CN117920143A - 一种超顺磁性吸附剂的制备方法及其应用 - Google Patents

一种超顺磁性吸附剂的制备方法及其应用 Download PDF

Info

Publication number
CN117920143A
CN117920143A CN202410208010.8A CN202410208010A CN117920143A CN 117920143 A CN117920143 A CN 117920143A CN 202410208010 A CN202410208010 A CN 202410208010A CN 117920143 A CN117920143 A CN 117920143A
Authority
CN
China
Prior art keywords
adsorbent
superparamagnetic
mnfe
nano
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410208010.8A
Other languages
English (en)
Inventor
施东沁
姜德懿
陈祥焱
朱涛
张宗楠
王喆
张向楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Institute of Technology
Original Assignee
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Institute of Technology filed Critical Yancheng Institute of Technology
Priority to CN202410208010.8A priority Critical patent/CN117920143A/zh
Publication of CN117920143A publication Critical patent/CN117920143A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种超顺磁性吸附剂的制备方法,先制备碳包覆MnFe2O4纳米颗粒,然后对碳包覆MnFe2O4纳米颗粒进行表面羟基化引入羟基,再以戊二醛作为交联剂将表面的羟基与槲皮素交联,得到超顺磁性吸附剂。本发明制备的吸附剂为核壳结构,碳壳紧密包裹MnFe2O4内核,该材料具有超顺磁性,对水体中的纳塑料污染物吸附效果好。与传统的过滤、絮凝及生物处理等方法相比,本发明的超顺磁性吸附剂在去除微纳塑料方面具有明显的优势,吸附容量高、去除效率高,成本低,并可重复利用,绿色环保。

Description

一种超顺磁性吸附剂的制备方法及其应用
技术领域
本发明属于环境工程技术领域,具体涉及一种超顺磁性吸附剂的制备方法及其应用。
背景技术
目前,微塑料已成为全球关注的重大环境问题。研究发现,微纳塑料能够在细胞和分子层面产生危害,对生物的生长、发育及繁殖产生很大的负面影响。微纳塑料还可以在环境中不断积累,吸附和释放有害物质,不仅危害生态环境安全,而且可以通过食物链及饮水等途径进入人体,而纳塑料甚至可以突破人体的胃肠道细胞壁垒,进入人体内循环,对人体健康产生极大的潜在危害。微塑料已经被列为新污染物,不仅广泛分布于湖泊、河流等水体环境,而且难以被分解,可以在环境中存续数百年,并随时间的积累,污染不断加重。研究发现,81%的自来水和93%的瓶装水中也含有微纳塑料,其可以直接进入人体。因此,水中的微纳塑料去除已成为当前急需解决的问题。
作为新兴的污染物,目前环境水体及自来水中的微纳塑料均缺乏针对性的去除手段。目前,典型的水中的微塑料处理工艺包括过滤、混凝及生物处理等传统方法,但均存在一定不足。如对于尺寸较小的微米甚至纳米级塑料,难以通过自来水厂常规的过滤及混凝等手段得到有效去除,而生物处理工艺条件苛刻、成本较高。
发明内容
本发明的目的在于针对现有技术的不足,提供一种超顺磁性吸附剂的制备方法,该方法制备的吸附剂具有超顺磁性的核壳型纳米结构,吸附性能良好,可用于水中微纳塑料的去除,并且去除率高,成本低,绿色环保,可重复利用。
本发明先制备碳包覆MnFe2O4纳米颗粒,接着对碳包覆MnFe2O4纳米颗粒进行表面羟基化引入羟基,再以戊二醛作为交联剂将表面的羟基与槲皮素交联,形成超顺磁性吸附剂。具体方案如下:
一种超顺磁性吸附剂的制备方法,包括如下步骤:
(1)将六水合氯化铁和四水合氯化锰混合溶解在乙二醇中,然后加入醋酸钠和聚乙二醇,搅拌均匀后,再加入葡萄糖水溶液,激烈搅拌,得到混合物;
(2)将混合物密封在聚四氟乙烯衬里的不锈钢高压釜内,加热至210℃反应3-5h,然后冷却至室温,得到反应产物,将反应产物洗涤后干燥,得到碳包覆MnFe2O4纳米颗粒;
(3)将碳包覆MnFe2O4纳米颗粒分散到去离子水中,得到悬浮液,加入芬顿试剂并搅拌均匀,然后置于紫外光下氧化,结束后固液分离,将固体产物清洗、干燥,再置于低温等离子体仪中,通入空气,进行等离子体活化处理,得到活化的碳包覆MnFe2O4纳米颗粒;
(4)将活化的碳包覆MnFe2O4纳米颗粒分散到去离子水中,然后加入槲皮素,混合均匀后,再加入戊二醛,混合均匀后加热至80℃进行反应,反应结束,离心收集沉淀,洗涤后烘干,得到超顺磁性吸附剂。
进一步,步骤(1)中,所述六水合氯化铁、四水合氯化锰、醋酸钠和聚乙二醇的质量比为(2-4):1(8-9):(2-3)。
进一步,步骤(1)中,所述葡萄糖水溶液的浓度为1mol/L,所述六水合氯化铁和四水合氯化锰的质量之和与葡萄糖水溶液的体积比为(1.5g-3g):20mL。
进一步,步骤(2)中,所述洗涤为先后采用去离子水和乙醇洗涤,各洗涤2-3次。
进一步,步骤(3)中,所述碳包覆MnFe2O4纳米颗粒的质量与芬顿试剂的体积比为1g:(8mL-12mL)。
进一步,步骤(3)中,所述芬顿试剂的pH值为3,芬顿试剂中Fe2+和H2O2的摩尔比为1:5。
进一步,步骤(3)中,所述紫外光的强度为300-400W/m2,,氧化时间为2-3h。
进一步,步骤(4)中,所述活化的碳包覆MnFe2O4纳米颗粒与槲皮素的质量比为1:(3-5)。
进一步,步骤(4)中,所述活化的碳包覆MnFe2O4纳米颗粒的质量与戊二醛的体积比为0.5g:(20mL-25mL)。
上述方法制备的超顺磁性吸附剂用于吸附去除水体中微纳塑料的应用。
本发明的有益效果:
本发明公开了一种超顺磁性吸附剂的制备方法,先制备碳包覆MnFe2O4纳米颗粒,接着对碳包覆MnFe2O4纳米颗粒进行表面羟基化引入羟基,再以戊二醛作为交联剂将表面的羟基与槲皮素交联,得到超顺磁性吸附剂。与现有技术相比,具有以下优点:
1)本发明制备的碳包覆MnFe2O4纳米颗粒原料为核壳结构,内核为MnFe2O4,外层为碳壳,颗粒尺寸约100nm,碳壳厚度约10nm,碳壳为磁性内核MnFe2O4提供良好的保护,该材料具有超顺磁性,在磁铁作用下可以聚集,吸附完成后可以重复利用。
2)本发明的超顺磁性吸附剂的表面引入了槲皮素,可通过大量的羟基及苯环等基团吸附微纳塑料并且吸附容量高,因此可用于水中微纳塑料的快速去除,去除率高,成本低。
3)相比传统的过滤、絮凝及生物处理,本发明的超顺磁性吸附剂在去除微纳塑料方面具有明显的优势,且去除效率高,还可通过磁吸回收,重复利用,绿色环保。
4)本发明制备的超顺磁性吸附剂对聚苯乙烯塑料具有很好的吸附效果。
附图说明
图1为实施例1制备的超顺磁性吸附剂的TEM图;
图2为实施例1制备的超顺磁性吸附剂在水中分散性及磁性吸附实验结果;
图3为聚苯乙烯纳塑料溶液的吸光度与浓度的标准曲线;
图4为采用实施例1制备的超顺磁性吸附剂吸附前后聚苯乙烯纳塑料溶液的吸光度图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案作清楚、完整地说明。
实施例1
一种超顺磁性吸附剂的制备方法,包括如下步骤:
(1)将1.5g六水合氯化铁和0.5g四水合氯化锰混合溶解在40mL乙二醇中,然后加入4g醋酸钠和1.0g聚乙二醇,搅拌均匀后,再加入1mol/L的葡萄糖水溶液20mL,激烈搅拌,得到混合物;
(2)将混合物密封在100mL的聚四氟乙烯衬里的不锈钢高压釜内,加热至210℃反应3h,然后冷却至室温,得到反应产物,将反应产物先后用去离子水和乙醇各洗涤3次,然后60℃干燥6h,得到碳包覆MnFe2O4纳米颗粒;
(3)将1g碳包覆MnFe2O4纳米颗粒分散到100mL去离子水中,超声分散30min,得到悬浮液,加入10mL pH值为3的芬顿试剂(Fe2+和H2O2的摩尔比为1:5)并搅拌均匀,然后置于强度为300W/m2,紫外光下氧化2h,结束后通过外置磁铁进行固液分离,将固体产物清洗、干燥,再置于低温等离子体仪中,以10sccm的流速通入空气,等离子体活化处理15min,得到活化的碳包覆MnFe2O4纳米颗粒;
(4)将1g活化的碳包覆MnFe2O4纳米颗粒分散到100mL去离子水中,然后加入4g槲皮素,超声并搅拌均匀后,再加入20mL戊二醛,混合均匀后加热至80℃反应12h,反应结束,离心收集沉淀,用去离子水洗涤后烘干,得到表面交联槲皮素的碳包覆MnFe2O4材料,即为超顺磁性吸附剂。
图1为实施例1制备的超顺磁性吸附剂的TEM图,其中图1A的标尺为50nm,图1B的标尺为200nm,由图1可以看出,该超顺磁性吸附剂结构为核壳结构,内部黑色内核为MnFe2O4,表面包裹碳层及交联的槲皮素,外壳紧密保护磁性内核,表面没有缝隙,可以为内核提供保护。
1.吸附剂在水中分散性及磁性吸附实验:
将实施例1制备的超顺磁性吸附剂100mg加入10mL水中,通过震荡该吸附剂可以快速分散在水中,静置5分钟后,然后在瓶子外放置一个磁铁,观察溶液变化。
图2为实施例1制备的超顺磁性吸附剂在水中分散性及磁性吸附实验结果,可以看出吸附剂可以快速分散在水中,静置后溶液成黑色,在瓶子外放置一个磁铁,溶液可以快速澄清,吸附剂聚集在磁铁一侧。
2.水体中纳塑料的吸附去除实验:
将聚苯乙烯纳米塑料原液(阿拉丁)与纯净水混合,配制成浓度为25mg/L的聚苯乙烯纳塑料溶液,取10mL聚苯乙烯纳塑料溶液于透明试剂瓶中,加入10mg实施例1制备的超顺磁性吸附剂,振摇5分钟后,静置,用磁铁实现固液分离后,测试吸附后溶液中聚苯乙烯纳塑料的浓度,并计算聚苯乙烯纳塑料的去除率。
溶液中聚苯乙烯纳塑料的浓度的测试方法:通过紫外可见吸光光谱法建立聚苯乙烯纳塑料溶液的吸光度与浓度(Cps)的标准曲线,如图3所示;然后通过测试待测聚苯乙烯纳塑料溶液的吸光度,结合标准曲线,得到待测聚苯乙烯纳塑料溶液的浓度。
图4为采用实施例1制备的超顺磁性吸附剂吸附前后聚苯乙烯纳塑料溶液的吸光度图,可以得出,聚苯乙烯纳塑料的去除率达98%。

Claims (10)

1.一种超顺磁性吸附剂的制备方法,其特征在于,包括如下步骤:
(1)将六水合氯化铁和四水合氯化锰混合溶解在乙二醇中,然后加入醋酸钠和聚乙二醇,搅拌均匀后,再加入葡萄糖水溶液,激烈搅拌,得到混合物;
(2)将混合物密封在聚四氟乙烯衬里的不锈钢高压釜内,加热至210℃反应3-5h,然后冷却至室温,得到反应产物,将反应产物洗涤后干燥,得到碳包覆MnFe2O4纳米颗粒;
(3)将碳包覆MnFe2O4纳米颗粒分散到去离子水中,得到悬浮液,加入芬顿试剂并搅拌均匀,然后置于紫外光下氧化,结束后固液分离,将固体产物清洗、干燥,再置于低温等离子体仪中,通入空气,进行等离子体活化处理,得到活化的碳包覆MnFe2O4纳米颗粒;
(4)将活化的碳包覆MnFe2O4纳米颗粒分散到去离子水中,然后加入槲皮素,混合均匀后,再加入戊二醛,混合均匀后加热至80℃进行反应,反应结束,离心收集沉淀,洗涤后烘干,得到超顺磁性吸附剂。
2.如权利要求1所述超顺磁性吸附剂的制备方法,其特征在于,步骤(1)中,所述六水合氯化铁、四水合氯化锰、醋酸钠和聚乙二醇的质量比为(2-4):1:(8-9):(2-3)。
3.如权利要求1所述超顺磁性吸附剂的制备方法,其特征在于,步骤(1)中,所述葡萄糖水溶液的浓度为1mol/L,所述六水合氯化铁和四水合氯化锰的质量之和与葡萄糖水溶液的体积比为(1.5g-3g):20mL。
4.如权利要求1所述超顺磁性吸附剂的制备方法,其特征在于,步骤(2)中,所述洗涤为先后采用去离子水和乙醇洗涤,各洗涤2-3次。
5.如权利要求1所述超顺磁性吸附剂的制备方法,其特征在于,步骤(3)中,所述碳包覆MnFe2O4纳米颗粒的质量与芬顿试剂的体积比为1g:(8mL-12mL)。
6.如权利要求1所述超顺磁性吸附剂的制备方法,其特征在于,步骤(3)中,所述芬顿试剂的pH值为3,芬顿试剂中Fe2+和H2O2的摩尔比为1:5。
7.如权利要求1所述超顺磁性吸附剂的制备方法,其特征在于,步骤(3)中,所述紫外光的强度为300-400W/m2,,氧化时间为2-3h。
8.如权利要求1所述超顺磁性吸附剂的制备方法,其特征在于,步骤(4)中,所述活化的碳包覆MnFe2O4纳米颗粒与槲皮素的质量比为1:(3-5)。
9.如权利要求1至8任一项所述超顺磁性吸附剂的制备方法,其特征在于,步骤(4)中,所述活化的碳包覆MnFe2O4纳米颗粒的质量与戊二醛的体积比为0.5g:(20mL-25mL)。
10.权利要求1至9任一项所述方法制备的超顺磁性吸附剂用于吸附去除水体中微纳塑料的应用。
CN202410208010.8A 2024-02-26 2024-02-26 一种超顺磁性吸附剂的制备方法及其应用 Pending CN117920143A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410208010.8A CN117920143A (zh) 2024-02-26 2024-02-26 一种超顺磁性吸附剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410208010.8A CN117920143A (zh) 2024-02-26 2024-02-26 一种超顺磁性吸附剂的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN117920143A true CN117920143A (zh) 2024-04-26

Family

ID=90768374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410208010.8A Pending CN117920143A (zh) 2024-02-26 2024-02-26 一种超顺磁性吸附剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN117920143A (zh)

Similar Documents

Publication Publication Date Title
Chenab et al. Water treatment: functional nanomaterials and applications from adsorption to photodegradation
CN111790422B (zh) 一种石墨化基氮络合的Fe(III)-Fe0催化剂及其合成方法和应用
Gao An overview of surface‐functionalized magnetic nanoparticles: preparation and application for wastewater treatment
JP5844156B2 (ja) 磁性ナノ粒子を用いた水の浄化
Pandey et al. Photocatalytic-sorption processes for the removal of pollutants from wastewater using polymer metal oxide nanocomposites and associated environmental risks
CN106745317A (zh) 一步法制备多孔四氧化三铁磁性纳米微球的方法及其应用
Chen et al. Preparation and recycled simultaneous adsorption of methylene blue and Cu2+ co-pollutants over carbon layer encapsulated Fe3O4/graphene oxide nanocomposites rich in amino and thiol groups
Hamidi Malayeri et al. Magnetic multi-walled carbon nanotube as an adsorbent for toluidine blue o removal from aqueous solution
CN105668757A (zh) 纳米零价铁修饰的石墨烯/海藻酸钠小球及其制备方法和应用
Gadore et al. Smart materials for remediation of aqueous environmental contaminants
KR101679563B1 (ko) 다층막으로 된 하이드로젤 캡슐 및 이의 제조방법
CN110064407A (zh) 一种基于锌锰铁氧体负载纳米硫化铜的生物制备方法
Habimana et al. Enhancing laccase stability and activity for dyes decolorization using ZIF-8@ MWCNT nanocomposite
Shah et al. Effective role of magnetic core-shell nanocomposites in removing organic and inorganic wastes from water
Ebrahimi et al. In-situ facile synthesis of superparamagnetic porous core-shell structure for dye adsorption
Lei et al. Biomimetic ZrO2-modified seaweed residue with excellent fluorine/bacteria removal and uranium extraction properties for wastewater purification
Esmail et al. Synthesis of a new carbon dot magnetic nanocomposite (CDs@ Fe3O4) from Crocus Cancellatus: Characterization and its photocatalytic degradation of fluorescein dye
El-Wakeil et al. Removal of microplastic contaminants by a porous hybrid nanocomposite and using the earthworms as a biomarker for the removal of contaminants
WO2019081536A1 (en) COBALT METALLIC NANOPARTICLES WITHOUT COATING FOR THE EXTRACTION OF HEAVY METALS FROM WATER
Umesh et al. Enhanced adsorption: reviewing the potential of reinforcing polymers and hydrogels with nanomaterials for methylene blue dye removal
CN115090274B (zh) 一种处理污水中铜离子的磁性支化聚乙烯亚胺及其应用
CN117920143A (zh) 一种超顺磁性吸附剂的制备方法及其应用
Roy et al. Role of magnetic nanoparticles in providing safe and clean water to each individual
Nabizad et al. Removal of cefixime using heterogeneous fenton catalysts: Alginate/magnetite hydroxyapatite nanocomposite
Zheng et al. Graphene-Based Nanomaterials for Water Remediation Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination