CN117815367A - 一种治疗和预防老龄化人群假体周围骨溶解的药物组合物 - Google Patents

一种治疗和预防老龄化人群假体周围骨溶解的药物组合物 Download PDF

Info

Publication number
CN117815367A
CN117815367A CN202410017582.8A CN202410017582A CN117815367A CN 117815367 A CN117815367 A CN 117815367A CN 202410017582 A CN202410017582 A CN 202410017582A CN 117815367 A CN117815367 A CN 117815367A
Authority
CN
China
Prior art keywords
vegf
osteolysis
treating
mice
pharmaceutical composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410017582.8A
Other languages
English (en)
Inventor
赵宸
刘鹏程
王晓庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Original Assignee
Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine filed Critical Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Priority to CN202410017582.8A priority Critical patent/CN117815367A/zh
Publication of CN117815367A publication Critical patent/CN117815367A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1858Platelet-derived growth factor [PDGF]
    • A61K38/1866Vascular endothelial growth factor [VEGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Orthopedic Medicine & Surgery (AREA)

Abstract

本发明提供一种治疗和预防老龄化人群假体周围骨溶解的药物组合物,提供VEGF‑C重组蛋白和JAK抑制剂联合用药在制备治疗和预防假体周围骨溶解药物中的应用。在接受关节置换治疗的老年患者群体中,VEGF‑C重组蛋白和JAK抑制剂联合用药,抑制分化为脂肪细胞的BMSCs的SASP分泌同时激活骨内淋巴管,对于预防和治疗老年患者假体周围骨溶解具有显著的治疗效果。

Description

一种治疗和预防老龄化人群假体周围骨溶解的药物组合物
技术领域
本发明涉及医药技术领域,尤其涉及一种治疗和预防老龄化人群假体周围骨溶解的药物组合物。
背景技术
人工关节置换术(Total joint arthroplasty,TJA)是治疗各种终末期关节疾患的有效手段,该手术多发生于老龄化人群患者中。关节置换手术后常常会发生植入物假体周围的骨溶解,是导致手术失败的一大主要原因。
假体周围骨溶解(Peri-prosthetic osteolysis,PPO)是关节置换手术或骨折内固定手术治疗后,由人工假体磨损产生的微小颗粒引起的生物学反应过程。磨损颗粒积聚在假体周围,引起慢性炎症,导致骨形成和骨吸收偶联失衡,最终导致假体周围骨丢失。针对骨溶解目前的治疗现状包括药物治疗、物理治疗和手术干预。药物治疗包括非甾体抗炎药(NSAIDs)和镇痛药,这些药物用于缓解疼痛和减轻炎症,但并不能解决根本问题;物理治疗可以通过锻炼和康复来增强周围肌肉,提高关节的稳定性,但对于骨溶解本身的治疗效果有限;手术干预包括植入新的假体、骨移植、修复或更换植入物等手术方法,这些干预措施有助于重建受影响区域的结构和功能,但是老年人往往难以耐受二次的大手术。需要临床关节置换治疗和骨折内固定治疗的大多数患者都是老年患者,衰老对骨骼系统产生了深远的影响,导致了一系列复杂的结构和功能变化。对人工关节周围骨溶解的研究需要关注衰老的特殊背景,因此,亟需提供一种新的治疗方案,以解决上述问题。
VEGF-C(Vascular Endothelial Growth Factor-C)是一种血管内皮生长因子,对淋巴管的生长和分化起到关键作用。VEGF-C重组蛋白是通过基因工程技术制备的一种人工合成的VEGF-C。其主要作用是通过结合VEGFR-3受体,促进淋巴管内皮细胞的增殖、迁移和分化,从而促进淋巴管生成。研究表明,VEGF-C重组蛋白在淋巴管性疾病、癌症和其他疾病治疗中具有潜在的应用价值。通过调控淋巴管的生长和功能,VEGF-C重组蛋白可能对淋巴血管性疾病的治疗产生积极影响。此外,在肿瘤领域,VEGF-C重组蛋白也被研究用于治疗恶性肿瘤,尤其是那些与淋巴转移相关的癌症。
JAK(Janus Kinase)抑制剂是一类能够抑制JAK家族蛋白激酶活性的药物,这一家族的蛋白激酶在细胞信号转导中发挥关键作用。JAK抑制剂的研究现状主要集中在自身免疫性疾病、炎症性疾病和肿瘤的治疗领域。例如,一些JAK抑制剂已经被批准用于类风湿性关节炎、溃疡性结肠炎等自身免疫性疾病的治疗。此外,JAK抑制剂还在恶性肿瘤的治疗中显示出一定的潜力,尤其是那些具有炎症性成分的肿瘤。
发明内容
本发明的目的在于,提供VEGF-C重组蛋白和JAK抑制剂联合用药在制备治疗和预防老龄化人群假体周围骨溶解药物中的应用,以及提供一种治疗和预防老龄化人群假体周围骨溶解的药物组合物,提高淋巴管增殖的治疗效率,以解决由衰老所促进的假体周围骨组织溶解的问题。
为了实现上述目的,本发明提供了VEGF-C重组蛋白和JAK抑制剂联合用药在制备治疗和预防老龄化人群假体周围骨溶解药物中的应用。通过使用VEGF-C重组蛋白激活VEGFR3并促进骨内淋巴管的增殖,可以有效抵消由钛合金颗粒(TAP)和炎性细胞因子LPS/TNF-α引起的过度破骨细胞分化和骨溶解。然而,这种拯救骨溶解和破骨细胞分化的效果在老年小鼠中并不存在。老化和分化为脂肪细胞的间充质干细胞(BMSCs)抑制了淋巴内皮细胞(LECs)对其激动剂蛋白的反应,联合使用衰老相关分泌型表型(SASP)抑制剂JAK抑制剂(JAKi)可以恢复老年小鼠淋巴管对外部刺激的再响应以及对骨溶解进展的保护效果。在接受关节置换治疗的老年患者群体中,抑制分化为脂肪细胞的BMSCs的SASP分泌同时激活骨内淋巴管的组合药物有望成为预防假体周围骨溶解的新方案。
作为一个优选方案,所述JAK抑制剂是芦可替尼。
本发明还提供了一种治疗和预防老龄化人群假体周围骨溶解的药物组合物,所述药物组合物包括VEGF-C重组蛋白和JAK抑制剂,以及药学上可接受的载体。
作为一个优选方案,所述JAK抑制剂是芦可替尼。
JAK抑制剂分为两类:选择性JAK抑制剂和非选择性JAK抑制剂。选择性JAK抑制剂主要抑制特定的JAK成员,如JAK1、JAK2、JAK3或TYK2。非选择性JAK抑制剂可以同时抑制多个JAK成员。目前临床上常用的JAK抑制剂为Tofacitinib(托法替尼)、Ruxolitinib(芦可替尼)、Oclacitinib(奥拉替尼)、Baricitinib、Decernotinib、Peficitinib、Filgotinib、Fedratinib。
Ruxolitinib(芦可替尼)是一种属于JAK(Janus激酶)抑制剂的药物,被用于治疗骨髓增殖性肿瘤和特发性血小板增多症等疾病。它通过抑制JAK1和JAK2激酶的活性,阻断了多个细胞因子的信号传导途径。其结构式是:
本发明中,“老龄化人群”,“老年患者群体”是指关节置换手术或骨折内固定治疗时,骨骼具有衰老相关分泌型表型(SASP)衰老特征的人群。
本发明中,“药学上可接受的载体”是用于将本发明的VEGF-C重组蛋白和JAK抑制剂传送给动物或人的药学上可接受的溶剂、悬浮剂或赋形剂。载体可以是液体或固体。本发明的药物组合物或混合物可以通过常规方法制成任何常规的制剂形式,剂型可以是多种多样的,只要是能够使活性成分有效地到达哺乳动物体内的剂型都是可以的。比如可选自:片剂,胶囊剂,丸剂。
本发明的优点在于,实验证实通过使用VEGF-C重组蛋白激活VEGFR3并促进骨内淋巴管的增殖,可以有效抵消过度破骨细胞分化和骨溶解。在接受关节置换治疗或骨折内固定治疗的老年患者群体中,VEGF-C重组蛋白和JAK抑制剂联合用药,抑制分化为脂肪细胞的BMSCs的SASP分泌同时激活骨内淋巴管,对于预防和治疗老年患者假体周围骨溶解具有显著的治疗效果。
附图说明
图1.在钛合金颗粒(TAP)诱导的小鼠颅骨溶解模型中伴随着骨内淋巴管的增殖。(a)micro-CT的结果证实骨溶解模型的建立成功。(b)TRAP染色提示溶解骨组织中破骨细胞活化增强。(c)淋巴管的特异性标志物LYVE1、PROX1提示溶解骨组织伴随淋巴管的增殖加强。(d-g)统计学柱状图。
图2.使用淋巴管特异性激活蛋白VEGF-C可以有效激活骨内淋巴管增殖,并抑制钛合金金属颗粒诱导的骨溶解。(a)连续进行TAP同时伴随皮下注射重组VEGF-C 7或14天后,通过微CT图像展示了颅骨从上方和下方透视角度观察的骨吸收情况。(b)TAP植入后,结合重组VEGF-C注射,对小鼠颅骨进行TRAP染色。比例尺:100μm。(c)使用DAPI染色与LYVE1和PROX1进行免疫荧光染色。(d)通过微CT分析颅骨组织中的溶骨区域的定量结果(n=6)。(e)对颅骨切片进行TRAP染色区域的定量分析(n=6)。(f,g)在TAP和重组VEGF-C联合治疗后的第7或第14天,对颅骨中LYVE1和PROX1表达的相应定量数据(n=6)。
图3.衰老抑制了VEGF-C对骨溶解的改善效果,伴随着骨髓老化和增强的脂肪分化。(a)连续进行TAP处理14天后,同时伴随着皮下注射重组VEGF-C,通过微CT图像从上方和下方透视角度揭示了老化小鼠颅骨的骨吸收情况。(b)TAP植入后,对老化小鼠颅骨进行TRAP染色。比例尺:100μm。(c)使用DAPI染色与LYVE1和PROX1进行的免疫荧光染色。比例尺:100μm。(d)通过微CT分析颅骨组织中的溶骨区域的定量结果(n=6)。(e)对颅骨切片进行TRAP染色区域的定量分析(n=6)。(f,g)TAP和重组VEGF-C联合治疗后的第14天,老化小鼠颅骨中LYVE1和PROX1表达的相应定量数据(n=6)。(h–j)不同年龄小鼠颅骨中LYVE1和PROX1表达的代表性免疫荧光图像及相应的定量数据(n=6)。(k–n)不同年龄小鼠颅骨中p53、γH2AX和Perilipin表达的代表性免疫荧光图像及相应的定量数据(n=6)。
图4.利用JAK抑制剂抑制老化干细胞的SASP分泌,挽救了淋巴增殖对老年小鼠骨溶解的治疗效果。(a)包含经脂肪分化培养的BMSCs和LECs的共培养模型。(b)Anti-LYVE1抗体和Anti-PROX1抗体的免疫荧光图像表明,上层脂肪分化的BMSCs抑制了下层LECs的增殖。然而,使用JAK抑制剂可以逆转这种抑制效应。比例尺:50μm。(c)微CT图像展示了连续进行了14天的TAP处理后,同时伴随着皮下注射重组VEGF-C、口服JAK抑制剂或它们的联合对颅骨的骨溶解情况,从上方和下方透视角度观察。(d)在TAP植入后,结合皮下注射重组VEGF-C、口服JAK抑制剂或它们的联合,对小鼠颅骨进行了TRAP染色。比例尺:100μm。(e)使用DAPI染色与LYVE1和PROX1进行的免疫荧光染色。比例尺:100μm。(f)通过微CT分析颅骨组织中的溶骨区域的定量结果(n=6)。(g)对颅骨切片进行TRAP染色区域的定量分析(n=6)。(h–i)TAP植入后的第14天,联合TAP治疗、皮下注射重组VEGF-C、口服JAK抑制剂或它们的联合对颅骨中LYVE1和PROX1表达的相应定量数据(n=6)。
具体实施方式
以下,结合具体实施方式对本发明的技术进行详细描述。应当知道的是,以下具体实施方式仅用于帮助本领域技术人员理解本发明,而非对本发明的限制。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市售获得。
实施例1.骨内淋巴管的激活与衰老相关信号分子(SASP)同时抑制的研究实验方法:
制备钛合金颗粒(TAP)
在这项研究中使用的金属颗粒是钛粉末颗粒,来源于Alfa Aesar(#000681,Heysham,英国),纯度超过93%,直径小于20μm。为了去除内毒素,颗粒在180℃下烘烤6小时,然后在室温下用70%乙醇洗涤24小时。无菌颗粒悬浮在磷酸盐缓冲盐水(PBS)中,并在使用之前存储在4℃。
颅骨溶解模型
C57BL/6小鼠被用作所有分析的野生型小鼠。除非明确说明,否则在这项研究中使用的小鼠是8-12周的成年小鼠。在涉及植入物或药物刺激的实验中,小鼠被随机分配接受治疗,同窝小鼠作为假手术对照。
对于接受TAP诱导骨吸收的小鼠,使用异氟烷吸入按照标准方案麻醉C57BL/6小鼠。麻醉确认后,刮去颅骨上的皮肤,用酒精消毒,并用锋利的手术刀沿中线切开。随后,均匀涂抹30mg TAP(30μL)在双侧顶骨表面,然后关闭手术切口并进行额外的消毒。在所有假手术组中,小鼠经历了与上述相同的外科手术程序,只是使用了纯PBS(30μL)代替TAP(图1)。
对于小鼠骨组织淋巴管的药理激活,以10μg/mL浓度皮下注射VEGF-C重组蛋白(SinoBiological)在颅骨表面。作为对照,在假组中给小鼠注射相等体积的载体溶液。载体和VEGF-C重组蛋白每隔一天连续注射7或14天(图2)。
对于ruxolitinib(JAKi)治疗,JAKi溶解在10% DMSO中,每天60mg/kg的剂量经口灌服2周(图4)。
经过7或14天,小鼠在麻醉下被安乐死,其收获的颅骨组织通过浸泡在4%多聚甲醛固定。然后,固定的组织经过后续的微CT分析、组织病理学检查以及基因和蛋白质分析的准备。
微CT分析
采用高分辨率微CT系统Skyscan 1275micro-CT scanner(Bruker micro-CT,Kontich,Belgium)进行微计算机断层扫描。扫描分辨率设置为10μm,X射线能量配置为70kV和200μA,曝光时间固定为300ms。使用ImageJ(NIH,美国)分析获得的放射性数据,以量化颅骨表面的骨损失。
酒石酸盐抗性酸性磷酸酶(TRAP)染色
在微CT成像后,颅骨样本经过10%EDTA(pH=7.4)脱钙2周,然后嵌入石蜡。随后,制备了TRAP染色的组织切片以评估破骨细胞(OC)活性。使用Sigma-Aldrich的标准协议进行酒石酸盐抗性酸性磷酸酶(TRAP)染色。TRAP阳性的多核细胞被认为是OC。使用高质量显微镜(Leica DMi8)观察和捕获染色的切片。使用Image J软件对TRAP染色阳性的破骨细胞进行定量分析。
免疫荧光分析
对于免疫荧光(IF)染色,颅骨组织被脱脂和复水化。然后,制备5μm切片,用0.2%Triton X-100渗透,用2%牛血清白蛋白(BSA)阻断1小时,然后在4℃过夜与一抗共孵育。洗涤后,切片进一步与Goat Anti-Rabbit IgG H&L(Alexa 555)(Abcam)或GoatAnti-Rabbit IgG H&L(Alexa/>488)(Abcam)二抗(1:200稀释)在室温下共孵育1小时。染色的切片在高质量显微镜(Leica DMi8)下观察和捕捉。组织学评分和定量IF染色分析以双盲方式进行。
淋巴内皮细胞(LECs)的分离和培养
从小鼠中取得股骨和胫骨,在无菌条件下压碎骨骼。碎骨经过胶原酶A(Sigma-Aldrich)37℃酶解45分钟。所得物料通过40μm滤网过滤,得到单细胞悬浮液。然后使用BDCD45细胞去除试剂盒(Invitrogen,8804-6864-74)从单细胞悬浮液中去除CD45阳性细胞。随后使用兔源LYVE1抗体和基于磁珠的分离方法分离LYVE1抗体阳性细胞。使用抗兔磁珠(Dynabeads M-280Sheep Anti-Rabbit,ThermoFisher Scientific)按照制造商的说明分离阳性细胞。成功分离的LECs在含有10% FBS和1%青霉素/链霉素(Gibco;Thermo FisherScientific,Inc.)的DMEM中维持在37℃和5% CO2下。
BMSCs的分离、培养和脂肪生成分化
BMSCs的分离、培养和脂肪生成分化按照先前描述的方案进行。简要地说,将3个月大的C57BL/6雄性小鼠安乐死,解剖出它们的股骨和胫骨。使用充满PBS的22号注射器提取骨髓细胞。新鲜分离的单细胞悬浮液然后以5×104细胞/cm2的密度培养在含有BMSCs生长培养基(α-MEM补充10% FBS、100U/ml青霉素/链霉素)的6孔板中。细胞被允许在上清液被吸取之前增殖3天。细胞用PBS三次冲洗,培养基每周更换三次。对于脂肪生成分化,MSCs与脂肪生成培养基(Human Mesenchymal Stem Cell Chondrogenic Differentiation andStaining Kit,Meilunbio)一同培养,培养基每两天更换一次。
细胞的共培养
我们根据先前充分证明的方法进行了脂肪生成分化的BMSCs和LECs的细胞共培养实验。在这个实验中,我们使用了孔径为0.4μm的12mm进行BMSC和LECs的共培养。最初,在/>的上层室中种植BMSC(3×104细胞/孔),在下层室中种植LECs(3×104细胞/孔)。然后将/>插入孔板中,确保插入物中的BMSC与孔中的LECs不直接接触,但它们共享相同的培养基,允许可溶性因子的交换。共培养在37℃的含5% CO2的湿润大气中孵育,培养基每两天更换一次。在共培养的所需时期后,进行必要的分析,包括IF。
统计分析
使用GraphPad Prism 9.5(GraphPad Software)进行统计分析。比较两组时,采用two-tailed Student's t-test。对涉及多个实验组的比较,根据需要采用单因素或双因素方差分析(ANOVA)方法。p值小于0.05被认为是统计学上显著的。
结果:
图2提示使用淋巴管特异性激活蛋白VEGF-C可以有效激活骨内淋巴管增殖,并抑制钛合金金属颗粒诱导的骨溶解。衰老对骨骼系统产生了深远的影响,导致了一系列复杂的结构和功能变化。此外,需要临床关节置换治疗和骨折内固定治疗的大多数患者都是老年患者。因此,对人工关节周围骨溶解的研究需要关注衰老的特殊背景。我们最初使用老年小鼠,并通过诱导小鼠TAP建立了骨吸收模型。然而,与年轻小鼠获得的实验结果相比,TAP诱导的老年小鼠骨吸收并未被同时给予VEGF-C蛋白的治疗显著挽救(图3a,d)。大量明显的颅骨表面吸收仍然存在,表明与年轻小鼠得出的实验结论存在差异。同时,溶解性骨组织中分化的成骨细胞数量无法通过联合应用VEGF-C蛋白来减少(图3b,e)。这表明,针对衰老骨组织中的淋巴管可能无法充分挽救人工关节周围骨溶解。接下来,免疫荧光的实验结果也表明,在老年小鼠中,与单纯的骨溶解组相比,VEGF-C的使用不能显著促进骨组织中淋巴管的增殖(图3c,f,g)。总之,实验结果表明,衰老降低了骨骼系统对VEGF-C刺激的淋巴管增殖的反应性,从而限制了促进人工关节周围骨溶解淋巴管增殖的治疗效果。
我们推测,衰老后骨骼系统中淋巴靶向抑制成骨细胞分化和减轻骨吸收的能力可能归因于衰老后发生的其他因素的显著改变,从而干扰了淋巴系统的反应性。为了解决这个问题,我们将焦点转向了衰老的间充质干细胞。衰老对骨骼系统内的间充质干细胞产生了显著影响,导致细胞的功能和特性发生变化。在衰老过程中,间充质干细胞的增殖和分化能力逐渐减弱,它们倾向于进行脂肪形成而不是骨形成。此外,衰老还会导致细胞功能障碍,包括对外部刺激的反应性降低和细胞免疫调节功能减弱。这些变化可能对骨骼系统的整体健康产生深远影响,影响骨密度、骨质和骨折风险,从而促进老年人骨溶解和相关疾病的发展。此外,衰老的BMSCs可以发展出与衰老相关的分泌表型(SASP)。SASP因子已被证明通过旁分泌信号或细胞间接触将衰老传播到相邻的非衰老细胞中,从而影响骨内多个系统的稳态。
因此,我们推测,衰老的SASP分子可能会抑制骨内淋巴系统对VEGF-C重组蛋白的反应。最初,我们试图阐明随着年龄的增长,老鼠骨骼内的淋巴管是否会表达水平下降。然而,与我们的预期相反,随着老鼠年龄增长到24个月,骨骼内LYVE-1阳性淋巴内皮细胞略有减少,但与年轻小鼠相比,差异并不显著。相反,在整个衰老过程中,PROX1标记的淋巴内皮细胞没有观察到显著的表达变化(图3h-j)。这表明,衰老本身并不会导致骨内淋巴管的分布和表达发生显著变化。相反,随着老鼠的衰老,标志着骨髓衰老和SASP亚型的标记物,包括p53、DNA损伤标记物γH2AX和perilipin+细胞,表现出逐渐上调的表达模式。这一趋势在12个月大的老鼠骨髓中变得明显,达到24个月大的老鼠的峰值(图3k-n)。
为了进一步阐明间充质干细胞衰老和脂肪形成分化对骨内淋巴管增殖的影响,我们采用了体外细胞共培养技术。在上层培养室中,从野生型小鼠中分离出的BMSCs被种植并接受脂肪形成诱导培养基。同时,下层培养室包含从小鼠中分离的原代淋巴管内皮细胞(图4a)。免疫荧光的结果显示,上层脂肪形成分化的BMSCs显著抑制了下层LEC中淋巴管增殖标记物LYVE1和PROX1的表达(图4b)。最后,为了进一步确定是否可以通过干预脂肪形成分化的BMSCs释放的SASP亚型来挽救老年小鼠中不响应的淋巴管增殖,我们使用了JAK抑制剂(JAKi)ruxolitinib,这是一种已知的抑制衰老细胞中SASP的抑制剂。体外细胞实验的结果初步显示,脂肪形成分化的BMSC与JAKi结合将失去其对下层淋巴管增殖的抑制作用(图4b)。老年小鼠颅骨的代表性微CT图像表明,仅使用JAK抑制剂(JAKi)已部分抵消了TAP诱导的骨吸收。此外,在JAKi和VEGF-C的额外联合应用下,先前观察到的老年小鼠中骨吸收没有显著改善的情况已得到纠正(图4c,f)。基于抑制SASP分子亚型的淋巴管靶向联合治疗已经证明能够显著抑制骨吸收。与此同时,JAKi和JAKi联合VEGF-C在骨溶解期间抑制活性破骨细胞(图4d,g)。最后,免疫荧光的结果还表明,在JAKi的联合应用下,VEGF-C对老年小鼠骨内淋巴管增殖的作用已恢复到与年轻小鼠相似的模式(图4e,h,i)。
综上所述,抑制衰老和脂肪形成分化的BMSCs分泌的SASP相关分子亚型可以挽救针对老年骨吸收中淋巴管增殖的治疗效率低下的问题,VEGF-C重组蛋白和JAK抑制剂联合用药,抑制SASP分泌同时激活骨内淋巴管,可作为老年患者假体周围骨溶解药物干预的一种新手段。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.VEGF-C重组蛋白和JAK抑制剂联合用药在制备治疗和预防老龄化人群假体周围骨溶解药物中的应用。
2.根据权利要求1所述的VEGF-C重组蛋白和JAK抑制剂联合用药在制备治疗和预防老龄化人群假体周围骨溶解药物中的应用,其特征在于,所述JAK抑制剂是芦可替尼。
3.一种治疗和预防老龄化人群假体周围骨溶解的药物组合物,其特征在于,所述药物组合物包括VEGF-C重组蛋白和JAK抑制剂,以及药学上可接受的载体。
4.根据权利要求3所述治疗和预防老龄化人群假体周围骨溶解的药物组合物,其特征在于,所述JAK抑制剂是芦可替尼。
CN202410017582.8A 2024-01-05 2024-01-05 一种治疗和预防老龄化人群假体周围骨溶解的药物组合物 Pending CN117815367A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410017582.8A CN117815367A (zh) 2024-01-05 2024-01-05 一种治疗和预防老龄化人群假体周围骨溶解的药物组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410017582.8A CN117815367A (zh) 2024-01-05 2024-01-05 一种治疗和预防老龄化人群假体周围骨溶解的药物组合物

Publications (1)

Publication Number Publication Date
CN117815367A true CN117815367A (zh) 2024-04-05

Family

ID=90517253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410017582.8A Pending CN117815367A (zh) 2024-01-05 2024-01-05 一种治疗和预防老龄化人群假体周围骨溶解的药物组合物

Country Status (1)

Country Link
CN (1) CN117815367A (zh)

Similar Documents

Publication Publication Date Title
US9707318B2 (en) Compositions of novel bone patch in bone and vascular regeneration
Gibon et al. Selective inhibition of the MCP‐1‐CCR2 ligand‐receptor axis decreases systemic trafficking of macrophages in the presence of UHMWPE particles
Wu et al. Myricetin prevents titanium particle-induced osteolysis in vivo and inhibits RANKL-induced osteoclastogenesis in vitro
KR20080114717A (ko) 골다공증의 치료를 위한 gsk-3 억제제
JP2009507527A (ja) 脊椎固定術における脂肪組織由来のストローマ細胞の使用
JP2002506082A5 (zh)
Liao et al. Inhibitory effects of biochanin A on titanium particle‐induced osteoclast activation and inflammatory bone resorption via NF‐κB and MAPK pathways
Geng et al. Pharmaceutical inhibition of glycogen synthetase kinase 3 beta suppresses wear debris-induced osteolysis
Liu et al. Vaccarin prevents titanium particle‐induced osteolysis and inhibits RANKL‐induced osteoclastogenesis by blocking NF‐κB and MAPK signaling pathways
Zhao et al. Notoginsenoside R1 suppresses wear particle-induced osteolysis and RANKL mediated osteoclastogenesis in vivo and in vitro
Sun et al. Magnoflorine suppresses MAPK and NF-κB signaling to prevent inflammatory osteolysis induced by titanium particles in vivo and osteoclastogenesis via RANKL in vitro
Wang et al. The fibroblast expression of RANKL in CoCrMo-particle-induced osteolysis is mediated by ER stress and XBP1s
Wang et al. The inhibition of RANKL expression in fibroblasts attenuate CoCr particles induced aseptic prosthesis loosening via the MyD88-independent TLR signaling pathway
Farrell et al. Effect of ibuprofen on tumor growth in the C6 spheroid implantation glioma model
Wang et al. Punicalagin ameliorates wear-particle-induced inflammatory bone destruction by bi-directional regulation of osteoblastic formation and osteoclastic resorption
Li et al. Ultrasound-mediated rapamycin delivery for promoting osseointegration of 3D printed prosthetic interfaces via autophagy regulation in osteoporosis
Yu et al. Kaempferol attenuates wear particle-induced inflammatory osteolysis via JNK and p38-MAPK signaling pathways
Yu et al. Inhibitory effects of Formononetin on CoCrMo particle-induced osteoclast activation and bone loss through downregulating NF-κB and MAPK signaling
Geng et al. Strontium ranelate reduces the progression of titanium particle-induced osteolysis by increasing the ratio of osteoprotegerin to receptor activator of nuclear factor-κB ligand in vivo
Mandelin et al. Pseudosynovial fluid from loosened total hip prosthesis induces osteoclast formation
Sun et al. Anti-rheumatic drug iguratimod (T-614) alleviates cancer-induced bone destruction via down-regulating interleukin-6 production in a nuclear factor-κB-dependent manner
WO2021098240A1 (zh) 一种重组分泌型ddrgk1的应用
Yu et al. Inhibiting wear particles-induced osteolysis with naringin
CN117815367A (zh) 一种治疗和预防老龄化人群假体周围骨溶解的药物组合物
Shen et al. Sex differences in the therapeutic effect of unaltered versus NFκB sensing IL-4 over-expressing mesenchymal stromal cells in a murine model of chronic inflammatory bone loss

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination