CN117875564A - 一种面向城市三维景观的地表径流源汇分析方法 - Google Patents

一种面向城市三维景观的地表径流源汇分析方法 Download PDF

Info

Publication number
CN117875564A
CN117875564A CN202410119819.3A CN202410119819A CN117875564A CN 117875564 A CN117875564 A CN 117875564A CN 202410119819 A CN202410119819 A CN 202410119819A CN 117875564 A CN117875564 A CN 117875564A
Authority
CN
China
Prior art keywords
data
rainfall
point cloud
dimensional
vegetation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410119819.3A
Other languages
English (en)
Inventor
孔繁花
周可婧
尹海伟
陈彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202410119819.3A priority Critical patent/CN117875564A/zh
Publication of CN117875564A publication Critical patent/CN117875564A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Graphics (AREA)
  • Primary Health Care (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请公开了一种面向城市三维景观的地表径流源汇分析方法,涉及城市雨洪管理与景观规划领域,包括:获取点云数据、气象水文数据和地理空间数据;从地理空间数据中提取植被轮廓数据和建筑物轮廓数据;从点云数据中分别提取植被点云数据和建筑物点云数据;计算植被三维指标和建筑物三维指标;根据气象水文数据,利用水文模型进行降雨径流模拟分析,获得地表径流深度数据,计算源汇区面积比及其转折点;计算植被三维指标和建筑物三维指标在模拟分析得到的地表径流源汇景观转折点时刻的取值,作为地表径流响应的关键三维指标。针对现有技术难以准确获取和分析城市三维景观信息的问题,本申请提高了对地表径流的调节能力。

Description

一种面向城市三维景观的地表径流源汇分析方法
技术领域
本申请涉及城市雨洪管理与景观规划领域,更具体地说,涉及一种面向城市三维景观的地表径流源汇分析方法。
背景技术
城市地表径流是雨洪风险的主要因素之一,由城市建设引起大量不透水下垫面(如人行道和建筑物)导致。这使得雨水无法渗透,而积聚在河流或洼地,导致局部内涝或河道洪泛。随着气候变化引发极端降雨的增多,过量的地表径流威胁城市基础设施和财产安全,带来巨大的城市雨洪风险。植被景观在减少地表径流方面发挥着重要作用,包括城市公园、社区绿地、行道树以及城市森林和湿地等。这些植被景观通过截留、储水、蒸发和下渗等生态功能,有助于调控地表径流,促使城市中的自然水文循环回归或重建,从而降低城市雨洪风险。
目前,关于城市景观组成和配置与地表径流响应的研究主要集中在二维景观指标上,如景观斑块的密度、周长、面积、破碎化和连通性等。然而,这些指标较少考虑城市三维空间的异质性,尤其是对不同类型景观的垂直特征缺乏详细刻画。例如,植被景观的冠层特征(叶面积、冠层覆盖度、冠层高度)决定了其径流调控功能和服务,而建筑景观的屋面类型和体积特征则影响了径流的产生和空间分布。随着激光雷达技术(LiDAR)的广泛应用,城市三维景观的重建和指标研究得以迅速发展。然而,基于三维景观的地表径流研究仍然存在普适性较弱、空间精度较低以及未充分考虑降雨-径流过程动态性等问题。因此,需要更精细化的城市景观格局信息,以模拟城市区域中的降雨-径流过程,为科学优化城市景观组成和配置、缓解雨洪风险提供更为准确的基础。
相关技术中,基于土地利用的景观配置的一种常见的地表径流调控技术,例如,中国专利文献CN109886476A提出了一种城市水文过程空间模型及基于其的土地利用方法,通过当地暴雨渍水点和汇水廊道的用地类型配置改善地表径流调控能力;CN115248838A公开了一种雨水收集系统空间布置优化方法和系统,以汇水区为单元进行地表径流收集系统空间布置和优化。然而,上述方法难以从精细化尺度上获取不同时间步长的地表径流模拟结果,使其无法准确量化不同类型景观对径流量及其流动路径的影响。
发明内容
1.要解决的技术问题
针对现有技术难以准确获取和分析城市三维景观信息的问题,本申请提供了一种面向城市三维景观的地表径流源汇分析方法,该方法可以结合机载激光雷达获得的点云数据精确提取和量化城市植被与建筑物的三维参数,应用水文模型建立情景模拟并分析植被与建筑物在地表径流过程中的源-汇动态变化,从而可以有效设计和规划城市绿色基础设施,提高其对地表径流的调节能力,进而缓解城市内涝。
2.技术方案
本申请的目的通过以下技术方案实现。
一种面向城市三维景观的地表径流源汇分析方法,包括:获取点云数据、气象水文数据和地理空间数据,并对获取的数据进行预处理;从预处理后的地理空间数据中提取植被轮廓数据和建筑物轮廓数据;根据提取的植被轮廓数据和建筑物轮廓数据,从预处理后的点云数据中分别提取植被点云数据和建筑物点云数据;根据提取的植被点云数据和建筑物点云数据,计算植被三维指标和建筑物三维指标;根据预处理后的气象水文数据,利用水文模型进行降雨径流模拟分析,计算源汇景观转换过程及其转折点;计算植被三维指标和建筑物三维指标在模拟分析得到的地表径流源汇景观转折点时刻的取值,作为地表径流响应的关键三维指标。
其中,获取点云数据:采用机载激光雷达对研究区进行航测,获取包含建筑物、植被等地表特征三维信息的原始点云数据。获取气象水文数据:从气象站获取不同时段的降雨数据、蒸发数据;从水文站获取河流逐时流量数据。获取地理空间数据:获取研究区的遥感影像、数字高程模型、土地利用数据等地理空间数据。数据预处理:对点云数据进行滤波、配准等处理;对气象数据进行质控;对地理空间数据进行几何、放射定标校正。提取植被和建筑物轮廓:从预处理后的地理空间影像中提取植被覆盖区域和建筑物轮廓作为空间范围。提取植被和建筑物点云:根据提取的轮廓范围,从预处理后的点云中裁剪对应的植被点云和建筑物点云。计算三维指标:分析点云数据,计算植被冠层参数和建筑物体积率等三维指标。水文模拟:建立分布式水文模型,进行不同降雨情景下的径流模拟,得到地表径流深度。确定关键三维指标:分析三维指标与径流响应指标的相关性,确定植被和建筑物参数在模拟分析得到的地表径流源汇景观转折点时刻的取值,作为地表径流响应的关键三维指标。
其中,地表径流深度数据是通过水文模型对预处理后的气象水文数据进行模拟分析得到的结果。这些数据反映了在一定时期内,特定地区或流域表面的水流深度,即雨水在地表形成的径流深度。水文模型是一种数学工具,通过模拟降雨、融雪和其他气象水文过程,以及地表和地下水流的相互作用,预测水文事件的影响。在这种情况下,水文模型被用于分析降雨-径流过程。预处理后的气象水文数据包括降雨等信息。水文模型利用这些数据对降雨-径流过程进行模拟,即模拟雨水如何在地表形成径流的过程。模拟分析的结果包括地表径流深度数据,即在模拟时刻和地点,地表上形成的雨水流深。这可以理解为在雨水发生时,地表的水深度,是一种描述雨水积聚和流动的量化数据。
进一步的,从预处理后的点云数据中提取植被点云数据,包括:将预处理后的点云数据作为输入数据;从输入数据中获取与植被轮廓范围空间分布重合的点云数据,作为植被点云原始数据;计算植被点云原始数据的高度、面积和体积,得到植被点云三维结构数据;基于植被点云三维结构数据,计算叶面积指数、冠层高度、冠层覆盖度、冠层高度异质性和绿地参数,作为植被三维指标。
其中,输入数据:将进行过预处理的点云数据作为植被点云提取的原始输入数据。获取植被点云:从输入的原始点云数据中,提取与预先获得的植被轮廓范围空间分布重合的点云数据,作为植被点云的原始数据。计算三维结构数据:对提取的植被点云原始数据,进行统计分析,计算点云的高度、面积、体积信息,作为植被点云的三维结构数据。计算植被指标:在植被点云三维结构数据的基础上,进一步计算出叶面积指数、冠层高度、冠层覆盖度、冠层高度异质性等参数,以及绿地相关参数,作为植被的三维指标。输出结果:经过上述过程,得到表达植被三维结构特征的点云数据以及相关的三维指标,完成了从原始点云到植被点云以及植被三维指标的提取。
其中,叶面积指数是指单位地面投影面积上的叶片表面积与该地面投影面积之比。它是植被的关键参数,用于量化植被覆盖的浓密程度,反映植被的叶片面积;通过计算植被点云数据中叶片的表面积,可以得到叶面积指数,提供了关于植被覆盖密度的定量信息。冠层高度是指植被的上部结构(如树木、植物)到地面的垂直高度。它反映了植被的垂直分布范围。通过分析植被点云数据,可以测量植被的冠层高度,提供了关于植被垂直结构的信息。冠层覆盖度是指植被在水平方向上覆盖地表的百分比。它描述了植被在地面上的分布密度。通过植被点云数据,可以计算植被的冠层覆盖度,提供了关于植被在水平方向上的分布情况。冠层高度异质性表示植被冠层内部高度的变化程度。较高的异质性表示植被内部高度差异较大。通过分析植被点云数据的高度分布,可以计算冠层高度异质性,提供了有关植被冠层内部结构的信息。绿地参数是描述植被状态和特性的参数,可以包括植被的健康状况、生长状态等信息。基于植被点云三维结构数据,可以计算绿地参数,提供了更全面的关于植被的特性和状态的信息。
其中,计算植被点云原始数据的技术方案包括:将整个点云数据分割为不同的类别,其中一类对应植被点云。这可以通过使用土地利用类型和植被覆盖边界分类点云来实现。在植被点云类别中,进一步提取植被轮廓。这可以通过分析点云的形状、密度或使用形态学操作来实现。形态学操作可用于检测和提取植被的边界点。将植被轮廓范围的空间分布与整个点云数据进行匹配,以获取与植被轮廓范围空间分布重合的点云数据。这可以通过空间几何关系和点云属性进行匹配,例如通过空间坐标、点云密度或颜色等属性。根据匹配的点云数据,提取与植被轮廓范围相交的点云,作为植被点云原始数据。这一步确保选取的点云数据真正属于植被区域。对植被点云原始数据进行进一步的分析,计算植被的三维结构数据,包括高度、面积、体积等指标。这涉及到点云数据的数学和几何处理,例如计算点云的表面积和体积,以及提取植被的高度信息。基于植被点云的三维结构数据,计算植被的特定指标,如叶面积指数、冠层高度、冠层覆盖度等。这些指标提供了有关植被特性和结构的详细信息。
其中,计算植被点云的三维结构数据包括:对植被点云进行高度计算,可以通过提取每个点的高程信息。这可以通过使用激光雷达或其他传感器采集的点云数据中的Z坐标信息来实现。利用每个植被点的高程信息,计算其相对于基准平面的高度。可以使用点云处理库(如LiDR,Open3D等)或自定义算法进行高度计算。针对植被点云的面积计算,可以采用点云的表面重建或直接对点云进行面积估算。表面重建方法包括三角网格生成,通过连接植被点云中的点形成三角面,从而得到表面。面积计算可以通过计算这些三角形的总表面积来实现。植被点云的体积计算通常需要进行体素化或体积重建。通过将植被点云转化为三维体素网格,然后计算每个体素的体积,最后求和得到整体植被的体积。也可以采用基于点云的体积重建算法,如移动最小二乘法(MovingLeastSquares,MLS)。对计算得到的高度、面积、体积数据进行统计分析,以获取关键的统计指标,如平均值、方差等。利用统计学方法,例如计算平均值、标准差、中位数等,以了解植被点云数据的整体特征。这可以通过点云处理库或统计分析软件实现。将计算得到的三维结构数据进行可视化,以更直观地理解植被的空间分布和特征。使用点云可视化工具,如LiDR、Open3D或其他专业的地理信息系统(GIS)软件,以呈现植被点云的高度、面积和体积信息。
进一步的,从预处理后的点云数据中提取建筑物点云数据,包括:将预处理后的点云数据作为输入数据;从输入数据中提取与建筑物轮廓范围空间分布重合的点云数据,作为建筑物点云原始数据;计算建筑物点云原始数据的高度、面积、周长和体积,得到建筑物点云三维结构数据;基于建筑物点云三维结构数据,计算建筑物点云的屋面高度、坡度、容积率和拥挤度,作为建筑物三维指标。
其中,输入数据:将进行过预处理的点云数据作为建筑物点云提取的原始输入数据。获取建筑物点云:从输入的原始点云数据中,提取与预先获得的建筑物轮廓范围空间分布重合的点云数据,作为建筑物点云的原始数据。计算三维结构数据:对提取的建筑物点云原始数据,进行统计分析,计算点云的高度、面积、周长、体积信息,作为建筑物点云的三维结构数据。计算建筑物指标:在建筑物点云三维结构数据的基础上,进一步计算出屋面高度、屋面坡度、容积率和拥挤度等参数,作为建筑物的三维指标。输出结果:经过上述过程,得到表达建筑物三维结构特征的点云数据以及相关的三维指标,完成了从原始点云到建筑物点云以及建筑物三维指标的提取。
其中,屋面高度是指建筑物顶部到地面的垂直距离。它提供了建筑物的垂直结构信息,反映了建筑物的高度特征。通过计算建筑物点云数据的高度,可以得到建筑物的屋面高度,提供了有关建筑物垂直结构的信息。坡度表示建筑物屋顶表面相对于水平面的倾斜程度。较大的坡度表示屋顶倾斜度较高。通过分析建筑物点云数据,可以计算建筑物屋顶的坡度,提供了关于屋顶表面倾斜度的信息。容积率是指建筑物总建筑面积与用地面积的比例。它反映了建筑物在地面上的密度和占地面积的程度。通过计算建筑物点云数据的体积和用地面积,可以得到容积率,提供了建筑物在地面上的利用密度信息。拥挤度是指建筑物在空间中的紧密程度,即建筑物之间的相对密集程度。较大的拥挤度表示建筑物分布较为密集。通过分析建筑物点云数据的分布,可以计算建筑物的拥挤度,提供了有关建筑物之间相对位置关系的信息。其中,获取建筑物点云的原始数据的技术方案同上,在此不再赘述。计算建筑物点云的原始数据的技术方案同植被点云原始数据,在此不再赘述。计算建筑物点云的三维结构数据的技术方案同植被点云的三维结构数据,在此不再赘述。
进一步的,对获取的气象水文数据进行预处理,包括:通过降雨间隔时间确定不同的降雨场次,获取逐时雨量数据和逐时流量数据,逐时雨量数据表示单位时间内的降雨量,逐时流量数据表示单位时间内汇水区的出水口流量。
其中,获取原始数据:获取气象站原始的逐时雨量数据和水文站原始的逐时流量数据。确定降雨场次:根据降雨的间隔时间,将观测期内的降雨过程划分为不同的降雨场次。提取逐时雨量数据:对每个确定的降雨场次,提取对应的逐时雨量数据,即每段时间内的雨量值。提取逐时流量数据:对每个确定的降雨场次,提取对应的逐时流量数据,即每段时间内的河流流量值。记录数据特征:标识逐时雨量数据表示单位时间内的降雨量,逐时流量数据表示单位时间内汇水区的出水口流量。输出预处理结果:经过上述过程,完成了原始气象水文数据向降雨场次对应的逐时雨量和流量数据的预处理。
进一步的,对获取的地理空间数据进行预处理,包括:利用阿尔伯斯等积圆锥投影对获取的地理空间数据进行投影转换,生成矢量地图数据;采用已知控制点对获取的地理空间数据进行地理坐标配准,生成配准后的影像数据;将生成的矢量地图数据和配准后的影响数据进行关联,作为预处理后的地理空间数据。
其中,投影转换:采用阿尔伯斯等积圆锥投影对原始地理空间数据进行投影转换,生成平面坐标系下的矢量地图数据。地理配准:利用已知的控制点,实现获取的原始地理空间影像数据与地图数据在地理坐标系统下的配准,生成配准后的影像数据。关联组织:将完成投影转换的矢量地图数据和完成配准的影像数据进行关联组织,建立二者之间的空间对应关系。输出预处理结果:经过上述转换、配准和关联过程,实现了地理空间数据从原始状态到符合分析要求的预处理结果的转化。
其中,阿尔伯斯等积圆锥投影(AlbersEqualAreaConicProjection)是一种圆锥投影的坐标转换方法,投影面为两个互切圆锥体的组合,这两个圆锥体共面且对称分布在地球两极的两侧。圆锥交汇生成的椭圆是无畸变的,可以保证投影面积与对应的地面实际面积相等,实现了等积映射。该投影方法可以充分减小中纬度地区的形变,适合中等纬度的区域制图。常用于对面积计算较为敏感的区域的地图制作,如计算土地利用面积等。
其中,地理坐标配准是一种对地理空间数据进行校正的方法,目的是使不同来源的地理数据在地理坐标系统下实现最佳的匹配。收集已知坐标的地面控制点,如交通路口、河流交汇等可识别物体的地理坐标。在地理空间影像上标定控制点的对应位置。应用几何变换算法,将影像点与地理控制点对齐配准。重复迭代上述过程,直到影像与控制点之间的误差小于容差。最终获得与标准地理坐标系统对齐的地理空间影像。通过地理坐标配准,可以校正不同影像之间的偏移,实现对地理坐标系统的精确对应,使得影像分析结果更具有可靠的空间参考性。
进一步的,利用水文模型进行降雨径流模拟分析,包括:构建网格大小为N的分布式水文模型,分布式水文模型包含地表径流子模型、饱和带子模型、非饱和带子模型和河道子模型;利用水文模型进行降雨径流模拟分析,包括:利用暴雨强度公式,计算不同重现期的降雨量,其中,暴雨强度公式基本形式如下所示:
i代表降雨强度mm/min,P代表降雨设计重现期,t代表设计降雨的时长min,A1、C、n、b参数,根据不同地区暴雨强度公式确定;根据计算得到的不同重现期的降雨量,设置对应重现期的降雨过程线作为降雨输入情景,其中降雨过程线表示降雨强度-时间分布。
其中,地表径流子模型:用于模拟地表面积流过程的模型组件,计算地表进入河网的径流。饱和带子模型:用于模拟土壤中近饱和区的水分运动过程的模型组件。近饱和区水分运动遵循线性渗流方程。非饱和带子模型:用于模拟土壤中非饱和区的水分运动过程的模型组件。非饱和区水分运动遵循理查德方程。河道子模型:用于模拟河道和湖泊中的水动力学过程的模型组件,计算河道中的流量和水位变化过程。分布式水文模型:由多个子模型构成的水文模型框架,子模型之间通过交换模拟结果实现耦合,可以模拟分布式的空间水文过程。综上,这些子模型共同构成了一个完整的分布式水文模型,用于模拟不同组分中的水文过程,最终达到对整个流域的降雨径流过程进行模拟的目的。
其中,降雨输入情景是进行水文模拟过程中设置的降雨强度-时间分布的数据。根据研究区域的降雨特性,选取不同重现期的设计暴雨,计算出不同重现期下的降雨量。根据计算出的降雨量生成降雨强度-时间分布关系曲线,描述降雨事件的时间进展过程,这就是降雨过程线。将不同重现期的降雨过程线预先设置为水文模型的输入文件,运行模型时调用,这就是降雨输入情景。多设置不同重现期的降雨输入情景,可以驱动水文模型进行多种条件下的模拟。综上,降雨输入情景是用于驱动水文模拟的降雨强度-时间分布数据,通过设置不同重现期的降雨输入情景可以模拟不同条件下的降雨径流过程。
进一步的,利用水文模型进行降雨径流模拟分析,包括:将地表径流子模型和河道子模型的网格数据作为输入,采用空间重叠算法,提取地表径流子模型和河道子模型的网格在空间上的交集网格,作为水量交换连接单元;根据地表径流过程和河道径流过程的耦合关系,建立水量交换连接单元上的河道水量平衡方程和地表水量平衡方程;将建立的河道水量平衡方程和地表水量平衡方程作为方程组输入,采用圣维南方程组数值计算方法和有限元离散化方法,对方程组进行数值计算和网格离散化,得到河道水动力学模型和地表水文模型的耦合计算结果,作为水文模型。
其中,空间重叠算法是一种判断两个空间网格或图层在空间上是否存在交集的算法。将两个需要判断的空间网格图层作为算法的输入。使用空间关系运算,判断每个网格的几何范围是否存在相交。如果两个网格的几何范围存在交集,则提取交集形成的新网格。最终输出空间上存在交集的网格元素。这种算法可以判断两个空间网格之间的拓扑关系,识别存在一定区域重合的网格单元。在水文模型的耦合中,可用于提取河道和地表网格的交接单元,实现水量交换的技术实现。
其中,在每个河道计算单元中,根据河道进出水量的平衡关系,建立河道水量平衡方程:Qout=Qin+Qlateral-Qoverflow+P-E,其中Qin为河道进水量,Qout为河道出水量,Qlateral为侧歧流量,Qoverflow为溢流量,P为降雨,E为蒸散发。在每个地表计算单元中,根据地表进出水量的平衡关系,建立地表水量平衡方程:Qout=Qin+P-E-I,其中Qin为地表进水量,Qout为地表出水量,P为降雨量,E为蒸发量,I为地表入渗量。在交接计算单元中,将两方程耦合,通过交换河道和地表之间的水量,实现耦合模拟。
其中,圣维南方程组是一组描述流体运动的微分方程,由法国数学家巴赖圣维南(ClaudeLouisMarieHenriNavier)和英国数学物理学家斯托克斯(GeorgeGabrielStokes)联合推导得出。其基本组成包括:连续性方程:描述流体质量守恒;运动方程:描述流体运动变化;能量方程:描述流体能量平衡。这三个方程中的变量包括流速、压强、密度等,三个方程相互耦合,共同描述流体的流动规律。圣维南方程组是描述流体运动最基本的方程组,广泛应用于计算流体力学、水文学等领域,可以建立精确的物理运动模拟。
其中,建立水文模型包括:将已建立的河道水量平衡方程和地表水量平衡方程作为圣维南方程组的输入。采用圣维南有限元离散格式,在时域和空域上对河道和地表方程进行离散化,转换为代数方程组。利用牛顿迭代法等数值计算方法,对离散后的方程组进行解算,得到每时段每个计算单元的水量和流量。通过计算单元之间的水量交换实现河道模型和地表模型的耦合。重复上述计算步骤,模拟整个计算时域,得到河道和地表耦合模型的水动力学过程结果。对计算结果进行后处理,包括校核、可视化等,生成最终的模拟结果输出。完成了基于控制方程的数值计算和有限元离散化建立起来的水文过程耦合模型。
进一步的,利用水文模型进行降雨径流模拟分析,包括:将不同重现期的降雨量作为输入数据,输入建立的水文模型;将逐时雨量数据和逐时流量数据作为校准数据,对水文模型进行校准;利用全局敏感性算法获取校准后的水文模型的敏感指标;采用蒙特卡洛采样方法获取敏感指标的取值组合,将取值组合输入经校准的水文模型进行仿真计算,得到模型输出结果;比较模型输出结果与校准数据的统计特征指标,选择统计特征指标满足阈值的取值组合对应的敏感指标,将选择的敏感指标作为水文模型的最优参数。
其中,逐时雨量数据是指每小时记录的降雨量数据。这种数据通常表示在一定时间段内地区内降水的强度、分布和时空变化。逐时雨量数据在水文模型的校准中用于模拟降水过程。通过与实测数据进行比较,可以调整水文模型的参数,以更准确地模拟实际的雨量输入。逐时流量数据是指每小时记录的流量数据。这种数据表示汇水区中水量随时间的变化情况。逐时流量数据用于验证水文模型对水流过程的模拟效果。通过与实测的流量数据进行比较,可以评估水文模型的性能,并进行调整以提高模拟结果的准确性。在校准水文模型时,逐时雨量数据和逐时流量数据的配合使用能够提高模型的可靠性和适应性。通过比较模拟结果和实测数据,调整水文模型的参数,以使其更好地反映实际水文过程。
其中,全局敏感性算法是一种对模型参数进行敏感性分析的方法。系统地变化模型的参数,覆盖参数的整个范围。记录参数变化对应模型输出结果的变化情况。通过统计分析参数变化范围与模型输出变化范围的关系,计算参数对模型结果的全局敏感度。对所有参数进行上述分析,获得每个参数的全局敏感度指标。根据敏感度指标对各参数的重要性进行排序。相较本地敏感性分析,全局敏感性分析可以更全面地反映参数对模型结果的影响,用于模型校准,识别关键参数。
其中,敏感指标是水文模型中对模拟结果敏感的参数或变量。这可以包括模型输出的特定变量,如洪水峰值流量、径流量等。通过定义敏感指标,可以集中关注模型输出中最关键的变量,以便在蒙特卡洛采样中更有效地探索参数空间。蒙特卡洛采样是一种随机采样方法,通过在参数空间内随机抽样来获取多组参数取值。通过蒙特卡洛采样,可以生成大量的参数组合,覆盖参数空间的广泛范围,以评估模型在不同参数组合下的性能。将蒙特卡洛采样得到的参数取值组合输入校准的水文模型进行仿真计算,得到相应的模型输出结果。通过模拟计算,可以得到每组参数取值下水文模型的响应,包括模型输出的敏感指标的取值。这形成了参数空间中的一组模型输出。对模型输出结果进行分析,评估模型在不同参数组合下的性能,特别是关注敏感指标的变化。通过分析蒙特卡洛采样得到的模型输出结果,可以确定哪些参数对于模型输出的敏感指标有较大影响。这有助于理解模型的不确定性和提高模型的可靠性。
其中,计算最优参数包括:统计特征指标包括模型输出结果与校准数据之间的各种统计性质,如均方根误差(RMSE)、相关系数(R2)、纳什效率系数(NSE)等。这些指标用于衡量模型的预测性能,通过与校准数据比较,确定模型输出结果的拟合程度。对每组参数取值组合进行模型仿真计算后,计算模型输出结果与校准数据的统计特征指标。通过比较统计特征指标,可以评估模型在不同参数组合下的表现,识别哪些组合能够更好地拟合校准数据。设定统计特征指标的阈值,作为判定模型性能优劣的标准。通过设定阈值,可以筛选出模型输出结果中表现良好的参数组合,满足阈值的组合被认为是可接受的。从满足阈值的参数组合中选择对应的敏感指标。这些敏感指标是模型输出结果中关键的变量,对于描述水文过程具有重要意义。选择敏感指标有助于更准确地理解模型对水文过程的模拟效果,以便进一步确定最优参数。将选择的敏感指标作为水文模型的最优参数,形成最优参数组合。最优参数组合是在满足统计特征指标阈值的情况下,对模型进行校准得到的最优解。这些参数能够使模型更好地拟合实际水文数据。
进一步的,利用水文模型进行降雨径流模拟分析,包括:将设置的不同重现期对应的降雨输入情景作为输入,导入确定最优参数的水文模型;针对每个降雨输入情景,利用确定最优参数的水文模型计算不同降雨步长下的地表径流深度数据;利用计算得到的不同降雨步长下的地表径流深度数据,生成对应重现期的地表径流分布图;利用地表径流分布图,划分绿色基础设施分为源区和汇区,其中源区表示产生径流的单元,汇区表示未产生径流的单元;
统计计算源区和汇区的面积比例,根据降雨时长与源汇区面积比,建立多项式模型;应用阈值回归算法,根据建立的多项式模型计算源区动态变化过程中的转折点,其中转折点表示汇区转化为源区的比例前后发生斜率突变的点;在源区和汇区动态变化过程中的转折点时刻,获取对应植被三维指标和建筑物三维指标的指标值,作为地表径流响应的关键三维指标。
其中,计算不同降雨步长下的地表径流深度数据包括:设置不同时间步长的降雨输入,例如10分钟、15分钟、1小时等。在水文模型中,设置计算时间步长,例如1小时。对每个降雨输入情景,以模型计算步长为基准,聚合生成不同降雨步长的输入文件。在水文模型中读入不同降雨步长的输入文件,运行模拟。模型以计算步长进行迭代计算,并输出各时段的地表径流深度。对比分析不同降雨步长下的地表径流深度结果。评估不同输入降雨步长对模拟结果的影响,为后续模型优化提供依据。
其中,生成地表径流分布图包括:收集研究区域的DEM数据和提取流域范围。在GIS平台上建立研究区域的网格划分。将水文模型中计算获得的不同网格单元的地表径流深度结果导入到GIS平台,与网格层进行空间连接。针对不同重现期的模拟结果,使用空间分析模块进行网格单元的径流深度插值。利用流域范围进行裁剪,得到不同重现期下的研究流域地表径流分布图。设置径流深度对应的颜色梯度,生成有色编码的地表径流分布可视化。输出不同重现期条件下的地表径流分布图。
其中,划分绿色基础设施分为源区和汇区包括:获取地表径流的空间分布图,可以通过遥感数据、地理信息系统(GIS)数据或水文模型模拟等方式得到。这图像应该反映区域内地表径流的空间变化。设定一个阈值,用于区分产生径流和未产生径流的区域。该阈值的选择可以基于洼地蓄水深度,比如设定一个大于洼地蓄水深度的地表径流深度。利用图像处理技术,对地表径流分布图进行分割和分类。这可以通过阈值处理、聚类算法或深度学习方法来实现。目标是将地表径流图像划分为源区和汇区。从分类后的图像中提取源区,即被判定为产生地表径流的区域。这涉及到将图像中与源区相关的类别或像素提取出来。同样从分类后的图像中提取汇区,即未产生地表径流的区域。这是通过排除源区之外的类别或像素来实现的。对提取的源区和汇区进行验证,可以使用实地调查数据或其他参考数据。如果有需要,可以调整阈值或算法参数以提高结果的准确性。结果可以导入GIS中进行可视化、分析和进一步的空间数据处理。GIS工具提供了对地表径流分布的更深入分析和管理。结合其他地理信息,如地形、土地利用等数据,进一步完善源区和汇区的空间特征,以提高划分的准确性。
其中,利用DEM提取流域范围,计算每个格点的流向,确定源区和汇区范围。统计源区和汇区在不同时段的面积,计算两者的面积比例。建立以降雨时长为自变量,源汇区面积比为因变量的多项式回归模型。应用阈值回归模型,计算源汇区面积比的转折点,例如当存在一点,该点前的拟合模型斜率为负,该点后的拟合模型斜率为正,则该点为转折点。在多项式模型曲线上,计算源汇区面积比和降雨时长的拟合模型的斜率,识别斜率的突变点。该突变点即为源区转化为汇区的转折点。重复上述过程可以计算得到不同降雨情景下的转折点。
其中,计算地表径流响应的关键三维指标包括:在提取的源区和汇区范围内,采集植被覆盖和建筑物的三维数据。计算植被三维指标,如叶面积指数、树冠体积等。计算建筑物三维指标,如建筑物密度、建筑物高度等。在计算得到的源汇区转折点时刻,提取转折点对应时刻的植被指数和建筑指数。统计分析转折点时刻的指数值分布情况。最终得到的植被指数取值和建筑指数取值可以表示地表径流响应的关键三维指标。
进一步的,计算地表径流响应的关键三维指标包括:利用模拟得到的地表径流深度数据,计算得到地表径流响应指标,地表径流响应指标包含径流量和流长指数;计算地表径流响应指标与植被三维指标的相关系数,得到植被景观相关系数;计算地表径流响应指标与建筑物三维指标的相关系数,得到建筑物景观相关系数;在源区和汇区动态变化过程中的转折点上,获取与转折点对应的植被景观相关系数和建筑物景观相关系数,作为三维景观指数;将获取的三维景观指数作为地表径流响应的关键三维指标。
其中,径流量是指在一定时间内通过地表径流的总水量。它表示了雨水或融雪等水文过程引起的径流总量,通常以体积单位(如立方米或立方英尺)表示。径流量是评估水文过程中水体产生的径流的主要指标之一。通过模拟计算,可以得到不同时段内的径流量,帮助了解雨水在流域内的分布和变化。流长指数是描述水体流经地表的路径的指标。它表示水分通过地表径流的平均路径长度。流长指数越大,水体在地表径流过程中流经的路径越长。流长指数提供了关于径流路径的信息,有助于理解水体在流域内的运动方式。较大的流长指数表示水体在地表流动过程中经历了相对较长的路径,而较小的流长指数表示径流路径较短。
其中,计算植被景观相关系数包括:利用植被点云计算研究区的植被结构参数,如叶面积指数、绿量、冠层高度、冠层覆盖度、植被高度异质性等。利用水文模型,模拟计算对应时相的地表径流响应指标,如径流量和流长指数。将不同地块单元的植被指数和径流响应指标数据进行匹配。计算植被指数与径流响应指标之间的Pearson相关系数。利用植被景观相关系数,可以评估不同区域植被对地表径流的影响关系。计算建筑物景观相关系数与计算植被景观相关系数相同,在此不再赘述。
其中,在已提取的源区-汇区转折点上,确定对应转折时刻的植被覆盖数据和建筑物数据。计算转折时刻植被的各类植被指数,如叶面积指数、冠层覆盖度等。利用预建立的植被景观相关系数,提取转折时刻的关键植被三维景观指数。同理,计算转折时刻建筑物的各类指数,并利用建筑景观相关系数提取关键建筑三维景观指数。植被景观指数和建筑景观指数综合构成三维景观指数。重复上述过程,在不同转折点获取对应时刻的三维景观指数。最终获得源区-汇区转折过程中时间序列的关键三维景观指数。该指数反映了景观要素对径流响应的综合影响。
相比于现有技术,本申请的优点在于:
(1)获取原始的点云数据,包含城市各类地物的三维坐标信息,通过预处理去除异常点和噪声点,保证了数据质量;获取地理空间影像数据,包含城市景观平面范围信息,并进行投影转换、配准等处理,准确对应点云数据;提取地理空间数据中的植被轮廓和建筑物轮廓,作为参数计算的空间范围;根据提取的轮廓范围,精确裁剪点云数据,得到植被点云和建筑物点云;分析点云数据,计算植被和建筑物的各项三维参数,如冠层高度、体积率等;实现了城市主要地物的三维结构特征的准确获取和量化,克服了现有技术依赖主观判断带来的数据质量欠佳的问题,使城市三维景观分析更加精确;
(2)构建包含地表径流、河道径流等子模型的分布式水文模型,设置不同降雨情景;将提取的植被和建筑物的参数如冠层高度、建筑密度等导入水文模型;运行水文模型,模拟地表径流过程,获得植被、建筑物的源汇状态变化;根据源汇状态变化情况,评估不同城市绿地的径流调节能力;充分考虑了景观参数的动态变化对径流的影响,能够准确判定植被与建筑物的源汇功能转换,克服了现有研究存在的静态景观评估的不足,实现了地表径流过程机理的精确模拟和评估;
(3)在水文模型模拟的基础上,计算源区和汇区的转折点,作为地表径流过程的阈值,根据阈值,统计景观参数与径流响应的相关性,判断不同绿地在降雨条件下的径流调节能力,优化绿地布局方案,使关键参数达到阈值要求,提供了量化的规划依据,有利于针对性提升绿地对径流的调控作用,解决了现有经验化设计的局限性,使绿色基础设施规划更具针对性和效率。
本申请通过结合机载激光雷达点云数据和地理空间数据,可以精确提取和量化包含三维结构信息的城市植被和建筑物景观参数,实现了对复杂城市三维景观的准确描绘;应用空间分布式水文模型并输入三维景观参数,可以模拟植被和建筑物在地表径流过程中的源汇功能转换,实现了对景观源-汇动态过程的再现;通过模拟分析植被和建筑物参数与地表径流响应的关系,可以确定影响径流过程的关键三维景观参数,实现了源汇过程转折点特征的识别。
附图说明
图1为本申请多源数据输入与处理数据的流程示意图;
图2为本申请三维景观重建的流程示意图;
图3为本申请源汇动态过程模拟的流程示意图;
图4为本申请关键三维景观指标识别的流程示意图;
图5为本申请一实施例中三维景观指标示意图;
图6为本申请一实施例中源-汇景观动态变化示意图;
图7为本申请一实施例中降雨情景S1下源-汇景观与降雨时间步长的非线性关系示意图;
图8为本申请一实施例中降雨情景S2下源-汇景观与降雨时间步长的非线性关系示意图;
图9为本申请一实施例中降雨情景S3下源-汇景观与降雨时间步长的非线性关系示意图;
图10为本申请一实施例中关键三维景观指标识别示意图。
具体实施方式
本申请的具体实施例以面积为5.13平方公里的城镇圩区为例,进行如下技术实施:对案例区获取点云数据、地理空间数据和气象水文数据,并进行预处理。提取植被和建筑物的参数作为三维景观指标。构建案例区的分布式水文模型,设置不同重现期的降雨输入情景,模拟地表径流过程。在不同降雨情景下,提取各时段的植被和建筑物源汇状态,绘制源汇空间分布动态图。分析植被和建筑物参数与地表径流响应指标的相关性,确定影响地表径流响应的关键三维指标。识别源汇转换的转折点,确定该转折点下影响地表径流响应的关键三维指标。通过该具体实施例的技术实现过程,完成了对案例区源汇过程和关键三维指标的确定,说明了本申请方案的技术可行性。
图1为本申请多源数据输入与处理数据的流程示意图,本文提供了结合机载雷达点云和地理空间信息的多源数据输入与处理技术,包括如下步骤:从机载LiDAR系统获取高分辨率的点云数据,包括城市的地形和建筑物等细节。收集气象水文观测数据,包括降雨强度、温度、湿度等信息。获取河流网络普查数据,以获得关于城市水体系统的信息。进行用地与建筑轮廓的勘测,以获取城市地物的空间分布。对点云数据进行配准,确保不同时间和位置采集的点云数据一致。进行点云数据的裁剪,去除无关区域的信息,集中在城市范围内感兴趣的区域。进行点云数据的去噪和滤波,以消除采集过程中的噪声和提高数据质量。基于气象水文观测数据,划分降雨事件,确定模拟的时间范围和降雨强度。对地理空间数据进行投影转换至CGCS20003DegreeGKZone40坐标系,以确保不同数据集的一致性。进行地理配准,将各类地理空间数据集成到同一坐标系统中。利用处理后的点云数据构建城市的三维景观模型。将河流网络数据集成到三维景观中,形成完整的水体系统。应用水文模型,结合降雨事件和地形信息,模拟地表径流过程。分析植被与建筑物在地表径流中的动态变化,评估其对径流的调节能力。
图2为本申请三维景观重建的流程示意图,本文提供了点云信息分类和三维景观指标计算方法,包括如下步骤:利用前述流程获取的点云数据、地理空间数据(植被覆盖范围、建筑轮廓)。将点云数据与植被覆盖范围进行重叠分析,提取植被点云。将点云数据与建筑轮廓范围进行重叠分析,提取建筑点云。对分类后的点云数据进行质量控制,去除噪声和异常点。利用植被点云进行植被结构的三维重建,包括叶面积指数、冠层高度、冠层覆盖度、冠层高度异质性等指标。利用建筑点云进行建筑结构的三维重建,包括屋面高度、屋面坡度、建筑形态系数、建筑容积率、建筑拥挤度等指标。对植被结构进行叶面积指数、冠层高度、冠层覆盖度、冠层高度异质性等指标的计算。对建筑结构进行屋面高度、屋面坡度、建筑形态系数、建筑容积率、建筑拥挤度等指标的计算。相关计算公式如表1所示:
表1.三维景观指标计算方法
其中,A为地块面积,Ai为建筑楼层面积,Fi为层数,N为建筑数量,Hi为建筑高度,Pi为建筑底面积周长,Vi为建筑体积。
图3为本申请源汇动态过程模拟的流程示意图,本文提供了基于水文模拟的地表径流源汇景观动态过程分析技术,包括如下步骤:经过预处理的实测数据,包括坡面流、饱和带、非饱和带、河道等。使用MIKESHE/11模型,该模型支持坡面流、饱和带、非饱和带、河道等模块的耦合。将模型域划分为5米精度的网格,确保空间分辨率足够细致。识别地表与河道存在水量交换的空间像元,设定河岸糙率、边坡系数、河岸高程等参数。实现水文与水动力模型的耦合,确保水量在地表与河道之间的交换得以模拟。选择敏感参数,如垂直导水率、水平导水率、冠层截留比例、洼地蓄水深度、排水时间常数等。应用2022—2023年汛期数据进行模型参数验证。使用纳什效率系数(NSE)和决定系数(R2)等指标进行模型的校正,确保模拟结果与实测数据拟合较好。具体计算公式如下:
Oi和Si分别代表观测和模拟的径流响应,和/>分别为观测和模拟结果的平均值。比较观测和模拟结果的平均值,通过统计指标(如平均绝对误差、纳什效率系数等)进行定量评估。/>
综上,水文模型的参数校正结果如下表2所示,体现了模型较好的拟合效果:
表2.水文模型校正与验证结果
设计不同重现期(20年一遇、50年一遇)的24小时历时的暴雨情景,并通过这些情景计算不同时间步长下的地表径流淹没结果。这一过程有助于评估城市地表径流的极端情景,为水文模型的设计和城市规划提供重要参考。选择24小时历时的暴雨,模拟长时间内的降雨过程。设计不同重现期的暴雨,包括20年一遇、50年一遇的情景。基于设计的暴雨情景,进行地表径流淹没计算,利用暴雨数据输入水文模型,模拟不同时间步长下的径流产生情况。结合水动力模型,模拟不同时间步长下的地表径流淹没情况。具体计算公式为:
i代表降雨强度(mm/min),P代表降雨设计重现期(year),t代表设计降雨的时长(min)。选用芝加哥雨形分配降雨过程线,并依据研究区条件设定雨峰系数为0.74,降雨情景如表3所示:
表3.降雨情景设定
最后,根据地表径流淹没深度结果,将每个模拟步长的地表景观分为两类:源景观和汇景观。其中,源景观包括建筑单元和淹没植被单元,汇景观包括未被淹没的植被单元。针对每个时间步长,计算源-汇景观比例,即源景观在总景观中的占比。将时间步长和源汇比例用多项式函数拟合,选择合适的多项式次数。使用决定系数(R2)和赤池信息量准则(AIC)评估拟合优度,确保模型在描述数据时既准确又简洁。通过分段阈值回归模型,寻找源汇比例在不同降雨情景下的转折点。这可以帮助确定在不同条件下源和汇景观之间的关键时间节点。得到拟合函数和转折点后,分析结果在城市水文模型中的应用。通过对拟合结果的评估,可以更好地理解时间步长和源汇比例之间的复杂关系,为城市水文研究提供深入的认识。多项式函数如下:
f(x)=anxn+an-1xn-1+…+a1x1+a0
x代表自变量,此处为降雨时间步长,f(x)代表因变量,此处为源汇比例,a0-n为常数项。非线性和线性模型的拟合优度对比如表4所示:
表4.非线性和线性模型的拟合优度结果
分段阈值回归模型如下:
α、β代表常数,e代表阈值参数,x代表具有阈值效应的预测变量,η代表因变量,z表示额外的预测变量,(x-e)+表示铰链函数,在x>e时等于x-e,在其他情况下等于0。
不同降雨情景下,源汇比例转折点识别结果如表5所示:
表5.源汇比例转折点识别结果
降雨情景 转折点比例 转折点时刻 p值
S1 70.62% 13h <0.001
S2 95.20% 19h <0.05
S3 95.20% 18h <0.05
图4为本申请关键三维景观指标识别的流程示意图,本文提供了源汇动态过程下的关键三维指标识别,包括如下步骤:基于径流量和流长指数计算源-汇比例转折点时刻的径流响应指标。将径流响应指标和三维景观指标按用地单元分区统计。进行Pearson相关性分析,以确定三维景观指标与径流响应指标的关系。提取转折点时刻后从源景观恢复为汇景观的空间范围。统计不同用地单元中的关键三维指标取值范围。计算并获取上述指标的均值,作为不同用地类型的三维指标取值。基于径流量和流长指数计算源-汇比例转折点时刻的径流响应指标。对径流响应指标和三维景观指标进行Pearson相关性分析,识别它们之间的关系。提取源景观恢复为汇景观的空间范围,以便进一步分析。在提取的空间范围内,统计关键三维指标在不同用地单元中的取值范围。计算并获取上述指标的均值,作为不同用地类型的三维指标阈值。得到的三维指标可以应用于源-汇景观动态过程的模拟和预测。通过对结果的评估,可以验证这些关键三维指标在不同用地类型下的适用性,并为城市水文模型提供更准确的参数设定。
图5为本申请一实施例中三维景观指标示意图,显示了案例区植被和建筑三维景观指标计算结果,体现了案例区三维景观特征的空间异质性。植被三维景观指标包括:冠层高度(CH):衡量植被冠层的垂直高度。冠层覆盖度(CC):表示植被覆盖地面的比例。三维绿量(GV):评估植被的绿色体积。叶面积指数(LAI):衡量单位地面面积上植被叶面积的指数。冠层高度异质性(CH_STD):表示植被冠层高度的异质性程度。建筑三维景观指标包括:建筑屋顶高度(RH):表示建筑屋顶的垂直高度。建筑屋顶坡度(RS):描述建筑屋顶的坡度。建筑容积率(FAR):表示建筑体积与用地面积之比。建筑拥挤度(BCD):衡量建筑在空间上的密集程度。建筑形态系数(BSC):表示建筑形态的指数。通过这些指标,图5体现了案例区植被和建筑的空间分布特征的异质性。不同颜色或图形的区域代表不同的指标取值,从而展示了植被和建筑的多样性和空间异质性。
图6为本申请一实施例中源-汇景观动态变化示意图,为源-汇景观动态变化示意图,源景观在降雨-径流过程中呈现先增加后减少,而汇景观则呈现相反的规律。在降雨开始时,源景观呈现增加的趋势,这是由于雨水导致建筑单元和淹没植被单元的增加。随着时间的推移和降雨过程的发展,源景观逐渐减少,表示淹没植被单元的水位逐渐下降或其他相关因素。与源景观相反,汇景观在降雨开始时呈现减少的趋势,随着时间的推移逐渐增加。这反映了未被淹没的植被单元面积的变化。图6的结果反映了源汇景观在降雨-径流过程中的动态变化规律。这种动态变化对于理解城市水文过程和水文模型的改进具有重要的参考价值。其中,S1t=1hp=0.04mm(A),S1t=12hp=9.12mm(B),S1t=24hp=2.15mm(C);S2t=1hp=3.55mm(D),S2t=12hp=33.32mm(E),S2t=24hp=3.95mm(F);S3t=1hp=4.02mm(G),S3t=12hp=37.75mm(H),S3t=24hp=4.49mm(I)。
图7为本申请一实施例中降雨情景S1下源-汇景观与降雨时间步长的非线性关系示意图,图8为本申请一实施例中降雨情景S2下源-汇景观与降雨时间步长的非线性关系示意图,图9为本申请一实施例中降雨情景S3下源-汇景观与降雨时间步长的非线性关系示意图,为不同降雨情景下的源汇景观与降雨时间步长的非线性关系示意图,体现了降雨过程中源-汇转换比例的先升后降规律及其转折点。图7描述了源汇比与降雨时间步长之间的非线性关系,同时体现了转折点,其中,拟合公式为:y=-0.0015x2+0.0499x+0.1128。图8展示了在降雨情景S2下,源汇比与降雨时间步长的非线性关系,显示了源汇转换比例先升后降的趋势,并标注了转折点,拟合公式为:y=-0.43x3-0.27x2+0.63x+0.58。图9呈现了在降雨情景S3下,源-汇景观与降雨时间步长的非线性关系示意图,源汇比与降雨时间步长的非线性关系,其中,拟合公式为:y=-0.5x3-0.52x2+0.66x+0.64。这些示意图的结果反映了在不同降雨情景下源-汇景观与降雨时间步长之间的非线性关系。非线性关系的存在表明了源汇转换比例在降雨过程中的动态变化,具体体现为先升后降的规律,并标注了相应的转折点。
图10为本申请一实施例中关键三维景观阈值识别示意图,为关键三维景观阈值识别结果的示意图,对于从源恢复为汇的景观,可以获取其关键三维指标的取值范围,从而明确不同用地单元上的三维指标阈值。其中,A(S1)地块叶面积指数平均值2.02㎡/㎡,三维绿量平均值214.95m3,冠层覆盖度平均值66.6%;B(S2)地块叶面积指数平均值2.08㎡/㎡,三维绿量平均值228.26m3,冠层覆盖度平均值70.43%;C(S3)地块叶面积指数平均值2.10㎡/㎡,三维绿量平均值236.74m3,冠层覆盖度平均值74.66%。图10的结果反映了景观恢复过程中关键三维指标的取值范围,并标注了不同用地单元上的关键三维指标取值。这有助于识别在源汇景观转换中具有关键作用的景观特征。

Claims (10)

1.一种面向城市三维景观的地表径流源汇分析方法,包括:
获取点云数据、气象水文数据和地理空间数据,并对获取的数据进行预处理;
从预处理后的地理空间数据中提取植被轮廓数据和建筑物轮廓数据;
根据提取的植被轮廓数据和建筑物轮廓数据,从预处理后的点云数据中分别提取植被点云数据和建筑物点云数据;
根据提取的植被点云数据和建筑物点云数据,计算植被三维指标和建筑物三维指标;
根据预处理后的气象水文数据,利用水文模型进行降雨径流模拟分析,获得地表径流深度数据,计算源汇区面积比及其转折点;
计算植被三维指标和建筑物三维指标在模拟分析得到的地表径流源汇景观转折点时刻的取值,作为地表径流响应的关键三维指标。
2.根据权利要求1所述的面向城市三维景观的地表径流源汇分析方法,其特征在于:
从预处理后的点云数据中提取植被点云数据,包括:
将预处理后的点云数据作为输入数据;
从输入数据中获取与植被轮廓范围空间分布重合的点云数据,作为植被点云原始数据;
计算植被点云原始数据的高度、面积和体积,得到植被点云三维结构数据;
基于植被点云三维结构数据,计算叶面积指数、冠层高度、冠层覆盖度、冠层高度异质性和绿地参数,作为植被三维指标。
3.根据权利要求1所述的面向城市三维景观的地表径流源汇分析方法,其特征在于:
从预处理后的点云数据中提取建筑物点云数据,包括:
将预处理后的点云数据作为输入数据;
从输入数据中提取与建筑物轮廓范围空间分布重合的点云数据,作为建筑物点云原始数据;
计算建筑物点云原始数据的高度、面积、周长和体积,得到建筑物点云三维结构数据;
基于建筑物点云三维结构数据,计算建筑物点云的屋面高度、坡度、容积率和拥挤度,作为建筑物三维指标。
4.根据权利要求1所述的面向城市三维景观的地表径流源汇分析方法,其特征在于:
对获取的气象水文数据进行预处理,包括:
通过降雨间隔时间确定不同的降雨场次,获取逐时雨量数据和逐时流量数据,逐时雨量数据表示单位时间内的降雨量,逐时流量数据表示单位时间内的河流流量。
5.根据权利要求1所述的面向城市三维景观的地表径流源汇分析方法,其特征在于:
对获取的地理空间数据进行预处理,包括:
利用阿尔伯斯等积圆锥投影对获取的地理空间数据进行投影转换,生成矢量地图数据;
采用已知控制点对获取的地理空间数据进行地理坐标配准,生成配准后的影像数据;
将生成的矢量地图数据和配准后的影响数据进行关联,作为预处理后的地理空间数据。
6.根据权利要求1至5任一所述的面向城市三维景观的地表径流源汇分析方法,其特征在于:
利用水文模型进行降雨径流模拟分析,包括:
构建网格大小为N的分布式水文模型,分布式水文模型包含地表径流子模型、饱和带子模型、非饱和带子模型和河道子模型;
利用水文模型进行降雨径流模拟分析,包括:
利用暴雨强度公式,计算不同重现期的降雨量,其中,暴雨强度公式如下所示:
i代表降雨强度mm/min,P代表降雨设计重现期,t代表设计降雨的时长min,A1、C、n和b表示参数,根据不同地区暴雨强度公式确定;
根据计算得到的不同重现期的降雨量,设置对应重现期的降雨过程线作为降雨输入情景,其中降雨过程线表示降雨强度-时间分布。
7.根据权利要求6所述的面向城市三维景观的地表径流源汇分析方法,其特征在于:
利用水文模型进行降雨径流模拟分析,包括:
将地表径流子模型和河道子模型的网格数据作为输入,采用空间重叠算法,提取地表径流子模型和河道子模型的网格在空间上的交集网格,作为水量交换连接单元;
根据地表径流过程和河道径流过程的耦合关系,建立水量交换连接单元上的河道水量平衡方程和地表水量平衡方程;
将建立的河道水量平衡方程和地表水量平衡方程作为方程组输入,采用圣维南方程组数值计算方法和有限元离散化方法,对方程组进行数值计算和网格离散化,得到河道水动力学模型和地表水文模型的耦合计算结果,作为水文模型。
8.根据权利要求7所述的面向城市三维景观的地表径流源汇分析方法,其特征在于:
利用水文模型进行降雨径流模拟分析,包括:
将不同重现期的降雨量作为输入数据,输入建立的水文模型
将逐时雨量数据和逐时流量数据作为校准数据,对水文模型进行校准;
利用全局敏感性算法获取校准后的水文模型的敏感指标;
采用蒙特卡洛采样方法获取敏感指标的取值组合,将取值组合输入经校准的水文模型进行仿真计算,得到模型输出结果;
比较模型输出结果与校准数据的统计特征指标,选择统计特征指标满足阈值的取值组合对应的敏感指标,将选择的敏感指标作为水文模型的最优参数。
9.根据权利要求8所述的面向城市三维景观的地表径流源汇分析方法,其特征在于:
利用水文模型进行降雨径流模拟分析,包括:
将设置的不同重现期对应的降雨输入情景作为输入,导入确定最优参数的水文模型;
针对每个降雨输入情景,利用确定最优参数的水文模型计算不同降雨步长下的地表径流深度数据;
利用计算得到的不同降雨步长下的地表径流深度数据,生成对应重现期的地表径流分布图;
利用地表径流分布图,划分绿色基础设施分为源区和汇区,其中源区表示产生径流的单元,汇区表示未产生径流的单元;
计算源区和汇区的面积比例,根据降雨时长与源汇区面积比,建立多项式模型;
应用阈值回归算法,根据建立的多项式模型计算源区动态变化过程中的转折点,其中转折点表示汇区转化为源区的比例前后发生斜率突变的点;
在源区和汇区动态变化过程中的转折点时刻,获取对应植被三维指标和建筑物三维指标的指标值,作为地表径流响应的关键三维指标。
10.根据权利要求9所述的面向城市三维景观的地表径流源汇分析方法,其特征在于:
计算地表径流响应的关键三维指标包括:
利用模拟得到的地表径流深度数据,计算得到地表径流响应指标,地表径流响应指标包含径流量和流长指数;
计算地表径流响应指标与植被三维指标的相关系数,得到植被景观相关系数;
计算地表径流响应指标与建筑物三维指标的相关系数,得到建筑物景观相关系数;
在源区和汇区动态变化过程中的转折点时刻,获取与转折点时刻对应的植被景观相关系数和建筑物景观相关系数,作为三维景观指数;
将获取的三维景观指数作为地表径流响应的关键三维指标。
CN202410119819.3A 2024-01-26 2024-01-26 一种面向城市三维景观的地表径流源汇分析方法 Pending CN117875564A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410119819.3A CN117875564A (zh) 2024-01-26 2024-01-26 一种面向城市三维景观的地表径流源汇分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410119819.3A CN117875564A (zh) 2024-01-26 2024-01-26 一种面向城市三维景观的地表径流源汇分析方法

Publications (1)

Publication Number Publication Date
CN117875564A true CN117875564A (zh) 2024-04-12

Family

ID=90593031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410119819.3A Pending CN117875564A (zh) 2024-01-26 2024-01-26 一种面向城市三维景观的地表径流源汇分析方法

Country Status (1)

Country Link
CN (1) CN117875564A (zh)

Similar Documents

Publication Publication Date Title
Teng et al. Rapid inundation modelling in large floodplains using LiDAR DEM
Romshoo et al. Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the Upper Indus Basin
Gül et al. A combined hydrologic and hydraulic modeling approach for testing efficiency of structural flood control measures
Sahoo et al. Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream
Melesse et al. Storm runoff prediction based on a spatially distributed travel time method utilizing remote sensing and GIS 1
CN111651885A (zh) 一种智慧型海绵城市洪涝预报方法
CN111507375B (zh) 一种城市内涝风险快速评估方法及系统
Suribabu et al. Evaluation of urban growth effects on surface runoff using SCS-CN method and Green-Ampt infiltration model
Hdeib et al. Constraining coupled hydrological-hydraulic flood model by past storm events and post-event measurements in data-sparse regions
CN112199901A (zh) 一种无径流资料山区小流域山洪设计暴雨洪水计算方法
Mararakanye et al. Using satellite-based weather data as input to SWAT in a data poor catchment
Hammouri et al. Hydrological modeling of ungauged wadis in arid environments using GIS: a case study of Wadi Madoneh in Jordan
Khadka et al. Rainfall-runoff simulation and modelling using HEC-HMS and HEC-RAS models: case studies from Nepal and Sweden
Haddjeri et al. Exploring the sensitivity to precipitation, blowing snow, and horizontal resolution of the spatial distribution of simulated snow cover
CN114186507A (zh) 一种基于wep分布式水文模型的河川基流分析方法
CN117875564A (zh) 一种面向城市三维景观的地表径流源汇分析方法
Sharma et al. Distributed numerical rainfall–runoff modelling in an arid region using thematic mapper data and a geographical information system
Melesse Spatially distributed storm runoff modeling using remote sensing and geographic information systems
Durga Rao et al. Application of satellite—based rainfall products and SRTM DEM in hydrological modelling of Brahmaputra basin
Promping et al. Effects of Climate Change and Land-use Change on Future Inflow to a Reservoir: A Case Study of Sirikit Dam, Upper Nan River Basin, Thailand
Luciani et al. Distributed urban storm water modeling within GIS integrating analytical probabilistic hydrologic models and remote sensing image analyses
Saksena Integrated Flood Modeling for Improved Understanding of River-Floodplain Hydrodynamics: Moving beyond Traditional Flood Mapping
Tancreto Comparison of hydrologic model performance statistics using Thiessen polygon rain gauge and NEXRAD precipitation input methods at different watershed spatial scales and rainfall return frequencies
Mangel Evaluation of Watershed Characteristics on Sediment Yield an d Streamflow in Dabus River, Blue Nile Basin, Ethiopia
Kienzle Integrating scales from 10s of kms to one metre for spatial flood modelling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination