CN117956812A - A method for preparing a composite perovskite thick film X-ray detector - Google Patents
A method for preparing a composite perovskite thick film X-ray detector Download PDFInfo
- Publication number
- CN117956812A CN117956812A CN202410353637.2A CN202410353637A CN117956812A CN 117956812 A CN117956812 A CN 117956812A CN 202410353637 A CN202410353637 A CN 202410353637A CN 117956812 A CN117956812 A CN 117956812A
- Authority
- CN
- China
- Prior art keywords
- perovskite
- thick film
- ray detector
- ito
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000002131 composite material Substances 0.000 title claims abstract description 28
- 239000002243 precursor Substances 0.000 claims abstract description 65
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 239000002002 slurry Substances 0.000 claims abstract description 20
- 239000000725 suspension Substances 0.000 claims abstract description 20
- 229920005604 random copolymer Polymers 0.000 claims abstract description 13
- 239000010408 film Substances 0.000 claims description 70
- 229920001577 copolymer Polymers 0.000 claims description 34
- 238000010521 absorption reaction Methods 0.000 claims description 18
- 238000000137 annealing Methods 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 8
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 239000010409 thin film Substances 0.000 claims description 4
- ABFQGXBZQWZNKI-UHFFFAOYSA-N 1,1-dimethoxyethanol Chemical compound COC(C)(O)OC ABFQGXBZQWZNKI-UHFFFAOYSA-N 0.000 claims description 2
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- NCFBWCVNPJEZMG-UHFFFAOYSA-N [Br].[Pb].[Cs] Chemical compound [Br].[Pb].[Cs] NCFBWCVNPJEZMG-UHFFFAOYSA-N 0.000 claims 1
- IKUCKMMEQAYNPI-UHFFFAOYSA-N [Pb].CN.[I] Chemical compound [Pb].CN.[I] IKUCKMMEQAYNPI-UHFFFAOYSA-N 0.000 claims 1
- -1 formamidine lead-iodine Chemical compound 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000003892 spreading Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 17
- 230000007547 defect Effects 0.000 abstract description 11
- 230000035945 sensitivity Effects 0.000 abstract description 10
- 238000007606 doctor blade method Methods 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 12
- 238000007790 scraping Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- NAJCQJKJQOIHSH-UHFFFAOYSA-L [Pb](Br)Br.[Cs] Chemical compound [Pb](Br)Br.[Cs] NAJCQJKJQOIHSH-UHFFFAOYSA-L 0.000 description 1
- AGAZXGMYGKRIEO-UHFFFAOYSA-L [Pb](I)I.C(=N)N Chemical compound [Pb](I)I.C(=N)N AGAZXGMYGKRIEO-UHFFFAOYSA-L 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- FZHSXDYFFIMBIB-UHFFFAOYSA-L diiodolead;methanamine Chemical compound NC.I[Pb]I FZHSXDYFFIMBIB-UHFFFAOYSA-L 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/60—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明涉及光电探测器技术领域,提供了一种复合型钙钛矿厚膜X射线探测器的制备方法,首先采用无规共聚物对ITO或TFT基底进行预处理,之后将钙钛矿/无规共聚物复合的钙钛矿悬浊液前驱浆料通过刮涂法直接制备成钙钛矿多晶厚膜,在顶部蒸镀Au共电极后,制备成复合型钙钛矿厚膜X射线探测器。本发明的优点在于:基于该方法所得厚膜不易脱落、龟裂,且晶界缺陷少,所得的基于ITO基底的钙钛矿X射线探测器具有优异的灵敏度、极低的X射线检测下限,所得的基于TFT基底的钙钛矿X射线探测器具有优异的空间分辨率。
The present invention relates to the technical field of photoelectric detectors, and provides a method for preparing a composite perovskite thick film X-ray detector, wherein a random copolymer is first used to pretreat an ITO or TFT substrate, and then a perovskite suspension precursor slurry composited with a perovskite/random copolymer is directly prepared into a perovskite polycrystalline thick film by a doctor blade method, and then an Au common electrode is evaporated on the top to prepare a composite perovskite thick film X-ray detector. The advantages of the present invention are that the thick film obtained by the method is not easy to fall off or crack, and has few grain boundary defects, and the obtained perovskite X-ray detector based on an ITO substrate has excellent sensitivity and an extremely low X-ray detection lower limit, and the obtained perovskite X-ray detector based on a TFT substrate has excellent spatial resolution.
Description
技术领域Technical Field
本发明涉及光电探测器技术领域,尤其涉及一种复合型钙钛矿厚膜X射线探测器的制备方法。The present invention relates to the technical field of photoelectric detectors, and in particular to a method for preparing a composite perovskite thick-film X-ray detector.
背景技术Background technique
随着现代科技的迅猛发展,X射线探测在工业探测、安检和医学诊断等领域中的重要性越来越显著。直接型X射线探测器基于内部的半导体吸收层,可以将高能辐射直接转化为电流信号,这种简单的转换方式使直接X射线探测器具有更宽的线性响应范围、更快的脉冲上升时间和高空间分辨率等特点,具有非常高的工作效率。有机无机杂化钙钛矿因其可调的带隙、高X射线吸收能力以及较长的载流子寿命出色的电荷载体传输等特点,成为直接型X射线探测器半导体吸收层的理想材料。With the rapid development of modern science and technology, the importance of X-ray detection in the fields of industrial detection, security inspection and medical diagnosis is becoming more and more significant. Direct X-ray detectors are based on internal semiconductor absorption layers and can directly convert high-energy radiation into current signals. This simple conversion method enables direct X-ray detectors to have a wider linear response range, faster pulse rise time and high spatial resolution, and have very high working efficiency. Organic-inorganic hybrid perovskites are ideal materials for semiconductor absorption layers of direct X-ray detectors due to their adjustable band gap, high X-ray absorption capacity, long carrier lifetime and excellent charge carrier transport.
基于钙钛矿材料制备高性能的X射线探测器,首先要制造出一种高质量的薄膜或晶体,使它具有足够的X射线吸收厚度以及优越的光电性能,并且与后端电子读出电路的需要有高度的兼容性。To prepare high-performance X-ray detectors based on perovskite materials, it is first necessary to produce a high-quality film or crystal that has sufficient X-ray absorption thickness and excellent photoelectric properties, and is highly compatible with the needs of the back-end electronic readout circuit.
目前,钙钛矿材料应用于X射线主要有单晶以及多晶器件。其中,钙钛矿单晶的制备要求繁琐苛刻、难以制备大面积器件,同时也难以与后端读出电路集成。而基于传统的旋涂、蒸镀、刮涂等方法制备的多晶薄膜也普遍存在厚度不足(厚度增加后容易脱落、龟裂)、晶界缺陷多等问题,严重影响探测器件性能。At present, perovskite materials are mainly used in single crystal and polycrystalline devices for X-ray. Among them, the preparation of perovskite single crystals is cumbersome and demanding, and it is difficult to prepare large-area devices, and it is also difficult to integrate with the back-end readout circuit. Polycrystalline films prepared by traditional spin coating, evaporation, scraping and other methods also generally have problems such as insufficient thickness (easy to fall off and crack after the thickness increases) and many grain boundary defects, which seriously affect the performance of detection devices.
发明内容Summary of the invention
本发明所要解决的技术问题在于提供一种复合型钙钛矿厚膜X射线探测器的制备方法,基于该方法所得厚膜不易脱落、龟裂,且晶界缺陷少,对应的ITO基底探测器具有优异的灵敏度、极低的X射线检测下限,对应的TFT基底探测器具有优异的空间分辨率。The technical problem to be solved by the present invention is to provide a method for preparing a composite perovskite thick film X-ray detector. The thick film obtained based on this method is not easy to fall off or crack, and has few grain boundary defects. The corresponding ITO substrate detector has excellent sensitivity and extremely low X-ray detection limit, and the corresponding TFT substrate detector has excellent spatial resolution.
本发明采用以下技术方案解决上述技术问题:The present invention adopts the following technical solutions to solve the above technical problems:
一种复合型钙钛矿厚膜X射线探测器的制备方法,包括如下步骤:A method for preparing a composite perovskite thick film X-ray detector comprises the following steps:
(1)取无规共聚物溶解到有机溶剂中,得共聚物前驱液;(1) dissolving the random copolymer in an organic solvent to obtain a copolymer precursor solution;
(2)取步骤(1)所得共聚物前驱液体刮涂在干净的ITO导电玻璃或TFT薄膜晶体管上,随后退火处理,得预处理的ITO或TFT基底;(2) applying the copolymer precursor liquid obtained in step (1) on a clean ITO conductive glass or TFT thin film transistor by scraping, followed by annealing to obtain a pretreated ITO or TFT substrate;
(3)取多晶钙钛矿前驱体粉体溶解到步骤(1)的共聚物前驱液中,得钙钛矿悬浊液前驱浆料;(3) dissolving polycrystalline perovskite precursor powder into the copolymer precursor solution of step (1) to obtain a perovskite suspension precursor slurry;
(4)采用刮涂法将步骤(3)得到的钙钛矿悬浊液前驱浆料涂覆在步骤(2)预处理的ITO或TFT基底上,并退火形成钙钛矿吸收层;(4) coating the perovskite suspension precursor slurry obtained in step (3) on the ITO or TFT substrate pretreated in step (2) by a doctor blade method, and annealing to form a perovskite absorption layer;
(5)将步骤(4)得到的器件放入真空蒸镀仪中,蒸镀顶端Au共电极,得基于ITO或TFT基底的钙钛矿X射线探测器。(5) The device obtained in step (4) is placed in a vacuum evaporator to evaporate the top Au common electrode to obtain a perovskite X-ray detector based on an ITO or TFT substrate.
作为本发明的优选方式之一,所述步骤(1)中,具体称取质量浓度5~30mg/mL的无规共聚物溶解到有机溶剂中,并在常温下搅拌5~10min,得共聚物前驱液。As one of the preferred embodiments of the present invention, in the step (1), a random copolymer having a mass concentration of 5 to 30 mg/mL is weighed and dissolved in an organic solvent, and stirred at room temperature for 5 to 10 minutes to obtain a copolymer precursor solution.
作为本发明的优选方式之一,所述步骤(1)中,无规共聚物为丙烯酸正丁酯-co-[N-(羟甲基)-丙烯酰胺]}(PBA-NMA)、丙烯酸正丁酯-co-丙烯酰胺(PBA-MA)、丙烯酸正丁酯-co-丁烯酰胺(PBA-BM)中的一种;通过选取带极性亲水基团与长链疏水基团的高分子共聚物为添加剂,可以起到胶黏剂与表面活性剂的双重作用。As one of the preferred embodiments of the present invention, in step (1), the random copolymer is one of n-butyl acrylate-co-[N-(hydroxymethyl)-acrylamide]} (PBA-NMA), n-butyl acrylate-co-acrylamide (PBA-MA), and n-butyl acrylate-co-buteneamide (PBA-BM); by selecting a high molecular weight copolymer with polar hydrophilic groups and long-chain hydrophobic groups as an additive, it can play a dual role as an adhesive and a surfactant.
作为本发明的优选方式之一,所述步骤(1)中,有机溶剂为γ丁内酯(GBL)、二甲氧基乙醇(2-Me)中的一种;通过选取高蒸汽压低配位性的溶剂,减少钙钛矿厚膜内的溶剂残余。As one of the preferred embodiments of the present invention, in step (1), the organic solvent is one of gamma-butyrolactone (GBL) and dimethoxyethanol (2-Me); by selecting a solvent with high vapor pressure and low coordination, the residual solvent in the perovskite thick film is reduced.
作为本发明的优选方式之一,所述步骤(2)中,在ITO、TFT上刮涂共聚物前驱液体时,刮刀与基片厚度为10~50μm。As one of the preferred embodiments of the present invention, in the step (2), when the copolymer precursor liquid is scraped on the ITO and TFT, the thickness between the scraper and the substrate is 10-50 μm.
作为本发明的优选方式之一,所述步骤(2)中,退火条件为100℃。As one of the preferred embodiments of the present invention, in the step (2), the annealing condition is 100°C.
作为本发明的优选方式之一,所述步骤(3)中,具体称取3~10M多晶钙钛矿前驱体粉体溶解到共聚物前驱液中,充分搅拌30~60min,得钙钛矿悬浊液前驱浆料。As one of the preferred embodiments of the present invention, in the step (3), 3-10 M polycrystalline perovskite precursor powder is weighed and dissolved into the copolymer precursor solution, and stirred for 30-60 min to obtain a perovskite suspension precursor slurry.
作为本发明的优选方式之一,所述步骤(3)中,多晶钙钛矿前驱体为甲胺铅碘钙钛矿(MAPbI3)、甲脒铅碘钙钛矿(FAPbI3)、铯铅溴钙钛矿(CsPbBr3)、三阳离子钙钛矿(FAMACs)中的一种。As one of the preferred embodiments of the present invention, in step (3), the polycrystalline perovskite precursor is one of methylamine lead iodide perovskite (MAPbI 3 ), formamidine lead iodide perovskite (FAPbI 3 ), cesium lead bromide perovskite (CsPbBr 3 ), and trication perovskite (FAMACs).
作为本发明的优选方式之一,所述步骤(4)中,在相应基底上刮涂钙钛矿悬浊液前驱浆料时,刮刀与基底的间距为100~1000μm;通过刮刀的距离控制最终多晶膜的厚度。As one of the preferred embodiments of the present invention, in step (4), when the perovskite suspension precursor slurry is scraped on the corresponding substrate, the distance between the scraper and the substrate is 100-1000 μm; the thickness of the final polycrystalline film is controlled by the distance of the scraper.
作为本发明的优选方式之一,所述步骤(4)中,退火条件为60~100℃下退火30~60min;较低的退火温度有助于降低厚膜内的的残余拉伸应力。As one of the preferred embodiments of the present invention, in step (4), the annealing condition is annealing at 60-100° C. for 30-60 min; a lower annealing temperature helps to reduce the residual tensile stress in the thick film.
作为本发明的优选方式之一,所述步骤(4)中,蒸镀的顶端Au共电极的厚度为80~120nm;在保证顶电极与钙钛矿形成良好的欧姆接触的同时,减少Au电极对X线的吸收损失。As one of the preferred embodiments of the present invention, in step (4), the thickness of the evaporated top Au common electrode is 80-120 nm; while ensuring good ohmic contact between the top electrode and the perovskite, the absorption loss of X-rays by the Au electrode is reduced.
本发明相比现有技术的优点在于:The advantages of the present invention compared to the prior art are:
(1)厚膜不易脱落:采用无规共聚物预处理ITO、TFT基底,在钙钛矿吸收层与基底间形成双向配位连接,增强钙钛矿与基底的附着力,有效防止钙钛矿多晶厚膜的脱落;(1) Thick film is not easy to fall off: random copolymer is used to pre-treat ITO and TFT substrates to form a bidirectional coordination connection between the perovskite absorption layer and the substrate, enhance the adhesion between the perovskite and the substrate, and effectively prevent the perovskite polycrystalline thick film from falling off;
(2)厚膜不易龟裂:无规共聚物在多晶厚膜中的交联,能有效应对厚膜退火过程中导致的热膨胀,从而降低热残余拉伸应力,有效的防止厚膜的龟裂,提升多晶厚膜的机械强度和使用寿命;(2) Thick film is not easy to crack: The cross-linking of random copolymers in the polycrystalline thick film can effectively cope with the thermal expansion caused by the annealing process of the thick film, thereby reducing the thermal residual tensile stress, effectively preventing the cracking of the thick film, and improving the mechanical strength and service life of the polycrystalline thick film;
(3)降低晶界缺陷,赋予极低的暗电流与极低的X射线检测下限:配置钙钛矿与无规共聚物复合的钙钛矿悬浊液前驱浆料,双亲性的共聚物有效的降低了前驱溶液的表面张力,增加了成核位点和成核速率,有效消除了钙钛矿厚膜形成中因成核较慢以及溶剂收缩导致的针孔问题,大幅改善厚膜的致密度;同时,钙钛矿多晶厚膜形成后,晶界处的共聚物还能有效的钝化钙钛矿晶界缺陷,有效降低缺陷密度,从而抑制离子迁移,使得最终的晶圆器件具有极低的暗电流和极低的X射线检测下限;(3) Reduce grain boundary defects, and achieve extremely low dark current and extremely low X-ray detection limit: The perovskite suspension precursor slurry is composed of perovskite and random copolymers. The amphiphilic copolymer effectively reduces the surface tension of the precursor solution, increases the nucleation sites and nucleation rate, and effectively eliminates the pinhole problem caused by slow nucleation and solvent shrinkage in the formation of perovskite thick films, greatly improving the density of the thick film. At the same time, after the formation of the perovskite polycrystalline thick film, the copolymer at the grain boundary can also effectively passivate the perovskite grain boundary defects, effectively reducing the defect density, thereby inhibiting ion migration, so that the final wafer device has extremely low dark current and extremely low X-ray detection limit.
(4)极高的探测灵敏度:所制备钙钛矿厚膜的致密结构以及合适的厚度保证了基于ITO基底的探测器件对X射线的有效吸收,同时多晶厚膜体相内的低缺陷密度也保证了光生载流子的有效提取,最终使得器件对X射线的探测灵敏度显著提高;(4) Extremely high detection sensitivity: The dense structure and appropriate thickness of the prepared perovskite thick film ensure the effective absorption of X-rays by the detection device based on the ITO substrate. At the same time, the low defect density in the bulk phase of the polycrystalline thick film also ensures the effective extraction of photogenerated carriers, which ultimately significantly improves the detection sensitivity of the device to X-rays.
(5)尺寸面积可调,兼容性好:相较于钙钛矿单晶、薄膜探测器,本发明制备的多晶厚膜器件不仅方法便捷,同时尺寸面积可调,与后端基底也具有极佳的兼容性;(5) Adjustable size and area, good compatibility: Compared with perovskite single crystal and thin film detectors, the polycrystalline thick film device prepared by the present invention is not only convenient, but also has adjustable size and area, and has excellent compatibility with the back-end substrate;
(6)应用性强:由于复合型多晶厚膜的机械稳定性增加,使得基于本工艺可实现纳米到微米级厚度的可控制备,则进一步可以实现从软X射线到硬X射线大面积探测成像的多领域应用;(6) Strong applicability: Due to the increased mechanical stability of the composite polycrystalline thick film, this process can achieve controllable preparation of nanometer to micrometer-level thickness, which can further realize multi-field applications from soft X-ray to hard X-ray large-area detection imaging;
(7)优异的空间分辨率:基于本发明中兼容性优良的制备工艺,将制备的高质量多晶厚膜TFT基板集成后表现出极佳的适配性,良好的界面接触保证了钙钛矿吸收层的光生电信号能被后端电路有效读取,保证了X射线探测器的成像系统具有出良好均一性和优异的空间分辨率。(7) Excellent spatial resolution: Based on the highly compatible preparation process of the present invention, the prepared high-quality polycrystalline thick-film TFT substrate exhibits excellent adaptability after integration. Good interface contact ensures that the photoelectric signal of the perovskite absorption layer can be effectively read by the back-end circuit, ensuring that the imaging system of the X-ray detector has good uniformity and excellent spatial resolution.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是实施例2钙钛矿厚膜实物图;FIG1 is a physical picture of the perovskite thick film of Example 2;
图2是实施例2钙钛矿厚膜底部与ITO基底结合状态图;FIG2 is a diagram showing the bonding state between the bottom of the perovskite thick film and the ITO substrate in Example 2;
图3是实施例2钙钛矿厚膜X射线探测器的微观形貌图;FIG3 is a microscopic morphology of the perovskite thick film X-ray detector of Example 2;
图4是实施例2钙钛矿厚膜X射线探测器的灵敏度测试结果图;FIG4 is a diagram showing the sensitivity test results of the perovskite thick film X-ray detector of Example 2;
图5是实施例2钙钛矿厚膜X射线探测器的检测极限测试结果图;FIG5 is a diagram showing the detection limit test results of the perovskite thick film X-ray detector of Example 2;
图6是实施例5钙钛矿厚膜X成像仪实物图;FIG6 is a physical picture of the perovskite thick film X-ray imager of Example 5;
图7是实施例5钙钛矿厚膜X成像仪的实物成像结果图;FIG7 is a diagram showing the actual imaging result of the perovskite thick film X-ray imager of Example 5;
图8A是对比例1制备的钙钛矿厚膜上界面实物图;FIG8A is a physical picture of the upper interface of the perovskite thick film prepared in Comparative Example 1;
图8B是对比例1制备的钙钛矿厚膜下界面实物图;FIG8B is a physical picture of the lower interface of the perovskite thick film prepared in Comparative Example 1;
图9是对比例1钙钛矿厚膜的微观形貌图;FIG9 is a microscopic morphology of the perovskite thick film of Comparative Example 1;
图10是对比例1钙钛矿厚膜X射线探测器的灵敏度测试结果图;FIG10 is a graph showing the sensitivity test results of the perovskite thick film X-ray detector of Comparative Example 1;
图11是对比例2钙钛矿厚膜的实物图。FIG. 11 is a physical picture of the perovskite thick film of Comparative Example 2.
具体实施方式Detailed ways
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The following is a detailed description of an embodiment of the present invention. This embodiment is implemented on the premise of the technical solution of the present invention, and a detailed implementation method and a specific operation process are given, but the protection scope of the present invention is not limited to the following embodiment.
实施例1Example 1
本实施例的一种复合型钙钛矿厚膜X射线探测器的制备方法(基于ITO),包括如下步骤:A method for preparing a composite perovskite thick film X-ray detector (based on ITO) in this embodiment includes the following steps:
(1)在手套箱称取质量浓度为5mg/mL的PBA-NMA溶解到GBL溶液中,在常温下搅拌5min,得共聚物前驱液。(1) In a glove box, weigh 5 mg/mL PBA-NMA and dissolve it in the GBL solution. Stir for 5 min at room temperature to obtain a copolymer precursor solution.
(2)取步骤(1)所得共聚物前驱液体采用刮刀刮涂在干净的ITO导电玻璃上,挂涂厚度为10μm,并随后在100℃条件下退火,得预处理的ITO基底。(2) The copolymer precursor liquid obtained in step (1) is coated on a clean ITO conductive glass using a scraper to a coating thickness of 10 μm, and then annealed at 100° C. to obtain a pretreated ITO substrate.
(3)称取3M的MAPbI3钙钛矿前驱体粉体溶解到步骤(1)的共聚物前驱液中,充分搅拌30min,得钙钛矿悬浊液前驱浆料。(3) Weigh 3M MAPbI3 perovskite precursor powder and dissolve it in the copolymer precursor solution of step (1), and stir it thoroughly for 30 minutes to obtain a perovskite suspension precursor slurry.
(4)在狭缝涂布机上,将刮刀与ITO基底的距离调整到100μm,采用刮涂法将钙钛矿悬浊液前驱浆料均匀涂覆在预处理的ITO上,并在60℃下退火30min,形成致密的钙钛矿吸收层。(4) On a slit coater, the distance between the scraper and the ITO substrate was adjusted to 100 μm, and the perovskite suspension precursor slurry was evenly coated on the pretreated ITO by a scraping method, and annealed at 60 °C for 30 min to form a dense perovskite absorption layer.
(5)将步骤(4)得到的器件放入真空蒸镀仪中,蒸镀顶端80nm 厚的Au共电极,得基于ITO基底的钙钛矿X射线探测器。(5) The device obtained in step (4) is placed in a vacuum evaporator to evaporate an 80 nm thick Au common electrode on the top to obtain a perovskite X-ray detector based on an ITO substrate.
实施例2Example 2
本实施例的一种复合型钙钛矿厚膜X射线探测器的制备方法(基于ITO),包括如下步骤:A method for preparing a composite perovskite thick film X-ray detector (based on ITO) in this embodiment includes the following steps:
(1)在手套箱称取质量浓度为5mg/mL的PBA-NMA溶解到2-Me溶液中,在常温下搅拌10min,得共聚物前驱液。(1) In a glove box, weigh 5 mg/mL PBA-NMA and dissolve it in 2-Me solution. Stir for 10 min at room temperature to obtain a copolymer precursor solution.
(2)取步骤(1)所得共聚物前驱液体采用刮刀刮涂在干净的ITO导电玻璃上,挂涂厚度为10μm,并随后在100℃条件下退火,得预处理的ITO基底。(2) The copolymer precursor liquid obtained in step (1) is coated on a clean ITO conductive glass using a scraper to a coating thickness of 10 μm, and then annealed at 100° C. to obtain a pretreated ITO substrate.
(3)称取5M 的FAMACs钙钛矿前驱体粉体溶解到步骤(1)的共聚物前驱液中,充分搅拌60min,得钙钛矿悬浊液前驱浆料。(3) Weigh 5 M FAMACs perovskite precursor powder and dissolve it in the copolymer precursor solution of step (1), and stir it thoroughly for 60 minutes to obtain a perovskite suspension precursor slurry.
(4)在狭缝涂布机上,将刮刀与ITO基底的距离调整到600μm,采用刮涂法将钙钛矿悬浊液前驱浆料均匀涂覆在预处理的ITO上,并在80℃下退火40min,形成致密的钙钛矿吸收层。(4) On a slit coater, the distance between the scraper and the ITO substrate was adjusted to 600 μm, and the perovskite suspension precursor slurry was evenly coated on the pretreated ITO by a scraping method, and annealed at 80 °C for 40 min to form a dense perovskite absorption layer.
(5)将步骤(4)得到的器件放入真空蒸镀仪中,蒸镀顶端100nm 厚的Au共电极,得基于ITO基底的钙钛矿X射线探测器。(5) The device obtained in step (4) is placed in a vacuum evaporator to evaporate a 100 nm thick Au common electrode on the top to obtain a perovskite X-ray detector based on an ITO substrate.
实施例3Example 3
本实施例的一种复合型钙钛矿厚膜X射线探测器的制备方法(基于ITO),包括如下步骤:A method for preparing a composite perovskite thick film X-ray detector (based on ITO) in this embodiment includes the following steps:
(1)在手套箱称取质量浓度为20mg/mL的PBA-MA溶解到2-Me溶液中,在常温下搅拌8min,得共聚物前驱液。(1) In a glove box, weigh 20 mg/mL PBA-MA and dissolve it in 2-Me solution. Stir at room temperature for 8 min to obtain a copolymer precursor solution.
(2)取步骤(1)所得共聚物前驱液体采用刮刀刮涂在干净的ITO导电玻璃上,挂涂厚度为20μm,并随后在100℃条件下退火,得预处理的ITO基底。(2) The copolymer precursor liquid obtained in step (1) is coated on a clean ITO conductive glass using a scraper to a coating thickness of 20 μm, and then annealed at 100° C. to obtain a pretreated ITO substrate.
(3)称取8M的 FAPbI3钙钛矿前驱体粉体溶解到步骤(1)的共聚物前驱液中,充分搅拌50min,得钙钛矿悬浊液前驱浆料。(3) Weigh 8 M FAPbI 3 perovskite precursor powder and dissolve it in the copolymer precursor solution of step (1), and stir it thoroughly for 50 minutes to obtain a perovskite suspension precursor slurry.
(4)在狭缝涂布机上,将刮刀与ITO或TFT基底的距离调整到800μm,采用刮涂法将钙钛矿悬浊液前驱浆料均匀涂覆在预处理的ITO或TFT上,并在80℃下退火50min,形成致密的钙钛矿吸收层。(4) On a slit coater, adjust the distance between the scraper and the ITO or TFT substrate to 800 μm, and use a scraping method to evenly coat the perovskite suspension precursor slurry on the pretreated ITO or TFT, and anneal at 80 °C for 50 min to form a dense perovskite absorption layer.
(5)将步骤(4)得到的器件放入真空蒸镀仪中,蒸镀顶端100nm 厚的Au共电极,得基于ITO基底的钙钛矿X射线探测器。(5) The device obtained in step (4) is placed in a vacuum evaporator to evaporate a 100 nm thick Au common electrode on the top to obtain a perovskite X-ray detector based on an ITO substrate.
实施例4Example 4
本实施例的一种复合型钙钛矿厚膜X射线探测器的制备方法(基于ITO),包括如下步骤:A method for preparing a composite perovskite thick film X-ray detector (based on ITO) in this embodiment includes the following steps:
(1)在手套箱称取质量浓度为30mg/mL的PBA-BM溶解到GBL溶液中,在常温下搅拌10min,得共聚物前驱液。(1) In a glove box, weigh 30 mg/mL PBA-BM and dissolve it in the GBL solution. Stir for 10 min at room temperature to obtain a copolymer precursor solution.
(2)取步骤(1)所得共聚物前驱液体采用刮刀刮涂在干净的ITO导电玻璃上,挂涂厚度为50μm,并随后在100℃条件下退火,得预处理的ITO基底。(2) The copolymer precursor liquid obtained in step (1) is coated on a clean ITO conductive glass using a scraper to a coating thickness of 50 μm, and then annealed at 100° C. to obtain a pretreated ITO substrate.
(3)称取10M CsPbBr3钙钛矿前驱体粉体溶解到步骤(1)的共聚物前驱液中,充分搅拌60min,得钙钛矿悬浊液前驱浆料。(3) Weigh 10 M CsPbBr 3 perovskite precursor powder and dissolve it in the copolymer precursor solution of step (1), and stir it thoroughly for 60 minutes to obtain a perovskite suspension precursor slurry.
(4)在狭缝涂布机上,将刮刀与ITO基底的距离调整到1000μm,采用刮涂法将钙钛矿悬浊液前驱浆料均匀涂覆在预处理的ITO上,并在100℃下退火60min,形成致密的钙钛矿吸收层。(4) On a slit coater, the distance between the scraper and the ITO substrate was adjusted to 1000 μm, and the perovskite suspension precursor slurry was evenly coated on the pretreated ITO by a scraping method, and annealed at 100 °C for 60 min to form a dense perovskite absorption layer.
(5)将步骤(4)得到的器件放入真空蒸镀仪中,蒸镀顶端120nm 厚的Au共电极,得基于ITO基底的钙钛矿X射线探测器。(5) The device obtained in step (4) is placed in a vacuum evaporator to evaporate a 120 nm thick Au common electrode on the top to obtain a perovskite X-ray detector based on an ITO substrate.
实施例5Example 5
本实施例的一种复合型钙钛矿厚膜X射线探测器的制备方法(基于TFT),包括如下步骤:A method for preparing a composite perovskite thick film X-ray detector (based on TFT) in this embodiment includes the following steps:
(1)在手套箱称取质量浓度为5mg/mL的PBA-NMA溶解到2-Me溶液中,在常温下搅拌10min,得共聚物前驱液。(1) In a glove box, weigh 5 mg/mL PBA-NMA and dissolve it in 2-Me solution. Stir for 10 min at room temperature to obtain a copolymer precursor solution.
(2)取步骤(1)所得共聚物前驱液体采用刮刀刮涂在干净的TFT薄膜晶体管上,挂涂厚度为10μm,并随后在100℃条件下退火,得预处理的TFT基底。(2) The copolymer precursor liquid obtained in step (1) is coated on a clean TFT thin film transistor using a scraper with a coating thickness of 10 μm, and then annealed at 100° C. to obtain a pretreated TFT substrate.
(3)称取5M 的FAMACs钙钛矿前驱体粉体溶解到步骤(1)的共聚物前驱液中,充分搅拌60min,得钙钛矿悬浊液前驱浆料。(3) Weigh 5 M FAMACs perovskite precursor powder and dissolve it in the copolymer precursor solution of step (1), and stir it thoroughly for 60 minutes to obtain a perovskite suspension precursor slurry.
(4)在狭缝涂布机上,将刮刀与TFT基底的距离调整到600μm,采用刮涂法将钙钛矿悬浊液前驱浆料均匀涂覆在预处理的TFT上,并在80℃下退火40min,形成致密的钙钛矿吸收层。(4) On a slit coater, the distance between the scraper and the TFT substrate was adjusted to 600 μm, and the perovskite suspension precursor slurry was evenly coated on the pretreated TFT by a scraping method, and annealed at 80 °C for 40 min to form a dense perovskite absorption layer.
(5)将步骤(4)得到的器件放入真空蒸镀仪中,蒸镀顶端100nm 厚的Au共电极,得基于TFT基底的钙钛矿X射线探测器。(5) The device obtained in step (4) is placed in a vacuum evaporator to evaporate a 100 nm thick Au common electrode on the top to obtain a perovskite X-ray detector based on a TFT substrate.
对比例1Comparative Example 1
本对比例的一种复合型钙钛矿厚膜X射线探测器的制备方法(基于ITO),与实施例2基本相同,主要不同之处在于:步骤(3)中,称取5M 的FAMACs钙钛矿前驱体粉体溶解到2-Me溶剂中,而非共聚物前驱液。The preparation method of a composite perovskite thick film X-ray detector (based on ITO) in this comparative example is basically the same as that in Example 2, except that in step (3), 5 M FAMACs perovskite precursor powder is weighed and dissolved in 2-Me solvent instead of copolymer precursor solution.
对比例2Comparative Example 2
本对比例的一种复合型钙钛矿厚膜X射线探测器的制备方法(基于ITO),与实施例2基本相同,主要不同之处在于:不进行ITO基底的预处理步骤,同时,步骤(3)中,称取5M 的FAMACs钙钛矿前驱体粉体溶解到2-Me溶剂中,而非共聚物前驱液。The preparation method of a composite perovskite thick film X-ray detector (based on ITO) in this comparative example is basically the same as that in Example 2, except that no pretreatment step of the ITO substrate is performed, and in step (3), 5 M FAMACs perovskite precursor powder is weighed and dissolved in 2-Me solvent instead of copolymer precursor solution.
实验例1Experimental Example 1
本实验例用于测试本发明两种复合型钙钛矿厚膜X射线探测器的性能:This experimental example is used to test the performance of two composite perovskite thick film X-ray detectors of the present invention:
一、基于ITO的复合型钙钛矿厚膜X射线探测器:1. Composite perovskite thick film X-ray detector based on ITO:
以实施例2为例,其钙钛矿厚膜如图1所示,表面平整且致密,且图2显示钙钛矿厚膜底部与ITO基底形成了良好的附着接触。Taking Example 2 as an example, the perovskite thick film thereof is shown in FIG1 , and the surface is flat and dense, and FIG2 shows that the bottom of the perovskite thick film forms a good adhesion contact with the ITO substrate.
将实施例2的钙钛矿X射线探测器放入场发射扫描电子显微镜中,进一步观察其微观形貌,如图3所示,表明:密集的成核位点以及加速的结晶过程,促进了致密厚膜的生成,且晶界缺陷少。The perovskite X-ray detector of Example 2 was placed in a field emission scanning electron microscope to further observe its microscopic morphology, as shown in FIG3 , indicating that the dense nucleation sites and the accelerated crystallization process promote the formation of dense thick films with fewer grain boundary defects.
将实施例2钙钛矿X射线探测器放入屏蔽箱中的测试台中,使用keithley6517b静电计进行相关光电性能测试。其灵敏度如图4所示,为3410μC Gyair -1cm-2,表明:高质量的钙钛矿厚膜具有极佳的光电性能。同时,结合图3,厚膜内针孔的修复以及晶界面被钝化,使得其具有较高的电阻率和较低的暗电流,可以极大地降低探测器的检测极限,图5表明制备的X射线探测器其检测极限达到了19.4 nGyairS-1。The perovskite X-ray detector of Example 2 was placed in a test bench in a shielding box, and a Keithley 6517B electrometer was used to perform relevant photoelectric performance tests. Its sensitivity is shown in FIG4 , which is 3410 μC G yair -1 cm -2 , indicating that a high-quality perovskite thick film has excellent photoelectric performance. At the same time, combined with FIG3 , the repair of the pinholes in the thick film and the passivation of the crystal interface make it have a higher resistivity and a lower dark current, which can greatly reduce the detection limit of the detector. FIG5 shows that the detection limit of the prepared X-ray detector reaches 19.4 nGyairS -1 .
二、基于TFT的复合型钙钛矿厚膜X射线探测器(即钙钛矿厚膜X成像仪):2. TFT-based composite perovskite thick film X-ray detector (i.e. perovskite thick film X-ray imager):
以实施例5为例,基于TFT基底制备的钙钛矿厚膜X成像仪外观如图6所示,涂覆在TFT上的钙钛矿吸收层厚度达到了600μm,其足够的厚度保证了对X射线的有效吸收。图7为钙钛矿成像仪的实物成像,基于钙钛矿吸收层的优异性能,被测遥控器内的零部件可以被清晰分辨,表面其具有优异的空间分辨率。Taking Example 5 as an example, the appearance of the perovskite thick film X-ray imager prepared based on the TFT substrate is shown in Figure 6. The thickness of the perovskite absorption layer coated on the TFT reaches 600μm, and its sufficient thickness ensures the effective absorption of X-rays. Figure 7 is the actual imaging of the perovskite imager. Based on the excellent performance of the perovskite absorption layer, the components in the tested remote control can be clearly distinguished, indicating that it has excellent spatial resolution.
实验例2Experimental Example 2
本实验例结合对比例1、2验证“ITO基底预处理”以及“多晶钙钛矿前驱体复合无规共聚物”对本发明钙钛矿厚膜X射线探测器的影响:This experimental example combines comparative examples 1 and 2 to verify the effects of "ITO substrate pretreatment" and "polycrystalline perovskite precursor composite random copolymer" on the perovskite thick film X-ray detector of the present invention:
对比例1制备的钙钛矿厚膜上界面如图8A、下界面如图8B,微观形貌如图9所示(存在晶界缺陷和大量针孔):一方面,由于单独的钙钛矿多晶厚膜体相内没有的共聚物的胶粘作用,在退火冷却后,残余剪切应力使得钙钛矿厚膜的表面和底面均发生了龟裂;另一方面,由于较多的晶界缺陷和针孔导致了严重的信号噪声以及信号漂移,这将大幅影响探测器的探测性能,探测器灵敏度如图10所示,灵敏度仅为950μC Gyair -1cm-2。The upper interface of the perovskite thick film prepared in Comparative Example 1 is shown in Figure 8A, the lower interface is shown in Figure 8B, and the microscopic morphology is shown in Figure 9 (there are grain boundary defects and a large number of pinholes): on the one hand, due to the adhesive effect of the copolymer that is not present in the bulk phase of the single perovskite polycrystalline thick film, after annealing and cooling, the residual shear stress causes cracks on the surface and bottom of the perovskite thick film; on the other hand, due to the large number of grain boundary defects and pinholes, serious signal noise and signal drift are caused, which will greatly affect the detection performance of the detector. The detector sensitivity is shown in Figure 10, and the sensitivity is only 950μC G yair -1 cm -2 .
对比例2制备的钙钛矿厚膜如图11所示,由于没有共聚物的粘结和界面作用,在退火后钙钛矿厚膜龟裂并与基底完全脱落,无法进行有效探测。The perovskite thick film prepared in Comparative Example 2 is shown in FIG. 11 . Due to the lack of the bonding and interface effect of the copolymer, the perovskite thick film cracks and completely falls off from the substrate after annealing, making it impossible to perform effective detection.
综上可知,“ITO基底预处理”以及“多晶钙钛矿前驱体复合无规共聚物”步骤对本发明钙钛矿厚膜X射线探测器性能具有重要影响,基于本发明方法所得厚膜不易脱落、龟裂,且晶界缺陷少,对应的探测器具有优异的灵敏度、极低的X射线检测下限、优异的空间分辨率。In summary, the steps of "ITO substrate pretreatment" and "polycrystalline perovskite precursor composite random copolymer" have an important influence on the performance of the perovskite thick film X-ray detector of the present invention. The thick film obtained based on the method of the present invention is not easy to fall off or crack, and has few grain boundary defects. The corresponding detector has excellent sensitivity, extremely low X-ray detection limit, and excellent spatial resolution.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410353637.2A CN117956812B (en) | 2024-03-27 | 2024-03-27 | Preparation method of composite perovskite thick film X-ray detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410353637.2A CN117956812B (en) | 2024-03-27 | 2024-03-27 | Preparation method of composite perovskite thick film X-ray detector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117956812A true CN117956812A (en) | 2024-04-30 |
CN117956812B CN117956812B (en) | 2024-09-10 |
Family
ID=90792608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410353637.2A Active CN117956812B (en) | 2024-03-27 | 2024-03-27 | Preparation method of composite perovskite thick film X-ray detector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117956812B (en) |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4668840A (en) * | 1984-06-29 | 1987-05-26 | Sanyo Electric Co., Ltd. | Photovoltaic device |
US20060162771A1 (en) * | 2003-02-20 | 2006-07-27 | Nippon Kayaku Kabushiki Kaisha | Sealing agent for photoelectric conversion element and photoelectric conversion device element using the same |
US9391287B1 (en) * | 2013-12-19 | 2016-07-12 | The Board Of Regents Of The University Of Nebraska | Photovoltaic perovskite material and method of fabrication |
KR20170029370A (en) * | 2015-09-07 | 2017-03-15 | 주식회사 레이언스 | X-ray detector |
WO2017121984A1 (en) * | 2016-01-12 | 2017-07-20 | Sheffield Hallam University | Photoactive polymer-perovskite composite materials |
CN107750261A (en) * | 2015-06-19 | 2018-03-02 | 默克专利有限公司 | Electrooptical device containing the compound based on benzene thiophene and special light absorber |
US20180075977A1 (en) * | 2013-12-19 | 2018-03-15 | Nutech Ventures | Self-powered ghz solution-processed hybrid perovskite photodetectors |
CN109698210A (en) * | 2017-10-20 | 2019-04-30 | 西门子保健有限责任公司 | Promote the radioscopic image sensor of middle layer and soft sintering perovskite active layer containing adherency |
KR20200074897A (en) * | 2018-12-17 | 2020-06-25 | 서울대학교산학협력단 | Metal halide perovskite light-emitting diode and preparation method thereof |
WO2020161052A1 (en) * | 2019-02-06 | 2020-08-13 | Merck Patent Gmbh | Organic semiconducting polymers |
US20220025195A1 (en) * | 2019-01-14 | 2022-01-27 | The University Of North Carolina At Chapel Hill | Bilateral amines for defect passivation and surface protection in perovskite solar cells |
CN114242904A (en) * | 2021-11-30 | 2022-03-25 | 浙江爱旭太阳能科技有限公司 | Perovskite thin film preparation equipment and method and perovskite solar cell |
CN114497375A (en) * | 2020-10-27 | 2022-05-13 | 北京大学深圳研究生院 | Perovskite-based X-ray detector and preparation method thereof |
KR20220097282A (en) * | 2020-12-30 | 2022-07-07 | 재단법인대구경북과학기술원 | Sysnthesis method for perovskite nanocrystals composite using block-copolymer |
WO2022161117A1 (en) * | 2021-01-26 | 2022-08-04 | 浙江大学 | Germanium-based perovskite photoelectric material, application thereof and preparation method therefore, and device and manufacturing method therefor |
CN116004226A (en) * | 2021-10-21 | 2023-04-25 | 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) | Composite perovskite quantum dot material, perovskite quantum dot composition, and preparation methods and applications thereof |
CN117417712A (en) * | 2023-10-31 | 2024-01-19 | 浙江大学宁波“五位一体”校区教育发展中心 | Low-water vapor transmittance photovoltaic adhesive film and preparation method and application thereof |
-
2024
- 2024-03-27 CN CN202410353637.2A patent/CN117956812B/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4668840A (en) * | 1984-06-29 | 1987-05-26 | Sanyo Electric Co., Ltd. | Photovoltaic device |
US20060162771A1 (en) * | 2003-02-20 | 2006-07-27 | Nippon Kayaku Kabushiki Kaisha | Sealing agent for photoelectric conversion element and photoelectric conversion device element using the same |
US9391287B1 (en) * | 2013-12-19 | 2016-07-12 | The Board Of Regents Of The University Of Nebraska | Photovoltaic perovskite material and method of fabrication |
US20180075977A1 (en) * | 2013-12-19 | 2018-03-15 | Nutech Ventures | Self-powered ghz solution-processed hybrid perovskite photodetectors |
CN107750261A (en) * | 2015-06-19 | 2018-03-02 | 默克专利有限公司 | Electrooptical device containing the compound based on benzene thiophene and special light absorber |
KR20170029370A (en) * | 2015-09-07 | 2017-03-15 | 주식회사 레이언스 | X-ray detector |
WO2017121984A1 (en) * | 2016-01-12 | 2017-07-20 | Sheffield Hallam University | Photoactive polymer-perovskite composite materials |
CN109698210A (en) * | 2017-10-20 | 2019-04-30 | 西门子保健有限责任公司 | Promote the radioscopic image sensor of middle layer and soft sintering perovskite active layer containing adherency |
KR20200074897A (en) * | 2018-12-17 | 2020-06-25 | 서울대학교산학협력단 | Metal halide perovskite light-emitting diode and preparation method thereof |
US20220025195A1 (en) * | 2019-01-14 | 2022-01-27 | The University Of North Carolina At Chapel Hill | Bilateral amines for defect passivation and surface protection in perovskite solar cells |
WO2020161052A1 (en) * | 2019-02-06 | 2020-08-13 | Merck Patent Gmbh | Organic semiconducting polymers |
CN114497375A (en) * | 2020-10-27 | 2022-05-13 | 北京大学深圳研究生院 | Perovskite-based X-ray detector and preparation method thereof |
KR20220097282A (en) * | 2020-12-30 | 2022-07-07 | 재단법인대구경북과학기술원 | Sysnthesis method for perovskite nanocrystals composite using block-copolymer |
WO2022161117A1 (en) * | 2021-01-26 | 2022-08-04 | 浙江大学 | Germanium-based perovskite photoelectric material, application thereof and preparation method therefore, and device and manufacturing method therefor |
CN116004226A (en) * | 2021-10-21 | 2023-04-25 | 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) | Composite perovskite quantum dot material, perovskite quantum dot composition, and preparation methods and applications thereof |
CN114242904A (en) * | 2021-11-30 | 2022-03-25 | 浙江爱旭太阳能科技有限公司 | Perovskite thin film preparation equipment and method and perovskite solar cell |
CN117417712A (en) * | 2023-10-31 | 2024-01-19 | 浙江大学宁波“五位一体”校区教育发展中心 | Low-water vapor transmittance photovoltaic adhesive film and preparation method and application thereof |
Non-Patent Citations (2)
Title |
---|
AVI MATHUR ET AL.: "Copolymer Mediated Engineering of Halide Perovskites and Associated Devices: Current State and Future", ADV. PHYSICS RES., 31 January 2023 (2023-01-31), pages 1 - 17 * |
LIVY LAYSANDRA ET AL.: "Improving the Lifetime of CsPbBr3 Perovskite in Water Using Self-Healing and Transparent Elastic Polymer Matrix", ORIGINAL RESEARCH, 6 October 2020 (2020-10-06), pages 1 - 12 * |
Also Published As
Publication number | Publication date |
---|---|
CN117956812B (en) | 2024-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dai et al. | Thickness effect on the properties of BaTiO3–CoFe2O4 multilayer thin films prepared by chemical solution deposition | |
KR101470684B1 (en) | High dielectric constant paste composition and dielectric composition using the same | |
CN111599827A (en) | A new type of perovskite semiconductor X-ray detector and its preparation method | |
CN117956812B (en) | Preparation method of composite perovskite thick film X-ray detector | |
CN113130764A (en) | Zero-bias high-sensitivity perovskite single crystal X-ray detector and preparation method thereof | |
CN103985764A (en) | Oxide TFT and its preparation method, array substrate, display device | |
US7507512B2 (en) | Particle-in-binder X-ray sensitive coating using polyimide binder | |
CN107180913A (en) | Non-volatile type memorizer and preparation method based on the organic perovskite material of metal | |
CN114023885A (en) | Self-driven polarized light detector based on ferroelectric photovoltaic effect and preparation method thereof | |
CN102936351B (en) | Method for preparing polyvinylidene fluoride (PVDF)/barium titanate (BT) composite membrane materials | |
Harris et al. | Solid‐phase crystallization of Si films in contact with Al layers | |
CN114921853A (en) | Perovskite single crystal with ordered domain structure, preparation method and radiation detector | |
CN110379921B (en) | Flexible multi-state resistive random access memory based on all-inorganic perovskite thin film and one-step solution method preparation method thereof | |
CN106784318A (en) | Methylamino halide CNT semiconductor light dependent sensor and preparation method | |
CN113314424B (en) | Thin film transistor, preparation method thereof, array substrate and display device | |
CN110993801B (en) | A glucose-doped organic-inorganic hybrid perovskite composite film and its preparation and application | |
Li et al. | Crystals Array via Oriented Nucleation and Growth Induced by Smectic E Mesophase of C7-T-BTBT | |
WO2024098487A1 (en) | All-inorganic perovskite photosensitive layer, and preparation method therefor and use thereof | |
CN114686811A (en) | Preparation of stable CsPbI based on high-throughput gas-phase co-evaporation2Method for preparing Br inorganic perovskite film | |
CN113937225A (en) | Anisotropic self-driven organic/inorganic photoelectric detector and preparation method thereof | |
TW202213831A (en) | Perovskite layer | |
CN112885966A (en) | Flexible trans-structure methylamine-free perovskite thin film prepared by doping complex, method and application thereof | |
CN118510355A (en) | Halide perovskite polycrystalline thick film for ion diffusion induced multi-interface repair and preparation method thereof | |
CN103268904A (en) | Fabrication of X-ray Detector Based on Polycrystalline Mercury Iodide Thin Film | |
Wang et al. | Controllable printing perovskite thick film for X-ray flat panel imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |