CN117876691B - 基于人工智能的主动脉夹层术后神经系统并发症预警方法 - Google Patents
基于人工智能的主动脉夹层术后神经系统并发症预警方法 Download PDFInfo
- Publication number
- CN117876691B CN117876691B CN202410263927.8A CN202410263927A CN117876691B CN 117876691 B CN117876691 B CN 117876691B CN 202410263927 A CN202410263927 A CN 202410263927A CN 117876691 B CN117876691 B CN 117876691B
- Authority
- CN
- China
- Prior art keywords
- band
- image
- sub
- brain
- pass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 95
- 210000000653 nervous system Anatomy 0.000 title claims abstract description 18
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 12
- 208000002251 Dissecting Aneurysm Diseases 0.000 title claims abstract description 9
- 206010002895 aortic dissection Diseases 0.000 title claims abstract description 9
- 230000002980 postoperative effect Effects 0.000 title claims abstract description 8
- 210000004556 brain Anatomy 0.000 claims abstract description 66
- 239000000203 mixture Substances 0.000 claims abstract description 38
- 239000011159 matrix material Substances 0.000 claims abstract description 32
- 238000012549 training Methods 0.000 claims abstract description 22
- 230000009466 transformation Effects 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims description 39
- 238000005481 NMR spectroscopy Methods 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 8
- 230000006870 function Effects 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 230000001186 cumulative effect Effects 0.000 claims 4
- 238000011426 transformation method Methods 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000013145 classification model Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/30—Noise filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/36—Applying a local operator, i.e. means to operate on image points situated in the vicinity of a given point; Non-linear local filtering operations, e.g. median filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/42—Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/50—Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/52—Scale-space analysis, e.g. wavelet analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20064—Wavelet transform [DWT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Quality & Reliability (AREA)
- Probability & Statistics with Applications (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Nonlinear Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410263927.8A CN117876691B (zh) | 2024-03-08 | 2024-03-08 | 基于人工智能的主动脉夹层术后神经系统并发症预警方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410263927.8A CN117876691B (zh) | 2024-03-08 | 2024-03-08 | 基于人工智能的主动脉夹层术后神经系统并发症预警方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117876691A CN117876691A (zh) | 2024-04-12 |
CN117876691B true CN117876691B (zh) | 2024-06-11 |
Family
ID=90594952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410263927.8A Active CN117876691B (zh) | 2024-03-08 | 2024-03-08 | 基于人工智能的主动脉夹层术后神经系统并发症预警方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117876691B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110491511A (zh) * | 2019-07-24 | 2019-11-22 | 广州知汇云科技有限公司 | 一种基于围术期危险预警的多模型互补增强机器学习方法 |
CN111009327A (zh) * | 2019-12-19 | 2020-04-14 | 京东方科技集团股份有限公司 | 一种风险预测方法、装置及系统、介质 |
KR20200083401A (ko) * | 2020-06-23 | 2020-07-08 | 주식회사 휴런 | 영상 데이터세트의 특징을 정규화 및 표준화하는 전처리 과정이 적용된 aspect 스코어 추정 방법 |
CN115223679A (zh) * | 2022-08-05 | 2022-10-21 | 华中科技大学同济医学院附属同济医院 | 基于机器学习的围手术期风险预警方法 |
CN117557850A (zh) * | 2023-11-17 | 2024-02-13 | 华中科技大学同济医学院附属协和医院 | 一种基于多模态脑数据融合的意识障碍评估方法及装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3730040A4 (en) * | 2017-12-20 | 2021-10-06 | Medi Whale Inc. | METHOD AND APPARATUS FOR AID IN THE DIAGNOSIS OF CARDIOVASCULAR DISEASE |
-
2024
- 2024-03-08 CN CN202410263927.8A patent/CN117876691B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110491511A (zh) * | 2019-07-24 | 2019-11-22 | 广州知汇云科技有限公司 | 一种基于围术期危险预警的多模型互补增强机器学习方法 |
CN111009327A (zh) * | 2019-12-19 | 2020-04-14 | 京东方科技集团股份有限公司 | 一种风险预测方法、装置及系统、介质 |
KR20200083401A (ko) * | 2020-06-23 | 2020-07-08 | 주식회사 휴런 | 영상 데이터세트의 특징을 정규화 및 표준화하는 전처리 과정이 적용된 aspect 스코어 추정 방법 |
CN115223679A (zh) * | 2022-08-05 | 2022-10-21 | 华中科技大学同济医学院附属同济医院 | 基于机器学习的围手术期风险预警方法 |
CN117557850A (zh) * | 2023-11-17 | 2024-02-13 | 华中科技大学同济医学院附属协和医院 | 一种基于多模态脑数据融合的意识障碍评估方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN117876691A (zh) | 2024-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | A dual-tree complex wavelet transform based convolutional neural network for human thyroid medical image segmentation | |
CN107862249B (zh) | 一种分叉掌纹识别方法及装置 | |
Scheunders et al. | Wavelet denoising of multicomponent images using Gaussian scale mixture models and a noise-free image as priors | |
US11776679B2 (en) | Methods for risk map prediction in AI-based MRI reconstruction | |
CN113191968A (zh) | 三维超声图像盲去噪模型的建立方法及其应用 | |
Tian et al. | Boosting magnetic resonance image denoising with generative adversarial networks | |
CN115018728A (zh) | 基于多尺度变换和卷积稀疏表示的图像融合方法及系统 | |
Wang et al. | A hyperspectral image NSST-HMF model and its application in HS-pansharpening | |
Guo et al. | Blind Image Despeckling Using a Multiscale Attention-Guided Neural Network | |
Kim et al. | Unsupervised image denoising with frequency domain knowledge | |
CN118015031A (zh) | 一种基于医学影像的靶区自动勾画方法及系统 | |
Annavarapu et al. | An adaptive watershed segmentation based medical image denoising using deep convolutional neural networks | |
CN117876691B (zh) | 基于人工智能的主动脉夹层术后神经系统并发症预警方法 | |
Ferzo et al. | Image Denoising Techniques Using Unsupervised Machine Learning and Deep Learning Algorithms: A Review | |
Singh et al. | Magnetic resonance image denoising using patchwise convolutional neural networks | |
Guo | Real-time medical image denoising and information hiding model based on deep wavelet multiscale autonomous unmanned analysis | |
Sayed et al. | 3D magnetic resonance image Denoising using Wasserstein generative adversarial network with residual encoder-decoders and variant loss functions | |
CN113205471A (zh) | 基于Log-Gabor变换与方向区域熵的引导滤波遥感影像融合方法 | |
CN112927169A (zh) | 一种基于小波变换和改进的加权核范数最小化的遥感影像去噪方法 | |
Patibandla et al. | CT Image Precise Denoising Model with Edge Based Segmentation with Labeled Pixel Extraction Using CNN Based Feature Extraction for Oral Cancer Detection | |
Oroumchian | ECEI Spectrogram Denoising and Feature Extraction Using a Multi-Wavelet Convolutional Neural Network Model | |
Portilla | Image restoration using Gaussian scale mixtures in overcomplete oriented pyramids | |
Mishra et al. | An Approach for Enhancement of MR Images of Brain Tumor. | |
Biswas et al. | Colonoscopy contrast-enhanced by intuitionistic fuzzy soft sets for polyp cancer localization | |
Jia | Exploring inter-frequency guidance of image for lightweight gaussian denoising |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240520 Address after: No.93, Xi'an Road, Heping District, Tianjin Applicant after: TIANJIN CHEST Hospital Country or region after: China Address before: 6A-690, Science and Technology Building, Haijing 2nd Road, Pengwan Community, Haishan Street, Yantian District, Shenzhen, Guangdong, 518000 Applicant before: Yiyou Science and Technology (Shenzhen) Co.,Ltd. Country or region before: China Applicant before: TIANJIN CHEST Hospital |
|
GR01 | Patent grant | ||
GR01 | Patent grant |