器258存储由T-TRP 170使用、生成或收集的指令和数据。例如,存储器258可以存储由处理器260执行的软件指令或模块,该软件指令或模块用于实现本文所描述的一些或全部功能和/或实施例。
尽管未示出,但处理器260可以形成发送器252的一部分和/或接收器254的一部分。此外,尽管未示出,但是处理器260可以实现调度器253。尽管未示出,但存储器258可以形成处理器260的一部分。
处理器260、调度器253、发送器252的处理组件和接收器254的处理组件各自可以由相同或不同的一个或多个处理器之一实现,一个或多个处理器用于执行存储在存储器(例如,存储器258)中的指令。替代地,处理器260、调度器253、发送器252的处理组件和接收器254的处理组件中的一些或全部可以使用FPGA、GPU或ASIC等专用电路来实现。
需要说明的是,NT-TRP 172仅作为示例被示为无人机,NT-TRP 172可以以任何合适的非地面形式实现。此外,NT-TRP 172在一些实现中可以以其它名称已知,例如非地面节点、非地面网络设备或非地面基站。NT-TRP 172包括耦合到一个或多个天线280的发送器272和接收器274。仅示出了一个天线280。替代地,其中一个、部分或全部天线可以是面板。发送器272和接收器274可以集成为收发器。NT-TRP172还包括处理器276,用于执行包括与以下相关的操作:准备用于到ED 110的下行传输的传输;处理从ED 110接收的上行传输;准备用于到T-TRP 170的回程传输的传输;处理通过回程从T-TRP 170接收的传输。与准备用于下行传输或回程传输的传输相关的处理操作可以包括编码、调制、预编码(例如MIMO预编码)、发送波束成形和生成用于传输的符号等操作。与处理上行链路中接收的或通过回程接收的传输相关的处理操作可以包括接收波束成形、解调接收信号和解码接收符号等操作。在一些实施例中,处理器276根据从T-TRP 170接收的波束方向信息(例如,BAI)实现发送波束成形和/或接收波束成形。在一些实施例中,处理器276可以生成信令,例如,以配置ED110的一个或多个参数。在一些实施例中,NT-TRP 172实现物理层处理,但不实现媒体访问控制(medium access control,MAC)或无线链路控制(radio link control,RLC)层的功能等高层功能。由于这只是一个示例,所以,更一般地,NT-TRP 172除了物理层处理之外,还可以实现高层的功能。
NT-TRP 172还包括用于存储信息和数据的存储器278。尽管未示出,但处理器276可以形成发送器272的一部分和/或接收器274的一部分。尽管未示出,但存储器278可以形成处理器276的一部分。
处理器276、发送器272的处理组件和接收器274的处理组件各自可以由相同或不同的一个或多个处理器实现,一个或多个处理器用于执行存储在存储器(例如,存储器278)中的指令。替代地,处理器276、发送器272的处理组件和接收器274的处理组件中的一些或全部可以使用编程FPGA、GPU或ASIC等专用电路来实现。在一些实施例中NT-TRP 172实际上可以是多个NT-TRP,它们例如通过协调的多点传输一起工作,以服务于ED 110。
T-TRP 170、NT-TRP 172和/或ED 110可以包括其它组件,但为了清楚起见,这些组件被省略。
根据图4,本文提供的各实施例方法的一个或多个步骤可以由对应的单元或模块执行。图4示出了设备中的单元或模块,例如ED 110、T-TRP 170或NT-TRP 172中的单元或模块。例如,信号可以由发送单元或由发送模块发送。信号可以由接收单元或由接收模块接收。信号可以由处理单元或处理模块处理。其它步骤可以由人工智能(artificialintelligence,AI)或机器学习(machine learning,ML)模块执行。相应的单元或模块可以使用硬件、执行软件的一个或多个组件或设备或其组合来实现。例如,单元或模块中的一个或多个可以是集成电路,例如编程的FPGA、GPU或ASIC。应当理解,如果上述模块使用供处理器等执行的软件实现,则这些模块可以由处理器根据需要全部或部分检索,单独或集体检索用于处理,根据需要在一个或多个实例中检索,并且这些模块本身可以包括用于进一步部署和实例化的指令。
关于ED 110、T-TRP 170和NT-TRP 172的附加细节是本领域技术人员已知的。因此,为了清楚起见,这里省略了这些详细内容。
空口通常包括多个组件和相关参数,这些组件和参数共同指定如何在两个或更多个通信设备之间的无线通信链路上发送和/或接收传输。例如,空口可以包括定义用于在无线通信链路上传送信息(例如,数据)的一个或多个波形、一个或多个帧结构、一个或多个多址方案、一个或多个协议、一个或多个编码方案和/或一个或多个调制方案的一个或多个组件。无线通信链路可以支持无线接入网络与用户设备之间的链路(例如,“Uu”链路),和/或无线通信链路可以支持设备与设备之间的链路,例如,两个用户设备之间的链路(例如,“侧行链路”),和/或无线通信链路可以支持非地面(non-terrestrial,NT)通信网络与用户设备(user equipment,UE)之间的链路。下面是上述组件的一些示例。
波形组件可以指定正在传输的信号的形状和形式。波形选项可以包括正交多址波形和非正交多址波形。这种波形选项的非限制性示例包括正交频分复用(orthogonalfrequency division multiplexing,OFDM)、滤波OFDM(filtered OFDM,f-OFDM)、时间窗OFDM、滤波器组多载波(filter bank multicarrier,FBMC)、通用滤波多载波(universalfiltered multicarrier,UFMC)、广义频分复用(generalized frequency divisionmultiplexing,GFDM)、小波包调制(wavelet packet modulation,WPM)、超奈奎斯特(faster than nyquist,FTN)波形和低峰均功率比波形(低PAPR WF)。
帧结构组件可以指定帧或帧组的配置。帧结构组件可以指示帧或帧组的时间、频率、导频签名、代码或其它参数中的一个或多个参数。帧结构的更多细节将在下文讨论。
多址方案组件可以指定多个接入技术选项,包括定义通信设备如何共享公共物理信道的技术,例如:TDMA;FDMA;CDMA;SDMA;SC-FDMA;低密度签名多载波CDMA(low densitysignature multicarrier CDMA,LDS-MC-CDMA);非正交多址(non-orthogonal multipleaccess,NOMA);图样分割多址(pattern division multiple access,PDMA);格形分割多址(lattice partition multiple access,LPMA);资源扩展多址(resource spreadmultiple access,RSMA);稀疏码多址(sparse code multiple access,SCMA)。此外,多接入技术选项可以包括:调度接入与非调度接入,也称为免授权接入;非正交多址与正交多址,例如,通过专用信道资源(例如,多个通信设备之间不共享);基于竞争的共享信道资源与非基于竞争的共享信道资源;基于认知无线的接入。
混合自动重传请求(hybrid automatic repeat request,HARQ)协议组件可以指定如何进行传输和/或重传。传输和/或重传机制选项的非限制性示例包括指定调度的数据管道大小、用于传输和/或重传的信令机制以及重传机制的那些机制选项。
编码调制组件可以指定传输的信息可以如何进行编码/解码和调制/解调以进行发送/接收。编码可以指错误检测和前向纠错的方法。编码选项的非限制性示例包括涡轮格形码、涡轮乘积码、喷泉码、低密度奇偶校验码和极化码。调制可以简单地指星座(包括例如调制技术和阶数),或者更具体地指各种类型的高级调制方法,例如分层调制和低PAPR调制。
在一些实施例中,空口可以是“一刀切”的概念。例如,可能一旦定义了空口,空口内的组件就无法更改或适配。在一些实现方式中,只能配置有限的空口参数或模式,例如循环前缀(cyclic prefix,CP)长度或MIMO模式。在一些实施例中,空口设计可以提供统一或灵活的框架,以支持已知的6GHz频带以下的频率和6GHz频带(例如,毫米波频带)以上的频率,用于授权和非授权接入。例如,由可缩放系统参数和符号持续时间提供的可配置空口的灵活性可以支持针对不同的频谱频带和不同的服务/设备优化传输参数。又例如,统一的空口可以在频域上是自包含的,并且频域自包含的设计可以通过在频率和时间上不同服务之间共享信道资源来支持更灵活的RAN切片。
帧结构是定义时域信号传输结构的无线通信物理层的特征,例如,用于支持基本时域传输单元的定时参考和定时调整。通信设备之间的无线通信可以在由帧结构控制的时频资源上进行。帧结构有时可以称为无线帧结构。
根据帧结构和/或帧结构中的帧的配置,频分双工(frequency division duplex,FDD)和/或时分双工(time-division duplex,TDD)和/或全双工(full duplex,FD)通信是可能的。FDD通信是指不同方向(例如,上行与下行)的传输发生在不同频段上。TDD通信是指不同方向(例如,上行与下行)的传输在不同的持续时间内发生。FD通信是指发送和接收发生在相同的时频资源上,即设备可以同时在相同的频率资源上发送和接收。
帧结构的一个示例是指定用于已知的长期演进(long-term evolution,LTE)蜂窝系统中的帧结构,具有以下规格:每个帧的持续时间为10ms;每个帧有10个子帧,每个子帧的持续时间为1ms;每个子帧包括两个时隙,每个时隙的持续时间为0.5ms;每个时隙用于传输7个OFDM符号(假设正常CP);每个OFDM符号具有符号持续时间和与子载波数量和子载波间隔相关的特定带宽(或部分带宽或带宽分割);帧结构基于OFDM波形参数,例如子载波间隔和CP长度(其中,CP具有固定长度或有限长度选项);TDD中上行与下行之间的切换间隔被指定为OFDM符号持续时间的整数时间。
帧结构的另一个示例是指定用于已知的新空口(new radio,NR)蜂窝系统的帧结构,具有以下规格:支持多个子载波间隔,每个子载波间隔对应相应的系统参数;帧结构取决于系统参数,但在任何情况下,帧长度设置为10ms,每个帧由10个子帧组成,每个子帧的持续时间为1ms;一个时隙定义为14个OFDM符号;而时隙长度取决于系统参数。例如,正常CP15kHz子载波间隔的NR帧结构(“系统参数1”)和正常CP 30kHz子载波间隔的NR帧结构(“系统参数2”)是不同的。对于15kHz子载波间隔,时隙长度为1ms,对于30kHz子载波间隔,时隙长度为0.5ms。NR帧结构可能比LTE帧结构具有更大的灵活性。
帧结构的另一个示例是,例如,用于6G网络或更高版本的网络。在灵活帧结构中,可以将符号块定义为具有该灵活帧结构中可以调度的最短持续时间的持续时间。符号块可以是具有可选的冗余部分(例如,CP部分)和信息(例如,数据)部分的传输单元。OFDM符号是符号块的示例。替代地,符号块可以称为符号。灵活帧结构的实施例包括可以是可配置的不同参数,例如,帧长度、子帧长度、符号块长度等。在灵活帧结构的一些实施例中,可能的可配置参数的非穷举列表包括:帧长度;子帧持续时间;时隙配置;子载波间隔(subcarrierspacing,SCS);基本传输单元的灵活传输持续时间;灵活切换间隙。
帧长度不需要限制在10ms,帧长度可以是可配置的,并随着时间的推移而变化。在一些实施例中,每个帧包括一个或多个下行同步信道和/或一个或多个下行广播信道,每个同步信道和/或广播信道可以通过不同的波束成形在不同的方向上传输。帧长度可以是多个可能的值,并根据应用场景配置。例如,自动驾驶车辆可能需要相对较快的初始接入,在这种情况下,自动驾驶车辆应用对应的帧长度可以设置为5ms。又如,房屋上的智能电表可能不需要快速初始接入,在这种情况下,智能电表应用对应的帧长度可以设置为20ms。
子帧可能在灵活帧结构中定义,也可能不在灵活帧结构中定义,具体取决于实现方式。例如,帧可以被定义为包括时隙,但不包括子帧。在其中定义了子帧的帧中,例如,用于时域对齐,子帧的持续时间可以是可配置的。例如,子帧长度可以配置为0.1ms或0.2ms或0.5ms或1ms或2ms或5ms等。在一些实施例中,如果在特定场景中不需要子帧,则子帧长度可以被定义为与帧长度相同,也可以不定义。
时隙可能在灵活帧结构中定义,也可能不在灵活帧结构中定义,具体取决于实现方式。在定义了时隙的帧中,则时隙的定义(例如,在持续时间和/或符号块的数量上)可以是可配置的。在一个实施例中,时隙配置对于所有UE 110或一组UE 110是公共的。对于这种情况,可以在广播信道或一个或多个公共控制信道中向UE 110发送时隙配置信息。在其它实施例中,时隙配置可以是UE特定的,在这种情况下,时隙配置信息可以在UE特定的控制信道中传输。在一些实施例中,时隙配置信令可以与帧配置信令和/或子帧配置信令一起传输。在其它实施例中,时隙配置可以独立于帧配置信令和/或子帧配置信令传输。通常,时隙配置可以是系统公共的、基站公共的、UE组公共的或UE特定的。
SCS的取值范围为15KHz至480KHz。SCS可以随频谱频率和/或最大UE速度而变化,以最小化多普勒频移和相位噪声的影响。在一些示例中,可以存在单独的发送和接收帧,并且接收帧结构中的符号的SCS可以独立于发送帧结构中的符号的SCS配置。接收帧中的SCS可以与发送帧中的SCS不同。在一些示例中,每个发送帧的SCS可以是每个接收帧的SCS的一半。如果接收帧与发送帧之间的SCS不同,例如,如果使用逆向离散傅里叶变换(inversediscrete Fourier transform,IDFT)而不是快速傅里叶变换(fast Fourier transform,FFT)来实现更灵活的符号持续时间,则该差异不必按因子2进行缩放。帧结构的附加示例可以与不同的SCS一起使用。
基本传输单元可以是符号块(替代地称为符号),通常包括冗余部分(称为CP)和信息(例如,数据)部分。在一些实施例中,可以从符号块中省略CP。CP长度可以是灵活的和可配置的。CP长度可以在帧内是固定的,也可以在帧内是灵活的,CP长度可以随帧的改变而改变,或随帧组的改变而改变,或随子帧的改变而改变,或随时隙的改变而改变,或动态地随调度的改变而改变。信息(例如,数据)部分可以是灵活的和可配置的。与可以定义的符号块相关的另一个可能的参数是CP持续时间与信息(例如,数据)持续时间的比率。在一些实施例中,符号块长度可以根据如下进行调整:信道条件(例如,多径延迟,多普勒);和/或时延要求;和/或可用持续时间。又如,可以调整符号块长度以适应帧中的可用持续时间。
帧可以包括用于来自基站170的下行传输的下行部分和用于来自UE 110的上行传输的上行部分。每个上行部分和下行部分之间可能存在间隙,该间隙称为切换间隙。切换间隙长度(持续时间)可以是可配置的。切换间隙持续时间可以在帧内是固定的,也可以在帧内是灵活的,切换间隙持续时间可以随帧的改变而改变,或随帧组的改变而改变,或随子帧的改变而改变,或随时隙的改变而改变,或动态地随调度的改变而改变。
基站170等设备可以在小区上提供覆盖。与设备的无线通信可以在一个或多个载波频率上进行。载波频率可以称为载波。载波可以替代地称为分量载波(componentcarrier,CC)。载波可以通过其带宽和参考频率来表征,例如载波的中心频率、最低频率或最高频率。载波可以在授权频谱上,也可以在非授权频谱上。与设备的无线通信也可以或替代地在一个或多个带宽部分(bandwidth part,BWP)上进行。例如,载波可以有一个或多个BWP。更一般地,可以在频谱上与设备进行无线通信。频谱可以包括一个或多个载波和/或一个或多个BWP。
小区可以包括一个或多个下行资源,可选地,包括一个或多个上行资源。小区可以包括一个或多个上行资源,可选地,包括一个或多个下行资源。小区可以同时包括一个或多个下行资源和一个或多个上行资源。例如,小区可以只包括一个下行载波/BWP,或者只包括一个上行载波/BWP,或者包括多个下行载波/BWP,或者包括多个上行载波/BWP,或者包括一个下行载波/BWP和一个上行载波/BWP,或者包括一个下行载波/BWP和多个上行载波/BWP,或者包括多个下行载波/BWP和一个上行载波/BWP,或者包括多个下行载波/BWP和多个上行载波/BWP。在一些实施例中,小区可以替代地或附加地包括一个或多个侧行链路资源,包括侧行链路发送资源和接收资源。
BWP是载波上连续或非连续的频率子载波的集合,或者多个载波上连续或非连续的频率子载波的集合,或者非连续或连续的频率子载波的集合,可以具有一个或多个载波。
在一些实施例中,载波可以具有一个或多个BWP,例如,载波可以具有20MHz的带宽并且由一个BWP组成,或者一个载波可以具有80MHz的带宽并且由两个相邻的BWP组成,等等。在其它实施例中,BWP可以具有一个或多个载波,例如,BWP的带宽可以为40MHz并且由两个相邻的连续的载波组成,其中,每个载波的带宽为20MHz。在一些实施例中,BWP可以包括由多个非连续多载波组成的非连续频谱资源,其中,非连续多载波中的第一载波可以在mmW频段,第二载波可以在低频段(例如2GHz频段),第三载波(如果存在)可以在THz波段,第四载波(如果存在)可以在可见光波段。一个载波中属于BWP的资源可以是连续的,也可以是非连续的。在一些实施例中,BWP在一个载波上具有非连续的频谱资源。
无线通信可以在占用的带宽上进行。占用的带宽可以定义为频带的宽度,使得在下限频率以下和上限值频率以上,发射的平均功率均等于总平均发送功率的指定百分比,β/2,例如,β/2的值取为0.5%。
载波、BWP或占用的带宽可以:由网络设备(例如,基站170)例如在物理层控制信令(例如已知下行控制信道(DCI))中动态地发信令通知;或由网络设备(例如,基站170)例如在无线资源控制(radio resource control,RRC)信令中或在媒体接入控制(mediumaccess control,MAC)层中的信令中半静态地发信令通知;或基于应用场景预定义;或由UE110作为UE 110已知的其它参数的函数确定;或可以由标准固定。
用户设备(user equipment,UE)位置信息通常用于蜂窝通信网络中,以改善网络的各种性能指标。例如,这些性能指标可能包括容量、敏捷性和效率。当网络的元件在描述UE操作的无线环境的先验信息的上下文中利用UE的位置、行为、移动性模式等时,可以实现改进。
感测系统可以用于帮助收集UE姿态信息。UE姿态信息可以被定义为包括UE在全局坐标系中的位置、UE在全局坐标系中的移动速度和方向、方位信息和关于无线环境的信息。“位置”也称为“定位”,这两个术语在本文中可以互换使用。众所周知的感测系统的示例包括RADAR(无线探测和测距)和LIDAR(光探测和测距)。尽管感测系统可以与通信系统分开,但使用集成系统收集信息可能是有利的,这减少了系统中的硬件(和成本)以及执行这两种功能所需的时间、频率或空间资源。但是,使用通信系统硬件来执行UE姿态和环境信息的感测是一个极具挑战性和开放性的问题。该问题的难度与通信系统的有限分辨率、环境的动态性以及需要估计其电磁特性和位置的大量物体等因素相关。
因此,集成感测和通信(也称为集成通信和感测)是现有和未来通信系统中一个理想的功能。
任一或全部ED 110和BS170可以是系统100中的感测节点。感测节点是通过发送和接收感测信号来执行感测的网络实体。一些感测节点是同时执行通信和感测的通信设备。但是,有些感测节点可能不执行通信,而是专门用于感测。感测代理174是专用于感测的感测节点的示例。与ED 110和BS170不同,感测代理174不发送或接收通信信号。但是,感测代理174可以在通信系统100内传输配置信息、感测信息、信令信息或其它信息。感测代理174可以与核心网130进行通信,以与通信系统100的其余设备进行信息通信。例如,感测代理174可以确定ED 110a的位置,并通过核心网130将该信息发送到基站170a。虽然图2中只示出了一个感测代理174,但通信系统100中可以实现任何数量的感测代理。在一些实施例中,一个或多个感测代理可以在一个或多个RAN 120处实现。
感测节点可以组合基于感测的技术与基于参考信号的技术,以增强UE姿态确定。这种类型的感测节点也可以称为感测管理功能(sensing management function,SMF)。在一些网络中,SMF也可以称为位置管理功能(location management function,LMF)。SMF可以实现为物理上独立的实体,位于核心网130处,与多个BS170连接。在本申请的其它方面中,SMF可以通过由处理器260执行的逻辑实现为共同位于BS170内的逻辑实体。
如图5所示,当实现为物理上独立的实体时,SMF 176包括至少一个处理器290、至少一个发送器282、至少一个接收器284、一个或多个天线286和至少一个存储器288。可以使用收发器(未示出)代替发送器282和接收器284。调度器283可以耦合到处理器290。调度器283可以包括在SMF 176内或与SMF 176分开操作。处理器290实现SMF 176的各种处理操作,例如信号编码、数据处理、功率控制、输入/输出处理或任何其它功能。处理器290还可以用于实现上面详细描述的部分或全部功能和/或实施例。每个处理器290包括用于执行一个或多个操作的任何合适的处理或计算设备。例如,每个处理器290可以包括微处理器、微控制器、数字信号处理器、现场可编程门阵列或专用集成电路。
基于参考信号的姿态确定技术属于“主动”姿态估计范式。在主动姿态估计范式中,姿态信息的询问者(例如,UE 110)参与确定询问者的姿态的过程。查询器可以发送或接收(或发送和接收)姿势确定过程特定的信号。基于已知的全球定位系统(globalpositioning system,GPS)等全球导航卫星系统(global navigation satellite system,GNSS)的定位技术是主动姿态估计范式的其它示例。
相比之下,例如基于雷达的感测技术可以被认为属于“被动”姿态确定范式。在被动姿态确定范式中,目标忽略了姿态确定过程。
通过将感测和通信集成在一个系统中,系统不需要仅根据单一范式运行。因此,基于感测的技术和基于参考信号的技术的组合可以产生增强的姿态确定。
例如,增强的姿态确定可以包括获取UE信道子空间信息,这对于感测节点处的UE信道重建特别有用,特别是对于基于波束的操作和通信。UE信道子空间是在空间域上定义的整个代数空间的子集,从TP至UE的整个信道位于其中。因此,UE信道子空间以非常高的精度定义TP至UE信道。在其它子空间上传输的信号对UE信道的贡献可以忽略不计。了解UE信道子空间有助于减少UE的信道测量和网络侧的信道重建所需的工作。因此,与传统方法相比,基于感测的技术和基于参考信号的技术的组合可以以更少的开销实现UE信道重建。子空间信息还可以促进基于子空间的感测,以降低感测复杂度,提高感测精度。
在集成感测和通信的一些实施例中,相同的无线接入技术(radio accesstechnology,RAT)用于感测和通信。这避免了需要在一个载波频谱下复用两个不同的RAT,或者需要为两个不同的RAT使用两个不同的载波频谱。
在一个RAT下集成感测和通信的实施例中,第一组信道可以用于传输感测信号,第二组信道可以用于传输通信信号。在一些实施例中,第一组信道中的每个信道和第二组信道中的每个信道是逻辑信道、传输信道或物理信道。
在物理层,可以通过单独的物理信道进行通信和感测。例如,定义第一物理下行共享信道PDSCH-C用于数据通信,定义第二物理下行共享信道PDSCH-S用于感测。类似地,可以为上行通信和感测定义单独的物理上行共享信道(physical uplink shared channel,PUSCH)、PUSCH-C和PUSCH-S。
在另一示例中,相同的PDSCH和PUSCH也可以用于通信和感测,其中,为通信和感测定义了单独的逻辑层信道和/或传输层信道。还需要说明的是,用于感测的一个或多个控制信道和一个或多个数据信道可以具有相同或不同的信道结构(格式),占用相同或不同的频带或带宽部分。
在另一示例中,公共物理下行控制信道(physical downlink control channel,PDCCH)和公共物理上行控制信道(physical uplink control channel,PUCCH)可以用于携带用于感测和通信的控制信息。替代地,可以使用单独的物理层控制信道来携带用于通信和感测的单独的控制信息。例如,PUCCH-S和PUCCH-C可以分别用于感测和通信的上行控制,PDCCH-S和PDCCH-C可以分别用于感测和通信的下行控制。
在物理层、传输层和逻辑层中的每层,可以使用用于感测和通信的共享信道和专用信道的不同组合。
“RADAR”一词源自“无线探测和测距”这一短语;但是,具有不同大写形式(例如“Radar”和“radar”)的表达同样有效,并且现在更常见。雷达通常用于检测对象的存在和位置。雷达系统辐射射频能量并接收从一个或多个目标反射的能量的回波。系统根据从给定目标返回的回声确定给定目标的姿态。辐射的能量可以是能量脉冲或连续波的形式,可以用特定的波形来表示或定义。雷达中使用的波形的示例包括调频连续波(frequencymodulated continuous wave,FMCW)和超宽带(ultra-wideband,UWB)波形。
雷达系统可以是单站、双站或多站。在单站雷达系统中,雷达信号发送器和接收器共址,例如集成在收发器中。在双站雷达系统中,发送器和接收器在空间上分离,分离距离与预期目标距离(通常称为范围)相当或大于预期目标距离。在多站雷达系统中,两个或多个雷达组件在空间上是不同的,但具有共享的覆盖区域。多站雷达也称为多站点或网状雷达。
地面雷达应用面临多径传播和阴影损耗等挑战。另一个挑战是可识别性问题,因为地面目标具有相似的物理属性。将感测集成到通信系统中很可能面临这些相同的挑战,甚至更多。
通信节点可以是半双工或全双工。半双工节点不能同时使用相同的物理资源(时间、频率等)发送和接收;相反,全双工节点可以使用相同的物理资源发送和接收。现有的商业无线通信网络都是半双工的。即使将来全双工通信网络变得实用,预计网络中的至少部分节点仍将是半双工节点,因为半双工设备的复杂性较低,并且具有更低的成本和更低的功耗。具体地,全双工实现在较高频率(例如,在毫米波频段)更具挑战性,对于小型低成本设备(例如毫微微蜂窝基站和UE)来说非常具有挑战性。
通信网络中半双工节点的限制为将感测和通信集成到通信网络的设备和系统提出了进一步的挑战。例如,半双工和全双工节点都可以执行双静态或多静态感测,但单静态感测通常要求感测节点具有全双工能力。半双工节点可以执行具有某些限制的单站感测,例如在具有特定占空比和测距能力的脉冲雷达中。
感测信号或同时用于感测和通信的信号的属性包括信号的波形和信号的帧结构。帧结构定义了信号的时域边界。波形将信号的形状描述为时间和频率的函数。可以用于感测信号的波形的示例包括超宽带(ultra-wide band,UWB)脉冲、调频连续波(frequency-modulated continuous wave,FMCW)或“啁啾”(chirp)、正交频分复用(orthogonalfrequency-division multiplexing,OFDM)、循环前缀(cyclic prefix,CP)-OFDM和离散傅里叶变换扩展(discrete Fourier transform spread,DFT-s)-OFDM。
在一个实施例中,感测信号是具有带宽B和持续时间T的线性啁啾信号。这样的线性啁啾信号从其在FMCW雷达系统中的使用中通常是已知的。线性啁啾信号由初始时间tchirp0的初始频率fchirp0到最终时间tchirp1的最终频率fchirp1的频率增加定义,其中,频率(f)与时间(t)之间的关系可以表示为f-fchirp0=α(t-tchirp0)的线性关系,其中,定义为啁啾斜率。线性啁啾信号的带宽可以定义为B=fchirp1-fchirp0,线性啁啾信号的持续时间可以定义为T=tchirp1-tchirp0。这种线性啁啾信号可以在基带表示中表示为/>
本文使用的预编码可以是指将输入信号转换为输出信号的任何一个或多个编码操作或一个或多个调制。预编码可以在不同的域中执行,并且通常将第一域中的输入信号转换为第二域中的输出信号。预编码可以包括线性操作。
地面通信系统也可以称为陆基或地基通信系统,但地面通信系统也可以或改为在水上或水中实现。非地面通信系统可以通过使用非地面节点来扩展蜂窝网络的覆盖范围,以弥合服务不足地区的覆盖差距,这将是建立全球无缝覆盖和向无服务/服务不足地区提供移动宽带服务的关键。在目前的情况下,很难在海洋、山脉、森林或其它偏远地区部署地面接入点/基站基础设施。
地面通信系统可以是使用5G技术和/或更高代际无线技术(例如,6G或更高版本)的无线通信系统。在一些示例中,地面通信系统还可以容纳一些传统无线技术(例如,3G或4G无线技术)。非地面通信系统可以是使用卫星星座的通信系统,就像传统的对地静止轨道(geo-stationary orbit,GEO)卫星一样,它向本地服务器广播公共/流行内容。非地面通信系统可以是使用低地轨道(low earth orbit,LEO)卫星的通信系统,已知LEO卫星可以在大覆盖区域与传播路径损耗/延迟之间建立更好的平衡。非地面通信系统可以是在极低地球轨道(very low earth orbit,VLEO)技术中使用稳定卫星的通信系统,从而大幅降低将卫星发送到较低轨道的成本。非地面通信系统可以是使用高空平台(high altitudeplatform,HAP)的通信系统,已知HAP为具有有限功率预算的设备提供低路径损耗空口。非地面通信系统可以是使用无人飞行器(unmanned aerial vehicle,UAV)(或无人飞行器系统,“UAS”)实现密集部署的通信系统,因为它们的覆盖范围可以限于局部区域,例如机载、气球、四管直升机、无人驾驶飞机等。在一些示例中,GEO卫星、LEO卫星、UAV、HAP和VLEO可以是水平的,也可以是二维的。在一些示例中,可以将UAV、HAP和VLEO耦合以将卫星通信集成到蜂窝网络。新兴的3D垂直网络由许多移动(地球静止卫星除外)和高空接入点组成,例如UAV、HAP和VLEO。
MIMO技术支持由多个天线组成的天线阵列进行信号发送和接收,以满足高传输速率的要求。ED 110和T-TRP 170和/或NT-TRP可以使用MIMO通过无线资源块进行通信。MIMO利用发送器上的多个天线在并行无线信号上传输无线资源块。由此可见,在接收器处可以使用多个天线。MIMO可以波束成形并行无线信号,以实现无线资源块的可靠多径传输。MIMO可以绑定传输不同数据的并行无线信号,以提高无线资源块的数据速率。
近年来,MIMO(大规模MIMO)无线通信系统(具有配置大量天线的T-TRP 170和/或NT-TRP 172)得到了学术界和工业界的广泛关注。在大规模MIMO系统中,T-TRP 170和/或NT-TRP 172通常配置有10个以上的天线单元(参见图3中的天线256和天线280)。T-TRP 170和/或NT-TRP 172通常可用于为数十个(例如40个)ED 110服务。T-TRP 170和NT-TRP 172的大量天线单元可以大大提高无线通信的空间自由度,大大提高传输速率、频谱效率和功率效率,在很大程度上降低了小区之间的干扰。天线数量的增加支持每个天线单元以更小的尺寸和更低的成本制成。使用大规模天线单元提供的空间自由度,每个小区的T-TRP 170和NT-TRP 172可以在同一时频资源上同时与小区内的多个ED 110通信,从而大大提高了频谱效率。T-TRP 170和/或NT-TRP 172的大量天线单元也使得每个设备在上行传输和下行传输时具有更好的空间指向性,从而T-TRP 170和/或NT-TRP 172和ED 110的发送功率降低,功率效率对应地提高。当T-TRP 170和/或NT-TRP 172的天线数量足够大时,每个ED 110与T-TRP 170和/或NT-TRP 172之间的随机信道可以接近正交,从而可以减少小区与UE之间的干扰和噪声的影响。
MIMO系统可以包括连接到接收(Rx)天线的接收器、连接到发送(Tx)天线的发送器以及连接到发送器和接收器的信号处理器。Rx天线和Tx天线中的每个可以包括多个天线。例如,Rx天线可以具有均匀线性阵列(uniform linear array,ULA)天线,其中,多个天线以偶数间隔成行布置。当射频(radio frequency,RF)信号通过Tx天线发送时,Rx天线可以接收来自前向目标的反射和返回的信号。
在MIMO系统的一些实施例中,可能的单元或可能的可配置参数的非穷举列表包括:面板;波束。
天线面板是天线组或天线阵列或天线子阵列的单元。天线面板可以独立控制Tx波束或Rx波束。
波束可以通过对至少一个天线端口发送或接收的数据进行幅度和/或相位加权形成。波束可以通过其它方法形成,例如调整天线单元的相关参数。波束可以包括Tx波束和/或Rx波束。发送波束表示在信号通过天线发送之后,在空间中的不同方向上形成的信号强度分布。接收波束表示从天线接收到的无线信号在空间中的不同方向的信号强度分布。波束信息可以包括波束标识符、一个或多个天线端口标识符、信道状态信息参考信号(channel state information reference signal,CSI-RS)资源标识符、SSB资源标识符、探测参考信号(sounding reference signal,SRS)资源标识符或其它参考信号资源标识符。
总之,本申请的各方面涉及结合场景驱动的波束故障实例(beam failureinstance,BFI)权重定义的主动波束管理过程。在本申请的上下文中,主动波束管理过程是指UE 110采取步骤和/或应用过程,以在UE的所有波束对链路故障之前为通信目的建立新波束对链路。UE 110采取的步骤和/或过程可以是场景驱动的,例如,当UE 110位于城区时采取的步骤和过程可以不同于当UE 110位于偏远地区时采取的步骤和过程。
取决于部署场景,TRP 170/172可以配置波束故障定义,以指导UE 110什么构成“波束故障”。具体地,UE 110可以响应于确定发生在地面和非地面波束对链路(beam pairlink,BPL)上的BFI的加权组合而确定波束故障。
本申请的各方面涉及波束故障防止过程,而不是等待所有BPL故障,并且响应性地让UE 110发起波束故障恢复过程。波束故障防止过程可以支持UE 110在所有现有BPL故障之前开始建立新的BPL。TRP 170/172还可以通过指示UE 110扫描用于建立新BPL的候选波束的感兴趣的方向来向UE 110提供帮助。
根据TRP 170/172部署场景和根据波束故障防止的发起,UE 110可以扫描候选波束以建立地面或非地面BPL。当从地面/非地面TRP扫描候选波束时,不同类型的波束故障事件可以调节UE 110的行为。
根据本申请的各方面,UE 110用于在测量间隔期间进行测量。在每个测量间隔中,UE 110可以检测和测量对应于一个BPL的参考信号,并且每个测量间隔和每个BPL最多可以检测一个BFI。
为了解释本申请的各方面,首先,可以假设UE 110使用多个子系统中的地面子系统连接到网络。多个子系统中的一些子系统为地面子系统,多个子系统中的一些子系统为非地面子系统。可以安全地假设每个子系统使用不同的BPL,其中,一些BPL对应于地面TRP(这些BPL可以称为“地面BPL”),而一些BPL对应于非地面TRP(这些BPL可以称为“非地面BPL”)。
TRP 170/172可以用于使用值Wterr和Wnon-terr配置UE 110,其中,Wterr是给予在地面BPL上检测到的BFI的权重,Wnon-terr是给予在非地面BPL上检测到的BFI的权重。Wterr和Wnon-terr的值可以是正整数值、正十进制值、正有理数值或正实数值。
UE 110可以监控在不同BPL上接收的BFD-RS。UE 110可以尝试在与特定BPL关联的测量间隔中检测BFD-RS。在检测到BFD-RS时,UE 110可以测量BFD-RS的质量。多个UE 110的测量能力可能不同。利用时分复用(time-division multiplexing,TDM)测量能力,UE 110可以以TDM方式对不同BPL执行测量,如图6A所示。利用同时测量能力,UE 110可以同时对不同的BPL执行测量,如图6B所示。在图6A和图6B中,第一类型的条602代表具有超过阈值的测量质量的BPL。在图6A中,第二类型的条604代表具有未超过阈值的测量质量的BPL。
响应于在一个或多个BPL上检测到连续BFI并且单独的BFI的权重之和高于预定义阈值,可以认为,UE 110已检测到波束故障。
在不同场景下,地面BFI和非地面BFI的权重可能不同。例如,在城市场景中,TRP170/172可以建立第一配置,其中,Wterr>Wnon-terr。当地面BPL上的波束故障被认为比非地面BPL上的波束故障更关键时,第一配置可以被视为合适。在其它场景中,例如远程/沿海场景中,TRP 170/172可以建立第二配置,其中,Wnon-terr>Wterr。当非地面BPL上的波束故障被认为比地面BPL上的波束故障更关键时,第二配置可以被视为合适。根据哪些波束被认为是关键的,UE 110的行为可能涉及扫描具有特定类型的候选波束,例如地面或非地面。
与许多已知的波束故障检测方案相比,本申请中检测到的波束故障实例不必在单个波束对链路上是连续的。例如,对于波束故障实例检测,本发明可以具有以下测量配置:
BPL1:F-F-F-F-F-
BPL2:-F-F-F-F-F
从BPL1或BPL2的角度来看,多个波束故障实例不是连续的。但是,从整体来看,多个波束故障实例是连续的。
图7在信号流图中示出了UE 110、T-TRP 170与NT-TRP 172之间的交互。图8示出了加权BFI推导和使用方法中的示例性步骤。
首先,UE 110执行(步骤802)初始接入过程,其导致UE 110与T-TRP 170同步并与T-TRP 170连接。通常,UE 110和NT-TRP 170协商(步骤804)以建立BPL。T-TRP 170使用高层信令向UE 110发送信息。UE 110接收(步骤806)信息。例如,该信息可以包括待检测且随后测量的BFD-RS的详细信息(例如BFD-RS占用的时间和频率资源、序列的初始值等)。例如,该信息还可以包括在波束故障的情况下切换到的候选波束的方向详细信息。又例如,该信息可以包括可以应用于各种类型BFI的权重。T-TRP 170和NT-TRP 172发送相应的BFD-RS。UE110从T-TRP 170和NT-TRP 172接收(步骤808)BFD-RS。基于接收(步骤808)和测量来自T-TRP 170和NT-TRP 172的BFD-RS(例如,确定BLER),UE 110可以在预定义持续时间的测量窗口中检测(步骤810)多个BFI。然后,UE 110可以获得(步骤812)在测量窗口中检测到的BFI的加权和。
需要说明的是,在本申请的各方面,不要求BFI是连续的。但是,应该清楚的是,大多数感兴趣的情况与连续BFI的检测相关。
然后,UE 110可以确定(步骤814)BFI的加权和是否超过阈值。
如以上所讨论,分配给地面BFI的权重可以不同于分配给非地面BFI的权重,这取决于UE 110正在运行的场景。
在第一场景中,地面BFI被赋予比非地面BFI更大的权重,基于确定(步骤814)BFI的加权和超过阈值,UE 110可以在到T-TRP 170的地面链路上发起(步骤816)波束故障恢复过程。波束故障恢复过程可以包括扫描(步骤820)地面候选波束。地面候选波束的扫描(步骤820)可以包括检测和测量地面候选波束。然后,UE 110可以选择(步骤822)来自T-TRP170的波束,并在选定波束上与T-TRP 170建立(步骤824)BPL。
在第二场景中,非地面BFI被赋予比地面BFI更大的权重,基于确定(步骤814)BFI的加权和超过阈值,UE 110可以在到NT-TRP 172的非地面链路上发起(步骤816)波束故障恢复过程。波束故障恢复过程可以包括扫描(步骤820)非地面候选波束。针对非地面候选波束的扫描(步骤820)可以包括检测和测量非地面候选波束。然后,UE 110可以选择(步骤822)来自NT-TRP 172的波束,并在选定波束上与NT-TRP 172建立(步骤824)BPL。
在确定(步骤814)波束故障实例的加权和不超过阈值时,UE 110可以返回到步骤808,从T-TRP 170和NT-TRP 172接收BFD-RS。
图9示出了一种场景,其中,UE 110使用三个BPL连接到T-TRP 170:第一BPL 902-1;第二BPL 902-2;第三BPL 902-3(单独或共同称为902)。附加地,需要说明的是,UE 110使用对应于每个BPL 902的单个天线面板。
在一些实施例中,波束故障实例的加权和可以被捕获或表示为数学公式。T-TRP170可以使用高层信令来向UE 110配置测量窗口,测量窗口的大小在给定时间单元中指定,例如OFDM符号、OFDM符号组、迷你时隙、时隙、时隙组、子帧组。假设UE 110配置有大小为N的测量窗口,并且UE 110具有K个波束对链路,则UE使用以下信息计算P,
-wk作为第k波束对链路的权重;以及
-BFIn,k作为在第k波束对链路的第n时间单元检测到的波束故障实例。
在一些实施例中,波束故障实例的加权和可以被捕获或表示为伪码。T-TRP 170可以使用高层信令来向UE 110配置测量窗口,测量窗口的大小在给定时间单元中指定,例如OFDM符号、OFDM符号组、迷你时隙、时隙、时隙组、子帧组。假设UE 110配置有大小为N的测量窗口,并且UE 110具有K个波束对链路,则UE根据以下伪码确定P:
在一些实施例中,T-TRP 170可以向UE 110配置用于接收和检测BFD-RS的测量窗口。在一些方面,测量窗口可以通过配置参数(例如,起始点的绝对值、结束点的绝对值和周期)来定义。在其它方面中,测量窗口可以通过配置参数来定义,例如偏移(相对于无线帧的开始的起始点)、持续时间和周期。配置参数可以用对应的时间单元表示,例如,OFDM符号、OFDM符号组、迷你时隙、时隙、时隙组、子帧、子帧组。例如,可以在时隙中配置测量窗口,其中,起始点和结束点都被给出为时隙索引,并且测量窗口的起始点被配置为使得起始点与无线帧的开始匹配。测量窗口的周期性和偏移可以相对于无线帧的时隙数给出。
在一些实施例中,T-TRP 170可以为UE 110配置不同的阈值,用于在不同的波束对链路上进行波束故障检测。这些阈值可以被定义,用于RSRP、RSRQ、SINR或假设的BLER的测量。
UE 110可能处于这样一种情况,其中,UE 110已经检测到第二BPL 902-2上的波束故障和第三BPL 902-3上的波束故障,即,第二BPL 902-2和第三BPL 902-3实际上已经发生故障并且不再用于通信。在检测到测量窗口内预定义数量的连续BFI时,可以检测到BPL上的每个波束故障。在这种情况下,在第一BPL 902-1上的BFD-RS的质量(例如,BLER)继续被测量为高于用于检测波束故障的阈值。此外,在第二BPL 902-2和第三BPL 902-3已经检测到其波束故障之前,T-TRP 170已经向UE 110提供候选波束信息。
由于第一BPL 902-1是唯一保持功能的BPL 902,所以根据本申请的各方面,UE110可以被触发以发起波束故障防止流程。在波束故障防止过程中,UE 110可以扫描候选波束,在其上建立回退BPL。假设T-TRP 170提供的候选波束信息对应于NT-TRP 172(例如无人机),则UE 110可以建立非地面BPL 904作为回退BPL。
需要说明的是,波束故障防止过程可以在检测到第二BPL 902-2和第三BPL 902-3上的波束故障之后发起。这样的事件可以使用上文结合图8所描述的加权BFI机制来检测。
图10在信号流图中示出了UE 110、T-TRP 170与NT-TRP 172之间的交互。图11示出了波束故障防止方法中的示例性步骤。
首先,UE 110执行(步骤1102)初始接入过程,其导致UE 110与T-TRP 170同步并与T-TRP 170连接。T-TRP 170使用高层信令向UE 110发送信息。UE 110接收(步骤1106)信息。例如,该信息可以包括待检测且随后在N个BPL的上下文中测量的BFD-RS的详细信息(例如BFD-RS占用的时间和频率资源、序列的初始值等)。例如,该信息还可以包括来自NT-TRP172的候选波束的方向信息。T-TRP 170发送BFD-RS。UE 110从T-TRP 170接收(步骤1108)BFD-RS。基于接收(步骤1108)和测量来自T-TRP 170的BFD-RS,UE 110可以检测(步骤1110)BFI。响应于检测(步骤1110),UE 110可以确定(步骤1114)是否检测到预定义数量的BPL的波束故障。预定义数量可以表示为BPL的数量N。例如,UE 110可以确定(步骤1114)是否已检测到除一个BPL之外的所有BPL的波束故障,在这种情况下,预定义数量为N-1。在下文中,预定义数量的BPL(其检测导致发起波束故障防止过程)被讨论为具有特定值N-1。应当清楚的是,预定数量是可配置的,不需要总是N-1。基于在预定义时间帧期间在特定BPL上检测到的预定义数量的BFI,可以针对特定BPL检测到波束故障。在本申请的一些方面,预定义数量的BFI是连续的。
响应于确定(步骤1114)已检测到N-1个BPL的波束故障,UE 110发起波束故障防止过程。波束故障防止过程可以包括UE 110扫描(步骤1120)来自NT-TRP 172的候选波束。具体地,UE 110可以在步骤1106中接收到的信息中指示的方向上进行扫描。波束故障防止过程还可以包括UE 110选择(步骤1122)来自NT-TRP 172或另一个更合适的NT-TRP(未示出)的候选波束。波束故障防止过程还可以包括UE 110在选定上与NT-TRP 172建立(步骤1124)回退BPL。
在确定(步骤1114)尚未检测到N-1个BPL的波束故障时,UE 110可以返回到从T-TRP 170接收(步骤1108)BFD-RS。
考虑图9所示的场景的替代版本,其中,UE 110使用三个BPL 902连接到T-TRP170,UE 110可能处于这样一种情况,其中,UE 110已经检测到第二BPL 902-2上的波束故障和第三BPL 902-3上的波束故障,即,第二BPL 902-2和第三BPL 902-3实际上已经发生故障并且不再用于通信。在这种情况下,在第一BPL 902-1上的BFD-RS的质量(例如,BLER)继续被测量为高于用于检测BFI的阈值。
由于第一BPL 902-1是唯一保持功能的BPL 902,所以根据本申请的各方面,UE110可以被触发以发起波束故障防止流程。与上文讨论的场景不同,在此替代场景中,可以假设T-TRP 170尚未向UE 110提供关于候选波束的任何信息。相反,T-TRP 170可以通过基于T-TRP 170的波束故障防止机制向UE 110提供帮助。
在UE 110检测到在第二BPL 902-2和第三BPL 902-3上发生了波束故障之后,UE110向T-TRP 170发送UE报告。UE报告可以包括已经检测到第二BPL 902-2和第三BPL 902-3的波束故障的指示。在本申请的各方面中,UE报告可以使用第一BPL 902-1在PUCCH上传输。在本申请的各方面中,UE报告可以在专用于报告BPL 902的状态的PUCCH格式消息中传输。
在一些实施例中,UE 110生成的BPL故障报告包括:BPL(在其上检测到波束故障实例)的BPL标识符;用于对应的BPL的测量报告,包括RSRP测量、RSRQ测量和/或SINR测量等;在对应的BPL上检测到的波束故障实例的数量;在对应的BPL上检测到的第一波束故障实例的时间戳;在对应的BPL上检测到的最后一个波束故障实例的时间戳。
在一些实施例中,例如,在完成初始接入过程(步骤1102)之后,UE 110向T-TRP170发信令通知其执行波束故障防止过程的能力。执行波束故障防止的能力可以是必选的,也可以是可选的。作为执行波束故障防止的能力的一部分,UE 110还可以发信令通知附加参数,例如:
-UE 110在给定时间单元(例如,OFDM符号、OFDM符号组、时隙、迷你时隙、时隙组、子帧、子帧组)内可以维护的最大BPL数量;
-UE 110总体上可以配置以执行波束故障防止的BFD参考信号的最大数量,这可能还取决于UE
110正在工作的频带的频率范围;
-UE 110可以配置以执行波束故障防止的每个BPL的BFD参考信号的最大数量,这可能还取决于UE 110正在运行的频带的频率范围;
-UE 110可以用于监控以执行波束故障防止的候选波束的最大数量,这可能还取决于UE 110工作的频带的频率范围,这些候选波束可以替代地称为波束故障防止参考信号(beam failure preventionreference signal,BFP-RS)、候选波束检测参考信号(candidate beam detection reference signal,CBD-RS)或回退波束参考信号(fallbackbeam reference signal,FB-RS);
-UE 110可以用于监控以执行波束故障防止的地面候选波束的最大数量,这还取决于UE 110正在
运行的频带的频率范围;以及
-UE 110可以用于监控以执行波束故障防止的非地面候选波束的最大数量,这可能还取决于UE
110正在运行的频带的频率范围。
在一些实施例中,UE 110生成上行控制信息(uplink control information,UCI),其中,UCI被定义为比特串,该比特串包括上行控制信息,例如HARQ确认比特或CSI报告比特,它们将由UE 110通过PUSCH传输发送到T-TRP 170,该比特串还包括BPL故障报告比特。该UCI可以与UE的数据包(例如,传输块)复用,该数据包由PUSCH传输携带到T-TRP 170。
在一些实施例中,UE 110应用一些优先级规则来确定是通过PUCCH传输还是通过PUSCH传输来传输包括BPL故障报告的UCI。例如,如果UE 110通过PUCCH传输发送的UCI的总数可能超过PUCCH的容量,则UE 110可以应用优先级规则,使得UE 110通过PUSCH传输发送BPL故障报告。又例如,如果PUCCH传输可能在分配给PUSCH传输的时间和频率资源上重叠,则UE 110可以应用优先级规则,使得UE 110通过PUSCH传输发送BPL故障报告。
在一些实施例中,期望UE 110在应用波束故障防止过程时遵循默认行为。例如,一个默认UE行为可以是UE 110不将其它UCI与携带BPL故障报告的UCI进行复用。又例如,一个默认UE行为可以是,如果PUCCH传输携带包括BPL故障报告的UCI,则UE 110丢弃任何PUSCH传输。
在T-TRP 170通过第一BPL 902-1从UE 110接收这种PUCCH传输之后,T-TRP 170可以响应性地通过第一BPL 902-1向UE 110发送控制信令。该控制信令可以指示UE 110扫描的候选波束。候选波束可以根据感兴趣的方向来定义,例如,使用由T-TRP 170确定的给定坐标系中定义的方位角和天顶角来定义。UE 110可以响应于接收控制信令,在那些感兴趣的方向上扫描候选波束。然后,例如,UE 110可以与NT-TRP 172建立回退BPL 904。
需要说明的是,在检测到第二BPL 902-2和第三BPL 902-3的波束故障之后,UE110发起波束故障防止过程。这种波束故障可以基于上文描述的加权BFI机制来检测。
图12在信号流程图中示出了UE 110、T-TRP 170与NT-TRP 172之间的交互。图13示出了波束故障防止方法中的示例性步骤。
首先,UE 110与T-TRP 170连接并执行(步骤1302)初始接入过程。T-TRP 170使用高层信令向UE 110发送信息。UE 110接收(步骤1306)信息。例如,该信息可以包括待检测且随后在N个BPL的上下文中测量的BFD-RS的详细信息。T-TRP 170发送BFD-RS。UE 110从T-TRP 170接收(步骤1308)BFD-RS。基于接收(步骤1308)和测量来自T-TRP 170的BFD-RS,UE110可以检测(步骤1310)BFI。响应于检测(步骤1310),UE 110可以确定(步骤1314)是否已检测到N-1个BPL的波束故障。基于在特定BPL上检测到的预定义数量的BFI,可以针对特定BPL检测到波束故障。
响应于确定(步骤1314)已检测到N-1个BPL的波束故障,UE 110向T-TRP 170发送(步骤1316)UE报告。UE报告可以包括已检测到N-1个BPL的波束故障的指示。T-TRP 170响应于接收到UE报告,向UE 110发送用于扫描候选波束的感兴趣的方向的指示。用于扫描候选波束的感兴趣方向可以根据感兴趣的方向来定义,例如,使用由T-TRP 170确定的给定坐标系中定义的方位角和天顶角来定义。
UE 110可以响应于接收到(步骤1318)控制信令,在那些感兴趣的方向上扫描(步骤1320)候选波束,并选择(步骤1322)来自NT-TRP 172或另一个更合适的NT-TRP(未示出)的波束。然后,UE 110可以在所选择的波束上与NT-TRP 172建立(步骤1324)回退BPL,例如BPL 904。
在确定(步骤1314)尚未检测到N-1个BPL的波束故障时,UE 110可以返回到步骤1308,从T-TRP 170接收BFD-RS。
在UE需要在新波束对链路上获取UL同步的一些实施例中,UE 110建立新波束对链路的步骤可以包括以下步骤:
-UE 110扫描候选波束(或等效地,扫描BFP-RS、CBD-RS、FB-RS),其中,候选波束的配置(包括用于序列生成的时间和频率资源以及加扰标识符)由T-TRP 170使用高层信令提供;
-UE 110从候选波束中选择最佳候选波束,候选波束的配置由T-TRP 170使用高层信令提供;
-UE 110使用所选择的最佳候选波束向T-TRP 170发送随机接入前导,其中,随机接入前导可以是无竞争的随机接入前导(例如,与所选择的候选波束关联的)或基于竞争的随机接入前导(例如,从一组随机接入前导中随机选择的);以及
-UE 110在随机接入响应窗口到期之前在所选择的最佳候选波束上从T-TRP 170接收随机接入响应,
从而结束波束故障防止过程。
在一些实施例中,UE 110在新波束对链路上获取UL同步并建立新波束对链路的步骤可以包括以下步骤:
-UE 110接收候选波束的指示(或等效地:BFP-RS、CBD-RS、FB-RS的指示),以用于建立新波束对链路,其中,候选波束的指示由NW使用低层信令传输,例如,媒体接入控制控制元素(medium access control control element,MAC-CE)或下行控制信息(downlinkcontrol information,DCI);
-候选波束的指示可以包括对应的参考信号的标识符、角度方向(例如,方位角和天顶角)以及随机接入前导标识符等,以便协助UE 110控制其发送/接收波束并建立新波束对链路;
-UE 110使用所指示的候选波束向T-TRP 170发送随机接入前导,其中,随机接入前导可以是无竞争的随机接入前导(例如,与所指示的候选波束关联的)或基于竞争的随机接入前导(例如,从一组随机接入前导中随机选择的);以及
-UE 110在随机接入响应窗口到期之前在所选择的最佳候选波束上从T-TRP 170接收随机接入响应,从而结束波束故障防止过程。
在一些实施例中,UE 110不获取UL同步,UE 110建立新波束对链路的步骤可以包括以下步骤:
-UE 110扫描候选波束(或等效地,扫描BFP-RS、CBD-RS、FB-RS),其中,候选波束的配置(包括用于序列生成的时间和频率资源以及加扰标识符)由T-TRP 170使用高层信令提供;
-UE 110从候选波束中选择最佳候选波束,候选波束的信息由T-TRP 170使用高层信令提供;
-UE 110通过正常工作的BPL发送候选波束状态报告(或等效地,BFP报告、CBD报告、FB报告),该报告包括所选择的最佳候选波束的标识符;以及
-UE 110通过正常工作的BPL从T-TRP 170接收候选波束状态报告确认,确认接收候选波束状态报告并建立新波束对链路,从而结束波束故障防止过程。
在一些实施例中,UE 110不获取UL同步,并且UE 110建立新波束对链路的步骤可以包括UE 110接收候选波束的指示(或等效地,BFP-RS、CBD-RS、FB-RS的指示),以用于建立新波束对链路,其中,候选波束的指示由T-TRP 170使用低层信令(例如MAC-CE或DCI)发送。候选波束的指示可以包括对应的参考信号的标识符和角度方向(例如,方位角和天顶角)等,以便协助UE 110控制其发送/接收波束并建立新波束对链路。
在一些实施例中,UE 110具有不同类型的波束对链路,例如,一些波束对链路可以是地面Uu链路(即,UE 110与固定T-TRP 170之间的链路),一些波束对链路可以是非地面Uu链路(即,UE 110与NT-TRP 172之间的链路),一些波束对链路可以是侧行链路(即,UE 110和另一UE 110之间的链路)。
在一些实施例中,T-TRP 170使用高层信令向UE 110发送信息。UE 110接收(步骤1306)信息。该信息包括关于候选波束(或等效地,BFP-RS、CBD-RS或FB-RS)的详细信息,候选波束对应于正从其它用户设备(即UE 110)发送的波束。T-TRP 170发送BFD-RS。UE 110从T-TRP 170接收(步骤1308)BFD-RS。基于接收(步骤1308)和测量来自T-TRP 170的BFD-RS,UE 110可以检测(步骤1310)BFI。响应于检测(步骤1310),UE 110可以确定(步骤1314)是否已检测到N-1个BPL的波束故障。基于在特定BPL上检测到的预定义数量的BFI,可以针对特定BPL检测到波束故障。响应于N-1个BPL上的波束故障检测,UE通过扫描与侧行链路对应的候选波束并基于所选择的最佳侧行链路候选波束建立侧行链路作为回退波束对链路来发起波束故障防止过程。
在一些实施例中,例如,在完成初始接入过程(步骤1102)之后,UE 110使用侧行链路候选波束向T-TRP 170发信令通知其执行波束故障防止过程的能力。使用侧行链路候选波束执行波束故障防止的能力可以是必选的,也可以是可选的。作为执行波束故障防止的能力的一部分,UE 110还可以发信令通知附加参数,例如,为执行波束故障防止,UE 110可监控的侧行链路候选波束的最大数量,这可能还取决于UE 110正在运行的频带的频率范围。
在一些实施例中,T-TRP 170使用高层信令向UE 110发送信息。UE 110接收(步骤1306)信息。该信息包括关于候选波束(或等效地,BFP-RS、CBD-RS或FB-RS)的详细信息,候选波束对应于正从其它用户设备(即UE 110)发送的波束。T-TRP 170发送BFD-RS。UE 110从T-TRP 170接收(步骤1308)BFD-RS。基于接收(步骤1308)和测量来自T-TRP 170的BFD-RS,UE 110可以检测(步骤1310)BFI。响应于检测(步骤1310),UE 110可以确定(步骤1314)是否已检测到N-Nfunctioning个BPL的波束故障。基于在特定BPL上检测到的预定义数量的BFI,可以针对特定BPL检测到波束故障。响应于N-Nfunctioning个BPL上的波束故障检测,UE通过扫描候选波束并基于所选择的最佳候选波束建立回退波束对链路来发起波束故障防止过程。数量Nfunctioning表示正常工作的波束对链路的数量,即尚未检测到波束故障的波束对链路的数量,该数量可能大于1。作为操作波束故障防止过程的一部分,该数量可以由T-TRP 170使用高层信令向UE 110配置。例如,如果Nfunctioning=2,则UE 110的行为可以包括:一旦检测到N-Nfunctioning个波束对链路故障,或者等效地,一旦仅剩下Nfunctioning个正常工作的波束对链路,就发起波束故障防止过程。
在一些实施例中,监控波束故障实例的操作(即,计算波束故障实例的加权和的操作)可以被称为UE 110评估无线链路质量,其中,“无线链路质量”是指波束故障实例的加权和。UE 110可以根据T-TRP 170配置的阈值评估无线链路质量。如果无线链路质量超过阈值,则期望UE 110发起波束故障防止过程。
为了解释本申请的另一方面,首先,可以假设UE 110使用多个子系统中的地面子系统连接到网络,多个子系统中的一些子系统是地面的,并且多个子系统中的一些子系统是非地面的。可以安全地假设每个子系统使用不同的BPL,其中,一些BPL是地面BPL,并且一些BPL是非地面BPL。地面BPL在图9中示为BPL 902。非地面BPL在图9中示为BPL 904。
本申请的各方面涉及将波束故障分类为“次要”或“主要”。
可以预定义阈值Nminor,以支持UE 110检测波束故障,然后将波束故障分类为次要波束故障。在操作中,UE 110可以监控在特定测量间隔中在特定BPL上接收BFD-RS。因此,UE110可以在连续数量的测量间隔中检测BFI。在确定已经检测到BFI的测量间隔的连续数量超过预定义阈值Nminor时,UE 110可以检测到波束故障,然后将波束故障分类为次要波束故障。
在检测到分类为次要的波束故障时,UE 110可以发起次要波束故障恢复过程,其中,UE 110扫描属于子系统的候选波束,该子系统与其中检测到分类为次要的波束故障的子系统相同。与次要波束故障恢复过程并行地,UE 110还可以用于继续在特定测量间隔中在特定BPL上监测以接收BFD-RS。
UE 110可以配置有定义为Nminor_recovery个测量间隔的次要波束故障恢复窗口。在次要波束故障恢复窗口的持续时间内,UE 110尝试寻找合适的波束,从而完成次要波束故障恢复过程。
可以预定义阈值Nmajor,以支持UE 110检测波束故障,然后将波束故障分类为主要波束故障。
在次要波束故障恢复窗口的持续时间内,UE 110可以在特定测量间隔中在特定BPL上监控以接收BFD-RS。因此,UE 110可以在连续数量的测量间隔中检测BFI。在确定在次要波束故障恢复窗口期间已经检测到BFI的测量间隔的连续数量超过预定义阈值Nmajor时,UE 110可以检测到波束故障,然后将波束故障分类为主要波束故障。
在检测到分类为主要的波束故障时,可以触发UE 110实现主要波束故障恢复过程,其中,UE 110扫描属于子系统的候选波束,该子系统不同于其中检测到分类为主要的波束故障的子系统。UE 110尝试寻找合适的波束,从而完成主要波束故障恢复过程。
与接收到的BFI的加权保持一致,在检测到的BFI的数量超过预定义阈值Nminor之前检测到的BFI可以由UE 110分配第一权重,在检测到的BFI的数量超过预定义阈值Nminor之后检测到的BFI可以由UE 110分配第二权重。
图14在信号流图中示出了UE 110、T-TRP 170与NT-TRP 172之间的交互。图15示出了具有分类的波束故障恢复方法中的示例性步骤。
首先,UE 110与T-TRP 170连接并执行(步骤1502)初始接入过程。T-TRP 170使用高层信令向UE 110发送信息。UE 110接收(步骤1506)信息。例如,该信息可以包括待检测且随后在N个BPL的上下文中测量的BFD-RS的详细信息。T-TRP 170发送BFD-RS。UE 110从T-TRP 170接收(步骤1508-1)BFD-RS。基于接收(步骤1508-1)和测量来自T-TRP 170的BFD-RS,UE 110可以检测(步骤1510-1)BFI。响应于检测(步骤1510-1),UE 110可以确定(步骤1514)是否已经检测到Nminor个BFI。在确定(步骤1514)已经检测到Nminor个BFI时,UE 110可以检测到分类为次要的波束故障。
在检测到分类为次要的波束故障时,UE 110可以继续发起次要波束故障恢复过程,如上文所讨论,该过程包括并行活动。在并行活动之一中,UE 110扫描(步骤1520)来自T-TRP 170的候选波束,并选择(步骤1522)来自T-TRP 170的波束。UE 110在所选择的波束上与T-TRP 170建立(步骤1524)BPL。在其它并行活动中,UE 110继续全部或部分地从T-TRP170接收(步骤1508-2)BFD-RS。基于接收(步骤1508-2)和测量来自T-TRP 170的BFD-RS,UE110可以检测(步骤1510-2)BFI。响应于检测(步骤1510-2),UE 110可以确定(步骤1519)是否已经检测到Nmajor个BFI。在确定(步骤1519)已经检测到Nmajor个BFI时,UE 110可以检测到分类为主要的波束故障。
在确定(步骤1519)在次要波束故障恢复窗口打开时尚未检测到Nmajor个BFI时,UE110可以继续从T-TRP 170接收(步骤1508-2)BFD-RS。
在确定(步骤1519)未检测到Nmajor个BFI并且次要波束故障恢复窗口已关闭时,UE110可以返回到在次要波束故障恢复过程之外从T-TRP 170接收(步骤1508-1)BFD-RS。
在检测到分类为主要的波束故障时,UE 110可以继续扫描(步骤1520)来自NT-TRP172的候选波束,并选择(步骤1522)来自NT-TRP 172或另一更合适的NT-TRP(未示出)的波束。UE 110在所选择的波束上与NT-TRP 172建立(步骤1524)BPL。
应理解,本文提供的实施例方法的一个或多个步骤可以由对应的单元或模块执行。例如,数据可以由发送单元或发送模块发送。数据可以由接收单元或接收模块接收。数据可以由处理单元或处理模块处理。相应的单元/模块可以是硬件、软件或其组合。例如,上述单元/模块中的一个或多个可以是集成电路,例如现场可编程门阵列(fieldprogrammable gate array,FPGA)或专用集成电路(application-specific integratedcircuit,ASIC)。应当理解,如果这些模块是软件,则这些模块可以由处理器根据需要全部或部分检索,单独或集体检索用于处理,根据需要在一个或多个实例中检索,并且这些模块本身可以包括用于进一步部署和实例化的指令。
尽管在说明的实施例中示出了特征的组合,但并非所有特征都需要组合以实现本发明的各种实施例的益处。换句话说,根据本发明的实施例设计的系统或方法不一定包括任一附图中示出的所有特征或附图中示意性地示出的所有部分。此外,一个示例性实施例的选定特征可以与其它示例性实施例的选定特征组合。
尽管已参考说明性实施例描述了本发明,但该描述并不旨在以限制性的意义理解。参考本说明书后,说明性实施例的各种修改和组合以及本发明其它实施例对于本领域技术人员来说是显而易见的。因此,所附权利要求包括任何这样的修改或实施例。

Claims (30)

1.一种波束故障防止方法,其特征在于,所述方法包括:
在多个波束对链路上接收波束故障检测参考信号;
检测多个波束对链路上的波束故障;以及
响应于已检测到波束故障的波束对链路的数量超过预定义的波束对链路数量并且小于波束对链路的总数量,在选定候选波束上建立新波束对链路。
2.根据权利要求1所述的方法,其特征在于,检测所述多个波束对链路中的给定波束对链路上的波束故障包括:基于测量所述给定波束对链路的波束故障检测参考信号,检测多个连续波束故障实例。
3.根据权利要求1或2所述的方法,其特征在于,还包括:在多个候选波束中选择候选波束,从而获得所述选定候选波束。
4.根据权利要求1至3中任一项所述的方法,其特征在于,至少一个波束对链路为地面波束对链路,并且所述新波束对链路为非地面波束对链路。
5.根据权利要求1至4中任一项所述的方法,其特征在于,还包括:发送报告,所述报告指示所述已检测到波束故障。
6.根据权利要求1至5中任一项所述的方法,其特征在于,还包括:接收控制信令,所述控制信令具有所述多个候选波束的方向的指示。
7.一种设备,其特征在于,包括:
存储器,所述存储器存储指令;
接收器,用于在多个波束对链路上接收波束故障检测参考信号;以及
处理器,用于通过执行所述指令执行以下操作:
检测多个波束对链路上的波束故障;以及
响应于已检测到波束故障的波束对链路的数量超过预定义的波束对链路数量并且小于波束对链路的总数量,在选定候选波束上建立新波束对链路。
8.根据权利要求7所述的设备,其特征在于,所述处理器还用于通过执行所述指令,采用以下方式检测所述多个波束对链路中的给定波束对链路上的波束故障:基于测量所述给定波束对链路的波束故障检测参考信号,检测多个连续波束故障实例。
9.根据权利要求7或8所述的设备,其特征在于,所述处理器还用于通过执行所述指令,在多个候选波束中选择候选波束,从而获得所述选定候选波束。
10.根据权利要求7至9中任一项所述的设备,其特征在于,至少一个波束对链路为地面波束对链路,并且所述新波束对链路为非地面波束对链路。
11.根据权利要求7至10中任一项所述的设备,其特征在于,所述处理器还用于通过执行所述指令,发送报告,所述报告指示所述已检测到波束故障。
12.根据权利要求7至11中任一项所述的设备,其特征在于,所述处理器还用于通过执行所述指令,接收控制信令,所述控制信令具有所述多个候选波束的方向的指示。
13.一种波束故障恢复方法,其特征在于,所述方法包括:
在第一波束对链路上接收第一波束故障检测参考信号;
在第二波束对链路上接收第二波束故障检测参考信号;
基于测量所述第一波束故障检测参考信号,检测第一波束故障实例;
基于测量所述第二波束故障检测参考信号,检测第二波束故障实例;
形成波束故障实例的加权和,所述加权和包括以第一权重加权的所述第一波束故障实例和以第二权重加权的所述第二波束故障实例;以及
当所述加权和超过阈值时,发起波束故障恢复过程。
14.根据权利要求13所述的方法,其特征在于,所述第一波束对链路为地面波束对链路。
15.根据权利要求13或14所述的方法,其特征在于,所述第二波束对链路为非地面波束对链路。
16.根据权利要求13至15中任一项所述的方法,其特征在于,所述第一权重大于所述第二权重,并且所述波束故障恢复过程包括建立第三波束对链路。
17.根据权利要求16所述的方法,其特征在于,所述第三波束对链路为地面波束对链路。
18.根据权利要求13至17中任一项所述的方法,其特征在于,所述第二权重大于所述第一权重,并且所述波束故障恢复过程包括建立第三波束对链路。
19.根据权利要求18所述的方法,其特征在于,所述第三波束对链路为非地面波束对链路。
20.根据权利要求13至19中任一项所述的方法,其特征在于,所述第一波束故障实例和所述第二波束故障实例是连续的。
21.根据权利要求13至20中任一项所述的方法,其特征在于,还包括:
响应于确定在已经接收到阈值数量的波束故障实例之前接收到所述第一波束故障实例,将所述第一权重分配给所述第一波束故障实例;以及
响应于确定在已经接收到所述阈值数量的波束故障实例之后接收到所述第二波束故障实例,将所述第二权重分配给所述第二波束故障实例。
22.一种设备,其特征在于,包括:
存储器,所述存储器存储指令;
接收器,用于:
在第一波束对链路上接收第一波束故障检测参考信号;以及
在第二波束对链路上接收第二波束故障检测参考信号;以及
处理器,用于通过执行所述指令执行以下操作:
基于测量所述第一波束故障检测参考信号,检测第一波束故障实例;
基于测量所述第二波束故障检测参考信号,检测第二波束故障实例;
形成波束故障实例的加权和,所述加权和包括以第一权重加权的所述第一波束故障实例和以第二权重加权的所述第二波束故障实例;以及
当所述加权和超过阈值时,发起波束故障恢复过程。
23.根据权利要求22所述的设备,其特征在于,所述第一波束对链路为地面波束对链路。
24.根据权利要求22或23所述的设备,其特征在于,所述第二波束对链路为非地面波束对链路。
25.根据权利要求22至24中任一项所述的设备,其特征在于,所述第一权重大于所述第二权重,并且所述波束故障恢复过程包括建立第三波束对链路。
26.根据权利要求25所述的设备,其特征在于,所述第三波束对链路为地面波束对链路。
27.根据权利要求22至26中任一项所述的设备,其特征在于,所述第二权重大于所述第一权重,并且所述波束故障恢复过程包括建立第三波束对链路。
28.根据权利要求22至27中任一项所述的设备,其特征在于,所述第三波束对链路为非地面波束对链路。
29.根据权利要求22至28中任一项所述的设备,其特征在于,所述第一波束故障实例和所述第二波束故障实例是连续的。
30.根据权利要求22至29中任一项所述的设备,其特征在于,所述处理器还用于通过执行所述指令执行以下操作:
响应于确定在已经接收到阈值数量的波束故障实例之前接收到所述第一波束故障实例,将所述第一权重分配给所述第一波束故障实例;以及
响应于确定在已经接收到所述阈值数量的波束故障实例之后接收到所述第二波束故障实例,将所述第二权重分配给所述第二波束故障实例。
CN202180102657.7A 2021-10-13 2021-10-13 集成地面/非地面网络中的联合波束管理 Pending CN117981381A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/123599 WO2023060485A1 (en) 2021-10-13 2021-10-13 Joint beam management in integrated terrestrial/non-terrestrial networks

Publications (1)

Publication Number Publication Date
CN117981381A true CN117981381A (zh) 2024-05-03

Family

ID=85987196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180102657.7A Pending CN117981381A (zh) 2021-10-13 2021-10-13 集成地面/非地面网络中的联合波束管理

Country Status (2)

Country Link
CN (1) CN117981381A (zh)
WO (1) WO2023060485A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803275B (zh) * 2017-11-17 2021-04-06 维沃移动通信有限公司 一种波束失败恢复请求发送、接收方法、装置及系统
US11831380B2 (en) * 2019-08-07 2023-11-28 Qualcomm Incorporated Enhancements to beam failure recovery procedure with multi-transmission reception point operation
CN113271604B (zh) * 2020-02-14 2023-03-24 展讯通信(上海)有限公司 波束失败恢复方法、终端设备、网络设备及存储介质
CN113170343B (zh) * 2021-03-05 2023-09-19 北京小米移动软件有限公司 波束失败检测方法、波束失败检测装置及存储介质

Also Published As

Publication number Publication date
WO2023060485A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
US20230300813A1 (en) Beam indication framework for sensing-assisted mimo
WO2022133930A1 (en) Mobility management in sensing-assisted mimo
CN114600391A (zh) 用于部分互易性的天线相关性反馈
CN116686229A (zh) 基于感测的设备检测
WO2023221054A1 (en) Systems and methods for a multi-link serving cell
WO2023097560A1 (en) Sensing-assisted mobility management
WO2022228552A1 (en) Synchronization signal block periodicity changes
WO2023060485A1 (en) Joint beam management in integrated terrestrial/non-terrestrial networks
CN116830759A (zh) 用于无线通信系统中灵活初始接入过程的系统、装置和方法
WO2024124530A1 (en) Multi-non-terrestrial node beam configuration
WO2023159423A1 (en) Method, apparatus, and system for multi-static sensing and communication
WO2024119353A1 (en) State-based sensing signal configuration and transmission
WO2023164887A1 (en) Initial access procedure for haps
WO2024108476A1 (en) Method and apparatus using hybrid rf-domain and baseband-domain sensing signal
WO2023205961A1 (en) Methods and apparatus for spatial domain multiplexing of sensing signal and communication signal
WO2023070573A1 (en) Agile beam tracking
WO2023221029A1 (en) Systems and methods for a multi-link serving cell
WO2023216112A1 (en) Methods and apparatus for sensing-assisted doppler compensation
WO2023184255A1 (en) Methods and systems for sensing-based channel reconstruction and tracking
US20240063881A1 (en) Selected beam and transmission beam spatial relationship
WO2023115543A1 (en) Aerial node location adjustment using angular-specific signaling
WO2024026595A1 (en) Methods, apparatus, and system for communication-assisted sensing
WO2022133932A1 (en) Beam failure recovery in sensing-assisted mimo
WO2023283750A1 (en) Method and apparatus for communicating secure information
CN118251847A (zh) 敏捷波束跟踪

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination