CN117893362A - A multi-temporal and spatial scale offshore wind power feature screening and enhanced power prediction method - Google Patents
A multi-temporal and spatial scale offshore wind power feature screening and enhanced power prediction method Download PDFInfo
- Publication number
- CN117893362A CN117893362A CN202410303869.7A CN202410303869A CN117893362A CN 117893362 A CN117893362 A CN 117893362A CN 202410303869 A CN202410303869 A CN 202410303869A CN 117893362 A CN117893362 A CN 117893362A
- Authority
- CN
- China
- Prior art keywords
- feature
- offshore wind
- matrix
- time
- attention
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000012216 screening Methods 0.000 title claims abstract description 31
- 239000011159 matrix material Substances 0.000 claims abstract description 125
- 230000007246 mechanism Effects 0.000 claims abstract description 35
- 230000004927 fusion Effects 0.000 claims abstract description 18
- 230000008878 coupling Effects 0.000 claims abstract description 13
- 238000010168 coupling process Methods 0.000 claims abstract description 13
- 238000005859 coupling reaction Methods 0.000 claims abstract description 13
- 238000001228 spectrum Methods 0.000 claims abstract description 9
- 238000011176 pooling Methods 0.000 claims description 51
- 230000004913 activation Effects 0.000 claims description 42
- 230000002457 bidirectional effect Effects 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 13
- 238000001556 precipitation Methods 0.000 claims description 12
- 238000012549 training Methods 0.000 claims description 10
- 210000002569 neuron Anatomy 0.000 claims description 8
- 239000013598 vector Substances 0.000 claims description 8
- 238000013528 artificial neural network Methods 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 6
- 230000003595 spectral effect Effects 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 230000002708 enhancing effect Effects 0.000 claims description 4
- 210000004205 output neuron Anatomy 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000011161 development Methods 0.000 claims description 3
- 238000003064 k means clustering Methods 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims 3
- 230000035945 sensitivity Effects 0.000 claims 2
- 238000004364 calculation method Methods 0.000 claims 1
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 238000000354 decomposition reaction Methods 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 claims 1
- 238000005065 mining Methods 0.000 claims 1
- 238000012546 transfer Methods 0.000 claims 1
- 230000002123 temporal effect Effects 0.000 description 18
- 230000000306 recurrent effect Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/004—Generation forecast, e.g. methods or systems for forecasting future energy generation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Economics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Evolutionary Computation (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- Artificial Intelligence (AREA)
- General Business, Economics & Management (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Operations Research (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Development Economics (AREA)
- Mathematical Physics (AREA)
- Quality & Reliability (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及海上风电功率的多时空尺度预测技术领域,更具体地,涉及一种多时空尺度的海上风电特征筛选及增强的功率预测方法。The present invention relates to the technical field of multi-temporal and spatial scale prediction of offshore wind power, and more specifically, to a multi-temporal and spatial scale offshore wind power feature screening and enhanced power prediction method.
背景技术Background technique
规模化发展、深海漂浮式大功率海上装备、智能运维正在为海上风电发展注入强劲的动力。由于风能本身具有随机性,直接导致了海上风电功率的不稳定性。因此,必须提前对海上风电功率进行精准预测,能够为电网的可靠运行和电量储备计划提供依据。准确的海上风电功率预测对电力系统具有重要意义。Large-scale development, deep-sea floating high-power offshore equipment, and intelligent operation and maintenance are injecting strong impetus into the development of offshore wind power. Since wind energy itself is random, it directly leads to the instability of offshore wind power. Therefore, it is necessary to accurately predict offshore wind power in advance, which can provide a basis for the reliable operation of the power grid and the power reserve plan. Accurate offshore wind power prediction is of great significance to the power system.
海上风电功率作为一种随机性和波动性很强的时间序列,预测精度与气象特征数据的质量及时间和空间尺度有很大的关系。由于海上风电功率的影响因素和气象特征更具有复杂性,含有大量复杂数据特征,有效的特征筛选和增强是有必要的。迄今为止,已有的海上风电相关性预测功率方法未能充分考虑大量数据特征下的处理方法,使得海上风电功率的预测精度较低。As a time series with strong randomness and volatility, the prediction accuracy of offshore wind power is closely related to the quality of meteorological characteristic data and the temporal and spatial scales. Since the influencing factors and meteorological characteristics of offshore wind power are more complex and contain a large number of complex data features, effective feature screening and enhancement are necessary. So far, the existing offshore wind power correlation prediction method has failed to fully consider the processing method under a large number of data features, resulting in low prediction accuracy of offshore wind power.
针对大量复杂数据特征海上风电场的特征筛选及增强,现有技术中提出了一种考虑海上风电多机组时空特性的超短期功率预测模型,首先采用动态时间弯曲距离算法并加入抽象化与去抽象化思想改进DTW算法,同时考虑母线与地理信息进行机组聚类形成机组群,以量化、度量机组间的时序相似度;然后,利用基于注意力机制的 Transformer模型并在注意力模块进行概率化改进以降低功率预测时间;最后,将综合考虑时空特性与位置信息的序列进行预测分析。然而,由于海上风电功率的影响因素和气象特征更具有复杂性,从多时空尺度考虑时需要进行区域划分,并从不同的维度融合多重注意力进行有效的特征筛选和增强,才能提升海上风电场功率预测精度。In order to screen and enhance the features of offshore wind farms with a large number of complex data features, an ultra-short-term power prediction model considering the spatiotemporal characteristics of multiple offshore wind power units is proposed in the prior art. First, the dynamic time warping distance algorithm is used and the DTW algorithm is improved by adding the idea of abstraction and de-abstraction. At the same time, the bus and geographic information are considered to cluster the units to form a unit group to quantify and measure the time series similarity between units; then, the Transformer model based on the attention mechanism is used and the probabilistic improvement is made in the attention module to reduce the power prediction time; finally, the sequence that comprehensively considers the spatiotemporal characteristics and location information is predicted and analyzed. However, since the influencing factors and meteorological characteristics of offshore wind power are more complex, regional division is required when considering multiple spatiotemporal scales, and multiple attentions are integrated from different dimensions for effective feature screening and enhancement to improve the accuracy of offshore wind farm power prediction.
发明内容Summary of the invention
本发明为克服上述现有技术中的缺陷,提供一种多时空尺度的海上风电特征筛选及增强的功率预测方法及系统,以实现从不同空间尺度下的特征筛选及增强,从不同时间尺度下进行预测,以提高海上风电功率的预测精度。In order to overcome the defects in the above-mentioned prior art, the present invention provides a power prediction method and system for offshore wind power feature screening and enhancement at multiple time and space scales, so as to realize feature screening and enhancement at different spatial scales, and predict at different time scales, so as to improve the prediction accuracy of offshore wind power.
为解决上述技术问题,本发明采用的技术方案是:In order to solve the above technical problems, the technical solution adopted by the present invention is:
一种多时空尺度的海上风电特征筛选及增强的功率预测方法,包括以下步骤:A multi-temporal and spatial scale offshore wind power feature screening and enhanced power prediction method comprises the following steps:
S1. 获取目标及邻近海上风电场的多源数据集,包括目标海上风电场的功率、风速、风向、温度、降水量、湿度、气压、积云量以及洋流数据,并进行初步处理;S1. Obtain multi-source data sets of the target and adjacent offshore wind farms, including the power, wind speed, wind direction, temperature, precipitation, humidity, air pressure, cumulus, and ocean current data of the target offshore wind farm, and perform preliminary processing;
S2. 对预处理后的海上风电场历史气象记录数据进行划分,得到训练样本和测试样本;S2. Divide the pre-processed historical meteorological record data of offshore wind farms into training samples and test samples;
S3. 根据获取的洋流数据进行基序谱聚类,利用拉普拉斯特征映射展开最佳敏感因素筛选,对数据进行降维,并将特征数据分成近岸、浅海、深海三个区域;将处理后的海上风电场的功率、风速、风向、温度、降水量、湿度、气压、积云量以及洋流数据构成特征矩阵,/>,/>;S3. Perform motif spectral clustering based on the acquired ocean current data, use Laplace eigenmap to screen the best sensitive factors, reduce the data dimension, and divide the feature data into three areas: nearshore, shallow sea, and deep sea; the processed offshore wind farm power, wind speed, wind direction, temperature, precipitation, humidity, air pressure, cumulus, and ocean current data form a feature matrix ,/> ,/> ;
S4. 构建多维度注意力融合机制和双向门控循环单元网络的预测模型;S4. Construct a prediction model of multi-dimensional attention fusion mechanism and bidirectional gated recurrent unit network;
S5. 将特征矩阵,/>,/>输入到预测模型,通过预测模型中的多维度注意力机制考虑特征内部与外部关系,从不同维度开展多重注意力深度融合机制的海上风电特征增强,挖掘时间、空间、特征上的深层耦合关系,自适应给予不同特征相应的权重;S5. The feature matrix ,/> ,/> Input into the prediction model, consider the internal and external relationship of the features through the multi-dimensional attention mechanism in the prediction model, carry out offshore wind power feature enhancement from different dimensions with the multi-attention deep fusion mechanism, explore the deep coupling relationship in time, space and features, and adaptively give corresponding weights to different features;
S6. 对近岸、浅海、深海三个特征矩阵根据地理位置对海上风机出力的影响程度不同,进一步挖掘不同区域的隐式相关性,使用图注意力自适应赋予不同的权重,最后得到新的特征矩阵;S6. The three feature matrices of nearshore, shallow sea and deep sea are further mined according to the different degrees of influence of geographical location on the output of offshore wind turbines. Different weights are adaptively assigned using graph attention, and finally a new feature matrix is obtained. ;
S7. 将赋予权重后并增强特征后的特征矩阵输送至双向门控循环单元网络,双向门控循环单元网络挖掘特征矩阵中存在的隐含关系;S7. The feature matrix after adding weights and enhancing features The data is transmitted to a bidirectional gated recurrent unit network, which mines the implicit relationship in the feature matrix.
S8. 使用训练好的预测模型,从多个时间尺度进行预测,预测目标海上风电场的功率,获得对应海上风电场在不同时间尺度下的功率时间序列,实现多时空尺度下的海上风电功率预测。S8. Use the trained prediction model to predict the power of the target offshore wind farm from multiple time scales, obtain the power time series of the corresponding offshore wind farm at different time scales, and realize offshore wind power prediction at multiple time and space scales.
根据以上技术手段,本发明提供了一种基于基序谱聚类与多维度注意力机制的海上风电功率预测方法,首先获取目标海上风电场的多源数据集,在经过初步处理后,根据获取的洋流数据进行基序谱聚类展开最佳敏感因素筛选,对数据进行降维,并将特征数据分成近岸、浅海、深海三个区域;通过多维度注意力机制考虑特征内部与外部关系,从不同维度开展多重注意力深度融合机制的海上风电特征增强,挖掘时间、空间、特征上的深层耦合关系,自适应给予不同特征相应的权重。对近岸、浅海、深海三个特征矩阵根据地理位置对海上风机出力的影响程度不同,进一步挖掘不同区域的隐式相关性,使用图注意力自适应赋予不同的权重,最后得到新的特征矩阵并输送至双向门控循环单元网络,使用训练好的预测模型,从多个时间尺度进行预测,获得对应海上风电场在不同时间尺度下的功率时间序列,实现多时空尺度下的海上风电功率预测。本发明能够有效的提升海上风电功率预测的精度。According to the above technical means, the present invention provides an offshore wind power prediction method based on motif spectrum clustering and multi-dimensional attention mechanism. First, a multi-source data set of the target offshore wind farm is obtained. After preliminary processing, the motif spectrum clustering is performed according to the acquired ocean current data to screen the best sensitive factors, reduce the dimension of the data, and divide the feature data into three regions: nearshore, shallow sea, and deep sea. The internal and external relationships of the features are considered through the multi-dimensional attention mechanism, and the offshore wind power feature enhancement of the multiple attention deep fusion mechanism is carried out from different dimensions, and the deep coupling relationship in time, space, and features is excavated, and the corresponding weights of different features are adaptively given. The three feature matrices of nearshore, shallow sea, and deep sea are further excavated according to the different degrees of influence of geographical location on the output of offshore wind turbines, and different weights are adaptively given using graph attention. Finally, a new feature matrix is obtained and transmitted to a bidirectional gated recurrent unit network, and a trained prediction model is used to predict from multiple time scales to obtain the power time series of the corresponding offshore wind farm at different time scales, so as to realize the offshore wind power prediction at multiple time and space scales. The present invention can effectively improve the accuracy of offshore wind power prediction.
进一步地,步骤S1中,数据进行初步处理的具体过程如下:依据海上风电场区域附近的实测气象数据对全球预报系统(Global Forecasting System, GFS)、天气预报模式系统(Weather Research Forecast, WRF)等背景场系统进行修正,获取水平分辨率为3km×3km网格化的NWP数据。对所述海上风电场历史气象记录数据中的缺失数据进行填补,得到完整的风电场历史气象记录数据;将功率序列、风速序列、温度序列气压序列、积云量序列以及洋流序列采用min-max归一化处理,获得处理后的功率序列P、风速序列WS、温度序列T、湿度序列H、降水量序列PRECIP、气压序列PA、积云量序列CU以及洋流序列OC,而风向序列则采用正余弦处理,获得风向正弦WDS和风向余弦WDC。Furthermore, in step S1, the specific process of preliminary data processing is as follows: based on the measured meteorological data near the offshore wind farm area, the background field systems such as the Global Forecasting System (GFS) and the Weather Research Forecast (WRF) are corrected to obtain NWP data with a horizontal resolution of 3km×3km grid. The missing data in the historical meteorological record data of the offshore wind farm are filled to obtain complete historical meteorological record data of the wind farm; the power sequence, wind speed sequence, temperature sequence, pressure sequence, cumulus sequence and ocean current sequence are processed by min-max normalization to obtain the processed power sequence P, wind speed sequence WS, temperature sequence T, humidity sequence H, precipitation sequence PRECIP, pressure sequence PA, cumulus sequence CU and ocean current sequence OC, while the wind direction sequence is processed by sine and cosine to obtain the wind direction sine WDS and wind direction cosine WDC.
进一步地,在步骤S2中,将所述预处理后的海上风电场历史气象记录数据进行划分,按8:2的比例划分并得到训练样本和测试样本。Furthermore, in step S2, the pre-processed historical meteorological record data of the offshore wind farm is divided into training samples and test samples in a ratio of 8:2.
进一步地,步骤S3中,对处理后的样本特征使用基序谱聚类,利用拉普拉斯特征映射展开最佳敏感因素筛选,对数据进行降维,具体步骤如下:Furthermore, in step S3, motif spectrum clustering is used for the processed sample features, and Laplace eigenmap is used to screen the best sensitive factors and reduce the dimension of the data. The specific steps are as follows:
S31. 构建相似度矩阵,根据数据样本之间的距离,计算样本之间的相似性;S31. Constructing similarity matrix , according to the distance between data samples, calculate the similarity between samples;
S32. 构建邻接矩阵,用高斯距离法进行构建:S32. Constructing the adjacency matrix , constructed using the Gaussian distance method:
式中,、/>为n个样本中第i个点与第j个点(i,j=1,..,n),s为标准差,e为指数函数;In the formula, 、/> is the i-th point and the j-th point in n samples (i, j = 1, .., n), s is the standard deviation, and e is the exponential function;
S33. 计算阶矩D和拉普拉斯矩阵L:S33. Calculate the order moment D and Laplace matrix L:
式中,为i行j列的阶矩矩阵,/>为i行j列的拉普拉斯矩阵;In the formula, is the i-row and j-column moment matrix,/> is the Laplace matrix of i rows and j columns;
S34. 对拉普拉斯矩阵进行特征分解,得到特征向量和特征值;根据特征值的大小,选择前k个特征向量作为新的数据表示;生成低维度下的特征矩阵;S34. Perform eigendecomposition on the Laplace matrix to obtain eigenvectors and eigenvalues; select the first k eigenvectors as new data representations according to the size of the eigenvalues; and generate a low-dimensional eigenmatrix;
S35. 在降维后的新特征空间内进行K-Means聚类,分成近岸、浅海、深海三类,得到特征矩阵,/>,/>;S35. Perform K-Means clustering in the new feature space after dimensionality reduction and divide it into three categories: nearshore, shallow sea, and deep sea, and obtain the feature matrix ,/> ,/> ;
=[M1,M2,...,Mn],/>,其中Mn表示第n个风电场t-1到t-m时刻的特征构成的矩阵。 =[M 1 ,M 2 ,...,M n ],/> , where Mn represents the matrix composed of the characteristics of the nth wind farm from time t -1 to time t- m.
进一步地,在步骤S4中,构建多维度注意力融合机制的具体步骤如下:Furthermore, in step S4, the specific steps of constructing the multi-dimensional attention fusion mechanism are as follows:
将时间注意力模块和特征注意力模块串联,输入为H×W×C的矩阵,经过两个注意力子模块处理后得到的特征图进行元素加法操作,使两个特征融合在一起,经过ReLU激活函数处理输出结果,作为通道注意力模块和空间注意力模块的输入,采用串联的结构将这两个模块连接在一起;在这两个注意力模块中,同时使用平均池化和最大池化操作从不同视角获取不同特征信息。The temporal attention module and the feature attention module are connected in series, and the input is a H×W×C matrix. The feature maps obtained after processing by the two attention sub-modules are subjected to element-wise addition operation to fuse the two features together. The output result is processed by the ReLU activation function and used as the input of the channel attention module and the spatial attention module. The two modules are connected together using a series structure. In these two attention modules, average pooling and maximum pooling operations are used simultaneously to obtain different feature information from different perspectives.
进一步地,所述时间注意力模块,包括卷积层、FC层、softmax层、sigmoid激活函数和全局平均池化层;在时间注意力模块中,将全局空间平均池化 GAP 应用于特征矩阵,以确保时间注意力模块具有低计算成本;然后在整个时间域上使用多个具有非线性的1D卷积来生成位置敏感的重要性图,以增强逐帧特征;再经过FC层,基于每个通道中的全局时间信息生成通道自适应内核,经过softmax层获得时间注意力模块权重系数Mt;最后,用权重系数和特征矩阵相乘即可得到缩放后的新特征矩阵;Furthermore, the temporal attention module includes a convolution layer, an FC layer, a softmax layer, a sigmoid activation function and a global average pooling layer; in the temporal attention module, the global spatial average pooling GAP is applied to the feature matrix to ensure that the temporal attention module has a low computational cost; then multiple 1D convolutions with nonlinearity are used over the entire time domain to generate a position-sensitive importance map to enhance frame-by-frame features; then, after the FC layer, a channel-adaptive kernel is generated based on the global temporal information in each channel, and the temporal attention module weight coefficient Mt is obtained after the softmax layer; finally, the weight coefficient and the feature matrix are used to generate the temporal attention module weight coefficient Mt. Multiplying them will give you the scaled new feature matrix;
式中,GAP为全局空间平均池化,Conv1D为一维卷积,X为输入样本,为sigmoid激活函数,FC为全连接层,Mt为时间注意力模块权重系数,/>为新特征矩阵;δ表示注意力权重,/>为向量积。In the formula, GAP is the global spatial average pooling, Conv1D is the one-dimensional convolution, X is the input sample, is the sigmoid activation function, FC is the fully connected layer, Mt is the weight coefficient of the temporal attention module, /> is the new feature matrix; δ represents the attention weight, /> is the vector product.
进一步地,所述特征注意力模块,包括卷积层、Relu激活函数、sigmoid激活函数和池化层;在特征注意力模块,首先输入特征经过池化层,再经过两个卷积层,激活函数为Relu,再将得到的特征经过一个Sigmoid激活函数反馈特征在不同环境下的自适应权系数,得到权重系数;最后,用权重系数和原来的特征矩阵/>相乘即可得到缩放后的新特征矩阵;Furthermore, the feature attention module includes a convolution layer, a Relu activation function, a sigmoid activation function and a pooling layer; in the feature attention module, the input feature is first passed through the pooling layer, and then through two convolution layers, the activation function is Relu, and then the obtained feature is fed back through a Sigmoid activation function to obtain the adaptive weight coefficient of the feature in different environments, and the weight coefficient is obtained. ; Finally, use the weight coefficient and the original feature matrix/> Multiplying them will give you the scaled new feature matrix;
式中,Conv为卷积、为Relu激活函数、/>为新特征矩阵。In the formula, Conv is convolution, is the Relu activation function, /> is the new feature matrix.
进一步地,所述空间注意力模块,包括卷积层、最大池化层、平均池化层、sigmoid激活函数;在空间注意力模块,首先分别进行一个通道维度的平均池化和最大池化得到两个 H×W×1 的通道并拼接在一起;再经过一个C×C的卷积层,激活函数为 Sigmoid,得到权重系数 Ms;最后,用权重系数和特征矩阵相乘即可得到缩放后的新特征矩阵;Furthermore, the spatial attention module includes a convolution layer, a maximum pooling layer, an average pooling layer, and a sigmoid activation function. In the spatial attention module, firstly, average pooling and maximum pooling of a channel dimension are performed to obtain two H×W×1 channels and spliced together. Then, a C×C convolution layer is passed, and the activation function is Sigmoid to obtain a weight coefficient Ms. Finally, the weight coefficient and the feature matrix are used to obtain the weight coefficient Ms. Multiplying them will give you the scaled new feature matrix;
式中,为平均池化,/>为最大池化、/>为新特征矩阵。In the formula, is average pooling,/> For maximum pooling, is the new feature matrix.
进一步地,所述通道注意力模块,包括卷积层、最大池化层、平均池化层、sigmoid激活函数;在通道注意力模块,首先分别进行空间上的全局平均池化和最大池化得到两个1×1×C 的通道,再分别送入一个两层的共享神经网络,第一层神经元个数为 C/r,激活函数为 Relu,第二层神经元个数为 C;再将得到的两个特征相加后经过一个 Sigmoid 激活函数得到权重系数Mc;最后,用权重系数和原来的特征矩阵相乘即可得到缩放后的新特征矩阵;Furthermore, the channel attention module includes a convolution layer, a maximum pooling layer, an average pooling layer, and a sigmoid activation function; in the channel attention module, firstly, global average pooling and maximum pooling are performed in space to obtain two 1×1×C channels, and then they are respectively sent to a two-layer shared neural network, the number of neurons in the first layer is C/r, the activation function is Relu, and the number of neurons in the second layer is C; then the two features are added and then passed through a Sigmoid activation function to obtain a weight coefficient Mc; finally, the weight coefficient and the original feature matrix are used to obtain the weight coefficient Mc. Multiplying them will give you the scaled new feature matrix;
式中,MLP为多层感知机、为新特征矩阵。In the formula, MLP is a multi-layer perceptron, is the new feature matrix.
进一步地,在步骤S5中,将特征矩阵,/>,/>输入到预测模型,通过预测模型中的多维度注意力机制考虑特征内部与外部关系,从不同维度开展多重注意力深度融合机制的海上风电特征增强,挖掘时间、空间、特征上的深层耦合关系,自适应给予不同特征相应的权重;基于时间注意力/>,特征注意力/>,空间注意力/>,通道注意力,深度开展特征增强;Further, in step S5, the feature matrix ,/> ,/> Input into the prediction model, consider the internal and external relationship of the features through the multi-dimensional attention mechanism in the prediction model, carry out offshore wind power feature enhancement from different dimensions with multiple attention deep fusion mechanism, explore the deep coupling relationship in time, space and features, and adaptively give corresponding weights to different features; based on time attention/> , Feature Attention/> , spatial attention/> , channel attention , carry out feature enhancement in depth;
式中,为注意力所计算得到的权值矩阵,/>为对应注意力的神经网络,/>为所计算维度对应的特征值;In the formula, The weight matrix calculated for attention,/> is the neural network corresponding to attention,/> is the eigenvalue corresponding to the calculated dimension;
将获得的权重,分别与对应海上风电场的特征相乘,即得到赋权后的特征矩阵,/>,/>;The obtained weights are multiplied by the characteristics of the corresponding offshore wind farms, and the weighted feature matrix is obtained: ,/> ,/> ;
。 .
进一步地,步骤S6具体包括:Furthermore, step S6 specifically includes:
S61. 定义权重矩阵W,将特征矩阵转换成邻接节点:,/>为第j个输入样本(h=h1,…hn);S61. Define the weight matrix W and convert the feature matrix into adjacent nodes: ,/> is the jth input sample (h=h1,…hn);
S62. 将相邻节点i和j拼接并映射成标量,为注意力计算函数:/>,式中,/>为对某节点进行计算得到的原始注意力贡献度,用于进行下一步的归一化;S62. Concatenate adjacent nodes i and j and map them into scalars, Calculate the attention function: /> , where / > The original attention contribution calculated for a node is used for normalization in the next step;
S63. 将邻接节点矩阵经过leakyRelu层,再经过softmax层,计算节点i的每一个邻居节点j对i的贡献度并对各个邻接节点j的贡献度进行归一化;S63. Pass the adjacent node matrix through the leakyRelu layer and then the softmax layer, calculate the contribution of each neighbor node j of node i to i and normalize the contribution of each neighbor node j;
S64. 在计算完i节点的每一个相邻节点的贡献度之后,根据权重,对i节点得所有相邻节点进行特征求和更新;作为i节点的最终输出,得到;S64. After calculating the contribution of each neighboring node of node i, the feature sum of all neighboring nodes of node i is updated according to the weight; as the final output of node i, ;
令输出神经元个数为3,分别对应近岸,浅海和深海三个区域的权重,最后得到新的特征矩阵;Let the number of output neurons be 3, corresponding to the weights of the three regions of nearshore, shallow sea and deep sea, and finally get the new feature matrix ;
其中,;in, ;
。 .
进一步地,在步骤S7中,双向门控循环单元网络的构建如下:以特征矩阵为输入,搭建多层级联双向门控循环单元网络,由前向GRU和后向GRU组成,激活函数为tanh;Further, in step S7, the bidirectional gated recurrent unit network is constructed as follows: with the feature matrix As input, a multi-layer cascade bidirectional gated recurrent unit network is built, which consists of a forward GRU and a backward GRU, and the activation function is tanh;
式中,、/>、/>、/>、/>、/>为权重参数矩阵,/>、/>、/>为偏置参数矩阵,/>为矩阵乘法,/>为Sigmoid函数,/>为重置门,/>为更新门,/>为当前时刻隐含层的候选状态,/>为当前隐含状态,/>为前一时刻的隐含状态,/>为当前时刻的输入状态,/>为反向传递计算/>和/>为前向GRU和后向GRU的隐藏状态,F为两个方向的输出合并方法。In the formula, 、/> 、/> 、/> 、/> 、/> is the weight parameter matrix, /> 、/> 、/> is the bias parameter matrix, /> is matrix multiplication, /> is the Sigmoid function, /> To reset the gate, /> To update the gate, /> is the candidate state of the hidden layer at the current moment, /> is the current implicit state, /> is the implicit state of the previous moment, /> is the input status at the current moment, /> Calculate for the reverse pass/> and/> is the hidden state of the forward GRU and the backward GRU, and F is the output merging method in both directions.
进一步地,在步骤S8中,时间尺度为n个,其中n为整数,且n2。Further, in step S8, the time scale is n, where n is an integer, and n 2.
设当前的预测系统的时间尺度为i,输入为,/>为时间尺度i的前一时刻运行数据;预测系统的输出为/>,/>为当前时间尺度的预测数据;使用训练好的预测模型,从多个时间尺度进行预测,预测目标海上风电场的功率,获得对应海上风电场在不同时间尺度下的功率时间序列,分别完成海上风电超短期预测和短期预测,实现多时空尺度下的海上风电功率预测;Assume that the time scale of the current forecasting system is i and the input is ,/> is the running data of the previous moment of time scale i ; the output of the prediction system is/> ,/> The prediction data for the current time scale; use the trained prediction model to predict from multiple time scales, predict the power of the target offshore wind farm, obtain the power time series of the corresponding offshore wind farm at different time scales, complete the ultra-short-term prediction and short-term prediction of offshore wind power respectively, and realize the offshore wind power prediction at multiple time and space scales;
式中,为在第i个尺度上的预测输出负荷结果,/>为i-n-1到i-1时间尺度的输入矩阵。In the formula, is the predicted output load result at the i -th scale,/> is the input matrix for the time scales i - n -1 to i -1.
在本发明中还提供一种多时空尺度的海上风电特征筛选及增强的功率预测系统,包括:The present invention also provides a multi-temporal and spatial scale offshore wind power feature screening and enhanced power prediction system, comprising:
数据采集单元,用于获取目标及邻近海上风电场的多源数据集,包括目标海上风电场的功率、风速、风向、温度、降水量、湿度、气压、积云量以及洋流数据;A data acquisition unit, used to obtain multi-source data sets of the target and adjacent offshore wind farms, including power, wind speed, wind direction, temperature, precipitation, humidity, air pressure, cumulus cloud cover, and ocean current data of the target offshore wind farm;
预处理单元,用于对数据采集单元得到的特征序列进行预处理,得到特征向量,并将海上风电功率时间序列作为预测目标样本,将特征向量及海上风电功率时间序列均分别划分为训练集和验证集;A preprocessing unit is used to preprocess the feature sequence obtained by the data acquisition unit to obtain a feature vector, and use the offshore wind power time series as a prediction target sample, and divide the feature vector and the offshore wind power time series into a training set and a verification set respectively;
多空间尺度特征筛选单元,用于根据数据采集单元获取的洋流数据进行基序谱聚类,利用拉普拉斯特征映射展开最佳敏感因素筛选,对数据进行降维,并将特征数据分成近岸、浅海、深海三个区域,分别构成三个特征矩阵;The multi-spatial-scale feature screening unit is used to perform motif spectral clustering based on the ocean current data acquired by the data acquisition unit, use Laplace eigenmap to screen the best sensitive factors, reduce the dimension of the data, and divide the feature data into three areas: nearshore, shallow sea, and deep sea, forming three feature matrices respectively;
特征增强单元,通过预测模型中的多维度注意力机制考虑特征内部与外部关系,从不同维度开展多重注意力深度融合机制的海上风电特征增强,挖掘时间、空间、特征上的深层耦合关系,自适应给予不同特征相应的权重;基于时间注意力,特征注意力,空间注意力,通道注意力,深度开展特征增强,将注意力权重与输入特征映射相乘,得到赋予权重后的特征矩阵,并送入多时间尺度预测单元;The feature enhancement unit considers the internal and external relationships of features through the multi-dimensional attention mechanism in the prediction model, and performs offshore wind power feature enhancement with a multi-attention deep fusion mechanism from different dimensions, digs into the deep coupling relationship in time, space, and features, and adaptively gives corresponding weights to different features; based on time attention, feature attention, space attention, and channel attention, it deeply performs feature enhancement, multiplies the attention weight with the input feature map, obtains the weighted feature matrix, and sends it to the multi-time scale prediction unit;
多时间尺度预测单元,用于将赋予权重后的特征矩阵输入到双向门控循环单元网络,使用训练好的预测模型,从多个时间尺度进行预测,预测目标海上风电场的功率,获得对应海上风电场在不同时间尺度下的功率时间序列,完成多时空尺度下的海上风电功率预测。The multi-time scale prediction unit is used to input the weighted feature matrix into the bidirectional gated recurrent unit network, use the trained prediction model to make predictions from multiple time scales, predict the power of the target offshore wind farm, obtain the power time series of the corresponding offshore wind farm at different time scales, and complete the offshore wind power prediction at multiple time and space scales.
与现有技术相比,有益效果是:本发明提供的一种多时空尺度的海上风电特征筛选及增强的功率预测方法,是基于基序谱聚类与多维度注意力机制进行实现的,其中基序谱聚类展开最佳敏感因素筛选,对数据进行降维,从空间尺度有效增强深度耦合时空特征;而多维度注意力机制考虑特征内部与外部关系,从不同维度开展多重注意力深度融合机制的海上风电特征增强,挖掘时间、空间、特征上的深层耦合关系,使用图注意力对近岸、浅海、深海三个特征矩阵根据地理位置对海上风机出力的影响程度不同,进一步挖掘不同区域的隐式相关性,对于海上风电功率预测精度提升具有一定的帮助;从多个时间尺度进行预测,实现多时空尺度下的海上风电功率预测,能捕捉未来长期趋势并提升可靠性。对海上风电功率预测具有一定的实际意义。本发明能够有效的提升海上风电功率预测的精度。Compared with the prior art, the beneficial effects are as follows: the method for power prediction of offshore wind power feature screening and enhancement at multiple spatiotemporal scales provided by the present invention is implemented based on motif spectrum clustering and multi-dimensional attention mechanism, wherein motif spectrum clustering carries out optimal sensitive factor screening, reduces the dimension of data, and effectively enhances deep coupling spatiotemporal features from the spatial scale; and the multi-dimensional attention mechanism considers the internal and external relationship of features, and carries out offshore wind power feature enhancement of multiple attention deep fusion mechanisms from different dimensions, digs deep coupling relationships in time, space, and features, and uses graph attention to the three feature matrices of nearshore, shallow sea, and deep sea according to the different degrees of influence of geographical location on the output of offshore wind turbines, further digs implicit correlations in different regions, which is helpful for improving the accuracy of offshore wind power prediction; prediction is carried out from multiple time scales to realize offshore wind power prediction at multiple spatiotemporal scales, which can capture future long-term trends and improve reliability. It has certain practical significance for offshore wind power prediction. The present invention can effectively improve the accuracy of offshore wind power prediction.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明多时空尺度的海上风电特征筛选及增强的功率预测方法的流程示意图。FIG1 is a schematic flow chart of the method for offshore wind power feature screening and enhanced power prediction at multiple time and space scales of the present invention.
图2为预测模型的示意图。FIG2 is a schematic diagram of the prediction model.
图3为多重注意力机制赋予不同区域风电场的权重图。Figure 3 shows the weights assigned to wind farms in different regions by the multiple attention mechanisms.
图4为本发明多时空尺度的海上风电特征筛选及增强的功率预测效果图。FIG4 is a diagram showing the effect of offshore wind power feature screening and enhanced power prediction at multiple time and space scales according to the present invention.
图5为多时空尺度的海上风电特征筛选及增强的功率预测系统流程示意图。Figure 5 is a schematic diagram of the process flow of the offshore wind power feature screening and enhanced power prediction system at multiple temporal and spatial scales.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。下面结合具体实施方式对本发明作在其中一个实施例中说明。其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. The present invention is described in one of the embodiments in combination with the specific implementation methods. Among them, the drawings are only used for exemplary descriptions, and only schematic diagrams are shown, not physical drawings, and cannot be understood as limitations on this patent; in order to better illustrate the embodiments of the present invention, some parts of the drawings will be omitted, enlarged or reduced, and do not represent the size of the actual product; for those skilled in the art, it is understandable that some well-known structures and their descriptions in the drawings may be omitted.
在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。In the description of the present invention, it should be understood that if the terms "upper", "lower", "left", "right" and the like indicate an orientation or positional relationship based on the orientation or positional relationship shown in the drawings, it is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation. Therefore, the terms describing the positional relationship in the drawings are only used for exemplary explanations and cannot be understood as limitations on this patent. For ordinary technicians in this field, the specific meanings of the above terms can be understood according to specific circumstances. In addition, if there are descriptions involving "first", "second", etc. in the embodiments of the present invention, the descriptions of "first", "second", etc. are only used for descriptive purposes, and cannot be understood as indicating or implying their relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as "first" and "second" can explicitly or implicitly include at least one of the features. In addition, the meaning of "and/or" appearing in the full text is to include three parallel schemes. Taking "A and/or B" as an example, it includes scheme A, or scheme B, or schemes that satisfy both A and B.
实施例1:Embodiment 1:
如图1所示,一种多时空尺度的海上风电特征筛选及增强的功率预测方法,包括以下步骤:As shown in FIG1 , a method for screening and enhancing offshore wind power characteristics at multiple time and space scales includes the following steps:
S1. 获取目标及邻近海上风电场的多源数据集,包括目标海上风电场的功率、风速、风向、温度、降水量、湿度、气压、积云量以及洋流数据,并进行初步处理;S1. Obtain multi-source data sets of the target and adjacent offshore wind farms, including the power, wind speed, wind direction, temperature, precipitation, humidity, air pressure, cumulus, and ocean current data of the target offshore wind farm, and perform preliminary processing;
S2. 对预处理后的海上风电场历史气象记录数据进行划分,得到训练样本和测试样本;S2. Divide the pre-processed historical meteorological record data of offshore wind farms into training samples and test samples;
S3. 根据获取的洋流数据进行基序谱聚类,利用拉普拉斯特征映射展开最佳敏感因素筛选,对数据进行降维,并将特征数据分成近岸、浅海、深海三个区域;将处理后的海上风电场的功率、风速、风向、温度、降水量、湿度、气压、积云量以及洋流数据构成特征矩阵,/>,/>;S3. Perform motif spectral clustering based on the acquired ocean current data, use Laplace eigenmap to screen the best sensitive factors, reduce the data dimension, and divide the feature data into three areas: nearshore, shallow sea, and deep sea; the processed offshore wind farm power, wind speed, wind direction, temperature, precipitation, humidity, air pressure, cumulus, and ocean current data form a feature matrix ,/> ,/> ;
S4. 构建多维度注意力融合机制和双向门控循环单元网络的预测模型;S4. Construct a prediction model of multi-dimensional attention fusion mechanism and bidirectional gated recurrent unit network;
S5. 将特征矩阵,/>,/>输入到预测模型,通过预测模型中的多维度注意力机制考虑特征内部与外部关系,从不同维度开展多重注意力深度融合机制的海上风电特征增强,挖掘时间、空间、特征上的深层耦合关系,自适应给予不同特征相应的权重;S5. The feature matrix ,/> ,/> Input into the prediction model, consider the internal and external relationship of the features through the multi-dimensional attention mechanism in the prediction model, carry out offshore wind power feature enhancement from different dimensions with the multi-attention deep fusion mechanism, explore the deep coupling relationship in time, space and features, and adaptively give corresponding weights to different features;
S6. 对近岸、浅海、深海三个特征矩阵根据地理位置对海上风机出力的影响程度不同,进一步挖掘不同区域的隐式相关性,使用图注意力自适应赋予不同的权重,最后得到新的特征矩阵;S6. The three feature matrices of nearshore, shallow sea and deep sea are further mined according to the different degrees of influence of geographical location on the output of offshore wind turbines. Different weights are adaptively assigned using graph attention, and finally a new feature matrix is obtained. ;
S7. 将赋予权重后并增强特征后的特征矩阵输送至双向门控循环单元网络,双向门控循环单元网络挖掘特征矩阵中存在的隐含关系;S7. The feature matrix after adding weights and enhancing features The data is transmitted to a bidirectional gated recurrent unit network, which mines the implicit relationship in the feature matrix.
S8. 使用训练好的预测模型,从多个时间尺度进行预测,预测目标海上风电场的功率,获得对应海上风电场在不同时间尺度下的功率时间序列,实现多时空尺度下的海上风电功率预测。S8. Use the trained prediction model to predict the power of the target offshore wind farm from multiple time scales, obtain the power time series of the corresponding offshore wind farm at different time scales, and realize offshore wind power prediction at multiple time and space scales.
根据以上技术手段,本发明提供了一种基于基序谱聚类与多维度注意力机制的海上风电功率预测方法,首先获取目标海上风电场的多源数据集,在经过初步处理后,根据获取的洋流数据进行基序谱聚类展开最佳敏感因素筛选,对数据进行降维,并将特征数据分成近岸、浅海、深海三个区域;通过多维度注意力机制考虑特征内部与外部关系,从不同维度开展多重注意力深度融合机制的海上风电特征增强,挖掘时间、空间、特征上的深层耦合关系,自适应给予不同特征相应的权重。对近岸、浅海、深海三个特征矩阵根据地理位置对海上风机出力的影响程度不同,进一步挖掘不同区域的隐式相关性,使用图注意力自适应赋予不同的权重,最后得到新的特征矩阵并输送至双向门控循环单元网络,使用训练好的预测模型,从多个时间尺度进行预测,获得对应海上风电场在不同时间尺度下的功率时间序列,实现多时空尺度下的海上风电功率预测。本发明能够有效的提升海上风电功率预测的精度。According to the above technical means, the present invention provides an offshore wind power prediction method based on motif spectrum clustering and multi-dimensional attention mechanism. First, a multi-source data set of the target offshore wind farm is obtained. After preliminary processing, the motif spectrum clustering is performed according to the acquired ocean current data to screen the best sensitive factors, reduce the dimension of the data, and divide the feature data into three regions: nearshore, shallow sea, and deep sea. The internal and external relationships of the features are considered through the multi-dimensional attention mechanism, and the offshore wind power feature enhancement of the multiple attention deep fusion mechanism is carried out from different dimensions, and the deep coupling relationship in time, space, and features is excavated, and the corresponding weights of different features are adaptively given. The three feature matrices of nearshore, shallow sea, and deep sea are further excavated according to the different degrees of influence of geographical location on the output of offshore wind turbines, and different weights are adaptively given using graph attention. Finally, a new feature matrix is obtained and transmitted to a bidirectional gated recurrent unit network, and a trained prediction model is used to predict from multiple time scales to obtain the power time series of the corresponding offshore wind farm at different time scales, so as to realize the offshore wind power prediction at multiple time and space scales. The present invention can effectively improve the accuracy of offshore wind power prediction.
实施例2Example 2
在本实施例中,步骤S1中数据进行初步处理的具体过程如下:依据海上风电场区域附近的实测气象数据对全球预报系统(Global Forecasting System, GFS)、天气预报模式系统(Weather Research Forecast, WRF)等背景场系统进行修正,获取水平分辨率为3km×3km网格化的NWP数据。对所述海上风电场历史气象记录数据中的缺失数据进行填补,得到完整的风电场历史气象记录数据;将功率序列、风速序列、温度序列气压序列、积云量序列以及洋流序列采用min-max归一化处理,获得处理后的功率序列P、风速序列WS、温度序列T、湿度序列H、降水量序列PRECIP、气压序列PA、积云量序列CU以及洋流序列OC,而风向序列则采用正余弦处理,获得风向正弦WDS和风向余弦WDC。In this embodiment, the specific process of preliminary data processing in step S1 is as follows: based on the measured meteorological data near the offshore wind farm area, the background field systems such as the Global Forecasting System (GFS) and the Weather Research Forecast (WRF) are corrected to obtain NWP data with a horizontal resolution of 3km×3km grid. The missing data in the historical meteorological record data of the offshore wind farm are filled to obtain complete historical meteorological record data of the wind farm; the power sequence, wind speed sequence, temperature sequence, pressure sequence, cumulus sequence and ocean current sequence are processed by min-max normalization to obtain the processed power sequence P, wind speed sequence WS, temperature sequence T, humidity sequence H, precipitation sequence PRECIP, pressure sequence PA, cumulus sequence CU and ocean current sequence OC, and the wind direction sequence is processed by sine and cosine to obtain the wind direction sine WDS and wind direction cosine WDC.
进一步地,在步骤S2中,将所述预处理后的海上风电场历史气象记录数据进行划分,按8:2的比例划分并得到训练样本和测试样本。Furthermore, in step S2, the pre-processed historical meteorological record data of the offshore wind farm is divided into training samples and test samples in a ratio of 8:2.
在本实施例中,对处理后的样本特征使用基序谱聚类,利用拉普拉斯特征映射展开最佳敏感因素筛选,对数据进行降维,具体步骤如下:In this embodiment, motif spectral clustering is used for the processed sample features, and Laplace eigenmap is used to screen the best sensitive factors and reduce the dimension of the data. The specific steps are as follows:
S31. 构建相似度矩阵,根据数据样本之间的距离,计算样本之间的相似性;S31. Constructing similarity matrix , according to the distance between data samples, calculate the similarity between samples;
S32. 构建邻接矩阵,用高斯距离法进行构建:S32. Constructing the adjacency matrix , constructed using the Gaussian distance method:
式中,、/>为n个样本中第i个点与第j个点(i,j=1,..,n),s为标准差,e为指数函数;In the formula, 、/> is the i -th point and the j-th point in n samples ( i , j =1,..,n), s is the standard deviation, and e is the exponential function;
S33. 计算阶矩D和拉普拉斯矩阵L:S33. Calculate the order moment D and Laplace matrix L:
式中,为i行j列的阶矩矩阵,/>为i行j列的拉普拉斯矩阵;In the formula, is the i- row and j -column moment matrix,/> is the Laplace matrix of i rows and j columns;
S34. 对拉普拉斯矩阵进行特征分解,得到特征向量和特征值;根据特征值的大小,选择前k个特征向量作为新的数据表示;生成低维度下的特征矩阵;S34. Perform eigendecomposition on the Laplace matrix to obtain eigenvectors and eigenvalues; select the first k eigenvectors as new data representations according to the size of the eigenvalues; and generate a low-dimensional eigenmatrix;
S35. 在降维后的新特征空间内进行K-Means聚类,分成近岸、浅海、深海三类,得到特征矩阵,/>,/>;S35. Perform K-Means clustering in the new feature space after dimensionality reduction and divide it into three categories: nearshore, shallow sea, and deep sea, and obtain the feature matrix ,/> ,/> ;
=[M1,M2,...,Mn],/>,其中Mn表示第n个风电场t-1到t-m时刻的特征构成的矩阵。 =[M 1 ,M 2 ,...,M n ],/> , where Mn represents the matrix composed of the characteristics of the nth wind farm from time t -1 to time t- m.
在本实施例中,构建多维度注意力融合机制的具体步骤如下:In this embodiment, the specific steps of constructing a multi-dimensional attention fusion mechanism are as follows:
将时间注意力模块和特征注意力模块串联,输入为H×W×C的矩阵,经过两个注意力子模块处理后得到的特征图进行元素加法操作,使两个特征融合在一起,经过ReLU激活函数处理输出结果,作为通道注意力模块和空间注意力模块的输入,采用串联的结构将这两个模块连接在一起;在这两个注意力模块中,同时使用平均池化和最大池化操作从不同视角获取不同特征信息。The temporal attention module and the feature attention module are connected in series, and the input is a H×W×C matrix. The feature maps obtained after processing by the two attention sub-modules are subjected to element-wise addition operation to fuse the two features together. The output result is processed by the ReLU activation function and used as the input of the channel attention module and the spatial attention module. The two modules are connected together using a series structure. In these two attention modules, average pooling and maximum pooling operations are used simultaneously to obtain different feature information from different perspectives.
所述时间注意力模块,包括卷积层、FC层、softmax层、sigmoid激活函数和全局平均池化层;在时间注意力模块中,将全局空间平均池化 GAP 应用于特征矩阵,以确保时间注意力模块具有低计算成本;然后在整个时间域上使用多个具有非线性的1D卷积来生成位置敏感的重要性图,以增强逐帧特征;再经过FC层,基于每个通道中的全局时间信息生成通道自适应内核,经过softmax层获得时间注意力模块权重系数Mt;最后,用权重系数和特征矩阵相乘即可得到缩放后的新特征矩阵;The temporal attention module includes a convolution layer, an FC layer, a softmax layer, a sigmoid activation function and a global average pooling layer; in the temporal attention module, the global spatial average pooling GAP is applied to the feature matrix to ensure that the temporal attention module has a low computational cost; then multiple 1D convolutions with nonlinearity are used on the entire time domain to generate a position-sensitive importance map to enhance the frame-by-frame features; then, after the FC layer, a channel-adaptive kernel is generated based on the global temporal information in each channel, and the temporal attention module weight coefficient Mt is obtained after the softmax layer; finally, the weight coefficient and the feature matrix are used to generate the temporal attention module weight coefficient Mt. Multiplying them will give you the scaled new feature matrix;
式中,GAP为全局空间平均池化,Conv1D为一维卷积,X为输入样本,为sigmoid激活函数,FC为全连接层,Mt为时间注意力模块权重系数,/>为新特征矩阵;δ表示注意力权重,/>为向量积。In the formula, GAP is the global spatial average pooling, Conv1D is the one-dimensional convolution, X is the input sample, is the sigmoid activation function, FC is the fully connected layer, Mt is the weight coefficient of the temporal attention module, /> is the new feature matrix; δ represents the attention weight, /> is the vector product.
所述特征注意力模块,包括卷积层、Relu激活函数、sigmoid激活函数和池化层;在特征注意力模块,首先输入特征经过池化层,再经过两个卷积层,激活函数为Relu,再将得到的特征经过一个Sigmoid激活函数反馈特征在不同环境下的自适应权系数,得到权重系数;最后,用权重系数和原来的特征矩阵/>相乘即可得到缩放后的新特征矩阵;The feature attention module includes a convolution layer, a Relu activation function, a sigmoid activation function and a pooling layer; in the feature attention module, the input feature is first passed through the pooling layer, and then through two convolution layers, the activation function is Relu, and then the obtained feature is fed back through a Sigmoid activation function to obtain the adaptive weight coefficient of the feature in different environments, and the weight coefficient is obtained. ; Finally, use the weight coefficient and the original feature matrix/> Multiplying them will give you the scaled new feature matrix;
式中,Conv为卷积、为Relu激活函数、/>为新特征矩阵。In the formula, Conv is convolution, is the Relu activation function, /> is the new feature matrix.
所述空间注意力模块,包括卷积层、最大池化层、平均池化层、sigmoid激活函数;在空间注意力模块,首先分别进行一个通道维度的平均池化和最大池化得到两个 H×W×1的通道并拼接在一起;再经过一个C×C的卷积层,激活函数为 Sigmoid,得到权重系数 Ms;最后,用权重系数和特征矩阵相乘即可得到缩放后的新特征矩阵;The spatial attention module includes a convolution layer, a maximum pooling layer, an average pooling layer, and a sigmoid activation function. In the spatial attention module, firstly, average pooling and maximum pooling of a channel dimension are performed to obtain two H×W×1 channels and spliced together; then, a C×C convolution layer is passed, and the activation function is Sigmoid to obtain a weight coefficient Ms; finally, the weight coefficient and the feature matrix are used to obtain the weight coefficient Ms. Multiplying them will give you the scaled new feature matrix;
式中,为平均池化,/>为最大池化、/>为新特征矩阵。In the formula, is average pooling,/> For maximum pooling, is the new feature matrix.
所述通道注意力模块,包括卷积层、最大池化层、平均池化层、sigmoid激活函数;在通道注意力模块,首先分别进行空间上的全局平均池化和最大池化得到两个1×1×C 的通道,再分别送入一个两层的共享神经网络,第一层神经元个数为 C/r,激活函数为 Relu,第二层神经元个数为 C;再将得到的两个特征相加后经过一个 Sigmoid 激活函数得到权重系数Mc;最后,用权重系数和原来的特征矩阵相乘即可得到缩放后的新特征矩阵;The channel attention module includes a convolution layer, a maximum pooling layer, an average pooling layer, and a sigmoid activation function. In the channel attention module, firstly, global average pooling and maximum pooling are performed in space to obtain two 1×1×C channels, and then they are respectively sent to a two-layer shared neural network, the number of neurons in the first layer is C/r, the activation function is Relu, and the number of neurons in the second layer is C; then the two features are added and then passed through a Sigmoid activation function to obtain a weight coefficient Mc; finally, the weight coefficient and the original feature matrix are used to obtain the weight coefficient Mc. Multiplying them will give you the scaled new feature matrix;
式中,MLP为多层感知机、为新特征矩阵。In the formula, MLP is a multi-layer perceptron, is the new feature matrix.
在本实施例中,将特征矩阵,/>,/>输入到预测模型,通过预测模型中的多维度注意力机制考虑特征内部与外部关系,从不同维度开展多重注意力深度融合机制的海上风电特征增强,挖掘时间、空间、特征上的深层耦合关系,自适应给予不同特征相应的权重;基于时间注意力/>,特征注意力/>,空间注意力/>,通道注意力/>,深度开展特征增强;In this embodiment, the feature matrix ,/> ,/> Input into the prediction model, consider the internal and external relationship of the features through the multi-dimensional attention mechanism in the prediction model, carry out offshore wind power feature enhancement from different dimensions with multiple attention deep fusion mechanism, explore the deep coupling relationship in time, space and features, and adaptively give corresponding weights to different features; based on time attention/> , Feature Attention/> , spatial attention/> , channel attention/> , carry out feature enhancement in depth;
式中,为注意力所计算得到的权值矩阵,/>为对应注意力的神经网络,/>为所计算维度对应的特征值;In the formula, The weight matrix calculated for attention,/> is the neural network corresponding to attention,/> is the eigenvalue corresponding to the calculated dimension;
将获得的权重,分别与对应海上风电场的特征相乘,即得到赋权后的特征矩阵,/>,/>;The obtained weights are multiplied by the characteristics of the corresponding offshore wind farms, and the weighted feature matrix is obtained: ,/> ,/> ;
。 .
在本实施例中,对近岸、浅海、深海三个特征矩阵根据地理位置对海上风机出力的影响程度不同,进一步挖掘不同区域的隐式相关性,使用图注意力自适应赋予不同的权重,最后得到新的特征矩阵;具体步骤如下:In this embodiment, the three feature matrices of nearshore, shallow sea and deep sea are further mined according to the different degrees of influence of geographical location on the output of offshore wind turbines, and different weights are adaptively assigned using graph attention. Finally, a new feature matrix is obtained. ;Specific steps are as follows:
S61. 定义权重矩阵W,将特征矩阵转换成邻接节点:,/>为第j个输入样本(h=h1,…hn);S61. Define the weight matrix W and convert the feature matrix into adjacent nodes: ,/> is the jth input sample (h=h1,…hn);
S62. 将相邻节点i和j拼接并映射成标量,为注意力计算函数:/>,式中,/>为对某节点进行计算得到的原始注意力贡献度,用于进行下一步的归一化;S62. Concatenate adjacent nodes i and j and map them into scalars, Calculate the attention function: /> , where / > The original attention contribution calculated for a node is used for normalization in the next step;
S63. 将邻接节点矩阵经过leakyRelu层,再经过softmax层,计算节点i的每一个邻居节点j对i的贡献度并对各个邻接节点j的贡献度进行归一化;S63. Pass the adjacent node matrix through the leakyRelu layer and then the softmax layer, calculate the contribution of each neighbor node j of node i to i and normalize the contribution of each neighbor node j ;
S64. 在计算完i节点的每一个相邻节点的贡献度之后,根据权重,对i节点得所有相邻节点进行特征求和更新;作为i节点的最终输出,得到;S64. After calculating the contribution of each neighboring node of node i , the feature sum of all neighboring nodes of node i is updated according to the weight; as the final output of node i , ;
令输出神经元个数为3,分别对应近岸,浅海和深海三个区域的权重,最后得到新的特征矩阵;Let the number of output neurons be 3, corresponding to the weights of the three regions of nearshore, shallow sea and deep sea, and finally get the new feature matrix ;
其中,;in, ;
。 .
在本实施例中,双向门控循环单元网络的构建如下:以特征矩阵为输入,搭建多层级联双向门控循环单元网络,由前向GRU和后向GRU组成,激活函数为tanh;In this embodiment, the bidirectional gated recurrent unit network is constructed as follows: As input, a multi-layer cascade bidirectional gated recurrent unit network is built, which consists of a forward GRU and a backward GRU, and the activation function is tanh;
式中,、/>、/>、/>、/>、/>为权重参数矩阵,/>、/>、/>为偏置参数矩阵,/>为矩阵乘法,/>为Sigmoid函数,/>为重置门,/>为更新门,/>为当前时刻隐含层的候选状态,/>为当前隐含状态,/>为前一时刻的隐含状态,/>为当前时刻的输入状态,/>为反向传递计算/>和/>为前向GRU和后向GRU的隐藏状态,F为两个方向的输出合并方法。In the formula, 、/> 、/> 、/> 、/> 、/> is the weight parameter matrix, /> 、/> 、/> is the bias parameter matrix, /> is matrix multiplication, /> is the Sigmoid function, /> To reset the gate, /> To update the gate, /> is the candidate state of the hidden layer at the current moment, /> is the current implicit state, /> is the implicit state of the previous moment, /> is the input status at the current moment, /> Calculate for the reverse pass/> and/> is the hidden state of the forward GRU and the backward GRU, and F is the output merging method in both directions.
在本实施例中,时间尺度为n个,其中n为整数,且n2。分别采用15分钟,一小时,一天,三天四个时间尺度的数据预测未来四个时间尺度,从而实现超短期和短期预测。In this embodiment, the number of time scales is n, where n is an integer and n 2. Use data from four time scales, 15 minutes, one hour, one day, and three days, to predict the next four time scales, thereby achieving ultra-short-term and short-term predictions.
设当前的预测系统的时间尺度为i,输入为,/>为时间尺度i的前一时刻运行数据;预测系统的输出为/>,/>为当前时间尺度的预测数据;使用训练好的预测模型,从多个时间尺度进行预测,预测目标海上风电场的功率,获得对应海上风电场在不同时间尺度下的功率时间序列,分别完成海上风电超短期预测和短期预测,实现多时空尺度下的海上风电功率预测;Assume that the time scale of the current forecasting system is i and the input is ,/> is the running data of the previous moment of time scale i ; the output of the prediction system is/> ,/> The prediction data for the current time scale; use the trained prediction model to predict from multiple time scales, predict the power of the target offshore wind farm, obtain the power time series of the corresponding offshore wind farm at different time scales, complete the ultra-short-term prediction and short-term prediction of offshore wind power respectively, and realize the offshore wind power prediction at multiple time and space scales;
式中,为在第i个尺度上的预测输出负荷结果,/>为i-n-1到i-1时间尺度的输入矩阵。In the formula, is the predicted output load result at the i -th scale,/> is the input matrix for the time scale from i -n-1 to i -1.
为进一步验证本发明实施例1中海上风电功率区间预测方法的有效性,在本实施例中:To further verify the effectiveness of the offshore wind power interval prediction method in Example 1 of the present invention, in this embodiment:
在步骤S1中,获取某地区海上风电场的功率、风速、风向、温度、降水量、湿度、气压、积云量以及洋流数据;In step S1, the power, wind speed, wind direction, temperature, precipitation, humidity, air pressure, cumulus and ocean current data of an offshore wind farm in a certain area are obtained;
在步骤S6中,为确保输出的方差始终为正,输入的神经元数量为64,输出层的神经元数量为3;In step S6, to ensure that the variance of the output is always positive, the number of neurons in the input layer is 64 and the number of neurons in the output layer is 3;
以此将上述的数据代入实施例1中的海上风电功率区间预测方法进行预测,训练批次为64,训练次数为256。The above data is substituted into the offshore wind power interval prediction method in Example 1 for prediction, with 64 training batches and 256 training times.
最后,得到如图4所示的海上风电功率区间预测效果。从图4中的预测效果可以看到,本发明的海上风电功率区间预测方法能够有效的提升海上风电功率区间预测的精度。Finally, the offshore wind power interval prediction effect is obtained as shown in Figure 4. From the prediction effect in Figure 4, it can be seen that the offshore wind power interval prediction method of the present invention can effectively improve the accuracy of offshore wind power interval prediction.
实施例3Example 3
本实施例提供一种多时空尺度的海上风电特征筛选及增强的功率预测系统,如图5所示,包括:This embodiment provides a multi-temporal and spatial scale offshore wind power feature screening and enhanced power prediction system, as shown in FIG5 , including:
数据采集单元,用于获取目标及邻近海上风电场的多源数据集,包括目标海上风电场的功率、风速、风向、温度、降水量、湿度、气压、积云量以及洋流数据;A data acquisition unit, used to obtain multi-source data sets of the target and adjacent offshore wind farms, including power, wind speed, wind direction, temperature, precipitation, humidity, air pressure, cumulus cloud cover, and ocean current data of the target offshore wind farm;
预处理单元,用于对数据采集单元得到的特征序列进行预处理,得到特征向量,并将海上风电功率时间序列作为预测目标样本,将特征向量及海上风电功率时间序列均分别划分为训练集和验证集;A preprocessing unit is used to preprocess the feature sequence obtained by the data acquisition unit to obtain a feature vector, and use the offshore wind power time series as a prediction target sample, and divide the feature vector and the offshore wind power time series into a training set and a verification set respectively;
多空间尺度特征筛选单元,用于根据数据采集单元获取的洋流数据进行基序谱聚类,利用拉普拉斯特征映射展开最佳敏感因素筛选,对数据进行降维,并将特征数据分成近岸、浅海、深海三个区域,分别构成三个特征矩阵;The multi-spatial-scale feature screening unit is used to perform motif spectral clustering based on the ocean current data acquired by the data acquisition unit, use Laplace eigenmap to screen the best sensitive factors, reduce the dimension of the data, and divide the feature data into three areas: nearshore, shallow sea, and deep sea, forming three feature matrices respectively;
特征增强单元,通过预测模型中的多维度注意力机制考虑特征内部与外部关系,从不同维度开展多重注意力深度融合机制的海上风电特征增强,挖掘时间、空间、特征上的深层耦合关系,自适应给予不同特征相应的权重;基于时间注意力,特征注意力,空间注意力,通道注意力,深度开展特征增强,将注意力权重与输入特征映射相乘,得到赋予权重后的特征矩阵,并送入多时间尺度预测单元;The feature enhancement unit considers the internal and external relationships of features through the multi-dimensional attention mechanism in the prediction model, and performs offshore wind power feature enhancement with a multi-attention deep fusion mechanism from different dimensions, digs into the deep coupling relationship in time, space, and features, and adaptively gives corresponding weights to different features; based on time attention, feature attention, space attention, and channel attention, it deeply performs feature enhancement, multiplies the attention weight with the input feature map, obtains the weighted feature matrix, and sends it to the multi-time scale prediction unit;
多时间尺度预测单元,用于将赋予权重后的特征矩阵输入到双向门控循环单元网络,使用训练好的预测模型,从多个时间尺度进行预测,预测目标海上风电场的功率,获得对应海上风电场在不同时间尺度下的功率时间序列,完成多时空尺度下的海上风电功率预测。The multi-time scale prediction unit is used to input the weighted feature matrix into the bidirectional gated recurrent unit network, use the trained prediction model to make predictions from multiple time scales, predict the power of the target offshore wind farm, obtain the power time series of the corresponding offshore wind farm at different time scales, and complete the offshore wind power prediction at multiple time and space scales.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, the description with reference to the terms "one embodiment", "some embodiments", "example", "specific example", or "some examples" etc. means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms do not necessarily refer to the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described may be combined in any one or more embodiments or examples in a suitable manner. In addition, those skilled in the art may combine and combine the different embodiments or examples described in this specification and the features of the different embodiments or examples, without contradiction.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Obviously, the above embodiments of the present invention are merely examples for clearly illustrating the present invention, and are not intended to limit the embodiments of the present invention. For those skilled in the art, other different forms of changes or modifications can be made based on the above description. It is not necessary and impossible to list all the embodiments here. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410303869.7A CN117893362B (en) | 2024-03-18 | 2024-03-18 | A multi-temporal and spatial scale offshore wind power feature screening and enhanced power prediction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410303869.7A CN117893362B (en) | 2024-03-18 | 2024-03-18 | A multi-temporal and spatial scale offshore wind power feature screening and enhanced power prediction method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117893362A true CN117893362A (en) | 2024-04-16 |
CN117893362B CN117893362B (en) | 2024-07-26 |
Family
ID=90641602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410303869.7A Active CN117893362B (en) | 2024-03-18 | 2024-03-18 | A multi-temporal and spatial scale offshore wind power feature screening and enhanced power prediction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117893362B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118568673A (en) * | 2024-07-31 | 2024-08-30 | 阿里云飞天(杭州)云计算技术有限公司 | Time series prediction system, method, device, storage medium and program product |
CN118607717A (en) * | 2024-06-12 | 2024-09-06 | 广州航海学院 | Offshore wind power prediction method and device |
CN119130204A (en) * | 2024-11-13 | 2024-12-13 | 国网湖南省电力有限公司电力科学研究院 | Method and device for predicting power of offshore wind farm by fusing space-time information |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112990553A (en) * | 2021-02-23 | 2021-06-18 | 中国电建集团华东勘测设计研究院有限公司 | Wind power ultra-short-term power prediction method using self-attention mechanism and bilinear fusion |
CN113689030A (en) * | 2021-08-03 | 2021-11-23 | 广东工业大学 | Short-term wind power prediction method based on bidirectional attention and secondary optimization |
CN114429078A (en) * | 2021-12-22 | 2022-05-03 | 广东工业大学 | A short-term wind power prediction method and system |
US20220197233A1 (en) * | 2020-12-18 | 2022-06-23 | Wuhan University | Wind power prediction method and system for optimizing deep transformer network |
CN115293415A (en) * | 2022-07-28 | 2022-11-04 | 三峡大学 | Multi-wind-farm short-term power prediction method considering time evolution and space correlation |
CN116128122A (en) * | 2023-01-03 | 2023-05-16 | 北京交通大学 | Urban rail transit short-time passenger flow prediction method considering burst factors |
CN116316591A (en) * | 2023-03-17 | 2023-06-23 | 山东科技大学 | Short-term photovoltaic power prediction method and system based on hybrid bidirectional gating loop |
CN116702831A (en) * | 2023-06-05 | 2023-09-05 | 广西大学 | Hybrid short-term wind power prediction method considering massive loss of data |
CN116826727A (en) * | 2023-06-28 | 2023-09-29 | 河海大学 | Ultra-short-term wind power power prediction method and prediction system based on time series representation and multi-level attention |
CN116894504A (en) * | 2023-02-16 | 2023-10-17 | 国网河南省电力公司濮阳供电公司 | A method for establishing a wind power cluster power ultra-short-term prediction model |
CN117114192A (en) * | 2023-08-29 | 2023-11-24 | 淮阴工学院 | Offshore wind power prediction method and device based on multi-scale space-time diagram transformation network |
-
2024
- 2024-03-18 CN CN202410303869.7A patent/CN117893362B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220197233A1 (en) * | 2020-12-18 | 2022-06-23 | Wuhan University | Wind power prediction method and system for optimizing deep transformer network |
CN112990553A (en) * | 2021-02-23 | 2021-06-18 | 中国电建集团华东勘测设计研究院有限公司 | Wind power ultra-short-term power prediction method using self-attention mechanism and bilinear fusion |
CN113689030A (en) * | 2021-08-03 | 2021-11-23 | 广东工业大学 | Short-term wind power prediction method based on bidirectional attention and secondary optimization |
CN114429078A (en) * | 2021-12-22 | 2022-05-03 | 广东工业大学 | A short-term wind power prediction method and system |
CN115293415A (en) * | 2022-07-28 | 2022-11-04 | 三峡大学 | Multi-wind-farm short-term power prediction method considering time evolution and space correlation |
CN116128122A (en) * | 2023-01-03 | 2023-05-16 | 北京交通大学 | Urban rail transit short-time passenger flow prediction method considering burst factors |
CN116894504A (en) * | 2023-02-16 | 2023-10-17 | 国网河南省电力公司濮阳供电公司 | A method for establishing a wind power cluster power ultra-short-term prediction model |
CN116316591A (en) * | 2023-03-17 | 2023-06-23 | 山东科技大学 | Short-term photovoltaic power prediction method and system based on hybrid bidirectional gating loop |
CN116702831A (en) * | 2023-06-05 | 2023-09-05 | 广西大学 | Hybrid short-term wind power prediction method considering massive loss of data |
CN116826727A (en) * | 2023-06-28 | 2023-09-29 | 河海大学 | Ultra-short-term wind power power prediction method and prediction system based on time series representation and multi-level attention |
CN117114192A (en) * | 2023-08-29 | 2023-11-24 | 淮阴工学院 | Offshore wind power prediction method and device based on multi-scale space-time diagram transformation network |
Non-Patent Citations (2)
Title |
---|
李豪 等: "基于时空相关性的短期光伏出力预测混合模型", 《电力系统及其自动化学报》, 12 July 2023 (2023-07-12), pages 1 - 12 * |
胡健鹏 等: "面向多时间步风功率预测的深度时空网络模型", 《计算机应用》, 12 March 2024 (2024-03-12), pages 1 - 13 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118607717A (en) * | 2024-06-12 | 2024-09-06 | 广州航海学院 | Offshore wind power prediction method and device |
CN118568673A (en) * | 2024-07-31 | 2024-08-30 | 阿里云飞天(杭州)云计算技术有限公司 | Time series prediction system, method, device, storage medium and program product |
CN119130204A (en) * | 2024-11-13 | 2024-12-13 | 国网湖南省电力有限公司电力科学研究院 | Method and device for predicting power of offshore wind farm by fusing space-time information |
Also Published As
Publication number | Publication date |
---|---|
CN117893362B (en) | 2024-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alemany et al. | Predicting hurricane trajectories using a recurrent neural network | |
CN117893362B (en) | A multi-temporal and spatial scale offshore wind power feature screening and enhanced power prediction method | |
Li et al. | Photovoltaic power forecasting with a hybrid deep learning approach | |
Ghaderi et al. | Deep forecast: Deep learning-based spatio-temporal forecasting | |
Lipu et al. | Artificial intelligence based hybrid forecasting approaches for wind power generation: Progress, challenges and prospects | |
US10041475B1 (en) | Reducing curtailment of wind power generation | |
Cheng et al. | Multi-meteorological-factor-based graph modeling for photovoltaic power forecasting | |
Rao et al. | Machine learning for solar array monitoring, optimization, and control | |
US10598157B2 (en) | Reducing curtailment of wind power generation | |
Eom et al. | Feature-selective ensemble learning-based long-term regional PV generation forecasting | |
Mei et al. | Day-ahead nonparametric probabilistic forecasting of photovoltaic power generation based on the LSTM-QRA ensemble model | |
Zhang et al. | Deep-learning-based probabilistic estimation of solar PV soiling loss | |
CN115393540A (en) | Intelligent fusion method and system of three-dimensional marine environment field based on deep learning | |
Mu et al. | ENSO forecasting over multiple time horizons using ConvLSTM network and rolling mechanism | |
CN116720156A (en) | Meteorological element forecasting method based on graph neural network multi-modal meteorological data fusion | |
CN117556312A (en) | A method and system for predicting power grid transmission line faults under extreme weather | |
Naeini et al. | A novel hybrid machine learning model for rapid assessment of wave and storm surge responses over an extended coastal region | |
Liu et al. | Day-ahead forecast of photovoltaic power based on a novel stacking ensemble method | |
CN117934208B (en) | A multi-source data offshore wind power prediction method based on multi-channel deep network | |
Khan et al. | Forecasting renewable energy for environmental resilience through computational intelligence | |
CN117237781B (en) | Attention mechanism-based double-element fusion space-time prediction method | |
Shahid et al. | Short term solar energy prediction by machine learning algorithms | |
Kutucu et al. | An application of artificial neural networks to assessment of the wind energy potential in Libya | |
Xie et al. | Deep learning-based GoogLeNet-embedded no-pooling dimension fully-connected network for short-term wind power prediction | |
Zameer et al. | Intelligent forecast models for daily solar energy prediction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |