CN117788461A - Magnetic resonance image quality evaluation system based on image analysis - Google Patents
Magnetic resonance image quality evaluation system based on image analysis Download PDFInfo
- Publication number
- CN117788461A CN117788461A CN202410203251.3A CN202410203251A CN117788461A CN 117788461 A CN117788461 A CN 117788461A CN 202410203251 A CN202410203251 A CN 202410203251A CN 117788461 A CN117788461 A CN 117788461A
- Authority
- CN
- China
- Prior art keywords
- image
- value
- matrix
- sub
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010191 image analysis Methods 0.000 title claims abstract description 17
- 238000013441 quality evaluation Methods 0.000 title claims description 3
- 238000001303 quality assessment method Methods 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 22
- 230000005540 biological transmission Effects 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 30
- 238000011156 evaluation Methods 0.000 claims description 27
- 230000011218 segmentation Effects 0.000 claims description 22
- 238000003672 processing method Methods 0.000 claims description 10
- 238000012549 training Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 2
- 210000004185 liver Anatomy 0.000 abstract description 5
- 238000002595 magnetic resonance imaging Methods 0.000 abstract description 4
- 238000012423 maintenance Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于图像分析的磁共振图像质量评估系统,属于肝脏磁共振成像质量评估技术领域,包括平台端、用户端和服务器;用户端包括采集模块、保密模块和传输模块;采集模块用于采集目标图像,并生成目标图像对应的参照图像;将目标图像和参照图像发送给保密模块用于对目标图像和参照图像进行保密处理,将处理后的目标图像和参照图像通过传输模块发送给平台端;传输模块用于用户端与平台端之间的数据传输;平台端包括第一分项模块、第二分项模块和质量评估模块;第一分项模块用于对目标图像和参照图像进行分析,计算第一分项值;第二分项模块用于对目标图像进行分析,计算第二分项值;质量评估模块用于评估目标图像的质量评分。
The invention discloses a magnetic resonance image quality assessment system based on image analysis, which belongs to the technical field of liver magnetic resonance imaging quality assessment and includes a platform end, a user end and a server; the user end includes an acquisition module, a confidentiality module and a transmission module; the acquisition module Used to collect the target image and generate the reference image corresponding to the target image; send the target image and the reference image to the confidentiality module for confidentiality processing of the target image and the reference image, and send the processed target image and reference image through the transmission module To the platform side; the transmission module is used for data transmission between the user side and the platform side; the platform side includes the first sub-item module, the second sub-item module and the quality assessment module; the first sub-item module is used to compare the target image and reference The image is analyzed and the first sub-item value is calculated; the second sub-item module is used to analyze the target image and calculate the second sub-item value; the quality assessment module is used to evaluate the quality score of the target image.
Description
技术领域Technical field
本发明属于肝脏磁共振成像质量评估技术领域,具体是一种基于图像分析的磁共振图像质量评估系统。The invention belongs to the technical field of liver magnetic resonance imaging quality assessment, and is specifically a magnetic resonance image quality assessment system based on image analysis.
背景技术Background technique
肝脏磁共振成像是一种无创、无辐射的影像学检查方法,广泛应用于肝脏疾病的诊断和监测。然而,肝脏MRI在实际应用中面临一些技术挑战,特别是多种噪声和伪影的干扰。这些包括但不限于运动伪影、金属伪影,以及由磁场不均匀性导致的图像失真。这些问题可能严重影响图像的质量,从而对医生进行诊断和疾病评估造成困难。实时、动态评估磁共振图像的成像质量是医院放射科质控工作的重点。目前,医院主要依靠专业的放射科医生或评审员来评估图像。他们主要依据图像的信噪比、清晰度和细节表现等因素进行主观评分。虽然这种方法可以评估图像质量,但它涉及较大的主观性,并且需要耗费大量的人力资源。此外,这种主观评估方法可能导致评估结果之间的一致性差异。Liver magnetic resonance imaging is a non-invasive, non-radiation imaging method that is widely used in the diagnosis and monitoring of liver diseases. However, liver MRI faces some technical challenges in practical applications, especially interference from multiple noises and artifacts. These include, but are not limited to, motion artifacts, metallic artifacts, and image distortion caused by magnetic field inhomogeneities. These problems can seriously affect the quality of images, making diagnosis and disease assessment difficult for doctors. Real-time and dynamic assessment of the imaging quality of magnetic resonance images is the focus of quality control work in hospital radiology departments. Currently, hospitals rely primarily on professional radiologists or reviewers to evaluate images. They mainly make subjective ratings based on factors such as the signal-to-noise ratio, clarity and detail performance of the image. While this method can assess image quality, it involves considerable subjectivity and is labor-intensive. Additionally, this subjective assessment method may lead to consistency differences between assessment results.
因此,基于此,本发明提供了一种基于图像分析的磁共振图像质量评估系统。Therefore, based on this, the present invention provides a magnetic resonance image quality assessment system based on image analysis.
发明内容Contents of the invention
为了解决上述方案存在的问题,本发明提供了一种基于图像分析的磁共振图像质量评估系统。In order to solve the problems existing in the above solution, the present invention provides a magnetic resonance image quality assessment system based on image analysis.
本发明的目的可以通过以下技术方案实现:The object of the present invention can be achieved through the following technical solutions:
一种基于图像分析的磁共振图像质量评估系统,包括平台端、用户端和服务器;平台端、用户端和服务器之间通信连接;A magnetic resonance image quality assessment system based on image analysis, including a platform end, a user end and a server; communication connections between the platform end, the user end and the server;
所述用户端包括采集模块、保密模块和传输模块;The user terminal includes a collection module, a security module and a transmission module;
所述采集模块用于采集对应的磁共振图像,标记为目标图像,并生成所述目标图像对应的参照图像;将所述目标图像和所述参照图像发送给保密模块。The acquisition module is used to collect the corresponding magnetic resonance image, mark it as a target image, and generate a reference image corresponding to the target image; send the target image and the reference image to the security module.
所述保密模块用于对接收到的目标图像和参照图像进行保密处理,将处理后的目标图像和参照图像通过传输模块发送给平台端。The security module is used to perform security processing on the received target image and reference image, and send the processed target image and reference image to the platform through the transmission module.
进一步地,对目标图像和参照图像进行保密处理的方法包括:Further, the method for confidentiality processing of the target image and the reference image includes:
将接收到的目标图像和参照图像标记为待处理图像;预设保密项和对应的识别特征;并设置各所述保密项对应的保密处理方式;Mark the received target image and reference image as images to be processed; preset confidentiality items and corresponding identification features; and set the confidentiality processing method corresponding to each of the confidentiality items;
根据各保密项和对应的识别特征对所述待处理图像进行识别,识别对应的隐私信息;为各所述隐私信息匹配对应的保密处理方式,根据获得的所述保密处理方式对所述隐私信息进行处理;获得经过保密处理后的目标图像和参照图像。Identify the image to be processed according to each confidential item and the corresponding identification feature, identify the corresponding private information; match the corresponding confidentiality processing method for each of the private information, and process the private information according to the obtained confidentiality processing method. Perform processing; obtain the target image and reference image after confidentiality processing.
所述传输模块用于用户端与平台端之间的数据传输。The transmission module is used for data transmission between the user terminal and the platform terminal.
所述平台端包括第一分项模块、第二分项模块和质量评估模块;The platform end includes a first sub-item module, a second sub-item module and a quality assessment module;
所述第一分项模块用于对目标图像和参照图像进行比较分析,计算对应的第一分项值。The first sub-item module is used to perform comparative analysis on the target image and the reference image, and calculate the corresponding first sub-item value.
进一步地,第一分项值的计算方法包括:Further, the calculation method of the first component value includes:
对所述目标图像和所述参照图像进行等同处理和灰度处理;获得对应的目标灰度图像和参照灰度图像;Perform equivalent processing and grayscale processing on the target image and the reference image; obtain the corresponding target grayscale image and reference grayscale image;
识别所述目标灰度图像和所述参照灰度图像中各像素的灰度值;根据各像素的灰度值以及对应的位置生成对应的目标灰度矩阵和参照灰度矩阵;将所述目标灰度矩阵和所述参照灰度矩阵分别标记为和/>;i=1、2、……、n,n为正整数;j=1、2、……、m,m为正整数;Identify the grayscale value of each pixel in the target grayscale image and the reference grayscale image; generate the corresponding target grayscale matrix and reference grayscale matrix according to the grayscale value of each pixel and the corresponding position; convert the target grayscale The grayscale matrix and the reference grayscale matrix are respectively marked as and/> ; i=1, 2,..., n, n is a positive integer; j=1, 2,..., m, m is a positive integer;
根据公式R3=R1-R2计算对应的差异矩阵;Calculate the corresponding difference matrix according to the formula R 3 =R 1 -R 2 ;
式中:R1为目标灰度矩阵;R2为参照灰度矩阵;R3为差异矩阵;In the formula: R 1 is the target gray level matrix; R 2 is the reference gray level matrix; R 3 is the difference matrix;
根据公式计算对应的第一分项值;式中:SUBvalue为第一分项值;||R3||F表示矩阵R3的Frobenius范数。According to the formula Calculate the corresponding first component value; where: SUB value is the first component value; ||R 3 || F represents the Frobenius norm of matrix R 3 .
所述第二分项模块用于对目标图像进行分析,计算对应的第二分项值。The second sub-item module is used to analyze the target image and calculate the corresponding second sub-item value.
进一步地,第二分项值的计算方法包括:Furthermore, the calculation method of the second sub-item value includes:
获取目标图像,识别目标图像尺寸,根据识别的所述目标图像尺寸对所述目标图像进行等分,获得K个单元块,且公式k´=K0.5中k´为正整数,2≤k´≤10;K为正整数;Acquire a target image, identify the size of the target image, divide the target image into equal parts according to the identified size of the target image, and obtain K unit blocks, wherein k' is a positive integer in the formula k'=K 0.5 , 2≤k'≤10; K is a positive integer;
识别各所述单元块对应的对比度代表值、分辨率代表值和亮度代表值;基于各所述单元块的位置生成对应的对比度矩阵、分辨率矩阵和亮度矩阵;对比度矩阵、分辨率矩阵和亮度矩阵均为k´阶方阵;Identify the contrast representative value, resolution representative value and brightness representative value corresponding to each of the unit blocks; generate the corresponding contrast matrix, resolution matrix and brightness matrix based on the position of each of the unit blocks; the contrast matrix, resolution matrix and brightness The matrices are all square matrices of order k´;
根据公式Rs=b1×R4+b2×R5+b3×R6计算对应的合并矩阵;Calculate the corresponding merge matrix according to the formula R s =b 1 ×R 4 +b 2 ×R 5 +b 3 ×R 6 ;
式中:Rs为合并矩阵;R4为对比度矩阵;R5为分辨率矩阵;R6为亮度矩阵;b1、b2、b3均为比例系数,取值范围为0<b1≤1,0<b2≤1,0<b3≤1;In the formula: R s is the merging matrix; R 4 is the contrast matrix; R 5 is the resolution matrix; R 6 is the brightness matrix; b 1 , b 2 , b 3 are all proportional coefficients, and the value range is 0<b 1 ≤ 1, 0<b 2 ≤1, 0<b 3 ≤1;
将合并矩阵标记为;将合并矩阵中的元素标记为sqp;q=1、2、……、k´,k´为正整数;p=1、2、……、k´,k´为正整数;Mark the merged matrix as ; Mark the elements in the merged matrix as s qp ; q=1, 2, ..., k´, k´ is a positive integer; p = 1, 2, ..., k´, k´ is a positive integer;
根据公式计算对应的第二分项值;According to the formula Calculate the corresponding second component value;
式中:SRBvalue为第二分项值。Where: SRB value is the second sub-item value.
进一步地,对目标图像进行等分的方法包括:Further, methods for dividing the target image into equal parts include:
根据k´的取值范围对所述目标图像进行模拟分割,获得9组分割图像,将每组分割图像中的单个图像标记为单元块;Perform simulated segmentation on the target image according to the value range of k´, obtain 9 groups of segmented images, and mark a single image in each group of segmented images as a unit block;
评估各组分割图像中单元块对应的对比度代表值、分辨率代表值和亮度代表值;当各组分割图像中具有任意对比度代表值、分辨率代表值和亮度代表值为0时,剔除对应组的分割图像;Evaluate the contrast representative value, resolution representative value and brightness representative value corresponding to the unit blocks in each group of segmented images; when any contrast representative value, resolution representative value and brightness representative value in each group of segmented images is 0, remove the segmented images of the corresponding group;
通过预设的分割评估公式计算各组分割图像的分割评估值,识别最高的所述分割评估值对应的分割图像,按照该分割图像对应的分割方式对所述目标图像进行分割。Calculate the segmentation evaluation value of each group of segmented images through a preset segmentation evaluation formula, identify the segmented image corresponding to the highest segmentation evaluation value, and segment the target image according to the segmentation method corresponding to the segmented image.
进一步地,对比度代表值的评估方法包括:Further, the evaluation methods of contrast representative values include:
识别对应分割图像的K的数值,根据K对各单元块进行等分,获得K个细分块;识别各细分块对应的对比度,标记为单一对比度;Identify the value of K corresponding to the segmented image, divide each unit block equally according to K, and obtain K subdivided blocks; identify the contrast corresponding to each subdivided block and mark it as a single contrast;
根据公式计算对应单元块的对比度代表值;According to the formula Calculate the contrast representative value of the corresponding unit block;
式中:CONt为对应单元块的对比度代表值;t表示对应的单元块,t=1、2、……、K;v表示对应的细分块,v=1、2、……、K;DCtv表示对应细分块的单一对比度;G(A)为判断模型,A为细分块的面积。In the formula: CON t is the contrast representative value of the corresponding unit block; t represents the corresponding unit block, t=1, 2,...,K; v represents the corresponding subdivision block, v=1, 2,...,K ; DC tv represents the single contrast corresponding to the subdivided block; G(A) is the judgment model, and A is the area of the subdivided block.
进一步地,分辨率代表值的获取方法包括:Further, methods for obtaining the resolution representative value include:
识别对应分割图像的K的数值,根据K对各单元块进行等分,获得K个细分块;识别各细分块对应分辨率,标记为单一分辨率;Identify the value of K corresponding to the segmented image, divide each unit block equally according to K, and obtain K subdivided blocks; identify the corresponding resolution of each subdivided block and mark it as a single resolution;
根据公式计算对应单元块的分辨率代表值;According to the formula Calculate the resolution representative value of the corresponding unit block;
式中:REt为对应单元块的分辨率代表值;t表示对应的单元块,t=1、2、……、K;v表示对应的细分块,v=1、2、……、K;DRtv表示对应细分块的单一分辨率;G(A)为判断模型,A为细分块的面积。In the formula: RE t is the representative value of resolution of the corresponding unit block; t represents the corresponding unit block, t=1, 2,...,K; v represents the corresponding subdivision block, v=1, 2,..., K; DR tv represents the single resolution of the corresponding subdivision block; G(A) is the judgment model, and A is the area of the subdivision block.
进一步地,亮度代表值的获取方法包括:Further, the method for obtaining the brightness representative value includes:
识别对应分割图像的K的数值,根据K对各单元块进行等分,获得K个细分块;识别各细分块对应的亮度,标记为单一亮度;获取对应的基准亮度,根据亮度率=单一亮度÷基准亮度计算对应细分块的亮度率;Identify the value of K corresponding to the segmented image, divide each unit block equally according to K, and obtain K subdivided blocks; identify the brightness corresponding to each subdivided block and mark it as a single brightness; obtain the corresponding reference brightness, and calculate the brightness rate of the corresponding subdivided block according to brightness rate = single brightness ÷ reference brightness;
根据公式计算对应单元块的亮度代表值;According to the formula Calculate the brightness representative value of the corresponding unit block;
式中:BRIGHt为对应单元块的亮度代表值;t表示对应的单元块,t=1、2、……、K;v表示对应的细分块,v=1、2、……、K;DBtv表示对应细分块的单一分辨率;G(A)为判断模型,A为细分块的面积。Wherein: BRIGH t is the brightness representative value of the corresponding unit block; t represents the corresponding unit block, t=1, 2, ..., K; v represents the corresponding subdivision block, v=1, 2, ..., K; DB tv represents the single resolution of the corresponding subdivision block; G(A) is the judgment model, and A is the area of the subdivision block.
进一步地,判断模型的表示式为。Furthermore, the expression of the judgment model is .
进一步地,分割评估公式为;Furthermore, the segmentation evaluation formula is ;
式中:Asse为分割评估值;b1、b2、b3均为比例系数,取值范围为0<b1≤1,0<b2≤1,0<b3≤1;t表示对应的单元块,t=1、2、……、K;CONt为对应单元块的对比度代表值;REt为对应单元块的分辨率代表值;BRIGHt为对应单元块的亮度代表值。In the formula: A sse is the segmentation evaluation value; b 1 , b 2 , and b 3 are all proportional coefficients, and the value range is 0<b 1 ≤1, 0<b 2 ≤1, 0<b 3 ≤1; t represents Corresponding unit block, t=1, 2,...,K; CON t is the representative value of contrast of the corresponding unit block; RE t is the representative value of resolution of the corresponding unit block; BRIGH t is the representative value of brightness of the corresponding unit block.
所述质量评估模块用于评估目标图像的质量评分,获取第一分项值和第二分项值,根据公式Prior=b4×SUBvalue+b5×SRBvalue计算对应的综合值;The quality assessment module is used to assess the quality score of the target image, obtain the first sub-item value and the second sub-item value, and calculate the corresponding comprehensive value according to the formula: Prior = b4 × SUB value + b5 × SRB value ;
式中:Prior为综合值;SUBvalue为第一分项值;SRBvalue为第二分项值;b4、b5均为比例系数,取值范围为0<b4≤1,0<b5≤1;In the formula: Prior is the comprehensive value; SUB value is the first component value; SRB value is the second component value; b 4 and b 5 are both proportional coefficients, and the value range is 0<b 4 ≤1, 0< b 5 ≤1;
获取对应的训练数据,对所述训练数据进行分析,获得对应的综合值集合;根据训练数据对应的质量评分和综合值集合形成若干个评分坐标;根据各所述评分坐标设置对应的评估函数;Acquire corresponding training data, analyze the training data, and obtain a corresponding comprehensive value set; form a number of scoring coordinates according to the quality score and the comprehensive value set corresponding to the training data; and set a corresponding evaluation function according to each of the scoring coordinates;
将所述综合值代入到评估函数中计算对应的质量评分;将所述质量评分发送给用户端。The comprehensive value is substituted into the evaluation function to calculate the corresponding quality score; and the quality score is sent to the user terminal.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
通过各模块之间的相互配合,实现对磁共振图像的智能评估,获得对应的质量评分,且通过平台端和用户端之间的分立,将会最大程度的发挥投入资源的作用,极大的降低医院的成本投入;实现一对多,为多家用户医院提供服务;而且通过平台方进行管理和运维,将会有更加专业的工作人员保障系统的正常运行;并且通过设置保密模块保障患者隐私,杜绝患者隐私的泄露;通过评估肝脏磁共振图像的质量,可以了解图像处理算法的优缺点,进一步优化图像处理流程,提高图像处理的效果和效率;同时可以为医生提供更为准确和可靠的诊断依据,帮助医生做出更为科学和合理的临床决策。Through the mutual cooperation between various modules, intelligent evaluation of magnetic resonance images can be achieved and corresponding quality scores can be obtained. Through the separation between the platform side and the user side, the role of invested resources will be maximized, which will greatly benefit Reduce the hospital's cost investment; achieve one-to-many, providing services to multiple user hospitals; and through the management and operation and maintenance of the platform, there will be more professional staff to ensure the normal operation of the system; and by setting up a confidentiality module to protect patients Privacy, to prevent the leakage of patient privacy; by evaluating the quality of liver magnetic resonance images, we can understand the advantages and disadvantages of image processing algorithms, further optimize the image processing process, and improve the effect and efficiency of image processing; at the same time, we can provide doctors with more accurate and reliable The diagnostic basis helps doctors make more scientific and reasonable clinical decisions.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following will briefly introduce the drawings needed to describe the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
图1为本发明原理框图;Figure 1 is a functional block diagram of the present invention;
图2为本发明方法流程图。Figure 2 is a flow chart of the method of the present invention.
具体实施方式Detailed ways
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solution of the present invention will be clearly and completely described below with reference to the embodiments. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
如图1至图2所示,一种基于图像分析的磁共振图像质量评估系统,包括平台端、用户端和服务器;平台端、用户端和服务器之间通信连接。As shown in FIG. 1 and FIG. 2 , a magnetic resonance image quality assessment system based on image analysis includes a platform end, a user end and a server; the platform end, the user end and the server are communicatively connected.
平台端用于平台方进行应用、管理和维护。The platform side is used by the platform side for application, management and maintenance.
用户端由各注册医院用户进行使用。The client is used by registered hospital users.
为了实现对磁共振图像的质量评估,需要配套相应的设备和软件,而这对于医院需求和改造成本来说,若由医院独立投入独立使用将会难以发挥全部投入资源作用,出现资源浪费;因此采用平台方和用户之间的关系进行管理,将会最大程度的发挥投入资源的利用作用,极大的降低医院的成本投入;实现一对多,为多家用户医院提供服务;而且通过平台方进行管理和运维,将会具有更加专业的工作人员保障系统的正常运行。In order to achieve the quality assessment of magnetic resonance images, corresponding equipment and software are required. In terms of hospital needs and transformation costs, if the hospital invests and uses it independently, it will be difficult to use all the invested resources, resulting in a waste of resources; therefore, Adopting the relationship between the platform and users for management will maximize the utilization of invested resources and greatly reduce the hospital's cost investment; realize one-to-many and provide services to multiple user hospitals; and through the platform For management and operation and maintenance, there will be more professional staff to ensure the normal operation of the system.
所述用户端包括采集模块、保密模块、传输模块;The user terminal includes a collection module, a confidentiality module, and a transmission module;
所述采集模块用于需要进行质量评估时,采集对应的磁共振图像,标记为目标图像,并生成目标图像的参照图像;将获得的目标图像和参照图像发送给保密模块。The acquisition module is used to collect the corresponding magnetic resonance image when quality assessment is required, mark it as a target image, and generate a reference image of the target image; send the obtained target image and reference image to the confidentiality module.
参照图像指的是与目标图像相似的清晰、无噪声、无失真的磁共振图像,可以在获取目标图像时,采集相应的图像集,选择收集到的图像进行预处理,包括去噪、校正、归一化等操作,以确保图像的质量和稳定性;从预处理后的图像中选择一个高质量的原始磁共振图像作为参考图像。或者应用其他现有方式获取参照图像同样可以。The reference image refers to a clear, noise-free, and distortion-free magnetic resonance image similar to the target image. When acquiring the target image, the corresponding image set can be collected, and the collected images can be selected for preprocessing, including denoising, correction, Normalization and other operations are performed to ensure the quality and stability of the image; a high-quality original magnetic resonance image is selected from the pre-processed image as a reference image. Or you can also use other existing methods to obtain the reference image.
所述保密模块用于对接收到的目标图像和参照图像进行保密处理,将接收到的目标图像和参照图像标记为待处理图像;预设保密项和对应的识别特征;即磁共振图像中可能包括患者隐私信息的数据项,再结合该数据项在图像中的识别特征,设置各保密项对应的识别特征;The security module is used to perform security processing on the received target image and reference image, and mark the received target image and reference image as images to be processed; preset security items and corresponding identification features; that is, the magnetic resonance image may contain Data items including patient privacy information are combined with the identification features of the data items in the image to set identification features corresponding to each confidential item;
预设各保密项对应的保密处理方式,如删除相应信息、改编信息、代码替换等各种保密方式;可以根据需要选择对待处理图像质量评估无相应的方式为保密处理方式。Preset the confidentiality processing methods corresponding to each confidentiality item, such as deleting corresponding information, adapting information, code replacement and other confidentiality methods; you can select the confidentiality processing method according to your needs if there is no corresponding method for image quality evaluation to be processed.
根据预设的各保密项和对应的识别特征对待处理图像进行识别,识别对应的隐私信息;为各隐私信息匹配对应的保密处理方式,根据获得的保密处理方式对对应的隐私信息进行处理;获得经过保密处理后的目标图像和参照图像,将处理后的目标图像和参照图像通过传输模块发送给平台端。Identify the image to be processed according to the preset confidentiality items and corresponding identification features, and identify the corresponding private information; match the corresponding confidentiality processing method for each private information, and process the corresponding private information according to the obtained confidentiality processing method; obtain The target image and reference image after confidentiality processing are sent to the platform through the transmission module.
所述传输模块用于用户端与平台端之间的数据传输。The transmission module is used for data transmission between the user terminal and the platform terminal.
所述平台端包括第一分项模块、第二分项模块和质量评估模块;The platform includes a first sub-item module, a second sub-item module and a quality assessment module;
所述第一分项模块用于对目标图像和参照图像进行比较分析,计算对应的第一分项值。The first sub-item module is used to compare and analyze the target image and the reference image, and calculate the corresponding first sub-item value.
具体的计算方法如下:The specific calculation method is as follows:
对目标图像和参照图像进行等同处理和灰度处理;其中等同处理即为将目标图像和参照图像处理为相同的大小和分辨率。Perform equivalence processing and grayscale processing on the target image and the reference image; equivalence processing means processing the target image and the reference image into the same size and resolution.
获得处理后目标图像和参照图像分别对应的目标灰度图像和参照灰度图像;Obtain the target grayscale image and reference grayscale image corresponding to the processed target image and reference image respectively;
识别目标灰度图像和参照灰度图像中各像素的灰度值;根据各像素对应的灰度值以及对应的位置生成对应的目标灰度矩阵和参照灰度矩阵;将获得的目标灰度矩阵和参照灰度矩阵分别标记为和/>;i=1、2、……、n,n为正整数;j=1、2、……、m,m为正整数;Identify the grayscale value of each pixel in the target grayscale image and the reference grayscale image; generate the corresponding target grayscale matrix and reference grayscale matrix according to the corresponding grayscale value and corresponding position of each pixel; convert the obtained target grayscale matrix and the reference grayscale matrix are respectively marked as and/> ; i=1, 2,..., n, n is a positive integer; j=1, 2,..., m, m is a positive integer;
根据公式R3=R1-R2计算对应的差异矩阵;式中:R1为目标灰度矩阵;R2为参照灰度矩阵;R3为差异矩阵;Calculate the corresponding difference matrix according to the formula R 3 =R 1 -R 2 ; in the formula: R 1 is the target grayscale matrix; R 2 is the reference grayscale matrix; R 3 is the difference matrix;
根据公式计算对应的第一分项值;式中:SUBvalue为第一分项值;||R3||F表示矩阵R3的Frobenius范数。According to the formula Calculate the corresponding first component value; where: SUB value is the first component value; ||R 3 || F represents the Frobenius norm of matrix R 3 .
所述第二分项模块用于对目标图像进行分析,计算对应的第二分项值。过程如下:The second sub-item module is used to analyze the target image and calculate the corresponding second sub-item value. The process is as follows:
获取目标图像,识别目标图像尺寸,根据识别的目标图像尺寸对目标图像进行分割,获得K个单元块,且k´=K0.5为正整数,2≤k´≤10;Obtain the target image, identify the target image size, segment the target image according to the recognized target image size, and obtain K unit blocks, and k´=K 0.5 is a positive integer, 2≤k´≤10;
识别各单元块对应的对比度代表值、分辨率代表值和亮度代表值;基于各单元块的位置生成对应的对比度矩阵、分辨率矩阵和亮度矩阵;即将各单元块的位置作为矩阵中对应的元素位,将对应的对比度代表值、分辨率代表值或亮度代表值进行填充,形成对应的矩阵;对比度矩阵、分辨率矩阵和亮度矩阵均为k´阶方阵;分别标记为R4、R5、R6;Identify the contrast representative value, resolution representative value and brightness representative value corresponding to each unit block; generate the corresponding contrast matrix, resolution matrix and brightness matrix based on the position of each unit block; that is, use the position of each unit block as the corresponding element in the matrix bit, fill in the corresponding contrast representative value, resolution representative value or brightness representative value to form the corresponding matrix; the contrast matrix, resolution matrix and brightness matrix are all k´ order square matrices; marked R 4 and R 5 respectively. , R6 ;
根据公式Rs=b1×R4+b2×R5+b3×R6计算对应的合并矩阵;式中:Rs为合并矩阵;R4为对比度矩阵;R5为分辨率矩阵;R6为亮度矩阵;b1、b2、b3均为比例系数,取值范围为0<b1≤1,0<b2≤1,0<b3≤1;与分割评估公式中b1、b2、b3比例系数相同。Calculate the corresponding merging matrix according to the formula R s =b 1 ×R 4 +b 2 ×R 5 +b 3 ×R 6 ; where: R s is the merging matrix; R 4 is the contrast matrix; R 5 is the resolution matrix; R 6 is the brightness matrix; b 1 , b 2 , and b 3 are all proportional coefficients, and the value range is 0<b 1 ≤1, 0<b 2 ≤1, 0<b 3 ≤1; and b in the segmentation evaluation formula 1 , b2 , and b3 have the same proportional coefficients.
将合并矩阵标记为;将合并矩阵中的元素标记为sqp;q=1、2、……、k´,k´为正整数;p=1、2、……、k´,k´为正整数;Mark the merged matrix as ; Mark the elements in the merged matrix as s qp ; q=1, 2, ..., k´, k´ is a positive integer; p = 1, 2, ..., k´, k´ is a positive integer;
根据公式计算对应的第二分项值;According to the formula Calculate the corresponding second component value;
式中:SRBvalue为第二分项值。In the formula: SRB value is the second component value.
对目标图像进行分割的方法包括:Methods for segmenting target images include:
设置分割评估公式,分割评估公式为;Set the segmentation evaluation formula. The segmentation evaluation formula is ;
式中:Asse为分割评估值;b1、b2、b3均为比例系数,取值范围为0<b1≤1,0<b2≤1,0<b3≤1;t表示对应的单元块,t=1、2、……、K;CONt为对应单元块的对比度代表值;REt为对应单元块的分辨率代表值;BRIGHt为对应单元块的亮度代表值。In the formula: A sse is the segmentation evaluation value; b 1 , b 2 , and b 3 are all proportional coefficients, and the value range is 0<b 1 ≤1, 0<b 2 ≤1, 0<b 3 ≤1; t represents Corresponding unit block, t=1, 2,...,K; CON t is the representative value of contrast of the corresponding unit block; RE t is the representative value of resolution of the corresponding unit block; BRIGH t is the representative value of brightness of the corresponding unit block.
根据的k´取值范围对目标图像进行依次等分,即按照22、32、42、……等个数进行依次等分;Divide the target image into equal parts according to the value range of k´, that is, divide it into equal parts according to the number of 2 2 , 3 2 , 4 2 , ..., etc.;
获得9组分割图像,将每组分割图像中的单个图像标记为单元块;通过分割评估公式评估各组分割图像对应的分割评估值,选择最高分割评估值对应的K的数值进行分割。Nine groups of segmented images are obtained, and a single image in each group of segmented images is marked as a unit block; the segmentation evaluation value corresponding to each group of segmented images is evaluated through the segmentation evaluation formula, and the value of K corresponding to the highest segmentation evaluation value is selected for segmentation.
对比度代表值的获取方法包括:Methods for obtaining the contrast representative value include:
识别该组分割图像对应的K的数值,根据K对各单元块进行等分,获得K个细分块;识别各细分块对应的对比度,标记为单一对比度,根据公式计算对应单元块的对比度代表值;式中:CONt为对应单元块的对比度代表值;t表示对应的单元块,t=1、2、……、K;v表示对应的细分块,v=1、2、……、K;DCtv表示对应细分块的单一对比度;G(A)为判断模型,A为细分块的面积;判断模型的表示式为/>。Identify the value of K corresponding to this group of segmented images, divide each unit block equally according to K, and obtain K subdivided blocks; identify the contrast corresponding to each subdivided block, mark it as a single contrast, according to the formula Calculate the contrast representative value of the corresponding unit block; where: CON t is the contrast representative value of the corresponding unit block; t represents the corresponding unit block, t=1, 2,...,K; v represents the corresponding subdivision block, v =1, 2,...,K; DC tv represents the single contrast of the corresponding subdivision block; G(A) is the judgment model, A is the area of the subdivision block; the expression of the judgment model is/> .
分辨率代表值的获取方法包括:Methods for obtaining the representative value of resolution include:
识别该组分割图像对应的K的数值,根据K对各单元块进行等分,获得K个细分块;识别各细分块对应分辨率,标记为单一分辨率,根据公式计算对应单元块的分辨率代表值;式中:REt为对应单元块的分辨率代表值;t表示对应的单元块,t=1、2、……、K;v表示对应的细分块,v=1、2、……、K;DRtv表示对应细分块的单一分辨率;G(A)为判断模型,A为细分块的面积。Identify the value of K corresponding to the group of segmented images, divide each unit block equally according to K, and obtain K subdivided blocks; identify the corresponding resolution of each subdivided block, mark it as a single resolution, according to the formula Calculate the resolution representative value of the corresponding unit block; where: RE t is the resolution representative value of the corresponding unit block; t represents the corresponding unit block, t=1, 2,...,K; v represents the corresponding subdivision block , v=1, 2,...,K; DR tv represents the single resolution of the corresponding subdivision block; G(A) is the judgment model, and A is the area of the subdivision block.
亮度代表值的获取方法包括:Methods for obtaining representative brightness values include:
识别该组分割图像对应的K的数值,根据K对各单元块进行等分,获得K个细分块;识别各细分块对应的亮度,标记为单一亮度;获取磁共振图像可能出现的最高亮度,标记为基准亮度,根据公式亮度率=单一亮度÷基准亮度计算该细分块对应的亮度率;Identify the value of K corresponding to the group of segmented images, divide each unit block equally according to K, and obtain K subdivided blocks; identify the brightness corresponding to each subdivided block, and mark it as a single brightness; obtain the highest brightness that may appear in the magnetic resonance image, mark it as a reference brightness, and calculate the brightness rate corresponding to the subdivided block according to the formula brightness rate = single brightness ÷ reference brightness;
根据公式计算对应单元块的亮度代表值;式中:BRIGHt为对应单元块的亮度代表值;t表示对应的单元块,t=1、2、……、K;v表示对应的细分块,v=1、2、……、K;DBtv表示对应细分块的单一分辨率;G(A)为判断模型,A为细分块的面积。According to the formula Calculate the brightness representative value of the corresponding unit block; where: BRIGH t is the brightness representative value of the corresponding unit block; t represents the corresponding unit block, t=1, 2,...,K; v represents the corresponding subdivision block, v =1, 2,...,K; DB tv represents the single resolution of the corresponding subdivision block; G(A) is the judgment model, and A is the area of the subdivision block.
所述质量评估模块用于根据第一分项值和第二分项值评估目标图像的质量评分,获取第一分项值和第二分项值,根据公式Prior=b4×SUBvalue+b5×SRBvalue计算对应的综合值;式中:Prior为综合值;SUBvalue为第一分项值;SRBvalue为第二分项值;b4、b5均为比例系数,取值范围为0<b4≤1,0<b5≤1;The quality assessment module is used to evaluate the quality score of the target image based on the first sub-item value and the second sub-item value, and obtain the first sub-item value and the second sub-item value, according to the formula Prior =b 4 ×SUB value + Calculate the corresponding comprehensive value by b 5 The range is 0<b 4 ≤1, 0<b 5 ≤1;
获取大量的历史磁共振图像,指的是经过专业人员评分后的历史磁共振图像,标记为训练数据;按照上述步骤进行分析,获得若干个历史综合值,将历史综合值和对应的质量评分整合为对应的评分坐标;进行大量整合后,将会获得若干个评分坐标,将获得的评分坐标输入到坐标系中,横轴为综合值,纵轴为质量评分,将坐标系中相邻评分坐标进行相连,形成对应的评估曲线,对评估曲线进行拟合,获得对应的评估函数;Acquire a large number of historical magnetic resonance images, which refers to historical magnetic resonance images that have been rated by professionals and are marked as training data; analyze according to the above steps, obtain several historical comprehensive values, and integrate the historical comprehensive values with the corresponding quality scores is the corresponding scoring coordinate; after a large number of integrations, several scoring coordinates will be obtained. The obtained scoring coordinates are input into the coordinate system. The horizontal axis is the comprehensive value, the vertical axis is the quality score, and the adjacent scoring coordinates in the coordinate system are Connect to form the corresponding evaluation curve, fit the evaluation curve, and obtain the corresponding evaluation function;
将获得的综合值输入到评估函数中,输出对应的质量评分;Input the obtained comprehensive value into the evaluation function and output the corresponding quality score;
将获得的质量评分发送给传输模块。Send the obtained quality score to the transfer module.
上述公式均是去除量纲取其数值计算,公式是由采集大量数据进行软件模拟得到最接近真实情况的一个公式,公式中的预设参数和预设阈值由本领域的技术人员根据实际情况设定或者大量数据模拟获得。The above formulas are all numerical calculations after removing the dimensions. The formula is a formula closest to the real situation obtained by collecting a large amount of data for software simulation. The preset parameters and preset thresholds in the formula are set by those skilled in the field according to the actual situation. Or obtain a large amount of data through simulation.
以上实施例仅用以说明本发明的技术方法而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方法进行修改或等同替换,而不脱离本发明技术方法的精神和范围。The above embodiments are only used to illustrate the technical methods of the present invention and are not limiting. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical methods of the present invention can be modified or equivalently substituted. without departing from the spirit and scope of the technical method of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410203251.3A CN117788461B (en) | 2024-02-23 | 2024-02-23 | Magnetic resonance image quality evaluation system based on image analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410203251.3A CN117788461B (en) | 2024-02-23 | 2024-02-23 | Magnetic resonance image quality evaluation system based on image analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117788461A true CN117788461A (en) | 2024-03-29 |
CN117788461B CN117788461B (en) | 2024-05-07 |
Family
ID=90383866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410203251.3A Active CN117788461B (en) | 2024-02-23 | 2024-02-23 | Magnetic resonance image quality evaluation system based on image analysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117788461B (en) |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120128239A1 (en) * | 2010-11-18 | 2012-05-24 | Ebay Inc. | Image quality assessment to merchandise an item |
CN102543793A (en) * | 2012-02-29 | 2012-07-04 | 无锡睿当科技有限公司 | Wafer focusing image quality feedback system and method therefor |
US20150063719A1 (en) * | 2012-05-03 | 2015-03-05 | Sk Telecom Co., Ltd. | Image processing apparatus for removing haze contained in still image and method thereof |
CN104636804A (en) * | 2013-11-07 | 2015-05-20 | 大连东方之星信息技术有限公司 | Data analysis system |
CN105678775A (en) * | 2016-01-13 | 2016-06-15 | 福州大学 | Color correction assessment method based on machine learning |
CN107578403A (en) * | 2017-08-22 | 2018-01-12 | 浙江大学 | Stereo image quality assessment method based on gradient information to guide binocular view fusion |
CN108319911A (en) * | 2018-01-30 | 2018-07-24 | 深兰科技(上海)有限公司 | Biometric identity certification and payment system based on the identification of hand arteries and veins and identity identifying method |
CN109146856A (en) * | 2018-08-02 | 2019-01-04 | 深圳市华付信息技术有限公司 | Picture quality assessment method, device, computer equipment and storage medium |
WO2019047949A1 (en) * | 2017-09-08 | 2019-03-14 | 众安信息技术服务有限公司 | Image quality evaluation method and image quality evaluation system |
US20190295240A1 (en) * | 2018-03-20 | 2019-09-26 | Uber Technologies, Inc. | Image quality scorer machine |
CN110491503A (en) * | 2019-08-21 | 2019-11-22 | 山东大学第二医院 | A kind of cholelithiasis intelligent assistance system based on deep learning |
US20200065631A1 (en) * | 2018-08-21 | 2020-02-27 | Jonathan Meyers | Produce Assessment System |
CN110895802A (en) * | 2018-08-23 | 2020-03-20 | 杭州海康威视数字技术股份有限公司 | Image processing method and device |
CN111858746A (en) * | 2020-05-27 | 2020-10-30 | 武汉瞬付科技有限公司 | Personal data storage system based on cloud platform |
CN112215833A (en) * | 2020-10-22 | 2021-01-12 | 江苏云从曦和人工智能有限公司 | Image quality evaluation method, device and computer readable storage medium |
US20210042930A1 (en) * | 2019-08-08 | 2021-02-11 | Siemens Healthcare Gmbh | Method and system for image analysis |
CN112741620A (en) * | 2020-12-30 | 2021-05-04 | 华南理工大学 | Cervical spondylosis evaluation device based on limb movement |
CN112801132A (en) * | 2020-12-28 | 2021-05-14 | 泰康保险集团股份有限公司 | Image processing method and device |
CN113034489A (en) * | 2021-04-16 | 2021-06-25 | 南方医科大学第五附属医院 | Artificial intelligence nasal sinus CT image processing system based on degree of depth learning |
CN115661114A (en) * | 2022-11-09 | 2023-01-31 | 重庆大学 | Full-reference image quality evaluation method based on Conformer and meta learning |
US20230206443A1 (en) * | 2021-12-28 | 2023-06-29 | GE Precision Healthcare LLC | Method for magnetic resonance image quality assessment and magnetic resonance imaging system |
US20230360187A1 (en) * | 2020-09-14 | 2023-11-09 | Twinner Gmbh | Vehicle surface analysis system |
WO2023217117A1 (en) * | 2022-05-13 | 2023-11-16 | 北京字跳网络技术有限公司 | Image assessment method and apparatus, and device, storage medium and program product |
CN117152648A (en) * | 2023-10-30 | 2023-12-01 | 泰州爱贝文化传媒有限公司 | Auxiliary teaching picture recognition device based on augmented reality |
CN117409016A (en) * | 2023-12-15 | 2024-01-16 | 华中科技大学同济医学院附属同济医院 | Automatic segmentation method for magnetic resonance image |
US20240029243A1 (en) * | 2020-09-21 | 2024-01-25 | Ankon Technologies Co., Ltd | Referenceless image evaluation method for capsule endoscope, electronic device, and medium |
CN117558428A (en) * | 2024-01-12 | 2024-02-13 | 华中科技大学同济医学院附属同济医院 | Imaging optimization method and system for liver MRI |
-
2024
- 2024-02-23 CN CN202410203251.3A patent/CN117788461B/en active Active
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120128239A1 (en) * | 2010-11-18 | 2012-05-24 | Ebay Inc. | Image quality assessment to merchandise an item |
CN102543793A (en) * | 2012-02-29 | 2012-07-04 | 无锡睿当科技有限公司 | Wafer focusing image quality feedback system and method therefor |
US20150063719A1 (en) * | 2012-05-03 | 2015-03-05 | Sk Telecom Co., Ltd. | Image processing apparatus for removing haze contained in still image and method thereof |
CN104636804A (en) * | 2013-11-07 | 2015-05-20 | 大连东方之星信息技术有限公司 | Data analysis system |
CN105678775A (en) * | 2016-01-13 | 2016-06-15 | 福州大学 | Color correction assessment method based on machine learning |
CN107578403A (en) * | 2017-08-22 | 2018-01-12 | 浙江大学 | Stereo image quality assessment method based on gradient information to guide binocular view fusion |
WO2019047949A1 (en) * | 2017-09-08 | 2019-03-14 | 众安信息技术服务有限公司 | Image quality evaluation method and image quality evaluation system |
CN108319911A (en) * | 2018-01-30 | 2018-07-24 | 深兰科技(上海)有限公司 | Biometric identity certification and payment system based on the identification of hand arteries and veins and identity identifying method |
US20190295240A1 (en) * | 2018-03-20 | 2019-09-26 | Uber Technologies, Inc. | Image quality scorer machine |
CN109146856A (en) * | 2018-08-02 | 2019-01-04 | 深圳市华付信息技术有限公司 | Picture quality assessment method, device, computer equipment and storage medium |
US20200065631A1 (en) * | 2018-08-21 | 2020-02-27 | Jonathan Meyers | Produce Assessment System |
CN110895802A (en) * | 2018-08-23 | 2020-03-20 | 杭州海康威视数字技术股份有限公司 | Image processing method and device |
US20210042930A1 (en) * | 2019-08-08 | 2021-02-11 | Siemens Healthcare Gmbh | Method and system for image analysis |
CN110491503A (en) * | 2019-08-21 | 2019-11-22 | 山东大学第二医院 | A kind of cholelithiasis intelligent assistance system based on deep learning |
CN111858746A (en) * | 2020-05-27 | 2020-10-30 | 武汉瞬付科技有限公司 | Personal data storage system based on cloud platform |
US20230360187A1 (en) * | 2020-09-14 | 2023-11-09 | Twinner Gmbh | Vehicle surface analysis system |
US20240029243A1 (en) * | 2020-09-21 | 2024-01-25 | Ankon Technologies Co., Ltd | Referenceless image evaluation method for capsule endoscope, electronic device, and medium |
CN112215833A (en) * | 2020-10-22 | 2021-01-12 | 江苏云从曦和人工智能有限公司 | Image quality evaluation method, device and computer readable storage medium |
CN112801132A (en) * | 2020-12-28 | 2021-05-14 | 泰康保险集团股份有限公司 | Image processing method and device |
CN112741620A (en) * | 2020-12-30 | 2021-05-04 | 华南理工大学 | Cervical spondylosis evaluation device based on limb movement |
CN113034489A (en) * | 2021-04-16 | 2021-06-25 | 南方医科大学第五附属医院 | Artificial intelligence nasal sinus CT image processing system based on degree of depth learning |
US20230206443A1 (en) * | 2021-12-28 | 2023-06-29 | GE Precision Healthcare LLC | Method for magnetic resonance image quality assessment and magnetic resonance imaging system |
CN116363046A (en) * | 2021-12-28 | 2023-06-30 | 通用电气精准医疗有限责任公司 | Magnetic resonance image quality evaluation method and magnetic resonance imaging system |
WO2023217117A1 (en) * | 2022-05-13 | 2023-11-16 | 北京字跳网络技术有限公司 | Image assessment method and apparatus, and device, storage medium and program product |
CN115661114A (en) * | 2022-11-09 | 2023-01-31 | 重庆大学 | Full-reference image quality evaluation method based on Conformer and meta learning |
CN117152648A (en) * | 2023-10-30 | 2023-12-01 | 泰州爱贝文化传媒有限公司 | Auxiliary teaching picture recognition device based on augmented reality |
CN117409016A (en) * | 2023-12-15 | 2024-01-16 | 华中科技大学同济医学院附属同济医院 | Automatic segmentation method for magnetic resonance image |
CN117558428A (en) * | 2024-01-12 | 2024-02-13 | 华中科技大学同济医学院附属同济医院 | Imaging optimization method and system for liver MRI |
Non-Patent Citations (2)
Title |
---|
SEGREY KASTRYULIN 等: "Image Quality Assessment for Magnetic Resonance Imaging", 《ARXIV:2203.07809V2 [EESS.IV]》, 1 July 2022 (2022-07-01), pages 1 - 13 * |
宋巍;刘诗梦;黄冬梅;王文娟;王建;: "适用小样本的无参考水下视频质量评价方法", 中国图象图形学报, no. 09, 16 September 2020 (2020-09-16), pages 73 - 85 * |
Also Published As
Publication number | Publication date |
---|---|
CN117788461B (en) | 2024-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110021025B (en) | Region-of-interest matching and displaying method, device, equipment and storage medium | |
CN104424385B (en) | A kind of evaluation method and device of medical image | |
CN109754886A (en) | Therapeutic scheme intelligent generating system, method and readable storage medium storing program for executing, electronic equipment | |
CN106875391A (en) | The recognition methods of skin image and electronic equipment | |
CN106023214B (en) | Image quality evaluating method and system based on central fovea view gradient-structure similitude | |
CN111062936B (en) | Quantitative index evaluation method for facial deformation diagnosis and treatment effect | |
CN114155947A (en) | Remote surgical guidance visualization manual selection site tracking method, system and device | |
CN113610746A (en) | Image processing method and device, computer equipment and storage medium | |
CN107392202A (en) | A kind of pointer type Recognition of Reading method and system | |
CN114240883B (en) | Chromosome image processing method and system | |
CN118507034B (en) | Orthopedics diagnosis auxiliary method and system based on machine learning | |
CN117788461B (en) | Magnetic resonance image quality evaluation system based on image analysis | |
Albiol et al. | Automatic intensity windowing of mammographic images based on a perceptual metric | |
CN112200815B (en) | Thyroid nodule ultrasound image segmentation method based on semantic segmentation network PSPNet | |
CN103246888A (en) | System and method for diagnosing lung disease by computer | |
Dwivedi et al. | The advent of digital pathology: a depth review | |
CN117726609A (en) | Image acquisition and storage method for fundus image anomaly analysis | |
CN109979588A (en) | Image scanning pathological section system | |
CN115861208A (en) | A super-resolution image quality assessment method based on fusion processing of image information decomposition and similarity assessment | |
CN114693553A (en) | Mobile intelligent terminal image processing method and system | |
CN112330629A (en) | Facial nerve disease rehabilitation condition static detection system based on computer vision | |
Cui et al. | Medical image quality assessment method based on residual learning | |
CN112750530A (en) | Model training method, terminal device and storage medium | |
CN112150565A (en) | Medical image management system | |
Guangyan et al. | Research on Cyst of Jaw Detection Algorithm Based on Alex Net Deep Learning Model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |