CN117974742A - Binocular image generation method, device, equipment, storage medium and program product - Google Patents
Binocular image generation method, device, equipment, storage medium and program product Download PDFInfo
- Publication number
- CN117974742A CN117974742A CN202211281237.2A CN202211281237A CN117974742A CN 117974742 A CN117974742 A CN 117974742A CN 202211281237 A CN202211281237 A CN 202211281237A CN 117974742 A CN117974742 A CN 117974742A
- Authority
- CN
- China
- Prior art keywords
- preset
- images
- radiation field
- image
- field model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 75
- 230000005855 radiation Effects 0.000 claims abstract description 77
- 230000001537 neural effect Effects 0.000 claims abstract description 68
- 238000004590 computer program Methods 0.000 claims description 19
- 238000012549 training Methods 0.000 claims description 19
- 230000003190 augmentative effect Effects 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 8
- 238000013473 artificial intelligence Methods 0.000 claims description 7
- 210000005036 nerve Anatomy 0.000 claims 10
- 238000003384 imaging method Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 24
- 238000012545 processing Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 11
- 230000000007 visual effect Effects 0.000 description 9
- 210000001747 pupil Anatomy 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000010365 information processing Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20228—Disparity calculation for image-based rendering
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
- Processing Or Creating Images (AREA)
Abstract
本公开涉及一种双目图像的生成方法、装置、设备、存储介质和程序产品。所述方法包括:获取目标场景对应的多个图像,其中,所述多个图像是从多个角度对所述目标场景采集得到的;采用所述多个图像,训练神经辐射场模型,得到训练完成的神经辐射场模型;通过所述训练完成的神经辐射场模型基于预设的左眼光线,生成左眼图像;通过所述训练完成的神经辐射场模型基于预设的右眼光线,生成右眼图像。
The present disclosure relates to a binocular image generation method, device, equipment, storage medium and program product. The method comprises: obtaining multiple images corresponding to a target scene, wherein the multiple images are acquired from multiple angles of the target scene; using the multiple images to train a neural radiation field model to obtain a trained neural radiation field model; using the trained neural radiation field model to generate a left eye image based on a preset left eye light; and using the trained neural radiation field model to generate a right eye image based on a preset right eye light.
Description
技术领域Technical Field
本公开涉及计算机视觉技术领域,尤其涉及一种双目图像的生成方法、装置、设备、存储介质和程序产品。The present disclosure relates to the field of computer vision technology, and in particular to a binocular image generation method, device, equipment, storage medium and program product.
背景技术Background technique
通过向观看者提供具有合适的视差的左眼图像和右眼图像,能够给观看者带来立体的视觉效果。其中,左眼图像表示提供给左眼观看的图像,右眼图像表示提供给右眼观看的图像。观看设备可以是VR(Virtual Reality,虚拟现实)眼镜、AR(Augmented Reality,增强现实)眼镜等。By providing the viewer with a left-eye image and a right-eye image with appropriate parallax, a stereoscopic visual effect can be provided to the viewer. The left-eye image represents an image provided to the left eye for viewing, and the right-eye image represents an image provided to the right eye for viewing. The viewing device may be VR (Virtual Reality) glasses, AR (Augmented Reality) glasses, etc.
相关技术中,需要采用专门设计的拍摄设备才能获得左眼图像和右眼图像,有的甚至需要依赖3D(3Dimensions,三维)传感器,或者需要精密标定过的相机阵列,硬件成本较高,实现难度较大。In the related art, specially designed shooting equipment is needed to obtain left-eye images and right-eye images. Some even need to rely on 3D (3 Dimensions) sensors or require precisely calibrated camera arrays. The hardware cost is high and the implementation is difficult.
发明内容Summary of the invention
本公开提供了一种双目图像的生成技术方案。The present disclosure provides a technical solution for generating binocular images.
根据本公开的一方面,提供了一种双目图像的生成方法,包括:According to one aspect of the present disclosure, a method for generating a binocular image is provided, comprising:
获取目标场景对应的多个图像,其中,所述多个图像是从多个角度对所述目标场景采集得到的;Acquire multiple images corresponding to a target scene, wherein the multiple images are acquired from multiple angles of the target scene;
采用所述多个图像,训练神经辐射场模型,得到训练完成的神经辐射场模型;Using the multiple images to train a neural radiation field model to obtain a trained neural radiation field model;
通过所述训练完成的神经辐射场模型基于预设的左眼光线,生成左眼图像;The neural radiation field model completed through the training generates a left eye image based on a preset left eye light;
通过所述训练完成的神经辐射场模型基于预设的右眼光线,生成右眼图像。The neural radiation field model completed through the training generates a right eye image based on the preset right eye light.
通过获取从多个角度对所述目标场景采集得到的多个图像,采用所述多个图像,训练神经辐射场模型,得到训练完成的神经辐射场模型,通过所述训练完成的神经辐射场模型基于预设的左眼光线,生成左眼图像,并通过所述训练完成的神经辐射场模型基于预设的右眼光线,生成右眼图像,由此通过利用从多个角度对目标场景采集得到的多个图像,生成目标场景对应的双目图像,能够降低硬件成本,降低双目图像的获得难度,并能够生成准确、高质量的双目图像。By acquiring multiple images acquired from multiple angles of the target scene, using the multiple images to train a neural radiation field model to obtain a trained neural radiation field model, generating a left-eye image based on a preset left-eye light through the trained neural radiation field model, and generating a right-eye image based on a preset right-eye light through the trained neural radiation field model, thereby generating a binocular image corresponding to the target scene by utilizing the multiple images acquired from multiple angles of the target scene, which can reduce hardware costs, reduce the difficulty of obtaining binocular images, and generate accurate and high-quality binocular images.
在一种可能的实现方式中,所述多个图像包含所述目标场景的全景信息,所述左眼图像为左眼对应的全景图像,所述右眼图像为右眼对应的全景图像。In a possible implementation manner, the multiple images include panoramic information of the target scene, the left-eye image is a panoramic image corresponding to the left eye, and the right-eye image is a panoramic image corresponding to the right eye.
在该实现方式中,通过采用包含目标场景的全景信息的多个图像,能够生成左眼全景图像和右眼全景图像,从而能够提供双目全景图像,即,能够提供具有立体效果的全景图像,从而能够向使用观看设备的观看者提供立体的全景效果。In this implementation, by using multiple images containing panoramic information of the target scene, a left-eye panoramic image and a right-eye panoramic image can be generated, thereby providing a binocular panoramic image, that is, a panoramic image with a stereoscopic effect can be provided, thereby providing a stereoscopic panoramic effect to a viewer using a viewing device.
在一种可能的实现方式中,所述多个图像中的任一图像中的任意图像信息,至少包含于所述多个图像中的另一图像中。In a possible implementation manner, any image information in any image among the multiple images is at least contained in another image among the multiple images.
在该实现方式中,通过从不同的角度对目标场景的同一视觉信息进行重复采集,由此能够提高对所述目标场景进行三维重建的准确性,从而能够提高最终生成的左眼全景图像和右眼全景图像的质量。In this implementation, by repeatedly collecting the same visual information of the target scene from different angles, the accuracy of three-dimensional reconstruction of the target scene can be improved, thereby improving the quality of the ultimately generated left-eye panoramic image and right-eye panoramic image.
在一种可能的实现方式中,所述多个图像是通过移动单个摄像头采集得到的。In a possible implementation manner, the multiple images are acquired by moving a single camera.
在该实现方式中,通过采用单个摄像头采集得到目标场景对应的多个图像,并基于由此采集得到的多个图像生成左眼图像和右眼图像,由此能够降低生成双目图像的设备成本。并且,在采用单个摄像头的方式中,不存在需要调整不同摄像头的内参的问题,能够进一步降低操作复杂度。另外,在该实现方式中,用户只需要从多个角度拍摄目标场景的多个图像即可,无需操作复杂的设备。In this implementation, a single camera is used to acquire multiple images corresponding to the target scene, and a left-eye image and a right-eye image are generated based on the multiple images acquired, thereby reducing the equipment cost for generating binocular images. Moreover, in the method of using a single camera, there is no need to adjust the internal parameters of different cameras, which can further reduce the complexity of operation. In addition, in this implementation, the user only needs to take multiple images of the target scene from multiple angles without having to operate complex equipment.
在一种可能的实现方式中,所述多个图像对应的多个采集点位的最小外接圆的半径在预设的半径区间内;其中,所述多个图像中的任一图像对应的采集点位表示,采集所述图像时镜头的光心位置;所述预设的半径区间的左边界大于0。In a possible implementation, the radius of the minimum circumscribed circle of the multiple acquisition points corresponding to the multiple images is within a preset radius range; wherein the acquisition point corresponding to any one of the multiple images represents the optical center position of the lens when the image is acquired; and the left boundary of the preset radius range is greater than 0.
在该实现方式中,通过控制所述多个图像对应的多个采集点位的最小外接圆的半径在预设的半径区间内,由此能够使多个图像中相邻视角的图像之间具有合适的视差,从而有利于对目标场景进行准确、高效的三维重建。In this implementation, by controlling the radius of the minimum circumscribed circle of the multiple acquisition points corresponding to the multiple images to be within a preset radius range, it is possible to ensure that there is a suitable parallax between the images of adjacent perspectives in the multiple images, thereby facilitating accurate and efficient three-dimensional reconstruction of the target scene.
在一种可能的实现方式中,所述采用所述多个图像,训练神经辐射场模型,得到训练完成的神经辐射场模型,包括:In a possible implementation, the using the multiple images to train the neural radiation field model to obtain the trained neural radiation field model includes:
基于所述多个图像,确定与所述多个图像一一对应的多项相机外参;Based on the multiple images, determining a plurality of camera extrinsic parameters corresponding one-to-one to the multiple images;
基于所述多个图像和所述多项相机外参,训练神经辐射场模型,得到训练完成的神经辐射场模型。Based on the multiple images and the multiple camera extrinsic parameters, a neural radiation field model is trained to obtain a trained neural radiation field model.
通过该实现方式对神经辐射场模型进行训练,能够使神经辐射场模型学习到目标场景的三维的视觉信息。By training the neural radiation field model through this implementation method, the neural radiation field model can learn the three-dimensional visual information of the target scene.
在一种可能的实现方式中,In one possible implementation,
所述预设的左眼光线为射线,所述预设的左眼光线的端点在预设圆上,所述预设的左眼光线在所述预设圆的切线上,且所述预设的左眼光线的方向为所述预设圆的顺时针方向;The preset left-eye light is a ray, the endpoint of the preset left-eye light is on a preset circle, the preset left-eye light is on a tangent of the preset circle, and the direction of the preset left-eye light is the clockwise direction of the preset circle;
所述预设的右眼光线为射线,所述预设的右眼光线的端点在所述预设圆上,所述预设的右眼光线在所述预设圆的切线上,且所述预设的右眼光线的方向为所述预设圆的逆时针方向;The preset right-eye light is a ray, the endpoint of the preset right-eye light is on the preset circle, the preset right-eye light is on the tangent of the preset circle, and the direction of the preset right-eye light is counterclockwise of the preset circle;
其中,所述预设圆的直径为预设瞳距。Wherein, the diameter of the preset circle is the preset pupil distance.
通过采用该实现方式,能够生成视差合适、质量较高的左眼图像和右眼图像。By adopting this implementation method, it is possible to generate left-eye images and right-eye images with appropriate parallax and high quality.
在一种可能的实现方式中,所述方法应用于虚拟现实设备、增强现实设备、混合现实设备、人工智能设备以及数字孪生系统中的任意一种。In one possible implementation, the method is applied to any one of a virtual reality device, an augmented reality device, a mixed reality device, an artificial intelligence device, and a digital twin system.
根据本公开的一方面,提供了一种双目图像的生成装置,包括:According to one aspect of the present disclosure, a device for generating a binocular image is provided, comprising:
获取模块,用于获取目标场景对应的多个图像,其中,所述多个图像是从多个角度对所述目标场景采集得到的;An acquisition module, used to acquire multiple images corresponding to a target scene, wherein the multiple images are acquired from multiple angles of the target scene;
训练模块,用于采用所述多个图像,训练神经辐射场模型,得到训练完成的神经辐射场模型;A training module, used to train a neural radiation field model using the multiple images to obtain a trained neural radiation field model;
第一生成模块,用于通过所述训练完成的神经辐射场模型基于预设的左眼光线,生成左眼图像;A first generating module, configured to generate a left eye image based on a preset left eye light by using the trained neural radiation field model;
第二生成模块,用于通过所述训练完成的神经辐射场模型基于预设的右眼光线,生成右眼图像。The second generating module is used to generate a right eye image based on a preset right eye light through the trained neural radiation field model.
在一种可能的实现方式中,所述多个图像包含所述目标场景的全景信息,所述左眼图像为左眼对应的全景图像,所述右眼图像为右眼对应的全景图像。In a possible implementation manner, the multiple images include panoramic information of the target scene, the left-eye image is a panoramic image corresponding to the left eye, and the right-eye image is a panoramic image corresponding to the right eye.
在一种可能的实现方式中,所述多个图像中的任一图像中的任意图像信息,至少包含于所述多个图像中的另一图像中。In a possible implementation manner, any image information in any image among the multiple images is at least contained in another image among the multiple images.
在一种可能的实现方式中,所述多个图像是通过移动单个摄像头采集得到的。In a possible implementation manner, the multiple images are acquired by moving a single camera.
在一种可能的实现方式中,所述多个图像对应的多个采集点位的最小外接圆的半径在预设的半径区间内;其中,所述多个图像中的任一图像对应的采集点位表示,采集所述图像时镜头的光心位置;所述预设的半径区间的左边界大于0。In a possible implementation, the radius of the minimum circumscribed circle of the multiple acquisition points corresponding to the multiple images is within a preset radius range; wherein the acquisition point corresponding to any one of the multiple images represents the optical center position of the lens when the image is acquired; and the left boundary of the preset radius range is greater than 0.
在一种可能的实现方式中,所述训练模块用于:In a possible implementation, the training module is used to:
基于所述多个图像,确定与所述多个图像一一对应的多项相机外参;Based on the multiple images, determining a plurality of camera extrinsic parameters corresponding one-to-one to the multiple images;
基于所述多个图像和所述多项相机外参,训练神经辐射场模型,得到训练完成的神经辐射场模型。Based on the multiple images and the multiple camera extrinsic parameters, a neural radiation field model is trained to obtain a trained neural radiation field model.
在一种可能的实现方式中,In one possible implementation,
所述预设的左眼光线为射线,所述预设的左眼光线的端点在预设圆上,所述预设的左眼光线在所述预设圆的切线上,且所述预设的左眼光线的方向为所述预设圆的顺时针方向;The preset left-eye light is a ray, the endpoint of the preset left-eye light is on a preset circle, the preset left-eye light is on a tangent of the preset circle, and the direction of the preset left-eye light is the clockwise direction of the preset circle;
所述预设的右眼光线为射线,所述预设的右眼光线的端点在所述预设圆上,所述预设的右眼光线在所述预设圆的切线上,且所述预设的右眼光线的方向为所述预设圆的逆时针方向;The preset right-eye light is a ray, the endpoint of the preset right-eye light is on the preset circle, the preset right-eye light is on the tangent of the preset circle, and the direction of the preset right-eye light is counterclockwise of the preset circle;
其中,所述预设圆的直径为预设瞳距。Wherein, the diameter of the preset circle is the preset pupil distance.
在一种可能的实现方式中,所述装置应用于虚拟现实设备、增强现实设备、混合现实设备、人工智能设备以及数字孪生系统中的任意一种。In one possible implementation, the device is applied to any one of a virtual reality device, an augmented reality device, a mixed reality device, an artificial intelligence device, and a digital twin system.
根据本公开的一方面,提供了一种电子设备,包括:一个或多个处理器;用于存储可执行指令的存储器;其中,所述一个或多个处理器被配置为调用所述存储器存储的可执行指令,以执行上述方法。According to one aspect of the present disclosure, an electronic device is provided, comprising: one or more processors; a memory for storing executable instructions; wherein the one or more processors are configured to call the executable instructions stored in the memory to execute the above method.
根据本公开的一方面,提供了一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。According to one aspect of the present disclosure, a computer-readable storage medium is provided, on which computer program instructions are stored, and the computer program instructions implement the above method when executed by a processor.
根据本公开的一方面,提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行上述方法。According to one aspect of the present disclosure, a computer program product is provided, including a computer-readable code, or a non-volatile computer-readable storage medium carrying the computer-readable code. When the computer-readable code runs in an electronic device, a processor in the electronic device executes the above method.
在本公开实施例中,通过获取从多个角度对所述目标场景采集得到的多个图像,采用所述多个图像,训练神经辐射场模型,得到训练完成的神经辐射场模型,通过所述训练完成的神经辐射场模型基于预设的左眼光线,生成左眼图像,并通过所述训练完成的神经辐射场模型基于预设的右眼光线,生成右眼图像,由此通过利用从多个角度对目标场景采集得到的多个图像,生成目标场景对应的双目图像,能够降低硬件成本,降低双目图像的获得难度,并能够生成准确、高质量的双目图像。In an embodiment of the present disclosure, a plurality of images acquired from a plurality of angles of the target scene are acquired, and a neural radiation field model is trained using the plurality of images to obtain a trained neural radiation field model. A left-eye image is generated based on a preset left-eye light by the trained neural radiation field model, and a right-eye image is generated based on a preset right-eye light by the trained neural radiation field model. Thus, by utilizing the plurality of images acquired from a plurality of angles of the target scene to generate a binocular image corresponding to the target scene, hardware costs can be reduced, the difficulty of obtaining binocular images can be reduced, and accurate and high-quality binocular images can be generated.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure.
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。Further features and aspects of the present disclosure will become apparent from the following detailed description of exemplary embodiments with reference to the attached drawings.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。The drawings herein are incorporated into the specification and constitute a part of the specification. These drawings illustrate embodiments consistent with the present disclosure and are used to illustrate the technical solutions of the present disclosure together with the specification.
图1示出本公开实施例提供的双目图像的生成方法的流程图。FIG1 shows a flow chart of a binocular image generation method provided by an embodiment of the present disclosure.
图2示出本公开实施例提供的双目图像的生成方法中,目标场景对应的多个图像的采集方式的示意图。FIG. 2 is a schematic diagram showing a method for collecting multiple images corresponding to a target scene in a binocular image generation method provided in an embodiment of the present disclosure.
图3a示出本公开实施例提供的双目图像的生成方法生成的左眼全景图像的示意图。FIG. 3 a shows a schematic diagram of a left-eye panoramic image generated by the binocular image generation method provided by an embodiment of the present disclosure.
图3b示出本公开实施例提供的双目图像的生成方法生成的右眼全景图像的示意图。FIG3 b is a schematic diagram showing a right-eye panoramic image generated by the binocular image generation method provided by an embodiment of the present disclosure.
图4a示出本公开实施例提供的双目图像的生成方法中的预设的左眼光线的示意图。FIG. 4 a is a schematic diagram showing a preset left-eye light in a binocular image generation method provided in an embodiment of the present disclosure.
图4b示出本公开实施例提供的双目图像的生成方法中的预设的右眼光线的示意图。FIG. 4 b is a schematic diagram showing a preset right-eye light in the binocular image generation method provided in an embodiment of the present disclosure.
图5示出本公开实施例提供的双目图像的生成装置的框图。FIG5 shows a block diagram of a binocular image generating device provided by an embodiment of the present disclosure.
图6示出本公开实施例提供的电子设备1900的框图。FIG. 6 shows a block diagram of an electronic device 1900 provided by an embodiment of the present disclosure.
具体实施方式Detailed ways
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。Various exemplary embodiments, features and aspects of the present disclosure will be described in detail below with reference to the accompanying drawings. The same reference numerals in the accompanying drawings represent elements with the same or similar functions. Although various aspects of the embodiments are shown in the accompanying drawings, the drawings are not necessarily drawn to scale unless otherwise specified.
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。The word “exemplary” is used exclusively herein to mean “serving as an example, example, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。The term "and/or" herein is only a description of the association relationship of the associated objects, indicating that there may be three relationships. For example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone. In addition, the term "at least one" herein represents any combination of at least two of any one or more of a plurality of. For example, including at least one of A, B, and C can represent including any one or more elements selected from the set consisting of A, B, and C.
另外,为了更好地说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。In addition, in order to better illustrate the present disclosure, numerous specific details are given in the following specific embodiments. It should be understood by those skilled in the art that the present disclosure can also be implemented without certain specific details. In some examples, methods, means, components and circuits well known to those skilled in the art are not described in detail in order to highlight the subject matter of the present disclosure.
本公开实施例提供了一种双目图像的生成方法、双目图像的生成装置、电子设备、存储介质和程序产品,通过获取从多个角度对所述目标场景采集得到的多个图像,采用所述多个图像,训练神经辐射场模型,得到训练完成的神经辐射场模型,通过所述训练完成的神经辐射场模型基于预设的左眼光线,生成左眼图像,并通过所述训练完成的神经辐射场模型基于预设的右眼光线,生成右眼图像,由此通过利用从多个角度对目标场景采集得到的多个图像,生成目标场景对应的双目图像,能够降低硬件成本,降低双目图像的获得难度,并能够生成准确、高质量的双目图像。The embodiments of the present disclosure provide a binocular image generation method, a binocular image generation device, an electronic device, a storage medium and a program product. A plurality of images acquired from a target scene from multiple angles are acquired, and a neural radiation field model is trained using the plurality of images to obtain a trained neural radiation field model. A left-eye image is generated based on a preset left-eye light by the trained neural radiation field model, and a right-eye image is generated based on a preset right-eye light by the trained neural radiation field model. Thus, a binocular image corresponding to the target scene is generated by using the plurality of images acquired from a target scene from multiple angles, thereby reducing hardware costs, reducing the difficulty of obtaining binocular images, and generating accurate and high-quality binocular images.
示例性地,本公开实施例的双目图像的生成方法、双目图像的生成装置、电子设备、存储介质和程序产品可以适用于虚拟现实技术(Virtual Reality,VR)、增强现实技术(Augmented Reality,AR)、混合现实技术(Mixed Reality,MR)、人工智能技术(例如,人工智能绘画)以及数字孪生等应用领域。例如,可以应用于虚拟现实设备、人工智能设备、增强现实设备、混合现实设备以及数字孪生系统中的任意一种。需要说明的是,本公开不限制具体应用领域或场景。Exemplarily, the binocular image generation method, binocular image generation device, electronic device, storage medium and program product of the embodiments of the present disclosure can be applied to application fields such as virtual reality technology (VR), augmented reality technology (AR), mixed reality technology (MR), artificial intelligence technology (e.g., artificial intelligence painting) and digital twins. For example, it can be applied to any one of virtual reality devices, artificial intelligence devices, augmented reality devices, mixed reality devices and digital twin systems. It should be noted that the present disclosure does not limit specific application fields or scenarios.
下面结合附图对本公开实施例提供的双目图像的生成方法进行详细的说明。The binocular image generation method provided by the embodiment of the present disclosure is described in detail below with reference to the accompanying drawings.
图1示出本公开实施例提供的双目图像的生成方法的流程图。在一种可能的实现方式中,所述双目图像的生成方法的执行主体可以是双目图像的生成装置,例如,所述双目图像的生成方法可以由终端设备或服务器或其它电子设备执行。其中,终端设备可以是用户设备(User Equipment,UE)、移动设备、用户终端、终端、蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、手持设备、计算设备、车载设备或者可穿戴设备等。在一些可能的实现方式中,所述双目图像的生成方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。如图1所示,所述双目图像的生成方法包括步骤S11至步骤S14。FIG1 shows a flow chart of a binocular image generation method provided by an embodiment of the present disclosure. In a possible implementation, the execution subject of the binocular image generation method may be a binocular image generation device, for example, the binocular image generation method may be executed by a terminal device or a server or other electronic device. Among them, the terminal device may be a user equipment (User Equipment, UE), a mobile device, a user terminal, a terminal, a cellular phone, a cordless phone, a personal digital assistant (Personal Digital Assistant, PDA), a handheld device, a computing device, a vehicle-mounted device or a wearable device, etc. In some possible implementations, the binocular image generation method may be implemented by a processor calling a computer-readable instruction stored in a memory. As shown in FIG1 , the binocular image generation method includes steps S11 to S14.
在步骤S11中,获取目标场景对应的多个图像,其中,所述多个图像是从多个角度对所述目标场景采集得到的。In step S11, a plurality of images corresponding to a target scene are acquired, wherein the plurality of images are acquired from capturing the target scene from multiple angles.
在步骤S12中,采用所述多个图像,训练神经辐射场模型,得到训练完成的神经辐射场模型。In step S12, the plurality of images are used to train a neural radiation field model to obtain a trained neural radiation field model.
在步骤S13中,通过所述训练完成的神经辐射场模型基于预设的左眼光线,生成左眼图像。In step S13, the neural radiation field model completed through the training generates a left eye image based on the preset left eye light.
在步骤S14中,通过所述训练完成的神经辐射场模型基于预设的右眼光线,生成右眼图像。In step S14, the neural radiation field model completed through the training generates a right eye image based on the preset right eye light.
在本公开实施例中,双目图像可以包括左眼图像和右眼图像,其中,左眼图像可以表示提供给左眼观看的图像,右眼图像可以表示提供给右眼观看的图像。左眼图像与右眼图像之间具有视差,且左眼图像和右眼图像可以均为二维图像。其中,视差可以表示从具有一定距离的两个点上观察同一个目标所产生的方向差异。从目标看两个点之间的夹角,可以称为这两个点之间的视差角。在一些应用场景中,双目图像还可以称为3D(3Dimensions,三维)图像、立体图像、双目立体图像、双目视觉图像等,在此不做限定。In an embodiment of the present disclosure, a binocular image may include a left-eye image and a right-eye image, wherein the left-eye image may represent an image provided to the left eye for viewing, and the right-eye image may represent an image provided to the right eye for viewing. There is parallax between the left-eye image and the right-eye image, and both the left-eye image and the right-eye image may be two-dimensional images. Among them, the parallax may represent the directional difference produced by observing the same target from two points at a certain distance. The angle between the two points viewed from the target may be referred to as the parallax angle between the two points. In some application scenarios, the binocular image may also be referred to as a 3D (3 Dimensions, three-dimensional) image, a stereo image, a binocular stereo image, a binocular vision image, etc., which is not limited here.
本公开实施例生成的左眼图像和右眼图像可以提供给观看设备进行展示,以给使用观看设备的观看者提供立体的视觉效果。其中,观看设备可以为能够通过展示左眼图像和右眼图像提供立体视觉效果的任意设备。例如,观看设备可以是VR(Virtual Reality,虚拟现实)眼镜、AR(Augmented Reality,增强现实)眼镜等,在此不做限定。The left-eye image and the right-eye image generated by the embodiment of the present disclosure may be provided to a viewing device for display, so as to provide a stereoscopic visual effect to a viewer using the viewing device. The viewing device may be any device capable of providing a stereoscopic visual effect by displaying the left-eye image and the right-eye image. For example, the viewing device may be VR (Virtual Reality) glasses, AR (Augmented Reality) glasses, etc., which are not limited here.
在本公开实施例中,目标场景可以表示待生成双目图像的任意场景。目标场景对应的多个图像,可以是从多个角度对目标场景进行图像采集和/或视频采集得到的图像。例如,可以从多个角度拍摄目标场景的图像,得到多个图像。又如,可以从多个角度拍摄目标场景的视频,并从所述视频中截取得到多个图像。In the disclosed embodiments, the target scene may represent any scene for which a binocular image is to be generated. The multiple images corresponding to the target scene may be images obtained by performing image acquisition and/or video acquisition of the target scene from multiple angles. For example, images of the target scene may be taken from multiple angles to obtain multiple images. For another example, a video of the target scene may be taken from multiple angles, and multiple images may be captured from the video.
在本公开实施例中,在从多个角度采集所述多个图像时,可以由用户手动控制摄像头移动,也可以通过机械控制摄像头移动,在此不做限定。其中,通过用户手动控制摄像头移动的方式不仅无需用户操作复杂的设备,还能够降低硬件成本,因此能够降低多角度图像采集的实现难度,进而能够应用于更广泛的场景中。In the disclosed embodiment, when the multiple images are collected from multiple angles, the camera can be manually controlled by the user or mechanically controlled, which is not limited here. The method of manually controlling the camera movement by the user not only does not require the user to operate complex equipment, but also reduces hardware costs, thereby reducing the difficulty of implementing multi-angle image collection, and can be applied to a wider range of scenarios.
在一种可能的实现方式中,所述多个图像是通过移动单个摄像头采集得到的。在该实现方式中,通过采用单个摄像头采集得到目标场景对应的多个图像,并基于由此采集得到的多个图像生成左眼图像和右眼图像,由此能够降低生成双目图像的设备成本。并且,在采用单个摄像头的方式中,不存在需要调整不同摄像头的内参的问题,能够进一步降低操作复杂度。另外,在该实现方式中,用户只需要从多个角度拍摄目标场景的多个图像即可,无需操作复杂的设备。In a possible implementation, the multiple images are acquired by moving a single camera. In this implementation, multiple images corresponding to the target scene are acquired by using a single camera, and left-eye images and right-eye images are generated based on the multiple images acquired, thereby reducing the cost of equipment for generating binocular images. Moreover, in the method of using a single camera, there is no need to adjust the internal parameters of different cameras, which can further reduce the complexity of operation. In addition, in this implementation, the user only needs to take multiple images of the target scene from multiple angles without having to operate complex equipment.
在另一种可能的实现方式中,所述多个图像可以是通过移动至少两个摄像头采集得到的。在该实现方式中,可以调整所述至少两个摄像头的内参,使所述至少两个摄像头的内参一致或相近。在调整所述至少两个摄像头的内参之后,可以移动所述至少两个摄像头,以从多个角度拍摄得到目标场景的多个图像。In another possible implementation, the multiple images may be acquired by moving at least two cameras. In this implementation, the internal parameters of the at least two cameras may be adjusted so that the internal parameters of the at least two cameras are consistent or similar. After adjusting the internal parameters of the at least two cameras, the at least two cameras may be moved to obtain multiple images of the target scene from multiple angles.
在一种可能的实现方式中,所述多个图像对应的多个采集点位的最小外接圆的半径在预设的半径区间内;其中,所述多个图像中的任一图像对应的采集点位表示,采集所述图像时镜头的光心位置;所述预设的半径区间的左边界大于0。In a possible implementation, the radius of the minimum circumscribed circle of the multiple acquisition points corresponding to the multiple images is within a preset radius range; wherein the acquisition point corresponding to any one of the multiple images represents the optical center position of the lens when the image is acquired; and the left boundary of the preset radius range is greater than 0.
透镜的主轴上有一个特殊的点,凡是通过该点的光,其传播方向不变,这个点称为光心。可以把凸透镜的中心近似看作是光心。通常,摄像头的镜头相当于一个凸透镜。There is a special point on the main axis of the lens. The propagation direction of any light passing through this point remains unchanged. This point is called the optical center. The center of the convex lens can be roughly regarded as the optical center. Usually, the lens of a camera is equivalent to a convex lens.
在该实现方式中,可以将所述多个采集点位对应的多个投影点的最小外接圆,作为所述多个采集点位的最小外接圆。其中,可以将所述多个采集点位投影至同一水平面,得到与所述多个采集点位一一对应的多个投影点。In this implementation, the minimum circumscribed circle of the multiple projection points corresponding to the multiple acquisition points can be used as the minimum circumscribed circle of the multiple acquisition points. The multiple acquisition points can be projected onto the same horizontal plane to obtain multiple projection points corresponding to the multiple acquisition points.
例如,预设的半径区间可以为(50cm,100cm]。当然,本领域技术人员可以根据实际应用场景需求灵活设置预设的半径区间,在此不做限定。For example, the preset radius interval may be (50 cm, 100 cm]. Of course, those skilled in the art may flexibly set the preset radius interval according to the actual application scenario requirements, and no limitation is made here.
在该实现方式中,可以根据预设的观看点和预设的半径区间,确定摄像头移动的范围,并可以在所述范围内,控制摄像头移动。In this implementation, the range of camera movement can be determined according to a preset viewing point and a preset radius interval, and the camera movement can be controlled within the range.
在该实现方式中,通过控制所述多个图像对应的多个采集点位的最小外接圆的半径在预设的半径区间内,由此能够使多个图像中相邻视角的图像之间具有合适的视差,从而有利于对目标场景进行准确、高效的三维重建。In this implementation, by controlling the radius of the minimum circumscribed circle of the multiple acquisition points corresponding to the multiple images to be within a preset radius range, it is possible to ensure that there is a suitable parallax between the images of adjacent perspectives in the multiple images, thereby facilitating accurate and efficient three-dimensional reconstruction of the target scene.
在一种可能的实现方式中,所述多个图像包含所述目标场景的全景信息,所述左眼图像为左眼对应的全景图像,所述右眼图像为右眼对应的全景图像。在该实现方式中,所述多个图像可以包含所述目标场景的360度的影像信息。在该实现方式中,双目图像可以称为双目全景图像,左眼图像可以称为左眼全景图像,右眼图像可以称为右眼全景图像。在一些应用场景中,双目全景图像也可以称为3D全景图像、立体全景图像、全景立体图像、双目立体全景图像等,在此不做限定。In one possible implementation, the multiple images include panoramic information of the target scene, the left-eye image is a panoramic image corresponding to the left eye, and the right-eye image is a panoramic image corresponding to the right eye. In this implementation, the multiple images may include 360-degree image information of the target scene. In this implementation, the binocular image may be called a binocular panoramic image, the left-eye image may be called a left-eye panoramic image, and the right-eye image may be called a right-eye panoramic image. In some application scenarios, the binocular panoramic image may also be called a 3D panoramic image, a stereoscopic panoramic image, a panoramic stereo image, a binocular stereoscopic panoramic image, etc., which is not limited here.
在该实现方式中,通过采用包含目标场景的全景信息的多个图像,能够生成左眼全景图像和右眼全景图像,从而能够提供双目全景图像,即,能够提供具有立体效果的全景图像,从而能够向使用观看设备的观看者提供立体的全景效果。In this implementation, by using multiple images containing panoramic information of the target scene, a left-eye panoramic image and a right-eye panoramic image can be generated, thereby providing a binocular panoramic image, that is, a panoramic image with a stereoscopic effect can be provided, thereby providing a stereoscopic panoramic effect to a viewer using a viewing device.
作为该实现方式的一个示例,所述多个图像中的任一图像中的任意图像信息,至少包含于所述多个图像中的另一图像中。在该示例中,可以从不同的角度,对目标场景的同一视觉信息进行重复采集,使采集得到的不同图像中包含目标场景的相同的视觉信息。例如,在移动摄像头时,可以使目标场景中的每个物体被拍到两次以上。As an example of this implementation, any image information in any one of the multiple images is at least contained in another one of the multiple images. In this example, the same visual information of the target scene can be repeatedly collected from different angles so that the different collected images contain the same visual information of the target scene. For example, when the camera is moved, each object in the target scene can be photographed more than twice.
在该示例中,通过从不同的角度对目标场景的同一视觉信息进行重复采集,由此能够提高对所述目标场景进行三维重建的准确性,从而能够提高最终生成的左眼全景图像和右眼全景图像的质量。In this example, by repeatedly collecting the same visual information of the target scene from different angles, the accuracy of three-dimensional reconstruction of the target scene can be improved, thereby improving the quality of the ultimately generated left-eye panoramic image and right-eye panoramic image.
作为该实现方式的另一个示例,所述多个图像中的任一图像中的图像信息,可以不被包含于所述多个图像中的另一图像中。As another example of this implementation, image information in any one of the multiple images may not be included in another image of the multiple images.
图2示出本公开实施例提供的双目图像的生成方法中,目标场景对应的多个图像的采集方式的示意图。如图2所示,可以在观看点21的附近移动摄像头22,并控制摄像头22向外拍摄目标场景。其中,摄像头22的各个采集点位的最小外接圆23的半径可以在50厘米至1米之间。通过控制摄像头22在多个不同的位置拍摄图像,由此拍摄到的图像可以覆盖最小外接圆23以外的各个角度的影像信息。通过从更多的角度对目标场景拍摄得到更多的图像,由此有助于进行更准确的三维重建,从而有助于生成分辨率更高的左眼图像和右眼图像。FIG2 is a schematic diagram showing a method for collecting multiple images corresponding to a target scene in a binocular image generation method provided by an embodiment of the present disclosure. As shown in FIG2 , a camera 22 can be moved near a viewing point 21, and the camera 22 can be controlled to shoot the target scene outward. Among them, the radius of the minimum circumscribed circle 23 of each acquisition point of the camera 22 can be between 50 cm and 1 m. By controlling the camera 22 to capture images at multiple different positions, the images captured can cover image information at various angles outside the minimum circumscribed circle 23. By capturing more images of the target scene from more angles, more accurate three-dimensional reconstruction is facilitated, thereby facilitating the generation of left-eye and right-eye images with higher resolutions.
图3a示出本公开实施例提供的双目图像的生成方法生成的左眼全景图像的示意图。图3b示出本公开实施例提供的双目图像的生成方法生成的右眼全景图像的示意图。在图3a和图3b中,左眼全景图像和右眼全景图像为球面投影的全景图像。Fig. 3a is a schematic diagram of a left-eye panoramic image generated by the binocular image generation method provided by an embodiment of the present disclosure. Fig. 3b is a schematic diagram of a right-eye panoramic image generated by the binocular image generation method provided by an embodiment of the present disclosure. In Figs. 3a and 3b, the left-eye panoramic image and the right-eye panoramic image are panoramic images of spherical projection.
在本公开实施例中,可以利用所述多个图像,对神经辐射场(Neural RadianceFields,NeRF)模型进行训练。在神经辐射场模型的训练过程中,可以通过最小化已知图像(即所述多个图像)与通过渲染得到的图像之间的像素差值,更新神经辐射场模型的参数。其中,神经辐射场模型将全连接神经网络引入到场景的三维表示中。通过采用所述多个图像作为监督,神经辐射场模型可以隐式地对目标场景进行三维重建,然后可以在新视角下通过渲染生成新的角度的二维图像。本公开实施例中的神经辐射场模型可以采用神经辐射场算法或其改进算法,在此不做限定。In the embodiment of the present disclosure, the multiple images can be used to train the Neural Radiance Fields (NeRF) model. During the training process of the neural radiation field model, the parameters of the neural radiation field model can be updated by minimizing the pixel difference between the known image (i.e., the multiple images) and the image obtained by rendering. Among them, the neural radiation field model introduces a fully connected neural network into the three-dimensional representation of the scene. By using the multiple images as supervision, the neural radiation field model can implicitly reconstruct the target scene in three dimensions, and then generate a two-dimensional image of a new angle by rendering under a new perspective. The neural radiation field model in the embodiment of the present disclosure can adopt a neural radiation field algorithm or an improved algorithm thereof, which is not limited here.
在一种可能的实现方式中,所述采用所述多个图像,训练神经辐射场模型,得到训练完成的神经辐射场模型,包括:基于所述多个图像,确定与所述多个图像一一对应的多项相机外参;基于所述多个图像和所述多项相机外参,训练神经辐射场模型,得到训练完成的神经辐射场模型。In a possible implementation, the multiple images are used to train the neural radiation field model to obtain a trained neural radiation field model, including: based on the multiple images, determining a number of camera extrinsic parameters corresponding one-to-one to the multiple images; based on the multiple images and the multiple camera extrinsic parameters, training the neural radiation field model to obtain a trained neural radiation field model.
在该实现方式中,可以采用运动恢复结构(Structure From Motion,SFM)等方法,根据所述多个图像,恢复得到与所述多个图像一一对应的多项相机外参。其中,所述多个图像中的任一图像对应的相机外参可以包括旋转信息和平移信息。作为该实现方式的一个示例,任一图像对应的相机外参可以采用外参矩阵表示,旋转信息可以采用旋转矩阵表示,平移信息可以采用平移向量表示。In this implementation, a method such as Structure From Motion (SFM) can be used to recover multiple camera extrinsic parameters corresponding to the multiple images one by one based on the multiple images. The camera extrinsic parameters corresponding to any one of the multiple images may include rotation information and translation information. As an example of this implementation, the camera extrinsic parameters corresponding to any one of the images may be represented by an extrinsic matrix, the rotation information may be represented by a rotation matrix, and the translation information may be represented by a translation vector.
对于所述多个图像中的任一图像,根据所述图像对应的相机外参,可以确定所述图像对应的空间点的三维坐标X=(x,y,z)和二维的视角方向d=(θ,Φ)。在神经辐射场模型的训练阶段,神经辐射场模型的输入可以包括图像对应的空间点的三维坐标和二维的视角方向。通过该实现方式对神经辐射场模型进行训练,能够使神经辐射场模型学习到目标场景的三维的视觉信息。For any image among the multiple images, the three-dimensional coordinates X=(x, y, z) of the space point corresponding to the image and the two-dimensional viewing direction d=(θ, Φ) can be determined based on the camera extrinsics corresponding to the image. In the training stage of the neural radiation field model, the input of the neural radiation field model may include the three-dimensional coordinates of the space point corresponding to the image and the two-dimensional viewing direction. By training the neural radiation field model in this implementation method, the neural radiation field model can learn the three-dimensional visual information of the target scene.
在本公开实施例中,通过训练完成的神经辐射场模型进行左眼图像和右眼图像的渲染。在本公开实施例中,不对步骤S13和步骤S14的执行顺序进行限定。例如,可以同时执行步骤S13和步骤S14。又如,可以先执行步骤S13,再执行步骤S14。又如,可以先执行步骤S14,再执行步骤S13。In the embodiment of the present disclosure, the left eye image and the right eye image are rendered by the trained neural radiation field model. In the embodiment of the present disclosure, the execution order of step S13 and step S14 is not limited. For example, step S13 and step S14 can be executed at the same time. For another example, step S13 can be executed first, and then step S14 can be executed. For another example, step S14 can be executed first, and then step S13 can be executed.
在一种可能的实现方式中,所述预设的左眼光线为射线,所述预设的左眼光线的端点在预设圆上,所述预设的左眼光线在所述预设圆的切线上,且所述预设的左眼光线的方向为所述预设圆的顺时针方向;所述预设的右眼光线为射线,所述预设的右眼光线的端点在所述预设圆上,所述预设的右眼光线在所述预设圆的切线上,且所述预设的右眼光线的方向为所述预设圆的逆时针方向;其中,所述预设圆的直径为预设瞳距。In a possible implementation, the preset left eye light is a ray, the endpoint of the preset left eye light is on a preset circle, the preset left eye light is on a tangent of the preset circle, and the direction of the preset left eye light is in a clockwise direction of the preset circle; the preset right eye light is a ray, the endpoint of the preset right eye light is on the preset circle, the preset right eye light is on a tangent of the preset circle, and the direction of the preset right eye light is in a counterclockwise direction of the preset circle; wherein the diameter of the preset circle is a preset pupil distance.
在该实现方式中,预设瞳距的取值范围可以为5cm~12cm。作为该实现方式的一个示例,可以将目标用户的瞳距作为预设瞳距。In this implementation, the value range of the preset pupil distance may be 5 cm to 12 cm. As an example of this implementation, the pupil distance of the target user may be used as the preset pupil distance.
在该实现方式中,预设圆的直径等于预设瞳距。在该实现方式中,可以按照ODS(Omni–Directional Stereo,全景立体)的光线采样方向,采样得到预设的左眼光线和预设的右眼光线。图4a示出本公开实施例提供的双目图像的生成方法中的预设的左眼光线的示意图。在图4a中,带箭头的射线表示预设的左眼光线。如图4a所示,预设的左眼光线为射线,预设的左眼光线的端点在预设圆上,预设的左眼光线在预设圆的切线上,且预设的左眼光线的方向为预设圆的顺时针方向。图4b示出本公开实施例提供的双目图像的生成方法中的预设的右眼光线的示意图。在图4b中,带箭头的射线表示预设的右眼光线。如图4b所示,预设的右眼光线为射线,预设的右眼光线的端点在预设圆上,预设的右眼光线在预设圆的切线上,且预设的右眼光线的方向为预设圆的逆时针方向。In this implementation, the diameter of the preset circle is equal to the preset pupil distance. In this implementation, the preset left eye light and the preset right eye light can be sampled according to the light sampling direction of ODS (Omni-Directional Stereo). Figure 4a shows a schematic diagram of the preset left eye light in the binocular image generation method provided by the embodiment of the present disclosure. In Figure 4a, the ray with an arrow represents the preset left eye light. As shown in Figure 4a, the preset left eye light is a ray, the endpoint of the preset left eye light is on the preset circle, the preset left eye light is on the tangent of the preset circle, and the direction of the preset left eye light is the clockwise direction of the preset circle. Figure 4b shows a schematic diagram of the preset right eye light in the binocular image generation method provided by the embodiment of the present disclosure. In Figure 4b, the ray with an arrow represents the preset right eye light. As shown in Figure 4b, the preset right eye light is a ray, the endpoint of the preset right eye light is on the preset circle, the preset right eye light is on the tangent of the preset circle, and the direction of the preset right eye light is the counterclockwise direction of the preset circle.
例如,采用球面投影的全景图像包括n列像素,每一列像素代表360/n度的光线,那么,在确定预设的左眼光线之后,可以通过逐列渲染的方式,渲染n列像素,得到左眼全景图像,在确定预设的右眼光线之后,可以通过逐列渲染的方式,渲染n列像素,得到右眼全景图像。For example, a panoramic image using spherical projection includes n columns of pixels, and each column of pixels represents 360/n degrees of light. Then, after determining the preset left eye light, n columns of pixels can be rendered column by column to obtain a left eye panoramic image. After determining the preset right eye light, n columns of pixels can be rendered column by column to obtain a right eye panoramic image.
通过采用该实现方式,能够生成视差合适、质量较高的左眼图像和右眼图像。By adopting this implementation method, it is possible to generate left-eye images and right-eye images with appropriate parallax and high quality.
当然,在其他实现方式中,本领域技术人员可以实际应用场景需求和/或个人喜好灵活设置预设的左眼光线的方向和预设的右眼光线的方向,在此不做限定。Of course, in other implementations, those skilled in the art can flexibly set the preset left eye light direction and the preset right eye light direction according to actual application scenario requirements and/or personal preferences, which is not limited here.
本公开实施例提供的双目图像的生成方法可以应用于虚拟现实、增强现实、三维重建、计算机视觉、深度学习等领域,在此不做限定。The binocular image generation method provided in the embodiments of the present disclosure can be applied to virtual reality, augmented reality, three-dimensional reconstruction, computer vision, deep learning and other fields, and is not limited here.
下面通过一个具体的应用场景说明本公开实施例提供的双目图像的生成方法。在该应用场景中,可以采用图2所示的图像采集方式,通过移动单个摄像头,从不同角度对目标场景进行图像采集,得到多个图像。其中,所述多个图像可以包含所述目标场景的360度的影像信息,且所述多个图像中的任一图像中的任意图像信息,可以至少包含于所述多个图像中的另一图像中。在采集得到所述多个图像之后,可以基于所述多个图像,确定与所述多个图像一一对应的多项相机外参,并可以基于所述多个图像和所述多项相机外参,训练神经辐射场模型。在神经辐射场模型训练完成之后,可以通过训练完成的神经辐射场模型基于如图4a所示的预设的左眼光线,生成左眼全景图像,并可以通过所述训练完成的神经辐射场模型基于如图4b所示的预设的右眼光线,生成右眼全景图像。The following is an explanation of the binocular image generation method provided by the embodiment of the present disclosure through a specific application scenario. In this application scenario, the image acquisition method shown in FIG. 2 can be used to acquire images of the target scene from different angles by moving a single camera to obtain multiple images. Among them, the multiple images may include 360-degree image information of the target scene, and any image information in any of the multiple images may be included in at least another image of the multiple images. After acquiring the multiple images, a number of camera extrinsics corresponding to the multiple images can be determined based on the multiple images, and a neural radiation field model can be trained based on the multiple images and the multiple camera extrinsics. After the training of the neural radiation field model is completed, a left-eye panoramic image can be generated based on the preset left-eye light as shown in FIG. 4a through the trained neural radiation field model, and a right-eye panoramic image can be generated based on the preset right-eye light as shown in FIG. 4b through the trained neural radiation field model.
可以理解,本公开提及的上述各个方法实施例,在不违背原理逻辑的情况下,均可以彼此相互结合形成结合后的实施例,限于篇幅,本公开不再赘述。本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。It can be understood that the above-mentioned various method embodiments mentioned in the present disclosure can be combined with each other to form a combined embodiment without violating the principle logic. Due to space limitations, the present disclosure will not repeat them. It can be understood by those skilled in the art that in the above-mentioned method of the specific implementation method, the specific execution order of each step should be determined according to its function and possible internal logic.
此外,本公开还提供了双目图像的生成装置、电子设备、计算机可读存储介质、计算机程序产品,上述均可用来实现本公开提供的任一种双目图像的生成方法,相应技术方案和技术效果可参见方法部分的相应记载,不再赘述。In addition, the present disclosure also provides a binocular image generation device, an electronic device, a computer-readable storage medium, and a computer program product, all of which can be used to implement any binocular image generation method provided by the present disclosure. The corresponding technical solutions and technical effects can be found in the corresponding records of the method part and will not be repeated here.
图5示出本公开实施例提供的双目图像的生成装置的框图。如图5所示,所述双目图像的生成装置包括:FIG5 is a block diagram of a binocular image generation device provided by an embodiment of the present disclosure. As shown in FIG5 , the binocular image generation device includes:
获取模块51,用于获取目标场景对应的多个图像,其中,所述多个图像是从多个角度对所述目标场景采集得到的;An acquisition module 51 is used to acquire multiple images corresponding to a target scene, wherein the multiple images are acquired from multiple angles of the target scene;
训练模块52,用于采用所述多个图像,训练神经辐射场模型,得到训练完成的神经辐射场模型;A training module 52 is used to train a neural radiation field model using the multiple images to obtain a trained neural radiation field model;
第一生成模块53,用于通过所述训练完成的神经辐射场模型基于预设的左眼光线,生成左眼图像;A first generating module 53, configured to generate a left eye image based on a preset left eye light by using the trained neural radiation field model;
第二生成模块54,用于通过所述训练完成的神经辐射场模型基于预设的右眼光线,生成右眼图像。The second generating module 54 is used to generate a right eye image based on the preset right eye light through the trained neural radiation field model.
在一种可能的实现方式中,所述多个图像包含所述目标场景的全景信息,所述左眼图像为左眼对应的全景图像,所述右眼图像为右眼对应的全景图像。In a possible implementation manner, the multiple images include panoramic information of the target scene, the left-eye image is a panoramic image corresponding to the left eye, and the right-eye image is a panoramic image corresponding to the right eye.
在一种可能的实现方式中,所述多个图像中的任一图像中的任意图像信息,至少包含于所述多个图像中的另一图像中。In a possible implementation manner, any image information in any image among the multiple images is at least contained in another image among the multiple images.
在一种可能的实现方式中,所述多个图像是通过移动单个摄像头采集得到的。In a possible implementation manner, the multiple images are acquired by moving a single camera.
在一种可能的实现方式中,所述多个图像对应的多个采集点位的最小外接圆的半径在预设的半径区间内;其中,所述多个图像中的任一图像对应的采集点位表示,采集所述图像时镜头的光心位置;所述预设的半径区间的左边界大于0。In a possible implementation, the radius of the minimum circumscribed circle of the multiple acquisition points corresponding to the multiple images is within a preset radius range; wherein the acquisition point corresponding to any one of the multiple images represents the optical center position of the lens when the image is acquired; and the left boundary of the preset radius range is greater than 0.
在一种可能的实现方式中,所述训练模块52用于:In a possible implementation, the training module 52 is used to:
基于所述多个图像,确定与所述多个图像一一对应的多项相机外参;Based on the multiple images, determining a plurality of camera extrinsic parameters corresponding one-to-one to the multiple images;
基于所述多个图像和所述多项相机外参,训练神经辐射场模型,得到训练完成的神经辐射场模型。Based on the multiple images and the multiple camera extrinsic parameters, a neural radiation field model is trained to obtain a trained neural radiation field model.
在一种可能的实现方式中,In one possible implementation,
所述预设的左眼光线为射线,所述预设的左眼光线的端点在预设圆上,所述预设的左眼光线在所述预设圆的切线上,且所述预设的左眼光线的方向为所述预设圆的顺时针方向;The preset left-eye light is a ray, the endpoint of the preset left-eye light is on a preset circle, the preset left-eye light is on a tangent of the preset circle, and the direction of the preset left-eye light is the clockwise direction of the preset circle;
所述预设的右眼光线为射线,所述预设的右眼光线的端点在所述预设圆上,所述预设的右眼光线在所述预设圆的切线上,且所述预设的右眼光线的方向为所述预设圆的逆时针方向;The preset right-eye light is a ray, the endpoint of the preset right-eye light is on the preset circle, the preset right-eye light is on the tangent of the preset circle, and the direction of the preset right-eye light is counterclockwise of the preset circle;
其中,所述预设圆的直径为预设瞳距。Wherein, the diameter of the preset circle is the preset pupil distance.
在一种可能的实现方式中,所述装置应用于虚拟现实设备、增强现实设备、混合现实设备、人工智能设备以及数字孪生系统中的任意一种。In one possible implementation, the device is applied to any one of a virtual reality device, an augmented reality device, a mixed reality device, an artificial intelligence device, and a digital twin system.
在本公开实施例中,通过获取从多个角度对所述目标场景采集得到的多个图像,采用所述多个图像,训练神经辐射场模型,得到训练完成的神经辐射场模型,通过所述训练完成的神经辐射场模型基于预设的左眼光线,生成左眼图像,并通过所述训练完成的神经辐射场模型基于预设的右眼光线,生成右眼图像,由此通过利用从多个角度对目标场景采集得到的多个图像,生成目标场景对应的双目图像,能够降低硬件成本,降低双目图像的获得难度,并能够生成准确、高质量的双目图像。In an embodiment of the present disclosure, a plurality of images acquired from a plurality of angles of the target scene are acquired, and a neural radiation field model is trained using the plurality of images to obtain a trained neural radiation field model. A left-eye image is generated based on a preset left-eye light by the trained neural radiation field model, and a right-eye image is generated based on a preset right-eye light by the trained neural radiation field model. Thus, by utilizing the plurality of images acquired from a plurality of angles of the target scene to generate a binocular image corresponding to the target scene, hardware costs can be reduced, the difficulty of obtaining binocular images can be reduced, and accurate and high-quality binocular images can be generated.
在一些实施例中,本公开实施例提供的装置具有的功能或包含的模块可以用于执行上文方法实施例描述的方法,其具体实现和技术效果可以参照上文方法实施例的描述,为了简洁,这里不再赘述。In some embodiments, the functions or modules included in the device provided by the embodiments of the present disclosure can be used to execute the method described in the above method embodiments. Its specific implementation and technical effects can refer to the description of the above method embodiments. For the sake of brevity, they will not be repeated here.
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。其中,所述计算机可读存储介质可以是非易失性计算机可读存储介质,或者可以是易失性计算机可读存储介质。The present disclosure also provides a computer-readable storage medium on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the above method is implemented. The computer-readable storage medium may be a non-volatile computer-readable storage medium, or may be a volatile computer-readable storage medium.
本公开实施例还提出一种计算机程序,包括计算机可读代码,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行上述方法。The embodiment of the present disclosure further provides a computer program, including a computer-readable code. When the computer-readable code is executed in an electronic device, a processor in the electronic device executes the above method.
本公开实施例还提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行上述方法。The embodiments of the present disclosure also provide a computer program product, including a computer-readable code, or a non-volatile computer-readable storage medium carrying the computer-readable code. When the computer-readable code runs in an electronic device, a processor in the electronic device executes the above method.
本公开实施例还提供一种电子设备,包括:一个或多个处理器;用于存储可执行指令的存储器;其中,所述一个或多个处理器被配置为调用所述存储器存储的可执行指令,以执行上述方法。An embodiment of the present disclosure also provides an electronic device, comprising: one or more processors; a memory for storing executable instructions; wherein the one or more processors are configured to call the executable instructions stored in the memory to execute the above method.
电子设备可以被提供为终端、服务器或其它形态的设备。The electronic device may be provided as a terminal, a server, or a device in other forms.
图6示出本公开实施例提供的电子设备1900的框图。例如,电子设备1900可以被提供为一服务器。参照图6,电子设备1900包括处理组件1922,其进一步包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述方法。FIG6 shows a block diagram of an electronic device 1900 provided in an embodiment of the present disclosure. For example, the electronic device 1900 may be provided as a server. Referring to FIG6 , the electronic device 1900 includes a processing component 1922, which further includes one or more processors, and a memory resource represented by a memory 1932 for storing instructions executable by the processing component 1922, such as an application. The application stored in the memory 1932 may include one or more modules, each of which corresponds to a set of instructions. In addition, the processing component 1922 is configured to execute instructions to perform the above method.
电子设备1900还可以包括一个电源组件1926被配置为执行电子设备1900的电源管理,一个有线或无线网络接口1950被配置为将电子设备1900连接到网络,和一个输入/输出(I/O)接口1958。电子设备1900可以操作基于存储在存储器1932的操作系统,例如微软服务器操作系统(Windows ServerTM),苹果公司推出的基于图形用户界面操作系统(Mac OSXTM),多用户多进程的计算机操作系统(UnixTM),自由和开放原代码的类Unix操作系统(LinuxTM),开放原代码的类Unix操作系统(FreeBSDTM)或类似。The electronic device 1900 may further include a power supply component 1926 configured to perform power management of the electronic device 1900, a wired or wireless network interface 1950 configured to connect the electronic device 1900 to a network, and an input/output (I/O) interface 1958. The electronic device 1900 may operate based on an operating system stored in the memory 1932, such as Microsoft's server operating system (Windows Server ™ ), Apple's graphical user interface-based operating system (Mac OSX ™ ), a multi-user multi-process computer operating system (Unix ™ ), a free and open source Unix-like operating system (Linux ™ ), an open source Unix-like operating system (FreeBSD ™ ), or the like.
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器1932,上述计算机程序指令可由电子设备1900的处理组件1922执行以完成上述方法。In an exemplary embodiment, a non-volatile computer-readable storage medium is also provided, such as a memory 1932 including computer program instructions, which can be executed by the processing component 1922 of the electronic device 1900 to perform the above method.
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。The present disclosure may be a system, a method and/or a computer program product. The computer program product may include a computer-readable storage medium carrying computer-readable program instructions for causing a processor to implement various aspects of the present disclosure.
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。A computer-readable storage medium may be a tangible device that can hold and store instructions used by an instruction execution device. A computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. More specific examples of computer-readable storage media (a non-exhaustive list) include: a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), a static random access memory (SRAM), a portable compact disk read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanical encoding device, such as a punch card or a raised structure in a groove on which instructions are stored, and any suitable combination of the foregoing. As used herein, a computer-readable storage medium is not to be interpreted as a transient signal per se, such as a radio wave or other freely propagating electromagnetic wave, an electromagnetic wave propagating through a waveguide or other transmission medium (e.g., a light pulse through a fiber optic cable), or an electrical signal transmitted through a wire.
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。The computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to each computing/processing device, or downloaded to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and/or a wireless network. The network can include copper transmission cables, optical fiber transmissions, wireless transmissions, routers, firewalls, switches, gateway computers, and/or edge servers. The network adapter card or network interface in each computing/processing device receives the computer-readable program instructions from the network and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing/processing device.
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。The computer program instructions for performing the operation of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or source code or object code written in any combination of one or more programming languages, including object-oriented programming languages, such as Smalltalk, C++, etc., and conventional procedural programming languages, such as "C" language or similar programming languages. Computer-readable program instructions may be executed completely on a user's computer, partially on a user's computer, as an independent software package, partially on a user's computer, partially on a remote computer, or completely on a remote computer or server. In the case of a remote computer, the remote computer may be connected to the user's computer via any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., using an Internet service provider to connect via the Internet). In some embodiments, an electronic circuit, such as a programmable logic circuit, a field programmable gate array (FPGA), or a programmable logic array (PLA), may be customized by utilizing the state information of the computer-readable program instructions, and the electronic circuit may execute the computer-readable program instructions, thereby realizing various aspects of the present disclosure.
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。Various aspects of the present disclosure are described herein with reference to the flowcharts and/or block diagrams of the methods, devices (systems) and computer program products according to the embodiments of the present disclosure. It should be understood that each box in the flowchart and/or block diagram and the combination of each box in the flowchart and/or block diagram can be implemented by computer-readable program instructions.
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。These computer-readable program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, thereby producing a machine, so that when these instructions are executed by the processor of the computer or other programmable data processing device, a device that implements the functions/actions specified in one or more boxes in the flowchart and/or block diagram is generated. These computer-readable program instructions can also be stored in a computer-readable storage medium, and these instructions cause the computer, programmable data processing device, and/or other equipment to work in a specific manner, so that the computer-readable medium storing the instructions includes a manufactured product, which includes instructions for implementing various aspects of the functions/actions specified in one or more boxes in the flowchart and/or block diagram.
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。Computer-readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device so that a series of operating steps are performed on the computer, other programmable data processing apparatus, or other device to produce a computer-implemented process, thereby causing the instructions executed on the computer, other programmable data processing apparatus, or other device to implement the functions/actions specified in one or more boxes in the flowchart and/or block diagram.
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flow chart and block diagram in the accompanying drawings show the possible architecture, function and operation of the system, method and computer program product according to multiple embodiments of the present disclosure. In this regard, each square box in the flow chart or block diagram can represent a part of a module, program segment or instruction, and the part of the module, program segment or instruction contains one or more executable instructions for realizing the specified logical function. In some alternative implementations, the function marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two continuous square boxes can actually be executed substantially in parallel, and they can sometimes be executed in reverse order, depending on the functions involved. It should also be noted that each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs the specified function or action, or can be implemented with a combination of special hardware and computer instructions.
该计算机程序产品可以具体通过硬件、软件或其结合的方式实现。在一个可选实施例中,所述计算机程序产品具体体现为计算机存储介质,在另一个可选实施例中,计算机程序产品具体体现为软件产品,例如软件开发包(Software Development Kit,SDK)等等。The computer program product may be implemented in hardware, software or a combination thereof. In one optional embodiment, the computer program product is embodied as a computer storage medium, and in another optional embodiment, the computer program product is embodied as a software product, such as a software development kit (SDK) and the like.
上文对各个实施例的描述倾向于强调各个实施例之间的不同之处,其相同或相似之处可以互相参考,为了简洁,本文不再赘述。The above description of various embodiments tends to emphasize the differences between the various embodiments. The same or similar aspects can be referenced to each other, and for the sake of brevity, they will not be repeated herein.
若本公开实施例的技术方案涉及个人信息,应用本公开实施例的技术方案的产品在处理个人信息前,已明确告知个人信息处理规则,并取得个人自主同意。若本公开实施例的技术方案涉及敏感个人信息,应用本公开实施例的技术方案的产品在处理敏感个人信息前,已取得个人单独同意,并且同时满足“明示同意”的要求。例如,在摄像头等个人信息采集装置处,设置明确显著的标识告知已进入个人信息采集范围,将会对个人信息进行采集,若个人自愿进入采集范围即视为同意对其个人信息进行采集;或者在个人信息处理的装置上,利用明显的标识/信息告知个人信息处理规则的情况下,通过弹窗信息或请个人自行上传其个人信息等方式获得个人授权;其中,个人信息处理规则可包括个人信息处理者、个人信息处理目的、处理方式以及处理的个人信息种类等信息。If the technical solution of the embodiments of the present disclosure involves personal information, the product using the technical solution of the embodiments of the present disclosure has clearly informed the personal information processing rules and obtained the individual's voluntary consent before processing the personal information. If the technical solution of the embodiments of the present disclosure involves sensitive personal information, the product using the technical solution of the embodiments of the present disclosure has obtained the individual's separate consent before processing the sensitive personal information, and at the same time meets the requirement of "explicit consent". For example, at the personal information collection device such as the camera, a clear and obvious sign is set to inform that the personal information collection scope has been entered and personal information will be collected. If the individual voluntarily enters the collection scope, it is deemed that he agrees to collect his personal information; or on the device for processing personal information, when the personal information processing rules are notified by obvious signs/information, the individual's authorization is obtained through pop-up information or by asking the individual to upload his personal information by himself; among which, the personal information processing rules may include information such as the personal information processor, the purpose of personal information processing, the processing method, and the type of personal information processed.
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。The embodiments of the present disclosure have been described above, and the above description is exemplary, not exhaustive, and is not limited to the disclosed embodiments. Many modifications and changes will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The choice of terms used herein is intended to best explain the principles of the embodiments, practical applications, or improvements to the technology in the market, or to enable other persons of ordinary skill in the art to understand the embodiments disclosed herein.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211281237.2A CN117974742B (en) | 2022-10-19 | 2022-10-19 | Binocular image generation method, binocular image generation device, binocular image generation apparatus, binocular image generation storage medium, and binocular image generation program product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211281237.2A CN117974742B (en) | 2022-10-19 | 2022-10-19 | Binocular image generation method, binocular image generation device, binocular image generation apparatus, binocular image generation storage medium, and binocular image generation program product |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117974742A true CN117974742A (en) | 2024-05-03 |
CN117974742B CN117974742B (en) | 2024-10-18 |
Family
ID=90863282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211281237.2A Active CN117974742B (en) | 2022-10-19 | 2022-10-19 | Binocular image generation method, binocular image generation device, binocular image generation apparatus, binocular image generation storage medium, and binocular image generation program product |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117974742B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130300737A1 (en) * | 2011-02-08 | 2013-11-14 | Fujifilm Corporation | Stereoscopic image generating apparatus, stereoscopic image generating method, and stereoscopic image generating program |
CN107358626A (en) * | 2017-07-17 | 2017-11-17 | 清华大学深圳研究生院 | A kind of method that confrontation network calculations parallax is generated using condition |
CN108064447A (en) * | 2017-11-29 | 2018-05-22 | 深圳前海达闼云端智能科技有限公司 | Method for displaying image, intelligent glasses and storage medium |
CN113780258A (en) * | 2021-11-12 | 2021-12-10 | 清华大学 | A method and device for intelligent depth classification of photoelectric computing light field |
CN114742703A (en) * | 2022-03-11 | 2022-07-12 | 影石创新科技股份有限公司 | Method, device, device and storage medium for generating binocular stereoscopic panoramic image |
CN115170637A (en) * | 2022-07-08 | 2022-10-11 | 深圳市优必选科技股份有限公司 | Virtual visual angle image construction method and device, control equipment and readable storage medium |
US20240087214A1 (en) * | 2021-02-24 | 2024-03-14 | Google Llc | Color and infra-red three-dimensional reconstruction using implicit radiance functions |
-
2022
- 2022-10-19 CN CN202211281237.2A patent/CN117974742B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130300737A1 (en) * | 2011-02-08 | 2013-11-14 | Fujifilm Corporation | Stereoscopic image generating apparatus, stereoscopic image generating method, and stereoscopic image generating program |
CN107358626A (en) * | 2017-07-17 | 2017-11-17 | 清华大学深圳研究生院 | A kind of method that confrontation network calculations parallax is generated using condition |
CN108064447A (en) * | 2017-11-29 | 2018-05-22 | 深圳前海达闼云端智能科技有限公司 | Method for displaying image, intelligent glasses and storage medium |
US20240087214A1 (en) * | 2021-02-24 | 2024-03-14 | Google Llc | Color and infra-red three-dimensional reconstruction using implicit radiance functions |
CN113780258A (en) * | 2021-11-12 | 2021-12-10 | 清华大学 | A method and device for intelligent depth classification of photoelectric computing light field |
US11450017B1 (en) * | 2021-11-12 | 2022-09-20 | Tsinghua University | Method and apparatus for intelligent light field 3D perception with optoelectronic computing |
CN114742703A (en) * | 2022-03-11 | 2022-07-12 | 影石创新科技股份有限公司 | Method, device, device and storage medium for generating binocular stereoscopic panoramic image |
CN115170637A (en) * | 2022-07-08 | 2022-10-11 | 深圳市优必选科技股份有限公司 | Virtual visual angle image construction method and device, control equipment and readable storage medium |
Non-Patent Citations (2)
Title |
---|
JINHUI FENG; SUMEI LI; YONGLI CHANG: "Binocular visual mechanism guided no-reference stereoscopic image quality assessment considering spatial saliency", 《 2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP)》, 19 January 2022 (2022-01-19) * |
洪志国;王永滨;石民勇;: "基于双目立体视觉原理的立体视频自动生成软件开发", 中国传媒大学学报(自然科学版), no. 03, 30 June 2016 (2016-06-30) * |
Also Published As
Publication number | Publication date |
---|---|
CN117974742B (en) | 2024-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110264509B (en) | Method, apparatus, and storage medium for determining pose of image capturing device | |
US9900510B1 (en) | Motion blur for light-field images | |
CN108335353B (en) | Three-dimensional reconstruction method, device and system, server and medium of dynamic scene | |
EP3134868B1 (en) | Generation and use of a 3d radon image | |
CN108492364B (en) | Method and apparatus for generating image generation model | |
CN112927362B (en) | Map reconstruction method and device, computer readable medium and electronic equipment | |
KR20200049833A (en) | Depth estimation methods and apparatus, electronic devices, programs and media | |
JP6862569B2 (en) | Virtual ray tracing method and dynamic refocus display system for light field | |
US20200372614A1 (en) | Image/video deblurring using convolutional neural networks with applications to sfm/slam with blurred images/videos | |
US10354399B2 (en) | Multi-view back-projection to a light-field | |
CN108230384A (en) | Picture depth computational methods, device, storage medium and electronic equipment | |
CN111161398B (en) | Image generation method, device, equipment and storage medium | |
JP5809607B2 (en) | Image processing apparatus, image processing method, and image processing program | |
WO2021031210A1 (en) | Video processing method and apparatus, storage medium, and electronic device | |
CN111325792A (en) | Method, apparatus, device, and medium for determining camera pose | |
See et al. | Virtual reality 360 interactive panorama reproduction obstacles and issues | |
CN116309137A (en) | Multi-view image deblurring method, device and system and electronic medium | |
CN112802206A (en) | Roaming view generation method, device, equipment and storage medium | |
CN116228855A (en) | Visual angle image processing method and device, electronic equipment and computer storage medium | |
Popovic et al. | Image blending in a high frame rate FPGA-based multi-camera system | |
CN117974742B (en) | Binocular image generation method, binocular image generation device, binocular image generation apparatus, binocular image generation storage medium, and binocular image generation program product | |
CN109816791B (en) | Method and apparatus for generating information | |
CN115002345B (en) | Image correction method, device, electronic equipment and storage medium | |
CN117115267A (en) | Calibration-free image processing method and device, electronic equipment and storage medium | |
CN115170395A (en) | Panoramic image stitching method, panoramic image stitching device, electronic equipment, panoramic image stitching medium and program product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: B655, 4th Floor, Building 14, Cuiwei Zhongli, Haidian District, Beijing, 100036 Patentee after: Mole Thread Intelligent Technology (Beijing) Co.,Ltd. Country or region after: China Address before: 209, 2nd Floor, No. 31 Haidian Street, Haidian District, Beijing Patentee before: Moore Threads Technology Co., Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |