CN117856803A - Radio frequency chip for improving flatness of transmission channel - Google Patents
Radio frequency chip for improving flatness of transmission channel Download PDFInfo
- Publication number
- CN117856803A CN117856803A CN202311289976.0A CN202311289976A CN117856803A CN 117856803 A CN117856803 A CN 117856803A CN 202311289976 A CN202311289976 A CN 202311289976A CN 117856803 A CN117856803 A CN 117856803A
- Authority
- CN
- China
- Prior art keywords
- control signal
- signal
- chip
- compensation capacitor
- unit amplifiers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B1/0458—Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0408—Circuits with power amplifiers
- H04B2001/0416—Circuits with power amplifiers having gain or transmission power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0491—Circuits with frequency synthesizers, frequency converters or modulators
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Amplifiers (AREA)
Abstract
Description
对相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS
本申请要求于2022年10月07日提交的韩国专利申请第10-2022-0128659号和于2022年12月21日提交的韩国专利申请第10-2022-0180454号的优先权的权益,上述韩国专利申请的公开内容通过引用整体并入于此。This application claims the benefit of priority to Korean Patent Application No. 10-2022-0128659 filed on October 7, 2022 and Korean Patent Application No. 10-2022-0180454 filed on December 21, 2022, the disclosures of which are incorporated herein by reference in their entirety.
技术领域Technical Field
本公开涉及射频(RF)芯片。The present disclosure relates to radio frequency (RF) chips.
背景技术Background technique
发送器支持针对动态范围调整驱动放大器的增益的功能。例如,驱动放大器可以包括多个单位放大器,并且可以基于对多个单位放大器进行分片(slicing)的操作来调整驱动放大器的增益。在这种情况下,被分片的单位放大器的数量可以依赖于增益调整而变化。因此,驱动放大器的输入阻抗可能变化。驱动放大器输入阻抗的变化可能导致通道平坦度的劣化。The transmitter supports the function of adjusting the gain of the driver amplifier for the dynamic range. For example, the driver amplifier may include a plurality of unit amplifiers, and the gain of the driver amplifier may be adjusted based on the operation of slicing the plurality of unit amplifiers. In this case, the number of sliced unit amplifiers may vary depending on the gain adjustment. Therefore, the input impedance of the driver amplifier may vary. The change in the input impedance of the driver amplifier may cause degradation of the channel flatness.
发明内容Summary of the invention
示例实施例提供了具有改进的通道平坦度的RF芯片。Example embodiments provide an RF chip with improved channel flatness.
根据一些示例实施例,RF芯片包括:混频器(mixer),被配置为将本地振荡信号与基带信号混合以输出RF信号;放大级,被配置为通过响应于第一控制信号而操作的多个单位放大器来放大RF信号;以及补偿电容器组,被提供在混频器和放大级之间。补偿电容器组被配置为基于第二控制信号来调整补偿电容器组的电容,第二控制信号与第一控制信号互补。According to some example embodiments, an RF chip includes: a mixer configured to mix a local oscillation signal with a baseband signal to output an RF signal; an amplifier stage configured to amplify the RF signal through a plurality of unit amplifiers operating in response to a first control signal; and a compensation capacitor group provided between the mixer and the amplifier stage. The compensation capacitor group is configured to adjust the capacitance of the compensation capacitor group based on a second control signal, the second control signal being complementary to the first control signal.
根据一些示例实施例,一种操作方法包括:通过将基带信号与本地振荡信号混合来输出RF信号;通过响应于第一控制信号而操作的多个单位放大器来放大RF信号;以及基于第二控制信号来调整在多个单位放大器的输入端子处提供的补偿电容器组的电容,第二控制信号与第一控制信号互补。According to some example embodiments, an operating method includes: outputting an RF signal by mixing a baseband signal with a local oscillation signal; amplifying the RF signal by a plurality of unit amplifiers operating in response to a first control signal; and adjusting the capacitance of a compensation capacitor group provided at input terminals of the plurality of unit amplifiers based on a second control signal, the second control signal being complementary to the first control signal.
根据一些示例实施例,一种电子设备包括:处理器;RF芯片,被配置为从处理器接收基带信号并且从基带信号输出RF信号;前端模块(FEM),被配置为放大RF信号;以及天线,被配置为发送RF信号。RF芯片可以包括:混频器,被配置为将本地振荡信号与基带信号混合以输出RF信号;放大级,被配置为通过响应于第一控制信号而操作的多个单位放大器来放大RF信号;以及补偿电容器组,被提供在混频器和放大级之间。补偿电容器组被配置为基于第二控制信号来调整补偿电容器组的电容,第二控制信号与第一控制信号互补。According to some example embodiments, an electronic device includes: a processor; an RF chip configured to receive a baseband signal from the processor and output an RF signal from the baseband signal; a front end module (FEM) configured to amplify the RF signal; and an antenna configured to transmit the RF signal. The RF chip may include: a mixer configured to mix a local oscillation signal with a baseband signal to output an RF signal; an amplifier stage configured to amplify the RF signal through a plurality of unit amplifiers operating in response to a first control signal; and a compensation capacitor group provided between the mixer and the amplifier stage. The compensation capacitor group is configured to adjust the capacitance of the compensation capacitor group based on a second control signal, the second control signal being complementary to the first control signal.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
从下面结合附图的详细描述中,将更加清楚地理解本公开的上述和其他方面、特征以及优点。The above and other aspects, features and advantages of the present disclosure will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings.
图1是示出根据一些示例实施例的RF芯片的图。FIG. 1 is a diagram illustrating an RF chip according to some example embodiments.
图2是示出根据一些示例实施例的RF芯片的图。FIG. 2 is a diagram illustrating an RF chip according to some example embodiments.
图3是示出根据一些示例实施例的补偿电容器组的图。FIG. 3 is a diagram illustrating a compensation capacitor bank according to some example embodiments.
图4是示出了图3的子电容器组的图。FIG. 4 is a diagram illustrating a sub-capacitor group of FIG. 3 .
图5是示出根据一些示例实施例的能够选择子电容器组的RF芯片的图。FIG. 5 is a diagram illustrating an RF chip capable of selecting a sub-capacitor group according to some example embodiments.
图6是被提供来描述图5的子电容器组的操作的图。FIG. 6 is a diagram provided to describe an operation of the sub capacitor groups of FIG. 5 .
图7是示出根据一些示例实施例的RF芯片的操作方法的流程图。FIG. 7 is a flowchart illustrating an operating method of an RF chip according to some example embodiments.
图8A和图8B是示出基于补偿电容器组是存在还是不存在的放大器输入电容的图。8A and 8B are graphs showing amplifier input capacitance based on whether a compensation capacitor bank is present or absent.
图9A和图9B是示出依赖于偿电容器组是存在还是不存在的RF信号的通道平坦度的图。9A and 9B are graphs showing channel flatness of an RF signal depending on whether a compensation capacitor bank is present or absent.
图10是示出根据一些示例实施例的电子设备的图。FIG. 10 is a diagram illustrating an electronic device according to some example embodiments.
具体实施方式Detailed ways
在下文中,将参考附图描述示例实施例。Hereinafter, example embodiments will be described with reference to the accompanying drawings.
图1是示出根据一些示例实施例的RF芯片的图。FIG. 1 is a diagram illustrating an RF chip according to some example embodiments.
参考图1,根据一些示例实施例的射频(RF)芯片100可以被定义为芯片或集成电路(IC),其包括用于将基带信号BB或中频(IF)信号转换为射频信号RF、放大射频信号RF以及发送放大的信号的各种组件。RF芯片100可以作为RF链或发送链(TX链)的一部分被包括。RF芯片100可以包括混频器110、放大级120和补偿电容器组130。1, a radio frequency (RF) chip 100 according to some example embodiments may be defined as a chip or an integrated circuit (IC) including various components for converting a baseband signal BB or an intermediate frequency (IF) signal into a radio frequency signal RF, amplifying the radio frequency signal RF, and transmitting the amplified signal. The RF chip 100 may be included as part of an RF chain or a transmission chain (TX chain). The RF chip 100 may include a mixer 110, an amplifier stage 120, and a compensation capacitor bank 130.
混频器110可以接收基带信号BB,并且可以将基带信号BB与本地振荡器(LO)信号混合以输出射频信号RF。本地振荡信号可以具有用于将基带信号BB的频率上变频到RF频带的频率。The mixer 110 may receive the baseband signal BB and may mix the baseband signal BB with a local oscillator (LO) signal to output a radio frequency signal RF. The local oscillation signal may have a frequency for up-converting the frequency of the baseband signal BB to an RF band.
放大级120可以调整从混频器110输出的射频信号RF的增益。放大级120可以包括用于射频信号RF的动态范围DR的多个单位放大器121。在一些示例实施例中,多个单位放大器121可以彼此并联连接,并且可以响应于第一控制信号EN而操作。第一控制信号EN可以是用于对多个单位放大器121中的每个进行分片(例如,接通或关闭)的使能信号。第一控制信号EN可以是用于控制多个单位放大器121中的每个的数字信号。The amplifier stage 120 may adjust the gain of the radio frequency signal RF output from the mixer 110. The amplifier stage 120 may include a plurality of unit amplifiers 121 for a dynamic range DR of the radio frequency signal RF. In some example embodiments, the plurality of unit amplifiers 121 may be connected in parallel to each other and may operate in response to a first control signal EN. The first control signal EN may be an enable signal for slicing (e.g., turning on or off) each of the plurality of unit amplifiers 121. The first control signal EN may be a digital signal for controlling each of the plurality of unit amplifiers 121.
在一些示例实施例中,当单位放大器121的数量是n(其中n是正整数)时,第一控制信号EN可以具有n比特的幅度(magnitude)。多个单位放大器121中的每个可以基于第一控制信号EN的每个比特的逻辑状态被接通或关闭。放大级120可以控制基于第一控制信号EN而接通的单位放大器121的数量,以调整射频信号RF的增益。In some example embodiments, when the number of unit amplifiers 121 is n (where n is a positive integer), the first control signal EN may have an n-bit magnitude. Each of the plurality of unit amplifiers 121 may be turned on or off based on the logic state of each bit of the first control signal EN. The amplifier stage 120 may control the number of unit amplifiers 121 turned on based on the first control signal EN to adjust the gain of the radio frequency signal RF.
放大级120可以通过响应于第一控制信号EN而操作的多个单位放大器121来放大射频信号RF,并且可以输出放大的RF信号A_RF。The amplification stage 120 may amplify the radio frequency signal RF through a plurality of unit amplifiers 121 operating in response to the first control signal EN, and may output an amplified RF signal A_RF.
在一些示例实施例中,当基于晶体管来实现多个单位放大器121时,在被第一控制信号EN关闭的单位放大器121中,晶体管的栅极偏置可以被调整为地电压VSS。随着栅极偏置被调整为地电压VSS,与接通的单位放大器121的输入电容相比,关闭的单位放大器121的输入电容可以相对地减小。例如,放大级120的输入电容Cin_Amp(或阻抗)可以依赖于基于动态范围DR的调整来接通或关闭的单位放大器121的数量而变化。In some example embodiments, when a plurality of unit amplifiers 121 are implemented based on transistors, in the unit amplifier 121 turned off by the first control signal EN, the gate bias of the transistor may be adjusted to the ground voltage VSS. As the gate bias is adjusted to the ground voltage VSS, the input capacitance of the turned-off unit amplifier 121 may be relatively reduced compared to the input capacitance of the turned-on unit amplifier 121. For example, the input capacitance Cin_Amp (or impedance) of the amplification stage 120 may vary depending on the number of the unit amplifiers 121 turned on or off based on the adjustment of the dynamic range DR.
例如,随着关闭的单位放大器121的数量相对地增加,放大级120的输入电容Cin_Amp可以减小。当输入电容Cin_Amp变化时,射频信号RF的调谐频率可以被上移到相对地高的频率。调谐频率的这种偏移可能导致通道平坦度劣化。For example, as the number of closed unit amplifiers 121 increases relatively, the input capacitance Cin_Amp of the amplifier stage 120 may decrease. When the input capacitance Cin_Amp changes, the tuning frequency of the radio frequency signal RF may be shifted up to a relatively high frequency. Such a shift in the tuning frequency may cause channel flatness to deteriorate.
在一些示例实施例中,RF芯片100可以额外地包括混频器110和放大级120之间的补偿电容器组130,以依赖于放大级120的上述增益调整来补偿输入电容Cin_Amp的变化。补偿电容器组130可以被提供在混频器110和放大级120之间。补偿电容器组130的一端可以连接到混频器110的输出端子,并且其另一端可以连接到放大级120的输入端子。在一些示例实施例中,混频器110和放大级120可以与补偿电容器组130通信(例如,通过/经由补偿电容器组130电连接)。In some example embodiments, the RF chip 100 may additionally include a compensation capacitor group 130 between the mixer 110 and the amplifier stage 120 to compensate for the change in the input capacitance Cin_Amp depending on the above-mentioned gain adjustment of the amplifier stage 120. The compensation capacitor group 130 may be provided between the mixer 110 and the amplifier stage 120. One end of the compensation capacitor group 130 may be connected to the output terminal of the mixer 110, and the other end thereof may be connected to the input terminal of the amplifier stage 120. In some example embodiments, the mixer 110 and the amplifier stage 120 may communicate with the compensation capacitor group 130 (e.g., be electrically connected through/via the compensation capacitor group 130).
补偿电容器组130可以具有基于与第一控制信号EN互补的第二控制信号ENB而调整的电容。术语“互补”可以意味着第二控制信号ENB被配置为控制与基于第一控制信号EN的操作相反的操作。例如,在第二控制信号ENB中所包括的每个比特的逻辑电平可以与在第一控制信号EN中所包括的每个比特的逻辑电平相反。第二控制信号ENB仅操作为与第一控制信号EN互补,从而当单位放大器121的数量为n时,类似于第一控制信号EN,第二控制信号ENB可以具有n比特的幅度。The compensation capacitor group 130 may have a capacitance adjusted based on a second control signal ENB that is complementary to the first control signal EN. The term "complementary" may mean that the second control signal ENB is configured to control an operation opposite to the operation based on the first control signal EN. For example, the logic level of each bit included in the second control signal ENB may be opposite to the logic level of each bit included in the first control signal EN. The second control signal ENB operates only to complement the first control signal EN, so that when the number of unit amplifiers 121 is n, similar to the first control signal EN, the second control signal ENB may have an amplitude of n bits.
在一些示例实施例中,当基于第一控制信号EN关闭相对地大数量的单位放大器121时,放大级120的输入电容Cin_Amp可以相对地减小。因此,与第一控制信号EN互补的第二控制信号ENB可以控制补偿电容器组130以增加补偿电容器组130的输入电容Cin_comp。例如,随着多个单位放大器121当中被关闭的单位放大器121的数量增加,补偿电容器组130的电容可以具有更大的值。In some example embodiments, when a relatively large number of unit amplifiers 121 are turned off based on the first control signal EN, the input capacitance Cin_Amp of the amplification stage 120 may be relatively reduced. Therefore, the second control signal ENB complementary to the first control signal EN may control the compensation capacitor group 130 to increase the input capacitance Cin_comp of the compensation capacitor group 130. For example, as the number of the unit amplifiers 121 turned off among the plurality of unit amplifiers 121 increases, the capacitance of the compensation capacitor group 130 may have a larger value.
作为示例,当基于第一控制信号EN接通相对地大数量的单位放大器121时,放大级120的输入电容Cin_Amp可以相对地增加。因此,与第一控制信号EN互补的第二控制信号ENB可以控制补偿电容器组130以减小补偿电容器组130的输入电容Cin_comp。As an example, when a relatively large number of unit amplifiers 121 are turned on based on the first control signal EN, the input capacitance Cin_Amp of the amplification stage 120 may be relatively increased. Therefore, the second control signal ENB complementary to the first control signal EN may control the compensation capacitor bank 130 to reduce the input capacitance Cin_comp of the compensation capacitor bank 130.
根据一些示例实施例,补偿电容器组130的电容可以补偿依赖于第一控制信号EN而变化的放大级120的输入阻抗。因此,从混频器110的输出端子来看,补偿电容器组130的输入阻抗或输入电容Cin_comp可以保持恒定,而无论依赖于放大级120的增益调整的电容变化如何。According to some example embodiments, the capacitance of the compensation capacitor group 130 may compensate for the input impedance of the amplifier stage 120 that varies depending on the first control signal EN. Therefore, from the output terminal of the mixer 110, the input impedance or input capacitance Cin_comp of the compensation capacitor group 130 may remain constant regardless of the capacitance variation depending on the gain adjustment of the amplifier stage 120.
根据一些示例实施例,当放大级120的输入电容Cin_Amp依赖于放大级120的增益调整而变化时,该变化可以通过被提供在混频器110和放大级120之间的补偿电容器组130来补偿,以保持调谐频率并且防止或减少通道平坦度劣化。例如,可以通过与用于增益调整的放大级120的第一控制信号EN互补的第二控制信号ENB来控制补偿电容器组130,以在补偿放大级120的输入电容Cin_Amp的变化的方向上控制补偿电容器组130的电容。According to some example embodiments, when the input capacitance Cin_Amp of the amplifier stage 120 varies depending on the gain adjustment of the amplifier stage 120, the variation may be compensated by the compensation capacitor group 130 provided between the mixer 110 and the amplifier stage 120 to maintain the tuning frequency and prevent or reduce channel flatness degradation. For example, the compensation capacitor group 130 may be controlled by a second control signal ENB complementary to a first control signal EN of the amplifier stage 120 for gain adjustment to control the capacitance of the compensation capacitor group 130 in a direction that compensates for the variation of the input capacitance Cin_Amp of the amplifier stage 120.
在下文中,将详细描述与上述RF芯片相关的一些示例实施例。Hereinafter, some example embodiments related to the above-mentioned RF chip will be described in detail.
图2是示出根据一些示例实施例的RF芯片的图。FIG. 2 is a diagram illustrating an RF chip according to some example embodiments.
参考图2,根据一些示例实施例的RF芯片200可以包括混频器111和112、放大级120、补偿电容器组130和匹配网络140。2 , an RF chip 200 according to some example embodiments may include mixers 111 and 112 , an amplification stage 120 , a compensation capacitor group 130 , and a matching network 140 .
混频器111和112可以接收I_baseband信号BB_I-1和BB_I-2以及Q_baseband信号BB_Q-1和BB_Q-2,并且将其与本地振荡信号LO混合,以输出RF信号RF_1和RF_2。I_baseband信号BB_I-1和BB_I-2中的每个可以是差分信号,而Q_baseband信号BB_Q-1和BB_Q-2中的每个也可以是差分信号。第一I_baseband信号BB_I-1和第二I_baseband信号BB_I-2可以具有相反的相位,以及第一Q_baseband信号BB_Q-1和第二I_baseband信号BB_Q-2可以具有相反的相位。通过混频器111和112被转换为RF频率的I_baseband信号BB_I-1和BB_I-2以及Q_baseband信号BB_Q-1和BB_Q-2可以通过匹配网络140被积分。The mixers 111 and 112 may receive the I_baseband signals BB_I-1 and BB_I-2 and the Q_baseband signals BB_Q-1 and BB_Q-2 and mix them with the local oscillation signal LO to output RF signals RF_1 and RF_2. Each of the I_baseband signals BB_I-1 and BB_I-2 may be a differential signal, and each of the Q_baseband signals BB_Q-1 and BB_Q-2 may also be a differential signal. The first I_baseband signal BB_I-1 and the second I_baseband signal BB_I-2 may have opposite phases, and the first Q_baseband signal BB_Q-1 and the second I_baseband signal BB_Q-2 may have opposite phases. The I_baseband signals BB_I-1 and BB_I-2 and the Q_baseband signals BB_Q-1 and BB_Q-2 converted into RF frequencies by the mixers 111 and 112 may be integrated by the matching network 140.
匹配网络140可以接收混频器111和112的输出信号,并且可以输出RF信号RF_1和RF_2。RF信号RF_1和RF_2可以是差分信号,包括具有相反相位的第一射频信号RF_1和第二射频信号RF_2。在一些示例实施例中,匹配网络140可以被实现为基于变压器的网络、基于分流(shunt)电感器的网络、基于L网络的网络、基于LC谐振(LC tank)电路的网络等。替选地,匹配网络140可以被省略,如图1所示。The matching network 140 may receive the output signals of the mixers 111 and 112, and may output RF signals RF_1 and RF_2. The RF signals RF_1 and RF_2 may be differential signals, including a first RF signal RF_1 and a second RF signal RF_2 having opposite phases. In some example embodiments, the matching network 140 may be implemented as a transformer-based network, a shunt inductor-based network, an L-network-based network, an LC tank-based network, etc. Alternatively, the matching network 140 may be omitted, as shown in FIG. 1 .
放大级120可以包括分别地处理差分信号的多个第一单位放大器122和多个第二单位放大器123。多个第一单位放大器122可以被配置为调整第一射频信号RF_1的增益,以及多个第二单位放大器123可以被配置为调整第二射频信号RF_2的增益。可以输出具有通过多个第一单位放大器122调整的增益的第一放大的RF信号A_RF_1,以及可以输出具有通过多个第二单位放大器123调整的增益的第二放大的RF信号A_RF_2。The amplification stage 120 may include a plurality of first unit amplifiers 122 and a plurality of second unit amplifiers 123 that process differential signals, respectively. The plurality of first unit amplifiers 122 may be configured to adjust the gain of the first RF signal RF_1, and the plurality of second unit amplifiers 123 may be configured to adjust the gain of the second RF signal RF_2. A first amplified RF signal A_RF_1 having a gain adjusted by the plurality of first unit amplifiers 122 may be output, and a second amplified RF signal A_RF_2 having a gain adjusted by the plurality of second unit amplifiers 123 may be output.
多个第一单位放大器122中的每个和多个第二单位放大器123中的每个可以基于第一控制信号EN被接通或关闭。Each of the plurality of first unit amplifiers 122 and each of the plurality of second unit amplifiers 123 may be turned on or off based on the first control signal EN.
补偿电容器组130可以被提供在匹配网络140和放大级120之间。补偿电容器组130可以响应于第二控制信号ENB而操作,该第二控制信号与控制放大级120的第一控制信号EN互补(例如,如图1所示)。可以基于第二控制信号ENB来调整补偿电容器组130的电容,从而允许调整补偿电容器组130的输入电容Cin_Comp。The compensation capacitor bank 130 may be provided between the matching network 140 and the amplifier stage 120. The compensation capacitor bank 130 may operate in response to a second control signal ENB that is complementary to the first control signal EN that controls the amplifier stage 120 (e.g., as shown in FIG. 1 ). The capacitance of the compensation capacitor bank 130 may be adjusted based on the second control signal ENB, thereby allowing the input capacitance Cin_Comp of the compensation capacitor bank 130 to be adjusted.
在一些示例实施例中,从放大级120输出的射频信号RF可以被调谐到特定的调谐频率。可以基于放大级120的输入电容Cin_Amp、补偿电容器组130的电容和匹配网络140的阻抗来确定调谐频率。例如,可以基于混频器111和112的输出端子或匹配网络140的输入端子的输入阻抗来确定调谐频率。在这种情况下,如上所述,放大级120的输入电容Cin_Amp可以依赖于增益调整而变化,并且因此,调谐频率也可以变化。In some example embodiments, the radio frequency signal RF output from the amplifier stage 120 may be tuned to a specific tuning frequency. The tuning frequency may be determined based on the input capacitance Cin_Amp of the amplifier stage 120, the capacitance of the compensation capacitor bank 130, and the impedance of the matching network 140. For example, the tuning frequency may be determined based on the input impedance of the output terminals of the mixers 111 and 112 or the input terminals of the matching network 140. In this case, as described above, the input capacitance Cin_Amp of the amplifier stage 120 may vary depending on the gain adjustment, and therefore, the tuning frequency may also vary.
例如,当RF芯片200以低增益操作时,多个第一单位放大器122和多个第二单位放大器123当中被关闭的单位放大器121的数量可以相对地增加。这意味着放大级120的输入电容Cin_Amp的减小。补偿电容器组130可以响应于与操作放大级120的第一控制信号EN互补的第二控制信号ENB而操作,以补偿放大级120的减小的输入电容。因此,即使当放大级120的输入电容Cin_Amp变化时,补偿电容器组130的电容也可以补偿放大级120的输入电容Cin_Amp的变化,从而匹配网络140的输入端子的输入阻抗可以保持恒定。For example, when the RF chip 200 operates at a low gain, the number of the unit amplifiers 121 that are turned off among the plurality of first unit amplifiers 122 and the plurality of second unit amplifiers 123 may be relatively increased. This means a reduction in the input capacitance Cin_Amp of the amplifier stage 120. The compensation capacitor group 130 may operate in response to a second control signal ENB complementary to the first control signal EN for operating the amplifier stage 120 to compensate for the reduced input capacitance of the amplifier stage 120. Therefore, even when the input capacitance Cin_Amp of the amplifier stage 120 changes, the capacitance of the compensation capacitor group 130 may compensate for the change in the input capacitance Cin_Amp of the amplifier stage 120, so that the input impedance of the input terminal of the matching network 140 may be kept constant.
图3是示出根据一些示例实施例的补偿电容器组的图。FIG. 3 is a diagram illustrating a compensation capacitor bank according to some example embodiments.
参考图3,补偿电容器组130可以连接到第一差分端口P1-1和P1-2,该第一差分端口P1-1和P1-2连接到上述混频器110或匹配网络140;以及连接到第二差分端口P2-1和P2-2,该第二差分端口P2-1和P2-2连接到放大级120。补偿电容器组130可以包括一个或多个子电容器组131_1、131_2至131_k。3 , the compensation capacitor group 130 may be connected to first differential ports P1-1 and P1-2 connected to the mixer 110 or the matching network 140, and to second differential ports P2-1 and P2-2 connected to the amplifier stage 120. The compensation capacitor group 130 may include one or more sub-capacitor groups 131_1, 131_2 to 131_k.
一个或多个子电容器组131_1、131_2至131_k可以响应于共同施加的第二控制信号ENB而操作。一个或多个子电容器组131_1、131_2至131_k中的每个的电容可以基于第二控制信号ENB来调整。The one or more sub-capacitor groups 131_1, 131_2 to 131 — k may operate in response to the commonly applied second control signal ENB. The capacitance of each of the one or more sub-capacitor groups 131_1, 131_2 to 131 — k may be adjusted based on the second control signal ENB.
即使当共同施加第二控制信号ENB时,子电容器组131_1、131_2至131_k的电容也可以彼此不同。例如,基于第二控制信号ENB,第一子电容器组131_1的电容可以由Ca调整,第二子电容器组131_2的电容可以由Cb调整,以及第三子电容器组131_k的电容可以由Cc调整,其中,Ca、Cb和Cc可以是不同的实数值。Even when the second control signal ENB is commonly applied, the capacitances of the sub-capacitor groups 131_1, 131_2 to 131_k may be different from each other. For example, based on the second control signal ENB, the capacitance of the first sub-capacitor group 131_1 may be adjusted by Ca, the capacitance of the second sub-capacitor group 131_2 may be adjusted by Cb, and the capacitance of the third sub-capacitor group 131_k may be adjusted by Cc, where Ca, Cb, and Cc may be different real value values.
在一些示例实施例中,子电容器组131_1、131_2至131_k中的每个可以被实现为具有依赖于放大级120的增益步长而变化的值,在放大级120中基于第一控制信号EN来调整电容。另外,子电容器组131_1、131_2至131_k可以包括k个子电容器组(其中k是正整数),并且k也可以被设置为依赖于放大级120的增益步长而变化。In some example embodiments, each of the sub-capacitor groups 131_1, 131_2 to 131_k may be implemented to have a value that varies depending on a gain step of the amplifier stage 120, in which the capacitance is adjusted based on the first control signal EN. In addition, the sub-capacitor groups 131_1, 131_2 to 131_k may include k sub-capacitor groups (where k is a positive integer), and k may also be set to vary depending on the gain step of the amplifier stage 120.
图4是示出图3的子电容器组的图。FIG. 4 is a diagram illustrating a sub-capacitor group of FIG. 3 .
参考图4,单个子电容器组中的每个(例如,如图4所示的子电容器组131_k)可以包括多个电容器调整电路132_1、132_2至132_n。4 , each of the individual sub-capacitor groups (eg, the sub-capacitor group 131 — k as shown in FIG. 4 ) may include a plurality of capacitor adjustment circuits 132_1 , 132_2 to 132 — n .
电容器调整电路132_1、132_2至132_n可以包括开关S1、S2至Sn以及分别地连接到开关S1、S2至Sn的单位电容器C1、C2至Cn。为了便于描述,在图4中,每个电容器调整电路被示出为包括单个单位电容器。然而,在一些示例实施例中,一个或多个单位电容器可以连接到单个开关。电容器调整电路132_1、132_2至132_n的数量可以是n,这与单位放大器121的数量相同。The capacitor adjustment circuits 132_1, 132_2 to 132_n may include switches S1, S2 to Sn and unit capacitors C1, C2 to Cn connected to the switches S1, S2 to Sn, respectively. For ease of description, in FIG. 4, each capacitor adjustment circuit is shown as including a single unit capacitor. However, in some example embodiments, one or more unit capacitors may be connected to a single switch. The number of capacitor adjustment circuits 132_1, 132_2 to 132_n may be n, which is the same as the number of unit amplifiers 121.
第二控制信号ENB可以被施加到各个电容器调整电路132_1、132_2至132_n,以独立地操作电容器调整电路132_1、132_2至132_n。例如,当第二控制信号ENB是n比特信号时,第二控制信号ENB可以以比特为单位被施加到各个电容器调整电路132_1、132_2至132_n。The second control signal ENB may be applied to each capacitor adjustment circuit 132_1, 132_2 to 132_n to independently operate the capacitor adjustment circuit 132_1, 132_2 to 132_n. For example, when the second control signal ENB is an n-bit signal, the second control signal ENB may be applied to each capacitor adjustment circuit 132_1, 132_2 to 132_n in units of bits.
可以为子电容器组131_1、131_2至131_k中的每个提供与多个单位放大器121相同数量的电容器调整电路132_1、132_2至132_n,使得多个电容器调整电路132_1、132_2至132_n独立地操作。例如,当单位放大器121的数量为n时,也可以为子电容器组131_1、131_2至131_k中的每个提供n个电容器调整电路132_1、132_2至132_n。The same number of capacitor adjustment circuits 132_1, 132_2 to 132_n as the number of unit amplifiers 121 may be provided for each of the sub-capacitor groups 131_1, 131_2 to 131_k so that the plurality of capacitor adjustment circuits 132_1, 132_2 to 132_n operate independently. For example, when the number of unit amplifiers 121 is n, n capacitor adjustment circuits 132_1, 132_2 to 132_n may also be provided for each of the sub-capacitor groups 131_1, 131_2 to 131_k.
分别地包括在电容器调整电路132_1、132_2至132_n中的开关S1、S2至Sn可以基于以比特为单位施加的第二控制信号ENB而导通或关断。例如,当以比特为单位施加到放大级120的第一控制信号EN是EN<n-1>、EN<n-2>和EN<0>时,以比特为单位施加到多个电容器调整电路132_1、132_2和132_n的第二控制信号ENB可以是ENB<n-1>、ENB<n-2>和ENB<0>。ENB<n-1>、ENB<n-2>和ENB<0>中的每个可以具有与EN<n-1>、EN<n-2>和EN<0>中的每个的逻辑电平不同的逻辑电平。The switches S1, S2 to Sn respectively included in the capacitor adjustment circuits 132_1, 132_2 to 132_n may be turned on or off based on the second control signal ENB applied in units of bits. For example, when the first control signal EN applied to the amplifier stage 120 in units of bits is EN<n-1>, EN<n-2>, and EN<0>, the second control signal ENB applied to the plurality of capacitor adjustment circuits 132_1, 132_2, and 132_n in units of bits may be ENB<n-1>, ENB<n-2>, and ENB<0>. Each of ENB<n-1>, ENB<n-2>, and ENB<0> may have a different logic level from that of each of EN<n-1>, EN<n-2>, and EN<0>.
例如,当EN<n-1>、EN<n-2>和EN<0>分别地具有逻辑电平1、1和1时,ENB<n-1>、ENB<n-2>和ENB<0>可以分别地具有逻辑电平0、0和0。在这种情况下,开关S1、S2和Sn中的所有可以被关断。例如,当EN<n-1>、EN<n-2>和EN<0>分别具地有逻辑电平1、1和0时,ENB<n-1>、ENB<n-2>和ENB<0>可以分别地具有逻辑电平0、0和1。在这种情况下,在多个电容器调整电路132_1、132_2和132_n当中,只有被施加了ENB<0>的电容器调整电路132_n可以操作,而其他电容器调整电路可以被关闭。在上述示例实施例中,为了解释清楚,n为3;然而,示例实施例不限于此,并且n可以是另外的实数。For example, when EN<n-1>, EN<n-2>, and EN<0> have logic levels 1, 1, and 1, respectively, ENB<n-1>, ENB<n-2>, and ENB<0> may have logic levels 0, 0, and 0, respectively. In this case, all of switches S1, S2, and Sn may be turned off. For example, when EN<n-1>, EN<n-2>, and EN<0> have logic levels 1, 1, and 0, respectively, ENB<n-1>, ENB<n-2>, and ENB<0> may have logic levels 0, 0, and 1, respectively. In this case, among the plurality of capacitor adjustment circuits 132_1, 132_2, and 132_n, only the capacitor adjustment circuit 132_n to which ENB<0> is applied may operate, and the other capacitor adjustment circuits may be turned off. In the above example embodiment, for clarity of explanation, n is 3; however, example embodiments are not limited thereto, and n may be another real number.
根据一些示例实施例,在电容器调整电路132_1、132_2至132_n因为开关S1、S2至Sn被关断而不操作的情况下,连接到开关S1、S2至Sn的一个或多个单位电容器C1、C2至Cn可以不再影响子电容器组131_1、131_2至131_k的总电容。According to some example embodiments, when the capacitor adjustment circuits 132_1, 132_2 to 132_n do not operate because the switches S1, S2 to Sn are turned off, one or more unit capacitors C1, C2 to Cn connected to the switches S1, S2 to Sn may no longer affect the total capacitance of the sub-capacitor groups 131_1, 131_2 to 131_k.
当n个单位放大器121当中的m个单位放大器(其中m是小于或等于n的正整数)基于第一控制信号EN被接通时,n-m个电容器调整电路132_1、132_2至132_n可以基于响应于第二控制信号ENB而操作的开关S1、S2至Sn被接通。在一些示例实施例中,数量n的单位放大器121和电容器调整电路132_1至132_n可以处于接通状态,其中,接通的单位放大器121与接通的电容器调整电路132_1至132_n的比率随着第一控制信号EN和第二控制信号ENB而变化。When m unit amplifiers (where m is a positive integer less than or equal to n) among the n unit amplifiers 121 are turned on based on the first control signal EN, n-m capacitor adjustment circuits 132_1, 132_2 to 132_n may be turned on based on switches S1, S2 to Sn operated in response to the second control signal ENB. In some example embodiments, the number n of unit amplifiers 121 and capacitor adjustment circuits 132_1 to 132_n may be in an on state, wherein a ratio of the turned-on unit amplifiers 121 to the turned-on capacitor adjustment circuits 132_1 to 132_n varies with the first control signal EN and the second control signal ENB.
当导通一个或多个开关S1、S2至Sn时,通过对连接到导通的开关S1、S2至Sn的一个或多个单位电容器C1、C2至Cn的等效电容求和而获得的电容可以是补偿电容器组130的总电容。因此,随着基于第一控制信号EN而关闭的单位放大器121的数量增加,基于第二控制信号ENB而接通的电容器调整电路132_1、132_2至132_n的数量可以增加,并且因此,补偿电容器组130的总电容也可以增加。结果,即使当放大级120的输入电容Cin_Amp随着关闭的单位放大器121的数量增加而减小时,减小的电容也可以通过补偿电容器组130来补偿。When one or more switches S1, S2 to Sn are turned on, the capacitance obtained by summing the equivalent capacitances of the one or more unit capacitors C1, C2 to Cn connected to the turned-on switches S1, S2 to Sn may be the total capacitance of the compensation capacitor group 130. Therefore, as the number of unit amplifiers 121 turned off based on the first control signal EN increases, the number of capacitor adjustment circuits 132_1, 132_2 to 132_n turned on based on the second control signal ENB may increase, and thus, the total capacitance of the compensation capacitor group 130 may also increase. As a result, even when the input capacitance Cin_Amp of the amplification stage 120 decreases as the number of turned-off unit amplifiers 121 increases, the decreased capacitance may be compensated by the compensation capacitor group 130.
图5是示出根据一些示例实施例的能够选择子电容器组的RF芯片的图。FIG. 5 is a diagram illustrating an RF chip capable of selecting a sub-capacitor group according to some example embodiments.
参考图5,在RF芯片100中,补偿电容器组130可以额外地被施加有选择信号(在下文中被称为“第三控制信号Sel”),以用于独立地操作一个或多个子电容器组131_1、131_2至131_k。第三控制信号Sel可以施加到补偿电容器组130。5 , in the RF chip 100 , the compensation capacitor group 130 may be additionally applied with a selection signal (hereinafter referred to as a “third control signal Sel”) for independently operating one or more sub-capacitor groups 131_1 , 131_2 to 131 — k. The third control signal Sel may be applied to the compensation capacitor group 130 .
第三控制信号Sel可以被单独地施加到多个子电容器组131_1、131_2至131_k,以选择多个子电容器组131_1、131_2至131_k中的每个。当子电容器组131_1、131_2至131_k的数量为k时,可以施加k个第三控制信号Sel。另外,子电容器组131_1、131_2至131_k的调整的电容可以彼此不同。The third control signal Sel may be applied individually to the plurality of sub-capacitor groups 131_1, 131_2 to 131_k to select each of the plurality of sub-capacitor groups 131_1, 131_2 to 131_k. When the number of sub-capacitor groups 131_1, 131_2 to 131_k is k, k third control signals Sel may be applied. In addition, the adjusted capacitances of the sub-capacitor groups 131_1, 131_2 to 131_k may be different from each other.
在多个子电容器组131_1、131_2至131_k当中,一个或多个子电容器组131_1、131_2至131_k可以各自基于第三控制信号Sel被接通或关闭。子电容器组131_1、131_2至131_k中的每个被关闭的事实可以意味着被关闭的子电容器组131_1、131_2至131_k的电容不影响补偿电容器组130的总电容,类似于上述单位电容器C1、C2至Cn。Among the plurality of sub-capacitor groups 131_1, 131_2 to 131_k, one or more sub-capacitor groups 131_1, 131_2 to 131_k may each be turned on or off based on the third control signal Sel. The fact that each of the sub-capacitor groups 131_1, 131_2 to 131_k is turned off may mean that the capacitance of the turned-off sub-capacitor groups 131_1, 131_2 to 131_k does not affect the total capacitance of the compensation capacitor group 130, similar to the above-mentioned unit capacitors C1, C2 to Cn.
通过基于第三控制信号Sel接通或关闭多个子电容器组131_1、131_2至131_k,RF芯片100可以更加精细地(例如,精准地、针对地)补偿电容。例如,施加有第k-1第三控制信号Sel_k-1的第一子电容器组131_1、131_2至131_k的电容可以被实现为高于施加有第k-2第三控制信号Sel_k-2的第二子电容器组131_1、131_2至131_k的电容。在这种情况下,当依赖于第一控制信号EN变化的放大级120的输入电容Cin_Amp高时,可以选择第一子电容器组131_1、131_2至131_k来更加粗略地(例如,大致地)补偿电容。替选地,当放大级120的变化的输入电容Cin_Amp低时,第二子电容器组131_1、131_2至131_k可以被选择为更加精细地(例如,精准地、针对地)补偿电容。By turning on or off a plurality of sub-capacitor groups 131_1, 131_2 to 131_k based on the third control signal Sel, the RF chip 100 can compensate for capacitance more finely (e.g., precisely, specifically). For example, the capacitance of the first sub-capacitor group 131_1, 131_2 to 131_k to which the k-1 third control signal Sel_k-1 is applied can be implemented to be higher than the capacitance of the second sub-capacitor group 131_1, 131_2 to 131_k to which the k-2 third control signal Sel_k-2 is applied. In this case, when the input capacitance Cin_Amp of the amplifier stage 120 that depends on the change of the first control signal EN is high, the first sub-capacitor group 131_1, 131_2 to 131_k can be selected to compensate for capacitance more roughly (e.g., roughly). Alternatively, when the varying input capacitance Cin_Amp of the amplifier stage 120 is low, the second sub-capacitor groups 131_1 , 131_2 to 131 — k may be selected to more finely (eg, precisely, specifically) compensate for the capacitance.
替选地,可以基于放大级120的变化的输入电容Cin_Amp来选择和组合两个或更多个子电容器组131_1、131_2至131_k。Alternatively, two or more sub-capacitor groups 131_1 , 131_2 to 131 — k may be selected and combined based on the varying input capacitance Cin_Amp of the amplification stage 120 .
根据示例实施例,随着多个子电容器组131_1、131_2至131_k的数量k进一步增加,可以更加精细地补偿电容。例如,可以更加精细地调谐电容。According to example embodiments, as the number k of the plurality of sub-capacitor groups 131_1 , 131_2 to 131 — k further increases, the capacitance may be more finely compensated. For example, the capacitance may be more finely tuned.
图6是被提供来描述图5的子电容器组的操作的图。FIG. 6 is a diagram provided to describe an operation of the sub capacitor groups of FIG. 5 .
参考图6,根据一些示例实施例,基于第二控制信号ENB和第三控制信号Sel_k(为了便于描述,关于第k控制信号进行描述)来控制补偿电容器组130的控制电路133_1、133_2至133_n可以连接到在子电容器组131_1、131_2至131_k中所包括的多个电容器调整电路132_1、132_2至132_n。可以复数地提供控制电路133_1、133_2至133_n,以分别地连接到开关S1、S2至Sn。6, according to some example embodiments, the control circuits 133_1, 133_2 to 133_n that control the compensation capacitor group 130 based on the second control signal ENB and the third control signal Sel_k (described with respect to the kth control signal for ease of description) may be connected to the plurality of capacitor adjustment circuits 132_1, 132_2 to 132_n included in the sub-capacitor groups 131_1, 131_2 to 131_k. The control circuits 133_1, 133_2 to 133_n may be provided in plural to be connected to the switches S1, S2 to Sn, respectively.
控制电路133_1、133_2至133_n可以分别地连接到在多个电容器调整电路132_1、132_2至132_n中所包括的多个开关S1、S2至Sn。控制电路133_1、133_2至133_n可以将第二控制信号ENB和第三控制信号Sel_k作为输入。在一些示例实施例中,对于每个单位的比特,第二控制信号ENB可以被施加到控制电路133_1、133_2至133_n(例如,如被施加到控制电路133_1的ENB<n-1>等),并且第三控制信号Sel_k可以以单个子电容器组131_1、131_2或131_k为单位施加到控制电路133_1、133_2至133_n。例如,公共的第三控制信号Sel_k可以施加到连接到单个子电容器组131_1、131_2或131_k的控制电路133_1、133_2至133_n。The control circuits 133_1, 133_2 to 133_n may be connected to a plurality of switches S1, S2 to Sn included in the plurality of capacitor adjustment circuits 132_1, 132_2 to 132_n, respectively. The control circuits 133_1, 133_2 to 133_n may take the second control signal ENB and the third control signal Sel_k as input. In some example embodiments, for each unit of bit, the second control signal ENB may be applied to the control circuits 133_1, 133_2 to 133_n (e.g., as ENB<n-1> applied to the control circuit 133_1, etc.), and the third control signal Sel_k may be applied to the control circuits 133_1, 133_2 to 133_n in units of a single sub-capacitor group 131_1, 131_2, or 131_k. For example, the common third control signal Sel_k may be applied to the control circuits 133_1 , 133_2 to 133 — n connected to a single sub-capacitor group 131_1 , 131_2 , or 131 — k.
控制电路133_1、133_2至133_n可以分别地基于第二控制信号ENB和第三控制信号Sel_k的逻辑状态来导通或关断开关S1、S2至Sn。例如,当第三控制信号Sel_k指令接通子电容器组131_1、131_2至131_k时,控制电路133_1、133_2至133_n可以基于第二控制信号ENB的每个比特的逻辑状态来导通或关断开关S1、S2至Sn中的每个。例如,当第三控制信号Sel_k指令关闭子电容器组131_1、131_2至131_k时,控制电路133_1、133_2至133_n可以关断开关S1、S2至Sn中的所有。在这种情况下,控制电路133_1、133_2至133_n所连接到的单个子电容器组131_1、131_2或131_k可以不影响补偿电容器组130的总电容。The control circuits 133_1, 133_2 to 133_n can turn on or off the switches S1, S2 to Sn based on the logic states of the second control signal ENB and the third control signal Sel_k, respectively. For example, when the third control signal Sel_k instructs the sub-capacitor groups 131_1, 131_2 to 131_k to be turned on, the control circuits 133_1, 133_2 to 133_n can turn on or off each of the switches S1, S2 to Sn based on the logic state of each bit of the second control signal ENB. For example, when the third control signal Sel_k instructs the sub-capacitor groups 131_1, 131_2 to 131_k to be turned off, the control circuits 133_1, 133_2 to 133_n can turn off all of the switches S1, S2 to Sn. In this case, a single sub-capacitor group 131_1 , 131_2 , or 131 — k to which the control circuits 133_1 , 133_2 , or 131 — k are connected may not affect the total capacitance of the compensation capacitor group 130 .
结果,控制电路133_1、133_2至133_n可以基于第三控制信号Sel_k来操作多个子电容器组131_1、131_2至131_k当中的一个或多个子电容器组131_1、131_2至131_k,并且分别地包括在操作的一个或多个子电容器组131_1、131_2至131_k中的多个电容器调整电路132_1、132_2至132_n可以基于第二控制信号ENB来接通或关闭。As a result, the control circuits 133_1, 133_2 to 133_n can operate one or more sub-capacitor groups 131_1, 131_2 to 131_k among the multiple sub-capacitor groups 131_1, 131_2 to 131_k based on the third control signal Sel_k, and the multiple capacitor adjustment circuits 132_1, 132_2 to 132_n respectively included in the operated one or more sub-capacitor groups 131_1, 131_2 to 131_k can be turned on or off based on the second control signal ENB.
根据一些示例实施例,可以通过控制电路133_1、133_2至133_n来控制补偿电容器组130。例如,考虑到放大级120的输入电容Cin_Amp依赖于第一控制信号EN而变化,具有不同电容的多个子电容器组131_1、131_2至131_k当中的一些子电容器组131_1、131_2至131_k可以操作,或者任何子电容器组131_1、131_2至131_k可以操作。结果,基于输入电容变化的程度,可以更加精确地(例如,在更小的范围上)或粗略地(例如,大致地、在更宽的范围上)补偿电容,并且可以改进通道平坦度。According to some example embodiments, the compensation capacitor group 130 may be controlled by the control circuits 133_1, 133_2 to 133_n. For example, considering that the input capacitance Cin_Amp of the amplification stage 120 varies depending on the first control signal EN, some sub-capacitor groups 131_1, 131_2 to 131_k among the plurality of sub-capacitor groups 131_1, 131_2 to 131_k having different capacitances may operate, or any sub-capacitor group 131_1, 131_2 to 131_k may operate. As a result, capacitance may be compensated more accurately (e.g., over a smaller range) or roughly (e.g., approximately, over a wider range) based on the degree of input capacitance variation, and channel flatness may be improved.
图7是示出根据一些示例实施例的RF芯片的操作方法的流程图。FIG. 7 is a flowchart illustrating an operating method of an RF chip according to some example embodiments.
参考图7,在操作S1010,RF芯片100(或者,例如,RF芯片200)可以通过将本地振荡信号与基带信号BB混合来输出射频信号RF。7 , in operation S1010 , the RF chip 100 (or, for example, the RF chip 200 ) may output a radio frequency signal RF by mixing a local oscillation signal with a baseband signal BB.
在操作S1020,RF芯片100或200可以通过响应于第一控制信号EN而操作的多个单位放大器121来放大射频信号RF。在这种情况下,多个单位放大器121中的至少一个可以基于第一控制信号EN接通或关闭,并且因此可以调整射频信号RF的增益。In operation S1020, the RF chip 100 or 200 may amplify the radio frequency signal RF through the plurality of unit amplifiers 121 operating in response to the first control signal EN. In this case, at least one of the plurality of unit amplifiers 121 may be turned on or off based on the first control signal EN, and thus the gain of the radio frequency signal RF may be adjusted.
在操作S1030,RF芯片100或200可以基于与第一控制信号EN互补的第二控制信号ENB,来调整在多个单位放大器121的输入端子处提供的补偿电容器组130的电容。在这种情况下,当单位放大器121的数量是n时,第一控制信号EN和第二控制信号ENB可以具有n比特的幅度。In operation S1030, the RF chip 100 or 200 may adjust the capacitance of the compensation capacitor group 130 provided at the input terminals of the plurality of unit amplifiers 121 based on the second control signal ENB complementary to the first control signal EN. In this case, when the number of the unit amplifiers 121 is n, the first control signal EN and the second control signal ENB may have an n-bit amplitude.
可以执行操作S1030以与操作S1020互补。例如,可以基于第一控制信号EN的施加来调整射频信号RF的增益,并且可以补偿放大级120的输入电容Cin_Amp,该输入电容Cin_Amp依赖于基于第二控制信号ENB的施加进行的射频信号RF的增益的调整而变化。Operation S1030 may be performed to complement operation S1020. For example, the gain of the radio frequency signal RF may be adjusted based on the application of the first control signal EN, and the input capacitance Cin_Amp of the amplifier stage 120 may be compensated, which varies depending on the adjustment of the gain of the radio frequency signal RF based on the application of the second control signal ENB.
在一些示例实施例中,操作方法可以进一步包括施加第三控制信号Sel以单独地操作在补偿电容器组130中所包括的一个或多个子电容器组131。施加第三控制信号Sel可以与操作S1030一起执行。考虑到第二控制信号ENB的逻辑状态和第三控制信号Sel的逻辑状态,施加有第三控制信号Sel的控制电路133_1、133_2至133_n可以接通或关闭补偿电容器组130以及在补偿电容器组130中所包括的电容器调整电路132_1、132_2至132_n。In some example embodiments, the operating method may further include applying a third control signal Sel to individually operate one or more sub-capacitor groups 131 included in the compensation capacitor group 130. Applying the third control signal Sel may be performed together with operation S1030. Considering the logic state of the second control signal ENB and the logic state of the third control signal Sel, the control circuits 133_1, 133_2 to 133_n applied with the third control signal Sel may turn on or off the compensation capacitor group 130 and the capacitor adjustment circuits 132_1, 132_2 to 132_n included in the compensation capacitor group 130.
图8A和图8B是示出基于补偿电容器组是存在还是不存在的放大器输入电容的图。为了便于描述,在图8A和图8B中,第一控制信号被示出为4比特信号,但是示例实施例不限于此。8A and 8B are graphs illustrating amplifier input capacitance based on whether a compensation capacitor group exists or does not exist. For ease of description, in FIGS. 8A and 8B , the first control signal is illustrated as a 4-bit signal, but example embodiments are not limited thereto.
从图8A可以看出,在不存在补偿电容器组130的情况下,随着第一控制信号EN的比特当中的逻辑“0”比特的数量增加(例如,被关闭的单位放大器121的数量增加),史密斯图(Smith chart)上的输入电容减小。It can be seen from Figure 8A that in the absence of the compensation capacitor group 130, as the number of logic "0" bits among the bits of the first control signal EN increases (for example, the number of unit amplifiers 121 turned off increases), the input capacitance on the Smith chart decreases.
同时,如从图8B可以看到,在存在补偿电容器组130的情况下,即使当单位放大器121的状态依赖于第一控制信号EN而变化时,输入电容也几乎不变化并且保持在预定的(或者替选地,期望的、选择的或确定的)范围内,这意味着放大级120的变化的输入电容Cin_Amp通过补偿电容器组130而被补偿。At the same time, as can be seen from Figure 8B, in the presence of the compensation capacitor group 130, even when the state of the unit amplifier 121 changes depending on the first control signal EN, the input capacitance hardly changes and remains within a predetermined (or alternatively, desired, selected or determined) range, which means that the changing input capacitance Cin_Amp of the amplifier stage 120 is compensated by the compensation capacitor group 130.
图9A和图9B是示出依赖于补偿电容器组是存在还是不存在的RF信号的通道平坦度的图。在图9A和图9B中,片(slice)指代多个单位放大器121当中被接通的单位放大器121的数量。9A and 9B are graphs showing channel flatness of an RF signal depending on whether a compensation capacitor group exists or not. In FIG9A and 9B , a slice refers to the number of unit amplifiers 121 that are turned on among a plurality of unit amplifiers 121 .
参考图9A,在不存在补偿电容器组130的情况下,当所有的单位放大器121处于接通状态时,射频信号RF可以被转变,使得上边带和下边带相对于本地振荡信号的频率(偏移(offset)频率为零的点)对称。然而,随着片的数量减少,例如,关闭的单位放大器121的数量增加,放大级120的输入电容Cin_Amp可能减少,并且因此,调谐频率可能逐渐偏移到高频(可以被为高偏移(high-shift))。最终,这可能导致差的通道平坦度。9A , in the absence of the compensation capacitor group 130, when all the unit amplifiers 121 are in the on state, the radio frequency signal RF may be transformed so that the upper sideband and the lower sideband are symmetrical with respect to the frequency of the local oscillation signal (the point where the offset frequency is zero). However, as the number of slices decreases, for example, the number of turned-off unit amplifiers 121 increases, the input capacitance Cin_Amp of the amplifier stage 120 may decrease, and therefore, the tuning frequency may gradually shift to a high frequency (which may be referred to as high-shift). Ultimately, this may result in poor channel flatness.
同时,如在本公开中,在存在补偿电容器组130的情况下,如从图9B可以看到,调谐频率被保持,因为即使当片的数量减少时,变化的输入电容也可以被补偿。当保持调谐频率时,可以保持上边带和下边带之间的对称(或基本上的对称),并且因此,也可以保持或改进通道平坦度。At the same time, as in the present disclosure, in the presence of the compensation capacitor bank 130, as can be seen from FIG. 9B, the tuning frequency is maintained because the varying input capacitance can be compensated even when the number of slices is reduced. When the tuning frequency is maintained, the symmetry (or substantial symmetry) between the upper sideband and the lower sideband can be maintained, and therefore, the channel flatness can also be maintained or improved.
通道的保持指代通道中功率Pout偏差的减小,这意味着改进了误差矢量幅度(EVM)的性能。另外,上边带和下边带之间的不对称意味着依赖于资源块(RB)功率是不对称的。当补偿电容器组130不存在时,应当额外地执行校准以解决RB之间的功率不对称。The preservation of the channel refers to the reduction of the power Pout deviation in the channel, which means that the performance of the error vector magnitude (EVM) is improved. In addition, the asymmetry between the upper sideband and the lower sideband means that the power is asymmetric depending on the resource block (RB). When the compensation capacitor bank 130 does not exist, calibration should be performed additionally to solve the power asymmetry between RBs.
然而,当提供根据示例实施例的补偿电容器组130时,可以解决RB之间的不对称。因此,不需要额外地执行基于频率的校准。However, when the compensation capacitor group 130 according to example embodiments is provided, the asymmetry between RBs can be resolved. Therefore, there is no need to additionally perform frequency-based calibration.
图10是示出根据一些示例实施例的电子设备的图。在下文中,将省略重复技术特征的详细描述。Fig. 10 is a diagram illustrating an electronic device according to some example embodiments. Hereinafter, detailed descriptions of repeated technical features will be omitted.
参考图10,根据一些示例实施例的电子设备10可以包括处理器11、RF芯片100、前端模块(FEM)12和天线13。10 , an electronic device 10 according to some example embodiments may include a processor 11 , an RF chip 100 , a front end module (FEM) 12 , and an antenna 13 .
处理器11可以处理数字信号,并且然后将数字信号转换为模拟信号。替选地,处理器11可以将模拟信号转换为数字信号,并且然后处理数字信号。转换后的模拟信号或待转换的模拟信号可以是具有基带的基带信号BB。处理器11可以将基带信号BB发送到RF芯片100。处理器11可以是例如调制解调器、应用处理器(AP)、或其中调制解调器功能被集成到AP中的调制解调器&应用处理器(ModAP)。The processor 11 may process a digital signal and then convert the digital signal into an analog signal. Alternatively, the processor 11 may convert the analog signal into a digital signal and then process the digital signal. The converted analog signal or the analog signal to be converted may be a baseband signal BB having a baseband. The processor 11 may send the baseband signal BB to the RF chip 100. The processor 11 may be, for example, a modem, an application processor (AP), or a modem & application processor (ModAP) in which a modem function is integrated into the AP.
RF芯片100可以对从处理器11接收的基带信号BB进行上变频,以向FEM 12输出射频信号RF。RF芯片100可以根据上述示例实施例中的一些来实现。The RF chip 100 may up-convert the baseband signal BB received from the processor 11 to output a radio frequency signal RF to the FEM 12. The RF chip 100 may be implemented according to some of the above-described example embodiments.
在一些示例实施例中,RF芯片100可以包括混频器110、放大级120和补偿电容器组130。混频器110可以将从处理器11发送的基带信号BB转换到RF频带。可以基于第一控制信号EN来调整放大级120的增益。在放大级120中所包括的多个单位放大器121中的每个可以基于第一控制信号EN被接通或关闭,导致放大级120的输入电容Cin_Amp的变化。In some example embodiments, the RF chip 100 may include a mixer 110, an amplifier stage 120, and a compensation capacitor group 130. The mixer 110 may convert a baseband signal BB sent from the processor 11 to an RF band. The gain of the amplifier stage 120 may be adjusted based on a first control signal EN. Each of a plurality of unit amplifiers 121 included in the amplifier stage 120 may be turned on or off based on the first control signal EN, resulting in a change in the input capacitance Cin_Amp of the amplifier stage 120.
当基于第一控制信号EN调整放大级120的增益时,可以基于与第一控制信号EN互补的第二控制信号ENB和/或用于选择在补偿电容器组130中所包括的多个电容器的第三控制信号Sel,来调整补偿电容器组130的电容。在一些示例实施例中,第二控制信号ENB和/或第三控制信号Sel可以通过处理器11施加到RF芯片100。When the gain of the amplifier stage 120 is adjusted based on the first control signal EN, the capacitance of the compensation capacitor group 130 may be adjusted based on the second control signal ENB complementary to the first control signal EN and/or the third control signal Sel for selecting a plurality of capacitors included in the compensation capacitor group 130. In some example embodiments, the second control signal ENB and/or the third control signal Sel may be applied to the RF chip 100 by the processor 11.
因此,放大级120的输入电容Cin_Amp的变化可以通过补偿电容器组130的电容来补偿。然后,从混频器110的输出端子看来,输入电容可以保持恒定。结果,无论放大级120的操作如何,可以保持射频信号RF的调谐频率,并且因此,可以防止或减少通道平坦度的劣化。Therefore, a change in the input capacitance Cin_Amp of the amplifier stage 120 can be compensated by the capacitance of the compensation capacitor group 130. Then, the input capacitance can be kept constant as seen from the output terminal of the mixer 110. As a result, the tuning frequency of the radio frequency signal RF can be maintained regardless of the operation of the amplifier stage 120, and therefore, degradation of the channel flatness can be prevented or reduced.
FEM 12可以被配置为放大从RF芯片100输出的射频信号RF,或者将放大的射频信号RF引导到一个或多个信号路径。为此,FEM 12可以包括一个或多个功率放大器Pa以及一个或多个开关。FEM 12可以通过各种连接接口(例如,移动工业处理器接口(MIPI)等)连接到RF芯片100,并且可以在RF芯片100的控制下操作。The FEM 12 may be configured to amplify the radio frequency signal RF output from the RF chip 100, or to guide the amplified radio frequency signal RF to one or more signal paths. To this end, the FEM 12 may include one or more power amplifiers Pa and one or more switches. The FEM 12 may be connected to the RF chip 100 via various connection interfaces (e.g., a mobile industry processor interface (MIPI) etc.), and may operate under the control of the RF chip 100.
天线13可以将从FEM 12接收的射频信号RF发送到另一无线通信设备。The antenna 13 may transmit the radio frequency signal RF received from the FEM 12 to another wireless communication device.
虽然已经从发送链的方面描述了根据一些示例实施例的电子设备10,但是电子设备10可以包括接收链(Rx链)。在这种情况下,电子设备10可以执行操作来处理接收到的射频信号RF。Although the electronic device 10 according to some example embodiments has been described from the aspect of a transmission chain, the electronic device 10 may include a reception chain (Rx chain). In this case, the electronic device 10 may perform operations to process a received radio frequency signal RF.
如上所述,根据示例实施例,可以提供改进通道平坦度的RF芯片。As described above, according to example embodiments, an RF chip having improved channel flatness may be provided.
如本文所述,根据任何示例实施例的任何电子设备和/或其部分可以包括下述、可以被包括在下述中和/或可以由下述实现:诸如包括逻辑电路的硬件的处理电路的一个或多个实例;诸如执行软件的处理器的硬件/软件组合;或者其任意组合。例如,处理电路更具体地可以包括但不限于中央处理单元(CPU)、算术逻辑单元(ALU)、图形处理单元(GPU)、应用处理器(AP)、数字信号处理器(DSP)、微型计算机、现场可编程门阵列(FPGA)和可编程逻辑单元、微处理器、专用集成电路(ASIC)、神经网络处理单元(NPU)、电子控制单元(ECU)、图像信号处理器(ISP)等。在一些示例实施例中,处理电路可以包括:存储指令程序的非暂时性计算机可读存储设备(例如,存储器),例如DRAM设备;以及处理器(例如,CPU),被配置为执行指令程序,以实现由根据示例实施例中的任何和/或其任何部分的设备、系统、模块、单元、控制器、电路、架构和/或其部分中的一些或所有执行的功能和/或方法。As described herein, any electronic device and/or portion thereof according to any example embodiment may include, may be included in, and/or may be implemented by: one or more instances of a processing circuit such as hardware including a logic circuit; a hardware/software combination such as a processor executing software; or any combination thereof. For example, the processing circuit may more specifically include, but is not limited to, a central processing unit (CPU), an arithmetic logic unit (ALU), a graphics processing unit (GPU), an application processor (AP), a digital signal processor (DSP), a microcomputer, a field programmable gate array (FPGA) and a programmable logic unit, a microprocessor, an application specific integrated circuit (ASIC), a neural network processing unit (NPU), an electronic control unit (ECU), an image signal processor (ISP), and the like. In some example embodiments, the processing circuit may include: a non-transitory computer-readable storage device (e.g., a memory) storing an instruction program, such as a DRAM device; and a processor (e.g., a CPU) configured to execute the instruction program to implement the functions and/or methods performed by some or all of the devices, systems, modules, units, controllers, circuits, architectures, and/or portions thereof according to any and/or any portion thereof in the example embodiments.
虽然上面已经示出和描述了示例实施例,但是对于本领域技术人员来说将明显的是,在不脱离由所附权利要求限定的本发明构思的范围的情况下,可以进行修改和变化。While example embodiments have been shown and described above, it will be apparent to those skilled in the art that modifications and variations may be made without departing from the scope of the inventive concept as defined by the appended claims.
Claims (20)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0128659 | 2022-10-07 | ||
KR1020220180454A KR20240049100A (en) | 2022-10-07 | 2022-12-21 | Rf chip to improve transmit channel flatness |
KR10-2022-0180454 | 2022-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117856803A true CN117856803A (en) | 2024-04-09 |
Family
ID=90535187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311289976.0A Pending CN117856803A (en) | 2022-10-07 | 2023-10-07 | Radio frequency chip for improving flatness of transmission channel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117856803A (en) |
-
2023
- 2023-10-07 CN CN202311289976.0A patent/CN117856803A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10103690B2 (en) | Phase, amplitude and gate-bias optimizer for Doherty amplifier | |
US9735734B2 (en) | Re-configurable passive mixer for wireless receivers | |
TWI672904B (en) | Doherty power amplifier with tunable input network | |
US8315336B2 (en) | Systems and methods of RF power transmission, modulation, and amplification, including a switching stage embodiment | |
US8229372B2 (en) | Parallel forward path cartesian feedback loop and loop filter with switchable order for cartesian feedback loops | |
US10715199B1 (en) | Phased array transceiver with built-in phase interferometer | |
US8212615B2 (en) | Variable-gain amplifier circuit and wireless communication device integrated circuit equipped therewith | |
KR101437029B1 (en) | Dual mode local area network transceiver and methods for use therewith | |
JP2021525482A (en) | Wideband Low Noise Amplifier (LNA) with Reconfigurable Bandwidth for Millimeter Wave 5G Communication | |
US11005426B2 (en) | Radio frequency (RF) integrated circuit performing signal amplification operation to support carrier aggregation and receiver including the same | |
US10498298B1 (en) | Time-division duplexing using dynamic transceiver isolation | |
US9020457B2 (en) | Phased-array receiver for mm-wave applications | |
US20220131726A1 (en) | Wideband vector modulator phase shifter | |
CN107210527A (en) | Phase controlling for aerial array | |
US10027352B2 (en) | Receiving a plurality of radio frequency bands | |
US20180278449A1 (en) | Receiver and wireless terminal for signal processing | |
US12255674B2 (en) | Constant-phase attenuator techniques in radio frequency front end (RFFE) amplifiers | |
JP5732373B2 (en) | High frequency signal processing apparatus and radio communication system | |
KR20090013803A (en) | RF power transmission, modulation and amplification systems and methods | |
US7515648B2 (en) | Transmitter and wireless communication apparatus using same | |
CN117856803A (en) | Radio frequency chip for improving flatness of transmission channel | |
EP4351008A1 (en) | Rf chip to improve transmit channel flatness | |
US11190147B1 (en) | Low power, efficient doherty power amplifier | |
US11271628B2 (en) | Methods and apparatus for beamforming | |
KR20240049100A (en) | Rf chip to improve transmit channel flatness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |