CN117892008A - A tool item recommendation method, device, electronic device, storage medium and computer program product - Google Patents

A tool item recommendation method, device, electronic device, storage medium and computer program product Download PDF

Info

Publication number
CN117892008A
CN117892008A CN202410232968.0A CN202410232968A CN117892008A CN 117892008 A CN117892008 A CN 117892008A CN 202410232968 A CN202410232968 A CN 202410232968A CN 117892008 A CN117892008 A CN 117892008A
Authority
CN
China
Prior art keywords
tool
user
recommendation
file
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410232968.0A
Other languages
Chinese (zh)
Inventor
李祥锐
陈志波
李晓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Baidu Netcom Science and Technology Co Ltd
Original Assignee
Beijing Baidu Netcom Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Baidu Netcom Science and Technology Co Ltd filed Critical Beijing Baidu Netcom Science and Technology Co Ltd
Priority to CN202410232968.0A priority Critical patent/CN117892008A/en
Publication of CN117892008A publication Critical patent/CN117892008A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/40Transformation of program code
    • G06F8/41Compilation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Computational Linguistics (AREA)
  • Human Computer Interaction (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

The disclosure provides a tool item recommending method, a device, electronic equipment, a storage medium and a computer program product, and relates to the technical field of artificial intelligence, in particular to the technical field of machine learning and intelligent recommending. The method comprises the following steps: responding to the operation of triggering a tool item display interface entering a target application by a user, and acquiring user portraits, file browsing behaviors of the user and a history record of the use of the tool item by the user; predicting the recommendation probability of each tool item provided by the target application locally according to the user portrait, the file browsing behavior of the user and the history record of the user using the tool item; and selecting target tool items meeting preset conditions according to the recommendation probability of each tool item, and displaying the target tool items in the tool item display interface. In the scheme, the recommendation of the tool item is realized locally in the application program, the intervention of a back-end server is not needed, the network bandwidth cost is reduced to a certain extent, and the recommendation calculation is performed locally, so that the network transmission time is not needed, the time delay caused by network blockage is avoided, and the efficiency of recommending the tool item is further ensured.

Description

一种工具项推荐方法、装置、电子设备、存储介质和计算机程 序产品A tool item recommendation method, device, electronic device, storage medium and computer program product

技术领域Technical Field

本公开涉及人工智能技术领域,尤其涉及机器学习、智能推荐技术领域,具体涉及一种工具项推荐方法、装置、电子设备、存储介质和计算机程序产品。The present disclosure relates to the field of artificial intelligence technology, in particular to the field of machine learning and intelligent recommendation technology, and specifically to a tool item recommendation method, device, electronic device, storage medium and computer program product.

背景技术Background technique

移动应用程序(Mobile Application,简称App)是指为移动设备(如智能手机、平板电脑等)设计的应用程序。这些应用程序可以在相应的操作系统上运行,例如在安卓系统中运行。Mobile applications (Mobile Application, App for short) refer to applications designed for mobile devices (such as smartphones, tablets, etc.). These applications can run on corresponding operating systems, such as Android systems.

目前,为了提升用户需求与体验、增强用户粘性、收集和分析数据、获得竞争优势、构建生态系统以及实现商业化目标,移动应用程序通常会提供多种工具和功能。Currently, mobile applications typically provide a variety of tools and functions to improve user needs and experience, enhance user stickiness, collect and analyze data, gain competitive advantages, build ecosystems, and achieve commercialization goals.

发明内容Summary of the invention

本公开提供了一种工具项推荐方法、装置、电子设备、存储介质和计算机程序产品。The present disclosure provides a tool item recommendation method, device, electronic device, storage medium and computer program product.

根据本公开的一方面,提供了一种工具项推荐方法,包括:According to one aspect of the present disclosure, a tool item recommendation method is provided, comprising:

响应于用户触发进入目标应用的工具项展示界面的操作,获取用户画像、用户的文件浏览行为和用户使用工具项的历史记录;In response to a user triggering an operation to enter a tool item display interface of a target application, obtaining a user portrait, a user's file browsing behavior, and a user's tool item usage history;

在所述目标应用本地根据所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录,预测所述目标应用提供的每个工具项的推荐概率;Predicting the recommendation probability of each tool item provided by the target application locally based on the user portrait, the user's file browsing behavior, and the user's history of using the tool item;

根据每个工具项的推荐概率,选出满足预设条件的目标工具项,并在所述工具项展示界面中进行显示。According to the recommendation probability of each tool item, a target tool item that meets the preset conditions is selected and displayed in the tool item display interface.

根据本公开的另一方面,提供了一种工具项推荐装置,包括:According to another aspect of the present disclosure, a tool item recommendation device is provided, comprising:

数据获取模块,用于响应于用户触发进入目标应用的工具项展示界面的操作,获取用户画像、用户的文件浏览行为和用户使用工具项的历史记录;A data acquisition module, for acquiring a user portrait, a user's file browsing behavior, and a user's history of using tool items in response to a user triggering an operation to enter a tool item display interface of a target application;

预测模块,用于在所述目标应用本地根据所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录,预测所述目标应用提供的每个工具项的推荐概率;A prediction module, configured to predict the recommendation probability of each tool item provided by the target application locally based on the user portrait, the user's file browsing behavior and the user's history of using the tool item;

推荐模块,用于根据每个工具项的推荐概率,选出满足预设条件的目标工具项,并在所述工具项展示界面中进行显示。The recommendation module is used to select target tool items that meet preset conditions according to the recommendation probability of each tool item, and display them in the tool item display interface.

根据本公开的另一方面,提供了一种电子设备,包括:According to another aspect of the present disclosure, there is provided an electronic device, comprising:

至少一个处理器;以及at least one processor; and

与所述至少一个处理器通信连接的存储器;其中,a memory communicatively connected to the at least one processor; wherein,

所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本公开任意实施例所述的工具项推荐方法。The memory stores instructions that can be executed by the at least one processor, and the instructions are executed by the at least one processor to enable the at least one processor to execute the tool item recommendation method described in any embodiment of the present disclosure.

根据本公开的另一方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,所述计算机指令用于使计算机执行本公开任意实施例所述的工具项推荐方法。According to another aspect of the present disclosure, a non-transitory computer-readable storage medium storing computer instructions is provided, wherein the computer instructions are used to enable a computer to execute the tool item recommendation method described in any embodiment of the present disclosure.

根据本公开的另一方面,提供了一种计算机程序产品,包括计算机程序,计算机程序在被处理器执行时实现本公开任意实施例的工具项推荐方法。According to another aspect of the present disclosure, a computer program product is provided, including a computer program, and when the computer program is executed by a processor, the tool item recommendation method of any embodiment of the present disclosure is implemented.

根据本公开的技术,工具项的推荐是在应用程序本地实现的,无需后端服务器介入,一定程度上减少了网络带宽成本,而且由于是在本地进行推荐计算,无需借用网络,使得无需网络传输的时间,避免网络堵塞造成的延时,进而保证了推荐工具项的效率。而且推荐工具项的过程中,同时参考用户画像外,用户使用工具项的历史记录和用户的文件浏览行为,可以保证推荐的工具项被用户点击使用的可能性更高。According to the technology disclosed in the present invention, the recommendation of tool items is implemented locally in the application without the intervention of the backend server, which reduces the network bandwidth cost to a certain extent. Moreover, since the recommendation calculation is performed locally, there is no need to borrow the network, so there is no need for network transmission time, which avoids the delay caused by network congestion, thereby ensuring the efficiency of recommending tool items. In addition, in the process of recommending tool items, in addition to referring to the user portrait, the user's history of using tool items and the user's file browsing behavior can be referenced to ensure that the recommended tool items are more likely to be clicked and used by the user.

应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。It should be understood that the content described in this section is not intended to identify the key or important features of the embodiments of the present disclosure, nor is it intended to limit the scope of the present disclosure. Other features of the present disclosure will become easily understood through the following description.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

附图用于更好地理解本方案,不构成对本公开的限定。其中:The accompanying drawings are used to better understand the present solution and do not constitute a limitation of the present disclosure.

图1是根据本公开实施例的一种工具项推荐方法的流程示意图;FIG1 is a schematic diagram of a flow chart of a tool item recommendation method according to an embodiment of the present disclosure;

图2是根据本公开实施例的另一种工具项推荐方法的流程示意图;FIG2 is a flow chart of another tool item recommendation method according to an embodiment of the present disclosure;

图3是根据本公开实施例的另一种工具项推荐方法的流程示意图FIG. 3 is a flow chart of another tool item recommendation method according to an embodiment of the present disclosure.

图4是根据本公开实施例的一种工具项推荐装置的结构示意图;FIG4 is a schematic diagram of the structure of a tool item recommendation device according to an embodiment of the present disclosure;

图5是用来实现本公开实施例的工具项推荐方法的电子设备的框图。FIG. 5 is a block diagram of an electronic device for implementing the tool item recommendation method according to an embodiment of the present disclosure.

具体实施方式Detailed ways

以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。The following is a description of exemplary embodiments of the present disclosure in conjunction with the accompanying drawings, including various details of the embodiments of the present disclosure to facilitate understanding, which should be considered as merely exemplary. Therefore, it should be recognized by those of ordinary skill in the art that various changes and modifications may be made to the embodiments described herein without departing from the scope and spirit of the present disclosure. Similarly, for the sake of clarity and conciseness, descriptions of well-known functions and structures are omitted in the following description.

在展示移动应用程序提供的工具项时,工具项的展示顺序是移动端根据产品经理提供的简单策略进行推荐,或者由后端根据预设策略进行推荐,进而通过网络将确定的推荐结果发送给移动端进行展示。这些策略可简单可复杂,简单的策略可以是直接写成固定的排序或者根据名字、大数据使用频率进行推荐;复杂的推荐策略可以是通过协同过滤方法进行推荐,其中,协同过滤方法指的是将具有相同特征的用户的工具项使用记录推给另一方作为推荐工具。这种复杂的推荐需要通过后端服务器对其他用户的使用记录进行计算,需要借助网络进行通信,然而这种方式可能存在网络延时导致推荐不及时的问题。基于此,本公开提出一种在应用程序本地推荐工具项的方法,该方法的流程可以参见如下实施例。When displaying the tool items provided by the mobile application, the display order of the tool items is recommended by the mobile terminal according to a simple strategy provided by the product manager, or recommended by the backend according to a preset strategy, and then the determined recommendation results are sent to the mobile terminal through the network for display. These strategies can be simple or complex. Simple strategies can be directly written as a fixed order or recommended based on the name or frequency of use of big data; complex recommendation strategies can be recommended through collaborative filtering methods, where collaborative filtering methods refer to pushing tool item usage records of users with the same characteristics to the other party as a recommendation tool. This complex recommendation requires the backend server to calculate the usage records of other users and needs to communicate through the network. However, this method may have the problem of untimely recommendations due to network delays. Based on this, the present disclosure proposes a method for recommending tool items locally in an application. The process of this method can be seen in the following embodiment.

图1是根据本公开实施例的一种工具项推荐方法的示意图,本实施例可适用于在应用程序本地进行工具项推荐的场景。该方法可由一种工具项推荐装置来执行,该装置采用软件和/或硬件的方式实现,并配置在电子设备中。Figure 1 is a schematic diagram of a tool item recommendation method according to an embodiment of the present disclosure, which can be applied to a scenario where tool items are recommended locally in an application. The method can be performed by a tool item recommendation device, which is implemented in software and/or hardware and configured in an electronic device.

如图1所示,该方法具体包括如下:As shown in FIG1 , the method specifically includes the following steps:

S101、响应于用户触发进入目标应用的工具项展示界面的操作,获取用户画像、用户的文件浏览行为和用户使用工具项的历史记录。S101. In response to a user triggering an operation of entering a tool item display interface of a target application, a user portrait, a user's file browsing behavior, and a user's tool item usage history are obtained.

本实施例中,目标应用指的是安装在智能手机、平板电脑等移动设备上的应用程序,示例性的,目标应用可以是网盘应用,也可以是浏览器应用,在此不做具体限定。目标应用提供的工具项指的是目标应用内的功能,可以是目标应用内的功能组件。以目标应用是网盘应用为例,目标应用提供的工具项示例性的可以包括PDF去水印、转为PDF、图片去水印、图片压缩等。在目标应用为网盘应用时,通过本公开方案可以为网盘用户准确及时的推荐其需要的工具项。In this embodiment, the target application refers to an application installed on a mobile device such as a smart phone or a tablet computer. Exemplarily, the target application can be a network disk application or a browser application, which is not specifically limited here. The tool items provided by the target application refer to the functions within the target application, and can be functional components within the target application. Taking the target application as an example of a network disk application, the tool items provided by the target application can exemplarily include PDF watermark removal, conversion to PDF, image watermark removal, image compression, etc. When the target application is a network disk application, the disclosed solution can accurately and timely recommend the tool items needed by network disk users.

需要说明的是,目标应用提供的工具项与小程序不同。以目标应用是网盘应用为例进行说明,区别在于:网盘应用的工具项是网盘应用的一部分,属于网盘应用的内部功能,主要用于帮助用户管理和维护其在网盘中的文件,除此之外,也可以用于操控移动端本地文件。而小程序是运行在微信、支付宝等特定平台上的轻量级应用。因此目标应用提供的工具项并不等同于小程序,由此使得在本地推荐小程序的方法和在本地推荐工具项的方法不同。It should be noted that the tool items provided by the target application are different from those of the mini-program. Taking the target application as an example, the tool items of the network disk application are part of the network disk application and belong to the internal functions of the network disk application. They are mainly used to help users manage and maintain their files in the network disk. In addition, they can also be used to manipulate local files on the mobile terminal. Mini-programs are lightweight applications that run on specific platforms such as WeChat and Alipay. Therefore, the tool items provided by the target application are not the same as mini-programs, which makes the method of recommending mini-programs locally different from the method of recommending tool items locally.

为例便于管理,目标应用中设置有工具项展示界面,用于展示推荐给用户的工具项。在用户通过触控操作进入目标应用的工具项展示界面时,触发工具项的推荐。而要在目标应用本地实现工具项推荐,需要获取用户画像、用户的文件浏览行为和用户使用工具项的历史记录;而用户画像、用户的文件浏览行为和用户使用工具项的历史记录通常可以作为用户数据保存在目标应用本地,因此可以在目标应用本地获取这三类数据。其中,所述用户画像包括用户身份(例如学生、上班族)、用户偏好(例如学习、娱乐)和用户权益(例如用户购买的会员权益)中的至少一种;用户的文件浏览行为包括当前时间(例如用户触发工具项推荐的时间)、用户在所述当前时间之前的预设时长内所浏览的文件类型,以及根据所述文件类型对应的浏览频次确定的目标文件类型;其中,目标文件类型指的是根据浏览频次确定的用户最常浏览的文件类型;用户使用工具项的历史记录包括用户在当前时间之前的预设时长内所使用过的工具项、所述工具项的类型、根据所述工具项的使用频次确定的常用工具、根据每种类型对应的使用频次确定的常用工具项类型;也即用户使用工具项的历史记录主要包括用户最近使用过的工具项,最近使用的工具项所属的类型、用户最常使用的工具项,以及用户最常使用的工具项类型。可以理解的已,一个工具项类型可以对应对个工具项,示例性的,工具项类型的PDF类型,对应的工具项可以是PDF阅读、PDF去水印、转为PDF等。For example, for easy management, a tool item display interface is set up in the target application to display tool items recommended to users. When the user enters the tool item display interface of the target application through touch operation, the recommendation of tool items is triggered. In order to implement tool item recommendations locally in the target application, it is necessary to obtain user portraits, user file browsing behaviors, and user tool item usage history records; and user portraits, user file browsing behaviors, and user tool item usage history records can usually be saved as user data locally in the target application, so these three types of data can be obtained locally in the target application. Wherein, the user portrait includes at least one of the user identity (e.g., student, office worker), user preference (e.g., study, entertainment) and user rights (e.g., membership rights purchased by the user); the user's file browsing behavior includes the current time (e.g., the time when the user triggers the tool item recommendation), the file type browsed by the user within the preset time before the current time, and the target file type determined according to the browsing frequency corresponding to the file type; wherein the target file type refers to the file type most frequently browsed by the user determined according to the browsing frequency; the user's history of using tool items includes the tool items used by the user within the preset time before the current time, the type of the tool item, the commonly used tools determined according to the use frequency of the tool item, and the commonly used tool item type determined according to the use frequency corresponding to each type; that is, the user's history of using tool items mainly includes the tool items used by the user recently, the type of the recently used tool item, the tool item used most frequently by the user, and the tool item type used most frequently by the user. It can be understood that a tool item type can correspond to a tool item. For example, the PDF type of the tool item type corresponds to a tool item such as PDF reading, PDF watermark removal, and conversion to PDF.

S102、在所述目标应用本地根据所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录,预测所述目标应用提供的每个工具项的推荐概率。S102: Predicting the recommendation probability of each tool item provided by the target application locally based on the user portrait, the user's file browsing behavior, and the user's history of using the tool items.

可选的,在目标应用本地,基于所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录,采用机器学习的方式或者数据统计的方式,预测目标应用提供的每个工具项的推荐概率;其中,推荐概率用于衡量工具项被推荐并显示在工具项展示界面中的可能性。Optionally, locally in the target application, based on the user portrait, the user's file browsing behavior and the user's historical records of using tool items, a machine learning method or a data statistical method is used to predict the recommendation probability of each tool item provided by the target application; wherein the recommendation probability is used to measure the possibility of a tool item being recommended and displayed in the tool item display interface.

可以理解的是,采用机器学习的方式预测工具项的推荐概率时,可以通过机器学习方法训练一个工具推荐模型并部署在目标应用本地,将用户画像、用户的文件浏览行为和用户使用工具项的历史记录作为模型输入,进而根据模型输出可以确定工具项的推荐概率。It is understandable that when using machine learning to predict the recommendation probability of a tool item, a tool recommendation model can be trained through machine learning methods and deployed locally in the target application, and the user portrait, the user's file browsing behavior and the user's history of using tool items can be used as model inputs. The recommendation probability of the tool item can then be determined based on the model output.

采用数据统计的方式预测工具项的推荐概率时,还可以直接对将用户画像、用户的文件浏览行为和用户使用工具项的历史记录进行数据分析,确定用户可能使用的工具项,并通过设置概率值确定被使用的可能性。When using data statistics to predict the recommendation probability of a tool item, you can also directly perform data analysis on the user portrait, the user's file browsing behavior, and the user's history of using the tool item to determine the tool items that the user may use, and determine the possibility of being used by setting a probability value.

需要说明的是,本公开方案之所以选择利用用户画像、用户的文件浏览行为和用户使用工具项的历史记录,预测目标应用提供的每个工具项的推荐概率,而不是利用单一的用户画像预测每个工具项的推荐概率,是考虑到用户画像在短时间内基本不会变化,如果只基于用户画像进行工具项推荐概率的预测,会存在推荐的工具项不及时、不准确的问题。而基于本公开的这三种数据进行预测,可以避免该问题。It should be noted that the reason why the disclosed solution chooses to use user portraits, user file browsing behaviors and user tool item usage history records to predict the recommendation probability of each tool item provided by the target application, rather than using a single user portrait to predict the recommendation probability of each tool item, is that the user portrait will basically not change in a short period of time. If the tool item recommendation probability is predicted based only on the user portrait, there will be problems such as untimely and inaccurate recommended tool items. This problem can be avoided by predicting based on the three types of data disclosed in the present disclosure.

S103、根据每个工具项的推荐概率,选出满足预设条件的目标工具项,并在所述工具项展示界面中进行显示。S103: According to the recommendation probability of each tool item, select target tool items that meet preset conditions, and display them in the tool item display interface.

在一种可选的实现方式中,可以根据每个工具项的推荐概率,对各工具项进行重新排序;例如按照推荐概率由大到小的顺序进行重排;进而基于重新排序结果,选出满足预设条件的目标工具项;其中,预设条件可以是推荐概率排在前N位,或者是推荐概率大于预设概率阈值;如此根据重新排序结果选择目标工具项时,可以将其中推荐概率大于预设概率阈值的作为目标工具项,或者将推荐概率排在前N位的作为目标工具项。如此可以选出用户最有可能使用的工具项并展示给用户,进而可以保证用户能够方便快速直达所需工具项。In an optional implementation, the tool items can be reordered according to the recommendation probability of each tool item; for example, they can be reordered in descending order of recommendation probability; and then based on the reordering results, target tool items that meet preset conditions can be selected; wherein the preset conditions can be that the recommendation probability is ranked in the top N, or that the recommendation probability is greater than a preset probability threshold; thus, when selecting target tool items based on the reordering results, the tool items with a recommendation probability greater than the preset probability threshold can be selected as target tool items, or the tool items with a recommendation probability ranked in the top N can be selected as target tool items. In this way, the tool items that users are most likely to use can be selected and displayed to users, thereby ensuring that users can easily and quickly reach the tool items they need.

本实施例中,将本地推荐的工具项在目标应用的工具项展示界面中显示后,还可以对用户后续真正使用的工具项、工具项所属的类型,浏览的文件进行记录,同时还可以确定用户是否使用了以前未用的工具项或工具项类型,或者浏览过以前没看过的文件或文件类型等,也即是确定用户的文件浏览行为和用户使用工具项的历史记录是否发生变更。需要说明的是,记录用户使用的工具项以及浏览的文件,是在用户授权的基础上进行的。在此基础上,如果用户退出工具项展示界面后,在较短的时间内又重新触发进入目标应用的工具项展示界面,则先确定用户的文件浏览行为和用户使用工具项的历史记录是否发生变更,如果没有发生变更,则将上一次确定的目标工具项推荐给用户,如果发生变更,则获取新的用户画像、用户的文件浏览行为和用户使用工具项的历史记录,并按照步骤S102-S103的步骤重新进行推荐。In this embodiment, after the locally recommended tool items are displayed in the tool item display interface of the target application, the tool items actually used by the user later, the types of tool items, and the files browsed can also be recorded. At the same time, it can also be determined whether the user has used tool items or tool item types that have not been used before, or has browsed files or file types that have not been seen before, that is, whether the user's file browsing behavior and the user's history of using tool items have changed. It should be noted that the recording of the tool items used by the user and the files browsed is based on the user's authorization. On this basis, if the user exits the tool item display interface and triggers to enter the tool item display interface of the target application again in a short period of time, it is first determined whether the user's file browsing behavior and the user's history of using tool items have changed. If no change occurs, the target tool item determined last time is recommended to the user. If a change occurs, a new user portrait, the user's file browsing behavior, and the user's history of using tool items are obtained, and the recommendation is re-performed according to the steps S102-S103.

本实施例中,工具项的推荐是在应用程序本地实现的,无需后端服务器介入,一定程度上减少了网络带宽成本,而且由于是在本地进行推荐计算,无需借用网络,使得无需网络传输的时间,避免网络堵塞造成的延时,进而保证了推荐工具项的效率。而且推荐工具项的过程中,同时参考用户画像外,用户使用工具项的历史记录和用户的文件浏览行为,可以保证推荐的工具项被用户点击使用的可能性更高。In this embodiment, the recommendation of tool items is implemented locally in the application, without the intervention of the backend server, which reduces the network bandwidth cost to a certain extent. In addition, since the recommendation calculation is performed locally, there is no need to borrow the network, so there is no need for network transmission time, avoiding delays caused by network congestion, thereby ensuring the efficiency of recommending tool items. In addition, in the process of recommending tool items, in addition to referring to the user portrait, the user's history of using tool items and the user's file browsing behavior can be referenced to ensure that the recommended tool items are more likely to be clicked and used by the user.

图2是根据本公开实施例的另一种工具项推荐方法的流程示意图。如图2所示,该工具项推荐方法具体包括如下步骤:FIG2 is a flow chart of another tool item recommendation method according to an embodiment of the present disclosure. As shown in FIG2 , the tool item recommendation method specifically includes the following steps:

S201、响应于用户触发进入目标应用的工具项展示界面的操作,获取用户画像、用户的文件浏览行为和用户使用工具项的历史记录。S201. In response to a user triggering an operation of entering a tool item display interface of a target application, a user portrait, a user's file browsing behavior, and a user's history of using tool items are obtained.

本实施例中,在目标应用本地根据所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录,预测所述目标应用提供的每个工具项的推荐概率的过程,可以参见步骤S202-S203。In this embodiment, the process of predicting the recommendation probability of each tool item provided by the target application locally based on the user portrait, the user's file browsing behavior and the user's history of using the tool items can be seen in steps S202-S203.

S202、在所述目标应用本地对所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录进行特征编码,得到对应的特征值。S202: Perform feature encoding on the user portrait, the user's file browsing behavior, and the user's tool item usage history in the target application to obtain corresponding feature values.

本实施例中,可以采用预设的编码算法(例如独热编码算法),对用户画像、用户的文件浏览行为和用户使用工具项的历史记录进行特征编码,得到对应的特征值。In this embodiment, a preset encoding algorithm (such as a one-hot encoding algorithm) may be used to perform feature encoding on the user portrait, the user's file browsing behavior, and the user's history of using tool items to obtain corresponding feature values.

S203、根据得到的特征值,结合预先部署在所述目标应用本地的工具推荐模型,预测所述目标应用提供的每个工具项的推荐概率。S203 : Predict the recommendation probability of each tool item provided by the target application based on the obtained feature value and in combination with a tool recommendation model pre-deployed locally on the target application.

本实施例中,预先训练并部署在目标应用本地的工具推荐模型可以为决策树模型。由于决策树模型是一种允许多特征输入的模型,因此可以按照预设的格式将步骤S202得到的不同数据的特征值输入到工具推荐模型中,进而根据工具推荐模型的输出,确定工具项的推荐概率。In this embodiment, the tool recommendation model pre-trained and deployed locally in the target application may be a decision tree model. Since the decision tree model is a model that allows multiple feature inputs, the feature values of different data obtained in step S202 may be input into the tool recommendation model in a preset format, and then the recommendation probability of the tool item may be determined based on the output of the tool recommendation model.

需要说明的是,之所以选择决策树模型作为工具推荐模型,是考虑到决策树模型相比其他的逻辑回归模型更准确,无需担心过拟合;另外,决策树模型相比支持向量机模型或者神经网络模型体积更小,推断更快,可以保证工具项推荐的效率。It should be noted that the decision tree model is chosen as the tool recommendation model because it is more accurate than other logistic regression models and there is no need to worry about overfitting. In addition, the decision tree model is smaller in size and faster in inference than the support vector machine model or the neural network model, which can ensure the efficiency of tool item recommendation.

S204、根据每个工具项的推荐概率,选出满足预设条件的目标工具项,并在所述工具项展示界面中进行显示。S204: According to the recommendation probability of each tool item, select target tool items that meet preset conditions, and display them in the tool item display interface.

本实施例中,利用机器学习的方式在本地进行工具项推荐,可以保证工具项推荐的效率。另外,选择决策树模型作为工具推荐模型,可以避免模型过拟合,且模型体积下,在本地部署占据的空间小。In this embodiment, the tool item recommendation is performed locally by machine learning, which can ensure the efficiency of tool item recommendation. In addition, the decision tree model is selected as the tool recommendation model to avoid model overfitting, and the model size is small, and the space occupied by local deployment is small.

图3是根据本公开实施例的另一种工具项推荐方法的流程示意图。如图3所示,该工具项推荐方法具体包括如下步骤:FIG3 is a flow chart of another tool item recommendation method according to an embodiment of the present disclosure. As shown in FIG3 , the tool item recommendation method specifically includes the following steps:

S301、利用预先获取训练样本,训练所述工具推荐模型。S301: Train the tool recommendation model using pre-acquired training samples.

其中,每个训练样本中包括用户使用的工具项,以及用户使用该工具项之前用户使用其他工具项的历史记录(可以包括用户常用工具项、常用工具项类型、最近使用的工具项、最近使用的工具项类型)、用户画像(可以包括用户身份、偏好等)和用户的文件浏览行为(可以包括用户常浏览的文件类型、最近使用的文件类型等)。在训练工程中,常用工具项、常用工具项类型、最近使用工具项、最近使用工具项类型,各自是一个列表,列表能含N个工具项,需要进行编码化,其他的均是单一值只需要映射成一个数据值。如此将编码映射后的数据作为模型的输入进行训练,根据模型输出的各工具项的推荐概率和样本中包括的用户使用的工具项进行比较,根据比较结果返回调整模型参数。如此通过不断训练,可以得到预测工具项推荐概率的工具推荐模型。Each training sample includes the tool items used by the user, as well as the user's history of using other tool items before using the tool item (including the user's frequently used tool items, frequently used tool item types, recently used tool items, and recently used tool item types), user portraits (including user identity, preferences, etc.), and user file browsing behaviors (including the file types frequently browsed by the user, the file types recently used, etc.). In the training project, frequently used tool items, frequently used tool item types, recently used tool items, and recently used tool item types are each a list, and the list can contain N tool items, which need to be encoded. The others are all single values and only need to be mapped to a data value. In this way, the encoded and mapped data is used as the input of the model for training, and the recommendation probability of each tool item output by the model is compared with the tool items used by the user included in the sample, and the model parameters are adjusted according to the comparison results. In this way, through continuous training, a tool recommendation model that predicts the recommendation probability of tool items can be obtained.

本实施例中,针对训练好的工具推荐模型,可以进行裁剪优化,以降低模型大小,避免在目标应用本地部署工具推荐模型时占据大量空间。In this embodiment, the trained tool recommendation model can be trimmed and optimized to reduce the model size and avoid occupying a large amount of space when the tool recommendation model is deployed locally in the target application.

S302、根据所述目标应用所在终端运行的系统类型,将训练好的工具推荐模型转换成目标格式的模型文件。S302: Convert the trained tool recommendation model into a model file in a target format according to the system type of the terminal where the target application is located.

其中,目标应用所在终端运行的系统类型可以是常见的IOS系统、安卓系统,也可以是其他能够运行在移动终端上的系统,在此不做具体限定。The system type running on the terminal where the target application is located may be a common IOS system, an Android system, or other systems that can run on mobile terminals, which is not specifically limited here.

本实施例中,为了便于说明,以终端运行的系统类型为IOS系统为例进行说明。针对IOS系统,可以利用格式转换工具coremltools将工具推荐模型转换成目标格式的模型文件,其中,目标格式可以为mlmodel格式。In this embodiment, for the sake of convenience, the system type of the terminal running is an IOS system. For the IOS system, the tool recommendation model can be converted into a model file in a target format using the format conversion tool coremltools, where the target format can be mlmodel format.

S303、对所述目标格式的模型文件进行编译,得到编译后的模型文件。S303: Compile the model file in the target format to obtain a compiled model file.

示例性的,在得到mlmodel格式的模型文件后,为了保证模型可以部署在目标应用中,可以对mlmodel格式的模型文件进行编译处理,得到编译后的模型文件(mlmodelc文件)。Exemplarily, after obtaining the model file in the mlmodel format, in order to ensure that the model can be deployed in the target application, the model file in the mlmodel format can be compiled to obtain a compiled model file (mlmodelc file).

S304、对编译后的模型文件进行压缩,得到所述工具推荐模型对应的模型文件压缩包,并对所述模型文件压缩包进行保存。S304: compress the compiled model file to obtain a model file compression package corresponding to the tool recommendation model, and save the model file compression package.

示例性的,可以采用压缩算法对mlmodelc文件进行压缩处理,得到模型文件压缩包,该模型文件压缩包示例性的可以为zip文件包,进而对模型文件压缩包进行保存。保存好的模型文件压缩包本质是一个离线包。Exemplarily, a compression algorithm may be used to compress the mlmodelc file to obtain a model file compression package, which may be a zip file package, and then the model file compression package is saved. The saved model file compression package is essentially an offline package.

需要说明的是,步骤S301-S304的步骤既可以在本地机器中进行,也可以在服务端中进行,在此不做具体限定。It should be noted that steps S301 to S304 can be performed in a local machine or in a server, and are not specifically limited here.

S305、在用户首次登录所述目标应用时,获取所述模型文件压缩包;对所述模型文件压缩包进行解压,以便在所述目标应用本地部署所述工具推荐模型。S305. When the user logs in to the target application for the first time, the model file compression package is obtained; the model file compression package is decompressed so as to locally deploy the tool recommendation model in the target application.

本公开方案为了避免目标应用安装包过大,并不把模型文件压缩包直接集成在目标应用安装包中,而是在用户安装目标应用并首次登录目标应用时,从服务端或本地机器中获取模型文件压缩包,并对模型文件压缩包进行解压,得到mlmodelc文件,如此目标应用可以使用mlmodelc文件按照步骤S306-S308的步骤在本地进行工具项的推荐预测。In order to avoid the target application installation package being too large, the disclosed solution does not directly integrate the model file compression package into the target application installation package. Instead, when the user installs the target application and logs in to the target application for the first time, the model file compression package is obtained from the server or the local machine, and the model file compression package is decompressed to obtain the mlmodelc file. In this way, the target application can use the mlmodelc file to perform recommendation predictions for tool items locally according to steps S306-S308.

S306、响应于用户触发进入目标应用的工具项展示界面的操作,获取用户画像、用户的文件浏览行为和用户使用工具项的历史记录。S306: In response to the user triggering an operation to enter the tool item display interface of the target application, obtain a user portrait, a user's file browsing behavior, and a history record of the user using the tool items.

S307、在所述目标应用本地根据所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录,预测所述目标应用提供的每个工具项的推荐概率。S307: Predict the recommendation probability of each tool item provided by the target application locally based on the user portrait, the user's file browsing behavior, and the user's history of using the tool items.

S308、根据每个工具项的推荐概率,选出满足预设条件的目标工具项,并在所述工具项展示界面中进行显示。S308: Select target tool items that meet preset conditions according to the recommendation probability of each tool item, and display them in the tool item display interface.

本实施例中,将训练好的模型文件转换成离线包,并在目标应用安装完并首次登录时,获取离线包并完成工具推荐模型的本地部署,避免将模型文件直接集成在安装包中,导致安装包过大的问题。In this embodiment, the trained model file is converted into an offline package, and when the target application is installed and logged in for the first time, the offline package is obtained and the local deployment of the tool recommendation model is completed, avoiding the problem of directly integrating the model file into the installation package, which leads to the problem of the installation package being too large.

图4是根据本公开实施例的工具项推荐装置的结构示意图,本实施例可适用于在应用程序本地进行工具项推荐的场景。该装置可实现本公开任意实施例所述的工具项推荐方法。如图4所示,该装置400具体包括:FIG4 is a schematic diagram of the structure of a tool item recommendation device according to an embodiment of the present disclosure. The present embodiment is applicable to a scenario where tool item recommendation is performed locally in an application. The device can implement the tool item recommendation method described in any embodiment of the present disclosure. As shown in FIG4 , the device 400 specifically includes:

数据获取模块401,用于响应于用户触发进入目标应用的工具项展示界面的操作,获取用户画像、用户的文件浏览行为和用户使用工具项的历史记录;The data acquisition module 401 is used to acquire the user portrait, the user's file browsing behavior and the user's history of using the tool items in response to the user triggering the operation of entering the tool item display interface of the target application;

预测模块402,用于在所述目标应用本地根据所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录,预测所述目标应用提供的每个工具项的推荐概率;Prediction module 402, used to predict the recommendation probability of each tool item provided by the target application based on the user portrait, the user's file browsing behavior and the user's history of using the tool item locally in the target application;

推荐模块403,用于根据每个工具项的推荐概率,选出满足预设条件的目标工具项,并在所述工具项展示界面中进行显示。The recommendation module 403 is used to select target tool items that meet preset conditions according to the recommendation probability of each tool item, and display them in the tool item display interface.

在一种可选的实现方式中,预测模块还用于:In an optional implementation, the prediction module is further used to:

在所述目标应用本地对所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录进行特征编码,得到对应的特征值;Performing feature encoding on the target application locally for the user portrait, the user's file browsing behavior, and the user's history of using tool items to obtain corresponding feature values;

根据得到的特征值,结合预先部署在所述目标应用本地的工具推荐模型,预测所述目标应用提供的每个工具项的推荐概率。According to the obtained feature values, combined with a tool recommendation model pre-deployed locally on the target application, the recommendation probability of each tool item provided by the target application is predicted.

在一种可选的实现方式中,还包括:In an optional implementation, the method further includes:

训练模块,用于利用预先获取训练样本,训练所述工具推荐模型;其中,每个训练样本中包括用户使用的工具项,以及用户使用该工具项之前用户使用工具项的历史记录、用户画像和用户的文件浏览行为;A training module, used to train the tool recommendation model using pre-acquired training samples; wherein each training sample includes a tool item used by a user, as well as a history of the user's use of the tool item before the user used the tool item, a user portrait, and the user's file browsing behavior;

转换模块,用于根据所述目标应用所在终端运行的系统类型,将训练好的工具推荐模型转换成目标格式的模型文件;A conversion module, used to convert the trained tool recommendation model into a model file of a target format according to the system type of the terminal where the target application is located;

编译模块,用于对所述目标格式的模型文件进行编译,得到编译后的模型文件;A compiling module, used for compiling the model file in the target format to obtain a compiled model file;

压缩保存模块,用于对编译后的模型文件进行压缩,得到所述工具推荐模型对应的模型文件压缩包,并对所述模型文件压缩包进行保存。The compression and saving module is used to compress the compiled model file, obtain the model file compression package corresponding to the tool recommendation model, and save the model file compression package.

在一种可选的实现方式中,还包括:In an optional implementation, the method further includes:

在用户首次登录所述目标应用时,获取所述模型文件压缩包;When the user logs in to the target application for the first time, obtaining the model file compressed package;

对所述模型文件压缩包进行解压,以便在所述目标应用本地部署所述工具推荐模型。The model file compression package is decompressed to deploy the tool recommendation model locally in the target application.

在一种可选的实现方式中,所述工具推荐模型为决策树模型。In an optional implementation, the tool recommendation model is a decision tree model.

在一种可选的实现方式中,推荐模块还用于:In an optional implementation, the recommendation module is further used to:

根据每个工具项的推荐概率,对各工具项进行重新排序;Re-rank the tool items according to their recommendation probability;

基于重新排序结果,选出满足预设条件的目标工具项。Based on the reordering results, target tool items that meet preset conditions are selected.

在一种可选的实现方式中,所述用户画像包括用户身份、用户偏好和用户权益中的至少一种;In an optional implementation, the user portrait includes at least one of user identity, user preference and user rights;

所述用户的文件浏览行为包括当前时间、用户在所述当前时间之前的预设时长内所浏览的文件类型,以及根据所述文件类型对应的浏览频次确定的目标文件类型;The file browsing behavior of the user includes the current time, the file types browsed by the user within a preset time period before the current time, and the target file type determined according to the browsing frequency corresponding to the file type;

所述用户使用工具项的历史记录包括用户在当前时间之前的预设时长内所使用的工具项、所述工具项的类型、根据所述工具项的使用频次确定的常用工具、根据每种类型对应的使用频次确定的常用工具类型。The history record of the user's use of tool items includes the tool items used by the user within a preset time before the current time, the types of the tool items, common tools determined based on the use frequency of the tool items, and common tool types determined based on the use frequency corresponding to each type.

在一种可选的实现方式中,所述目标应用为网盘应用。In an optional implementation, the target application is a network disk application.

上述产品可执行本公开任意实施例所提供的方法,具备执行方法相应的功能模块和有益效果。The above-mentioned product can execute the method provided by any embodiment of the present disclosure, and has the corresponding functional modules and beneficial effects of the execution method.

本公开的技术方案中,所涉及的用户个人信息的收集、存储、使用、加工、传输、提供和公开等处理,均符合相关法律法规的规定,且不违背公序良俗。In the technical solution of the present disclosure, the collection, storage, use, processing, transmission, provision and disclosure of user personal information involved are in compliance with the provisions of relevant laws and regulations and do not violate public order and good morals.

根据本公开的实施例,本公开还提供了一种电子设备、一种可读存储介质和一种计算机程序产品。According to an embodiment of the present disclosure, the present disclosure also provides an electronic device, a readable storage medium and a computer program product.

图5示出了可以用来实施本公开的实施例的示例电子设备500的示意性框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。FIG5 shows a schematic block diagram of an example electronic device 500 that can be used to implement an embodiment of the present disclosure. The electronic device is intended to represent various forms of digital computers, such as laptop computers, desktop computers, workbenches, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers. The electronic device can also represent various forms of mobile devices, such as personal digital processing, cellular phones, smart phones, wearable devices, and other similar computing devices. The components shown herein, their connections and relationships, and their functions are merely examples and are not intended to limit the implementation of the present disclosure described and/or required herein.

如图5所示,设备500包括计算单元501,其可以根据存储在只读存储器(ROM)502中的计算机程序或者从存储单元508加载到随机访问存储器(RAM)503中的计算机程序,来执行各种适当的动作和处理。在RAM 503中,还可存储设备500操作所需的各种程序和数据。计算单元501、ROM 502以及RAM 503通过总线504彼此相连。输入/输出(I/O)接口505也连接至总线504。As shown in FIG5 , the device 500 includes a computing unit 501, which can perform various appropriate actions and processes according to a computer program stored in a read-only memory (ROM) 502 or a computer program loaded from a storage unit 508 into a random access memory (RAM) 503. In the RAM 503, various programs and data required for the operation of the device 500 can also be stored. The computing unit 501, the ROM 502, and the RAM 503 are connected to each other via a bus 504. An input/output (I/O) interface 505 is also connected to the bus 504.

设备500中的多个部件连接至I/O接口505,包括:输入单元506,例如键盘、鼠标等;输出单元507,例如各种类型的显示器、扬声器等;存储单元508,例如磁盘、光盘等;以及通信单元509,例如网卡、调制解调器、无线通信收发机等。通信单元509允许设备500通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。A number of components in the device 500 are connected to the I/O interface 505, including: an input unit 506, such as a keyboard, a mouse, etc.; an output unit 507, such as various types of displays, speakers, etc.; a storage unit 508, such as a disk, an optical disk, etc.; and a communication unit 509, such as a network card, a modem, a wireless communication transceiver, etc. The communication unit 509 allows the device 500 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunication networks.

计算单元501可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元501的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种执行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元501执行上文所描述的各个方法和处理,例如工具项推荐方法。例如,在一些实施例中,工具项推荐方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元508。在一些实施例中,计算机程序的部分或者全部可以经由ROM 502和/或通信单元509而被载入和/或安装到设备500上。当计算机程序加载到RAM 503并由计算单元501执行时,可以执行上文描述的工具项推荐方法的一个或多个步骤。备选地,在其他实施例中,计算单元501可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行工具项推荐方法。The computing unit 501 may be a variety of general and/or special processing components with processing and computing capabilities. Some examples of the computing unit 501 include, but are not limited to, a central processing unit (CPU), a graphics processing unit (GPU), various special artificial intelligence (AI) computing chips, various computing units that execute machine learning model algorithms, digital signal processors (DSPs), and any appropriate processors, controllers, microcontrollers, etc. The computing unit 501 performs the various methods and processes described above, such as the tool item recommendation method. For example, in some embodiments, the tool item recommendation method may be implemented as a computer software program that is tangibly contained in a machine-readable medium, such as a storage unit 508. In some embodiments, part or all of the computer program may be loaded and/or installed on the device 500 via the ROM 502 and/or the communication unit 509. When the computer program is loaded into the RAM 503 and executed by the computing unit 501, one or more steps of the tool item recommendation method described above may be performed. Alternatively, in other embodiments, the computing unit 501 may be configured to perform the tool item recommendation method in any other appropriate manner (e.g., by means of firmware).

本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、复杂可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described above herein can be implemented in digital electronic circuit systems, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips (SOCs), complex programmable logic devices (CPLDs), computer hardware, firmware, software, and/or combinations thereof. These various implementations can include: being implemented in one or more computer programs that can be executed and/or interpreted on a programmable system including at least one programmable processor, which can be a special purpose or general purpose programmable processor that can receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.

用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。The program code for implementing the method of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, a special-purpose computer, or other programmable data processing device, so that the program code, when executed by the processor or controller, implements the functions/operations specified in the flow chart and/or block diagram. The program code may be executed entirely on the machine, partially on the machine, partially on the machine and partially on a remote machine as a stand-alone software package, or entirely on a remote machine or server.

在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present disclosure, a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, device, or equipment. A machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. A machine-readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or equipment, or any suitable combination of the foregoing. A more specific example of a machine-readable storage medium may include an electrical connection based on one or more lines, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。To provide interaction with a user, the systems and techniques described herein can be implemented on a computer having: a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user; and a keyboard and pointing device (e.g., a mouse or trackball) through which the user can provide input to the computer. Other types of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and input from the user can be received in any form (including acoustic input, voice input, or tactile input).

可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)、区块链网络和互联网。The systems and techniques described herein may be implemented in a computing system that includes backend components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes frontend components (e.g., a user computer with a graphical user interface or a web browser through which a user can interact with implementations of the systems and techniques described herein), or a computing system that includes any combination of such backend components, middleware components, or frontend components. The components of the system may be interconnected by any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include: a local area network (LAN), a wide area network (WAN), a blockchain network, and the Internet.

计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上执行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与VPS服务中,存在的管理难度大,业务扩展性弱的缺陷。服务器也可以为分布式系统的服务器,或者是结合了区块链的服务器。A computer system may include a client and a server. The client and the server are generally remote from each other and usually interact through a communication network. The relationship between the client and the server is generated by computer programs that are executed on the corresponding computers and have a client-server relationship with each other. The server may be a cloud server, also known as a cloud computing server or a cloud host, which is a host product in the cloud computing service system to solve the defects of difficult management and weak business scalability in traditional physical hosts and VPS services. The server may also be a server of a distributed system, or a server combined with a blockchain.

人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,既有硬件层面的技术也有软件层面的技术。人工智能硬件技术一般包括如传感器、专用人工智能芯片、云计算、分布式存储、大数据处理等技术;人工智能软件技术主要包括计算机视觉技术、语音识别技术、自然语言处理技术及机器学习/深度学习技术、大数据处理技术、知识图谱技术等几大方向。Artificial intelligence is a discipline that studies how to use computers to simulate certain human thought processes and intelligent behaviors (such as learning, reasoning, thinking, planning, etc.). It includes both hardware-level and software-level technologies. Artificial intelligence hardware technologies generally include technologies such as sensors, dedicated artificial intelligence chips, cloud computing, distributed storage, and big data processing; artificial intelligence software technologies mainly include computer vision technology, speech recognition technology, natural language processing technology, machine learning/deep learning technology, big data processing technology, knowledge graph technology, and other major directions.

云计算(cloud computing),指的是通过网络接入弹性可扩展的共享物理或虚拟资源池,资源可以包括服务器、操作系统、网络、软件、应用和存储设备等,并可以按需、自服务的方式对资源进行部署和管理的技术体系。通过云计算技术,可以为人工智能、区块链等技术应用、模型训练提供高效强大的数据处理能力。Cloud computing refers to a technology system that uses network access to elastically scalable shared physical or virtual resource pools. Resources can include servers, operating systems, networks, software, applications, and storage devices, and can be deployed and managed on demand and in a self-service manner. Cloud computing technology can provide efficient and powerful data processing capabilities for technical applications such as artificial intelligence and blockchain, as well as model training.

应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开提供的技术方案所期望的结果,本文在此不进行限制。It should be understood that the various forms of processes shown above can be used to reorder, add or delete steps. For example, the steps recorded in this disclosure can be executed in parallel, sequentially or in different orders, as long as the desired results of the technical solutions provided by this disclosure can be achieved, and this document does not limit this.

上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。The above specific implementations do not constitute a limitation on the protection scope of the present disclosure. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions can be made according to design requirements and other factors. Any modification, equivalent substitution and improvement made within the spirit and principle of the present disclosure shall be included in the protection scope of the present disclosure.

Claims (19)

1.一种工具项推荐方法,包括:1. A tool item recommendation method, comprising: 响应于用户触发进入目标应用的工具项展示界面的操作,获取用户画像、用户的文件浏览行为和用户使用工具项的历史记录;In response to a user triggering an operation to enter a tool item display interface of a target application, obtaining a user portrait, a user's file browsing behavior, and a user's tool item usage history; 在所述目标应用本地根据所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录,预测所述目标应用提供的每个工具项的推荐概率;Predicting the recommendation probability of each tool item provided by the target application locally based on the user portrait, the user's file browsing behavior, and the user's history of using the tool item; 根据每个工具项的推荐概率,选出满足预设条件的目标工具项,并在所述工具项展示界面中进行显示。According to the recommendation probability of each tool item, a target tool item that meets the preset conditions is selected and displayed in the tool item display interface. 2.根据权利要求1所述的方法,其中,所述在所述目标应用本地根据所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录,预测所述目标应用提供的每个工具项的推荐概率,包括:2. The method according to claim 1, wherein the predicting the recommendation probability of each tool item provided by the target application locally based on the user portrait, the user's file browsing behavior and the user's history of using the tool item comprises: 在所述目标应用本地对所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录进行特征编码,得到对应的特征值;Performing feature encoding on the target application locally for the user portrait, the user's file browsing behavior, and the user's history of using tool items to obtain corresponding feature values; 根据得到的特征值,结合预先部署在所述目标应用本地的工具推荐模型,预测所述目标应用提供的每个工具项的推荐概率。According to the obtained feature values, combined with a tool recommendation model pre-deployed locally on the target application, the recommendation probability of each tool item provided by the target application is predicted. 3.根据权利要求2所述的方法,还包括:3. The method according to claim 2, further comprising: 利用预先获取训练样本,训练所述工具推荐模型;其中,每个训练样本中包括用户使用的工具项,以及用户使用该工具项之前用户使用工具项的历史记录、用户画像和用户的文件浏览行为;The tool recommendation model is trained using pre-acquired training samples; wherein each training sample includes a tool item used by a user, as well as a history of the user's use of the tool item before the user used the tool item, a user portrait, and the user's file browsing behavior; 根据所述目标应用所在终端运行的系统类型,将训练好的工具推荐模型转换成目标格式的模型文件;According to the system type running on the terminal where the target application is located, converting the trained tool recommendation model into a model file in a target format; 对所述目标格式的模型文件进行编译,得到编译后的模型文件;Compiling the model file in the target format to obtain a compiled model file; 对编译后的模型文件进行压缩,得到所述工具推荐模型对应的模型文件压缩包,并对所述模型文件压缩包进行保存。The compiled model file is compressed to obtain a model file compression package corresponding to the tool recommendation model, and the model file compression package is saved. 4.根据权利要求3所述的方法,还包括:4. The method according to claim 3, further comprising: 在用户首次登录所述目标应用时,获取所述模型文件压缩包;When the user logs in to the target application for the first time, obtaining the model file compressed package; 对所述模型文件压缩包进行解压,以便在所述目标应用本地部署所述工具推荐模型。The model file compression package is decompressed to deploy the tool recommendation model locally in the target application. 5.根据权利要求2-4中任一项所述的方法,其中,所述工具推荐模型为决策树模型。5. The method according to any one of claims 2 to 4, wherein the tool recommendation model is a decision tree model. 6.根据权利要求1所述的方法,其中,所述根据每个工具项的推荐概率,选出满足预设条件的目标工具项,包括:6. The method according to claim 1, wherein the step of selecting a target tool item that meets a preset condition according to the recommendation probability of each tool item comprises: 根据每个工具项的推荐概率,对各工具项进行重新排序;Re-rank the tool items according to their recommendation probability; 基于重新排序结果,选出满足预设条件的目标工具项。Based on the reordering results, target tool items that meet preset conditions are selected. 7.根据权利要求1或2所述的方法,其中,所述用户画像包括用户身份、用户偏好和用户权益中的至少一种;7. The method according to claim 1 or 2, wherein the user portrait includes at least one of user identity, user preference and user rights; 所述用户的文件浏览行为包括当前时间、用户在所述当前时间之前的预设时长内所浏览的文件类型,以及根据所述文件类型对应的浏览频次确定的目标文件类型;The file browsing behavior of the user includes the current time, the file types browsed by the user within a preset time period before the current time, and the target file type determined according to the browsing frequency corresponding to the file type; 所述用户使用工具项的历史记录包括用户在当前时间之前的预设时长内所使用的工具项、所述工具项的类型、根据所述工具项的使用频次确定的常用工具、根据每种类型对应的使用频次确定的常用工具类型。The history record of the user's use of tool items includes the tool items used by the user within a preset time before the current time, the types of the tool items, common tools determined based on the use frequency of the tool items, and common tool types determined based on the use frequency corresponding to each type. 8.根据权利要求1-4中任一项所述的方法,其中,所述目标应用为网盘应用。8. The method according to any one of claims 1-4, wherein the target application is a network disk application. 9.一种工具项推荐装置,包括:9. A tool item recommendation device, comprising: 数据获取模块,用于响应于用户触发进入目标应用的工具项展示界面的操作,获取用户画像、用户的文件浏览行为和用户使用工具项的历史记录;A data acquisition module, for acquiring a user portrait, a user's file browsing behavior, and a user's history of using tool items in response to a user triggering an operation to enter a tool item display interface of a target application; 预测模块,用于在所述目标应用本地根据所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录,预测所述目标应用提供的每个工具项的推荐概率;A prediction module, configured to predict the recommendation probability of each tool item provided by the target application locally based on the user portrait, the user's file browsing behavior and the user's history of using the tool item; 推荐模块,用于根据每个工具项的推荐概率,选出满足预设条件的目标工具项,并在所述工具项展示界面中进行显示。The recommendation module is used to select target tool items that meet preset conditions according to the recommendation probability of each tool item, and display them in the tool item display interface. 10.根据权利要求9所述的装置,其中,所述预测模块还用于:10. The apparatus according to claim 9, wherein the prediction module is further configured to: 在所述目标应用本地对所述用户画像、用户的文件浏览行为和用户使用工具项的历史记录进行特征编码,得到对应的特征值;Performing feature encoding on the target application locally for the user portrait, the user's file browsing behavior, and the user's history of using tool items to obtain corresponding feature values; 根据得到的特征值,结合预先部署在所述目标应用本地的工具推荐模型,预测所述目标应用提供的每个工具项的推荐概率。According to the obtained feature values, combined with a tool recommendation model pre-deployed locally on the target application, the recommendation probability of each tool item provided by the target application is predicted. 11.根据权利要求10所述的装置,还包括:11. The apparatus according to claim 10, further comprising: 训练模块,用于利用预先获取训练样本,训练所述工具推荐模型;其中,每个训练样本中包括用户使用的工具项,以及用户使用该工具项之前用户使用工具项的历史记录、用户画像和用户的文件浏览行为;A training module, used to train the tool recommendation model using pre-acquired training samples; wherein each training sample includes a tool item used by a user, as well as a history of the user's use of the tool item before the user used the tool item, a user portrait, and the user's file browsing behavior; 转换模块,用于根据所述目标应用所在终端运行的系统类型,将训练好的工具推荐模型转换成目标格式的模型文件;A conversion module, used to convert the trained tool recommendation model into a model file of a target format according to the system type of the terminal where the target application is located; 编译模块,用于对所述目标格式的模型文件进行编译,得到编译后的模型文件;A compiling module, used for compiling the model file in the target format to obtain a compiled model file; 压缩保存模块,用于对编译后的模型文件进行压缩,得到所述工具推荐模型对应的模型文件压缩包,并对所述模型文件压缩包进行保存。The compression and saving module is used to compress the compiled model file, obtain the model file compression package corresponding to the tool recommendation model, and save the model file compression package. 12.根据权利要求11所述的装置,还包括:12. The apparatus according to claim 11, further comprising: 在用户首次登录所述目标应用时,获取所述模型文件压缩包;When the user logs in to the target application for the first time, obtaining the model file compressed package; 对所述模型文件压缩包进行解压,以便在所述目标应用本地部署所述工具推荐模型。The model file compression package is decompressed to deploy the tool recommendation model locally in the target application. 13.根据权利要求10-12中任一项所述的装置,其中,所述工具推荐模型为决策树模型。13. The device according to any one of claims 10-12, wherein the tool recommendation model is a decision tree model. 14.根据权利要求9所述的装置,其中,所述推荐模块还用于:14. The device according to claim 9, wherein the recommendation module is further configured to: 根据每个工具项的推荐概率,对各工具项进行重新排序;Re-rank the tool items according to their recommendation probability; 基于重新排序结果,选出满足预设条件的目标工具项。Based on the reordering results, target tool items that meet preset conditions are selected. 15.根据权利要求9或10所述的装置,其中,所述用户画像包括用户身份、用户偏好和用户权益中的至少一种;15. The device according to claim 9 or 10, wherein the user portrait includes at least one of user identity, user preference and user rights; 所述用户的文件浏览行为包括当前时间、用户在所述当前时间之前的预设时长内所浏览的文件类型,以及根据所述文件类型对应的浏览频次确定的目标文件类型;The file browsing behavior of the user includes the current time, the file types browsed by the user within a preset time period before the current time, and the target file type determined according to the browsing frequency corresponding to the file type; 所述用户使用工具项的历史记录包括用户在当前时间之前的预设时长内所使用的工具项、所述工具项的类型、根据所述工具项的使用频次确定的常用工具、根据每种类型对应的使用频次确定的常用工具类型。The history record of the user's use of tool items includes the tool items used by the user within a preset time before the current time, the types of the tool items, common tools determined based on the use frequency of the tool items, and common tool types determined based on the use frequency corresponding to each type. 16.根据权利要求9-12中任一项所述的装置,其中,所述目标应用为网盘应用。16. The device according to any one of claims 9 to 12, wherein the target application is a network disk application. 17.一种电子设备,包括:17. An electronic device comprising: 至少一个处理器;以及at least one processor; and 与所述至少一个处理器通信连接的存储器;其中,a memory communicatively connected to the at least one processor; wherein, 所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-8中任一项所述的工具项推荐方法。The memory stores instructions that can be executed by the at least one processor, and the instructions are executed by the at least one processor to enable the at least one processor to execute the tool item recommendation method according to any one of claims 1 to 8. 18.一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使计算机执行根据权利要求1-8中任一项所述的工具项推荐方法。18. A non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause a computer to execute the tool item recommendation method according to any one of claims 1-8. 19.一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现根据权利要求1-8中任一项所述的工具项推荐方法。19. A computer program product, comprising a computer program, wherein when the computer program is executed by a processor, the computer program implements the tool item recommendation method according to any one of claims 1 to 8.
CN202410232968.0A 2024-02-29 2024-02-29 A tool item recommendation method, device, electronic device, storage medium and computer program product Pending CN117892008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410232968.0A CN117892008A (en) 2024-02-29 2024-02-29 A tool item recommendation method, device, electronic device, storage medium and computer program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410232968.0A CN117892008A (en) 2024-02-29 2024-02-29 A tool item recommendation method, device, electronic device, storage medium and computer program product

Publications (1)

Publication Number Publication Date
CN117892008A true CN117892008A (en) 2024-04-16

Family

ID=90640998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410232968.0A Pending CN117892008A (en) 2024-02-29 2024-02-29 A tool item recommendation method, device, electronic device, storage medium and computer program product

Country Status (1)

Country Link
CN (1) CN117892008A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113010809A (en) * 2021-03-11 2021-06-22 北京三快在线科技有限公司 Information recommendation method and device
US20230041339A1 (en) * 2021-07-23 2023-02-09 EMC IP Holding Company LLC Method, device, and computer program product for user behavior prediction
CN116049241A (en) * 2022-08-10 2023-05-02 荣耀终端有限公司 Service recommendation method, electronic equipment and medium
CN116738058A (en) * 2023-06-28 2023-09-12 视联动力信息技术股份有限公司 Module recommendation method, module display method, module recommendation device, module display device, electronic equipment and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113010809A (en) * 2021-03-11 2021-06-22 北京三快在线科技有限公司 Information recommendation method and device
US20230041339A1 (en) * 2021-07-23 2023-02-09 EMC IP Holding Company LLC Method, device, and computer program product for user behavior prediction
CN116049241A (en) * 2022-08-10 2023-05-02 荣耀终端有限公司 Service recommendation method, electronic equipment and medium
CN116738058A (en) * 2023-06-28 2023-09-12 视联动力信息技术股份有限公司 Module recommendation method, module display method, module recommendation device, module display device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
US11080340B2 (en) Systems and methods for classifying electronic information using advanced active learning techniques
WO2022083093A1 (en) Probability calculation method and apparatus in graph, computer device and storage medium
WO2017197806A1 (en) Method for providing intelligent service, intelligent service system and intelligent terminal based on artificial intelligence
CN110727437B (en) Code optimization item acquisition method and device, storage medium and electronic equipment
US11748452B2 (en) Method for data processing by performing different non-linear combination processing
KR20180127622A (en) Systems for data collection and analysis
CN112085087B (en) Business rule generation method, device, computer equipment and storage medium
CN110334059A (en) Method and device for processing documents
CN111383100A (en) Risk model-based full life cycle management and control method and device
CN107909087A (en) Generate the method and system of the assemblage characteristic of machine learning sample
CN113986564A (en) Flow monitoring method, device, computer equipment and medium for application data
CN111652282B (en) Big data-based user preference analysis method and device and electronic equipment
JP7309811B2 (en) Data annotation method, apparatus, electronics and storage medium
CN114172819B (en) Method, system, electronic equipment and storage medium for predicting demand resources of NFV network element
CN113515703B (en) Information recommendation method, device, electronic device and readable storage medium
CN110852078A (en) Method and apparatus for generating title
WO2024235126A1 (en) Resource display method and apparatus, and device, medium and program product
CN110348669B (en) Intelligent rule generation method, intelligent rule generation device, computer equipment and storage medium
CN117892008A (en) A tool item recommendation method, device, electronic device, storage medium and computer program product
CN116957354A (en) A policy evolution path analysis method, device and electronic equipment
CN113590447B (en) Buried point processing method and device
CN110795424B (en) Characteristic engineering variable data request processing method and device and electronic equipment
CN113868481A (en) Component acquisition method, device, electronic device and storage medium
CN118171744B (en) Prediction method and device for spatiotemporal distribution, electronic device and storage medium
CN113377378B (en) Processing method, device, equipment and storage medium for small program

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination