CN117766606A - Photoelectric detector, preparation method thereof and photoelectric communication device - Google Patents

Photoelectric detector, preparation method thereof and photoelectric communication device Download PDF

Info

Publication number
CN117766606A
CN117766606A CN202311703868.3A CN202311703868A CN117766606A CN 117766606 A CN117766606 A CN 117766606A CN 202311703868 A CN202311703868 A CN 202311703868A CN 117766606 A CN117766606 A CN 117766606A
Authority
CN
China
Prior art keywords
type semiconductor
semiconductor layer
layer
silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311703868.3A
Other languages
Chinese (zh)
Inventor
刘道群
王磊
贺志学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peng Cheng Laboratory
Original Assignee
Peng Cheng Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peng Cheng Laboratory filed Critical Peng Cheng Laboratory
Priority to CN202311703868.3A priority Critical patent/CN117766606A/en
Publication of CN117766606A publication Critical patent/CN117766606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

The application discloses a photoelectric detector and a preparation method thereof and a photoelectric communication device, wherein the photoelectric detector comprises a substrate and a photoelectric conversion part, the substrate is provided with two sides in a first direction, the photoelectric conversion part is arranged on one side of the substrate, the photoelectric conversion part comprises an intrinsic body, the intrinsic body is provided with a middle area in a second direction and two side parts positioned at two sides of the middle area, and the two side parts of the intrinsic body are correspondingly embedded with N-type doped ions and P-type doped ions so as to correspondingly form an N-type semiconductor layer and a P-type semiconductor layer; wherein the first direction and the second direction are arranged in an intersecting manner. The N-type doping and the P-type doping are both generated in the intrinsic layer, the deposition of polysilicon for ohmic contact is avoided, and meanwhile, the L-type doping can ensure the uniformity of an internal electric field in the intrinsic layer, so that the device is ensured to have higher bandwidth.

Description

光电探测器及其制备方法及光电通信装置Photoelectric detector and preparation method thereof and photoelectric communication device

技术领域Technical field

本申请涉及光学及电学技术领域,特别涉及光电探测器及其制备方法及光电通信装置。The present application relates to the fields of optical and electrical technologies, and in particular to photoelectric detectors and their preparation methods and optoelectronic communication devices.

背景技术Background technique

目前能够提高波导集成Ge/Si pin光电探测器光电带宽的主流方法有两种,一种是电感增益峰值(inductive-gain peaking)技术,仅适用于pin光电探测器带宽主要受限于RC时间也即半导体器件寄生电容-电阻网络充放电时间常数的情形;另一种是通过缩窄本征光吸收区宽度或者厚度提高pin光电探测器的带宽又称超薄本征区技术,此法理论上可以实现大于200GHz的带宽,但是由于本征光吸收区缩窄通常导致光响应度很低。目前的超高带宽265GHz的pin光电探测器,器件光响应比较低,只有0.3A/W,而且器件制备工艺较为复杂:不仅需要对本征层进行刻蚀,而且还需对本征层表面在淀积多晶硅以便形成电学接触,而多晶硅的掺杂会导致杂质向本征层扩散,进一步影响本征层的内部电场,影响器件的工作效率。There are currently two mainstream methods that can improve the photoelectric bandwidth of waveguide-integrated Ge/Si pin photodetectors. One is the inductive-gain peaking technology, which is only applicable to pin photodetectors. The bandwidth is mainly limited by the RC time. That is, the charge and discharge time constant of the parasitic capacitance-resistance network of the semiconductor device; the other is to increase the bandwidth of the pin photodetector by narrowing the width or thickness of the intrinsic light absorption zone, also known as ultra-thin intrinsic zone technology, this method can theoretically be achieved The bandwidth is greater than 200GHz, but the optical responsivity is usually very low due to the narrowing of the intrinsic light absorption area. The current ultra-high bandwidth 265GHz pin photodetector has a relatively low device optical response of only 0.3A/W, and the device preparation process is relatively complex: not only the intrinsic layer needs to be etched, but also the surface of the intrinsic layer needs to be deposited Polysilicon is used to form electrical contacts, and the doping of polysilicon will cause impurities to diffuse into the intrinsic layer, further affecting the internal electric field of the intrinsic layer and affecting the working efficiency of the device.

申请内容Application content

本申请的主要目的是提出光电探测器及其制备方法及光电通信装置,旨在简化光电探测器的制备工艺,同时减少多晶硅的掺杂中杂质对本征层扩散的影响,提高本征层的内部电场均匀性,提高器件的带宽。The main purpose of this application is to propose a photodetector and its preparation method and an optoelectronic communication device, aiming to simplify the preparation process of the photodetector, while reducing the impact of impurities in the doping of polysilicon on the diffusion of the intrinsic layer, and improving the internal diffusion of the intrinsic layer. Electric field uniformity and improved device bandwidth.

为实现上述目的,本申请提出一种光电探测器,包括:In order to achieve the above purpose, this application proposes a photoelectric detector, including:

衬底,具有处在第一方向上的两侧;以及a substrate having two sides in a first direction; and

光电转换部,设于所述衬底的一侧,所述光电转换部包括本征体,所述本征体具有处在第二方向上的中间区域和位于中间区域两侧的两侧部,所述本征体的两侧部对应嵌设有N型掺杂的离子和P型掺杂的离子,以对应形成N型半导体层和P型半导体层;A photoelectric conversion part is provided on one side of the substrate, the photoelectric conversion part includes an intrinsic body, the intrinsic body has a middle region in the second direction and two side parts located on both sides of the middle region, Both sides of the intrinsic body are embedded with N-type doped ions and P-type doped ions correspondingly to form an N-type semiconductor layer and a P-type semiconductor layer;

其中,所述第一方向与所述第二方向相交设置。Wherein, the first direction and the second direction are arranged to intersect.

可选地,optionally,

所述本征体的中间区域在第一方向上的尺寸为20~80nm;和/或,The size of the middle region of the intrinsic body in the first direction is 20 to 80 nm; and/or,

所述本征体的中间区域在第二方向上的尺寸为100~200nm;和/或,The size of the middle region of the intrinsic body in the second direction is 100-200 nm; and/or,

所述本征体的中间区域在第三方向上的尺寸为10~50μm;和/或,The size of the middle region of the intrinsic body in the third direction is 10-50 μm; and/or,

所述N型半导体层的材料包括在Ge中掺杂的磷或砷原子形成的N型半导体层,或在InGaAs掺杂碲或锡或硅原子形成的N型半导体层,或在InGaAsP中掺杂碲或锡或硅原子形成的N型半导体层;和/或,The material of the N-type semiconductor layer includes an N-type semiconductor layer formed by doping Ge with phosphorus or arsenic atoms, or an N-type semiconductor layer formed by doping InGaAs with tellurium, tin or silicon atoms, or doping InGaAsP. N-type semiconductor layer formed by tellurium or tin or silicon atoms; and/or,

所述P型半导体层的材料包括在Ge中掺杂硼原子形成的P型半导体层、或在InGaAs中掺杂的锌原子形成的P型半导体层,或在InGaAsP中掺杂的锌原子形成的P型半导体层;The material of the P-type semiconductor layer includes a P-type semiconductor layer formed by doping boron atoms in Ge, a P-type semiconductor layer formed by doping zinc atoms in InGaAs, or a P-type semiconductor layer formed by doping zinc atoms in InGaAsP. P-type semiconductor layer;

其中所述第三方向与所述第一方向与所述第二方向分别相交。The third direction intersects the first direction and the second direction respectively.

可选地,每一所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部;Optionally, each of the side portions includes a side body extending along the first direction, and a side protrusion extending outward from an end of the side body close to the substrate;

其中一所述侧部的所述侧部主体和所述侧凸部均嵌设有N型掺杂的离子,以使得所述N型半导体层呈L型设置;The side body and the side convex part of one of the side parts are embedded with N-type doped ions, so that the N-type semiconductor layer is arranged in an L-shape;

另一所述侧部的所述侧部主体和所述侧凸部均嵌设有P型掺杂的离子,以使得所述P型半导体层呈L型设置。The side body and the side protrusion of the other side are both embedded with P-type doped ions, so that the P-type semiconductor layer is arranged in an L-shape.

可选地,所述N型半导体层的侧部主体在第二方向上的尺寸为1~3μm;Optionally, the size of the side body of the N-type semiconductor layer in the second direction is 1 to 3 μm;

所述N型半导体层的侧凸部在第一方向上的尺寸为20~80nm;The size of the side convex portion of the N-type semiconductor layer in the first direction is 20 to 80 nm;

所述N型半导体层在第三方向上的尺寸为10~50μm;The size of the N-type semiconductor layer in the third direction is 10-50 μm;

所述P型半导体层的侧部主体在第二方向上的尺寸为1~3μm;The size of the side body of the P-type semiconductor layer in the second direction is 1 to 3 μm;

所述第二P型半导体层的侧凸部在第一方向上的尺寸为20~80nm;The size of the side convex portion of the second P-type semiconductor layer in the first direction is 20 to 80 nm;

所述P型半导体层在第三方向上的尺寸为10~50μm;The size of the P-type semiconductor layer in the third direction is 10-50 μm;

其中所述第三方向与所述第一方向与所述第二方向分别相交。The third direction intersects the first direction and the second direction respectively.

可选地,所述本征体的材料包括Ge、InGaAs及InGaAsP中的至少一种。Optionally, the material of the intrinsic body includes at least one of Ge, InGaAs and InGaAsP.

可选地,所述衬底包括:Optionally, the substrate includes:

衬底硅层;substrate silicon layer;

掩埋二氧化硅层,位于所述衬底硅层的一侧;以及a buried silicon dioxide layer located on one side of the substrate silicon layer; and

顶层硅层,位于所述掩埋二氧化硅层背离衬底硅层的一侧,部分所述衬底硅层、所述掩埋二氧化硅层和所述顶层硅层形成光耦合区和波导区;The top silicon layer is located on the side of the buried silicon dioxide layer away from the substrate silicon layer, and part of the substrate silicon layer, the buried silicon dioxide layer and the top silicon layer form a light coupling area and a waveguide area;

所述光耦合区包括光栅及端面耦合器中的任意一种;The optical coupling area includes any one of a grating and an end coupler;

所述波导区包括光波导及硅锥,所述光波导位于所述硅锥与所述光耦合区之间。The waveguide area includes an optical waveguide and a silicon cone, and the optical waveguide is located between the silicon cone and the optical coupling area.

可选地,所述硅锥包括第一硅锥和第二硅锥以及设于所述第一硅锥和第二硅锥之间的刻蚀阻挡层锥,其中:Optionally, the silicon cone includes a first silicon cone and a second silicon cone and an etching barrier cone disposed between the first silicon cone and the second silicon cone, wherein:

所述第一硅锥包括单晶硅锥;The first silicon cone includes a single crystal silicon cone;

所述第二硅锥包括多晶硅锥和非晶硅锥中的任意一种。The second silicon cone includes any one of a polycrystalline silicon cone and an amorphous silicon cone.

本发明还提出了一种光电探测器的制备方法,包括以下步骤:The invention also proposes a method for preparing a photoelectric detector, which includes the following steps:

S10、提供衬底;S10. Provide substrate;

S20、在衬底的第一侧形成光电转换部,所述光电转换部包括本征体,所述本征体具有处在第二方向上的中间区域和位于中间区域两侧的两侧部,所述本征体的两侧部对应嵌设有N型掺杂的离子和P型掺杂的离子,以对应形成N型半导体层和P型半导体层;S20. Form a photoelectric conversion part on the first side of the substrate. The photoelectric conversion part includes an intrinsic body. The intrinsic body has a middle region in the second direction and two side parts located on both sides of the middle region. Both sides of the intrinsic body are embedded with N-type doped ions and P-type doped ions correspondingly to form an N-type semiconductor layer and a P-type semiconductor layer;

其中,所述第一方向与所述第二方向相交设置。Wherein, the first direction and the second direction are arranged to intersect.

可选地,步骤S20包括:Optionally, step S20 includes:

S210、在衬底的一侧形成本征体;S210. Form an intrinsic body on one side of the substrate;

S220、在本征层体的第二方向上的第一侧刻蚀出凹部,所述凹部对应贯穿所述本征部背对所述衬底的一端设置,以使得所述凹部对应形成侧部,所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部;S220. Etch a recessed portion on the first side of the intrinsic layer in the second direction, and the recessed portion is provided correspondingly through an end of the intrinsic portion facing away from the substrate, so that the recessed portion corresponds to a side portion. , the side portion includes a side body extending along the first direction, and a side protrusion extending outward from an end of the side body close to the substrate;

S230、在侧部主体和侧凸部注入使本征层形成第一类型掺杂的离子,形成第一类型半导体层;S230. Inject ions into the side body and the side convex portion to form a first type doped intrinsic layer, thereby forming a first type semiconductor layer;

S240、在本征层体的第二方向上的第二侧刻蚀出凹部,所述凹部对应贯穿所述本征部背对所述衬底的一端设置,以使得所述凹部对应形成侧部,所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部;S240. Etch a recessed portion on the second side of the intrinsic layer in the second direction, and the recessed portion is provided correspondingly through one end of the intrinsic portion facing away from the substrate, so that the recessed portion corresponds to a side portion. , the side portion includes a side body extending along the first direction, and a side protrusion extending outward from an end of the side body close to the substrate;

S250、在侧部主体和侧凸部注入使本征层形成第二类型掺杂的离子,形成第二类型半导体层;S250. Inject ions into the side body and the side convex portion to form a second type doped intrinsic layer, thereby forming a second type semiconductor layer;

其中,所述第一类型掺杂的离子与所述第二类型掺杂的离子其中之一为N型掺杂离子,另一个为P型掺杂离子;Wherein, one of the first type doped ions and the second type doped ions is an N-type doping ion, and the other is a P-type doping ion;

所述第一类型半导体层与所述第二类型半导体层其中之一为N型半导体层,另一个为P型半导体层。One of the first type semiconductor layer and the second type semiconductor layer is an N-type semiconductor layer, and the other is a P-type semiconductor layer.

可选地,步骤S10包括:Optionally, step S10 includes:

S110、提供含顶层硅层的晶圆;S110, provide wafers containing top silicon layer;

S120、在晶圆的顶层硅层表面沉积刻蚀阻挡层;S120. Deposit an etching barrier layer on the surface of the top silicon layer of the wafer;

S130、在刻蚀阻挡层背离顶层硅层的一侧沉积多晶硅层;S130. Deposit a polysilicon layer on the side of the etching barrier layer away from the top silicon layer;

S140、在含多晶硅层上刻蚀出多晶硅锥,在顶层硅层刻蚀出光栅、波导及单晶硅锥。S140. Etch polysilicon cones on the polysilicon-containing layer, and etch gratings, waveguides and single-crystal silicon cones on the top silicon layer.

可选地,所述刻蚀阻挡层的材料包括二氧化硅、氮化硅或氮氧化硅的至少一种。Optionally, the material of the etching barrier layer includes at least one of silicon dioxide, silicon nitride, or silicon oxynitride.

可选地,步骤S210包括:Optionally, step S210 includes:

S2101、在衬底上刻蚀出脊波导;S2101. Etch the ridge waveguide on the substrate;

S2102、在衬底的第一侧的表面形成二氧化硅薄膜层;S2102. Form a silicon dioxide film layer on the surface of the first side of the substrate;

S2103、在脊波导中部刻蚀二氧化硅薄膜层及部分脊波导,刻蚀出凹部;S2103. Etch the silicon dioxide film layer and part of the ridge waveguide in the middle of the ridge waveguide, and etch out the concave portion;

S2104、在凹部内通过异质外延法生长Ge层,得含本征层的衬底。S2104. Grow the Ge layer in the recessed part through heteroepitaxial growth to obtain a substrate containing an intrinsic layer.

可选地,所述异质外延法包括减压化学气相沉积法、超高真空化学气相沉积法以及分子束外延法中的至少一种。Optionally, the heteroepitaxial method includes at least one of a reduced pressure chemical vapor deposition method, an ultra-high vacuum chemical vapor deposition method, and a molecular beam epitaxy method.

可选地,optionally,

步骤S220包括:Step S220 includes:

S221、在本整个晶圆的表面涂覆光刻胶,并利用光刻版对第二方向上的第二侧的表面进行曝光、显影,而后在第二侧刻蚀出一凹部,所述凹部对应贯穿所述本征部背对所述衬底的一端设置,以使得所述凹部对应形成侧部,所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部;S221. Coat the surface of the entire wafer with photoresist, use a photoresist plate to expose and develop the surface of the second side in the second direction, and then etch a concave portion on the second side. The concave portion Correspondingly, one end of the intrinsic portion is provided opposite to the substrate, so that the recess corresponds to a side portion, the side portion includes a side body extending along the first direction, and a side body close to the side body. a lateral protrusion extending outward from one end of the substrate;

步骤S240包括:将整个晶圆表面的光刻胶去除,再在整个晶圆表面重新涂覆光刻胶,并利用光刻版对第一侧的表面光刻胶进行曝光、显影,而后在第一侧刻蚀出一凹部,所述凹部对应贯穿所述本征部背对所述衬底的一端设置,以使得所述凹部对应形成侧部,所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部。Step S240 includes: removing the photoresist on the entire wafer surface, re-coating the photoresist on the entire wafer surface, and using a photoresist plate to expose and develop the surface photoresist on the first side, and then on the second side. A recess is etched on one side, and the recess is provided correspondingly through an end of the intrinsic part facing away from the substrate, so that the recess corresponds to a side, and the side includes a side extending along the first direction. The side body is provided with a side body and a side protrusion extending outward from an end of the side body close to the substrate.

可选地,所述光刻胶在第一方向上的厚度为1~5μm。Optionally, the thickness of the photoresist in the first direction is 1 to 5 μm.

所述第一类型半导体层的侧凸部的第一类型离子注入的角度为7~10°;The angle of the first type ion implantation of the side convex portion of the first type semiconductor layer is 7 to 10°;

所述第一类型半导体层的侧凸部的第一类型离子注入的能量为40~80KeV;The energy of the first type ion implantation into the side convex portion of the first type semiconductor layer is 40 to 80 KeV;

所述第二类型半导体层的侧凸部的第二类型离子注入的角度为7~10°;The angle of the second type ion implantation of the side convex portion of the second type semiconductor layer is 7 to 10°;

所述第二类型半导体层的侧凸部的第二类型离子注入的能量为40~80KeV。The energy of the second type ion implantation into the side convex portion of the second type semiconductor layer is 40 to 80 KeV.

本发明还提出了一种光电通信装置,包括所述光电探测器或所述的光电探测器的制备方法制备的光电探测器。The invention also proposes an optoelectronic communication device, including the photodetector or the photodetector prepared by the photodetector preparation method.

可选地,所述光电通信装置包括光纤通信及数据中心所使用的光模块中的光接收机,高速光电集成芯片中的光接收单元中的任意一种。Optionally, the optoelectronic communication device includes any one of an optical receiver in an optical module used in optical fiber communications and data centers, or an optical receiving unit in a high-speed optoelectronic integrated chip.

通过本征体具有处在第二方向上的中间区域和位于中间区域两侧的两侧部,在本征体的两侧部对应嵌设有N型掺杂的离子和P型掺杂的离子,以对应形成N型半导体层和P型半导体层,使得N型掺杂和P型掺杂均在本征层发生,避免了用于欧姆接触的多晶硅的淀积,同时L型的掺杂能够确保本征层内部电场的均匀性,从而确保器件拥有较高的带宽。The intrinsic body has a middle region in the second direction and two side portions located on both sides of the middle region, and N-type doped ions and P-type doped ions are embedded in the two sides of the intrinsic body. , to form the N-type semiconductor layer and the P-type semiconductor layer correspondingly, so that both N-type doping and P-type doping occur in the intrinsic layer, avoiding the deposition of polysilicon for ohmic contact, and at the same time, L-type doping can Ensure the uniformity of the electric field inside the intrinsic layer, thereby ensuring that the device has a high bandwidth.

附图说明Description of the drawings

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to explain the embodiments of the present application or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are some embodiments of the present application. For those of ordinary skill in the art, other drawings can be obtained based on the structures shown in these drawings without exerting creative efforts.

图1为本申请一实施例的光电探测器结构示意图;Figure 1 is a schematic structural diagram of a photodetector according to an embodiment of the present application;

图2为本申请一实施例的光电探测器的制备方法流程图;Figure 2 is a flow chart of a method for preparing a photodetector according to an embodiment of the present application;

图3为本申请又一实施例的光电探测器的制备方法流程图;Figure 3 is a flow chart of a method for preparing a photodetector according to another embodiment of the present application;

图4为本申请一实施例的光电探测器的制备方法中电探测器形成过程中的结构示意图。FIG. 4 is a schematic structural diagram of the formation process of the electrical detector in the method for preparing a photodetector according to an embodiment of the present application.

附图标记说明:Explanation of reference symbols:

100光电探测器;1衬底;11衬底硅层;12掩埋二氧化硅层;14光耦合区;141光栅;15波导区;151光波导;152硅锥;1521第一硅锥;1522第二硅锥;1523刻蚀阻挡层锥;2光电转换部;21本征体;211侧部;212中间区域;213N型半导体层;214P型半导体层;2111侧部主体;2112侧凸部。100 photodetector; 1 substrate; 11 substrate silicon layer; 12 buried silicon dioxide layer; 14 optical coupling area; 141 grating; 15 waveguide area; 151 optical waveguide; 152 silicon cone; 1521 first silicon cone; 1522th Two silicon cones; 1523 etching barrier cone; 2 photoelectric conversion part; 21 intrinsic body; 211 side part; 212 middle region; 213N type semiconductor layer; 214P type semiconductor layer; 2111 side body; 2112 side convex part.

具体实施方式Detailed ways

为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。此外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below. If the specific conditions are not specified in the examples, the conditions should be carried out according to the conventional conditions or the conditions recommended by the manufacturer. If the manufacturer of the reagents or instruments used is not indicated, they are all conventional products that can be purchased commercially. In addition, the meaning of "and/or" appearing in the entire text includes three parallel solutions. Taking "A and/or B" as an example, it includes solution A, or solution B, or a solution that satisfies both A and B at the same time. In addition, the technical solutions in the various embodiments can be combined with each other, but it must be based on what a person of ordinary skill in the art can implement. When the combination of technical solutions is contradictory or cannot be realized, it should be considered that such a combination of technical solutions does not exist. , nor is it within the scope of protection required by this application. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of this application.

目前能够提高波导集成Ge/Si pin光电探测器光电带宽的主流方法有两种,一种是电感增益峰值(inductive-gain peaking)技术,仅适用于pin光电探测器带宽受限于RC时间也即半导体器件寄生电容-电阻网络充放电时间常数的情形;另一种是通过缩窄本征光吸收区宽度或者厚度提高pin光电探测器的带宽又称超薄本征区技术,此法可以实现理论上大于200GHz的带宽,但是由于本征光吸收区缩窄通常导致光响应度很低。目前的超高带宽265GHz的pin光电探测器,器件光响应比较低,只有0.3A/W,而且器件制备工艺较为复杂:不仅需要Ge刻蚀,而且还需对Ge表面在淀积多晶硅以便形成电学接触,而多晶硅的掺杂会导致杂质向Ge层扩散,进一步影响Ge层的内部电场,影响器件的工作效率。There are currently two mainstream methods that can improve the photoelectric bandwidth of waveguide-integrated Ge/Si pin photodetectors. One is the inductive-gain peaking technology, which is only applicable when the bandwidth of the pin photodetector is limited by the RC time, that is, The situation of the charge and discharge time constant of the parasitic capacitance-resistance network of the semiconductor device; the other is to increase the bandwidth of the pin photodetector by narrowing the width or thickness of the intrinsic light absorption zone, also known as ultra-thin intrinsic zone technology. This method can theoretically achieve greater than 200GHz bandwidth, but the optical responsivity is usually very low due to the narrowing of the intrinsic light absorption region. The current ultra-high bandwidth 265GHz pin photodetector has a relatively low device optical response of only 0.3A/W, and the device preparation process is relatively complex: not only Ge etching is required, but also polysilicon must be deposited on the Ge surface to form an electrical circuit. Contact, and the doping of polysilicon will cause impurities to diffuse into the Ge layer, further affecting the internal electric field of the Ge layer and affecting the working efficiency of the device.

鉴于此,如图1所示,本申请提出了一种光电探测器,包括:In view of this, as shown in Figure 1, this application proposes a photodetector, including:

衬底1,具有处在第一方向上的两侧;以及Substrate 1 has two sides in a first direction; and

光电转换部2,设于所述衬底1的一侧,所述光电转换部2包括本征体21,所述本征体21具有处在第二方向上的中间区域212和位于中间区域212两侧的两侧部211,所述本征体21的两侧部211对应嵌设有N型掺杂的离子和P型掺杂的离子,以对应形成N型半导体层213和P型半导体层214;The photoelectric conversion part 2 is provided on one side of the substrate 1. The photoelectric conversion part 2 includes an intrinsic body 21. The intrinsic body 21 has a middle region 212 in the second direction and a middle region 212 in the second direction. The two side portions 211 on both sides of the intrinsic body 21 are embedded with N-type doped ions and P-type doped ions correspondingly to form the N-type semiconductor layer 213 and the P-type semiconductor layer. 214;

其中,所述第一方向与所述第二方向相交设置。Wherein, the first direction and the second direction are arranged to intersect.

在本发明的技术方案中,通过本征体21具有处在第二方向上的中间区域212和位于中间区域212两侧的两侧部211,在本征体21的两侧部211对应嵌设有N型掺杂的离子和P型掺杂的离子,以对应形成N型半导体层213和P型半导体层214,使得N型掺杂和P型掺杂均在本征层发生,避免了用于欧姆接触的多晶硅的淀积,同时L型的掺杂能够确保本征层内部电场的均匀性,从而确保器件拥有较高的带宽。In the technical solution of the present invention, the intrinsic body 21 has a middle region 212 in the second direction and two side portions 211 located on both sides of the middle region 212, and the two side portions 211 of the intrinsic body 21 are correspondingly embedded. There are N-type doping ions and P-type doping ions to form the N-type semiconductor layer 213 and the P-type semiconductor layer 214 correspondingly, so that both N-type doping and P-type doping occur in the intrinsic layer, avoiding the need for The deposition of ohmic contact polysilicon and L-type doping can ensure the uniformity of the electric field inside the intrinsic layer, thereby ensuring that the device has a high bandwidth.

需要说明的是,N型掺杂是指掺入的杂质原子与半导体材料原子通过共用最外层电子形成稳定的8电子结构后仍有多余的电子参与导电,P型掺杂是指掺入的杂质原子与半导体材料原子通过共用最外层电子并从相邻原子获取1个电子形成稳定的8电子结构同时在相邻原子位置留下一个空位即有多余的空穴参与导电,当本征层的材料不同时,掺杂的离子也不相同。It should be noted that N-type doping means that after the doped impurity atoms and semiconductor material atoms share the outermost electrons to form a stable 8-electron structure, there are still excess electrons involved in conduction. P-type doping means that the doped impurity atoms and semiconductor material atoms share the outermost electrons to form a stable 8-electron structure. Impurity atoms and semiconductor material atoms share the outermost electrons and acquire 1 electron from adjacent atoms to form a stable 8-electron structure. At the same time, a vacancy is left at the adjacent atomic position, that is, there are excess holes to participate in conduction. When the intrinsic layer When the materials are different, the doped ions are also different.

在本发明的任意实施方式中,所述本征体21的中间区域212在第一方向上的尺寸为20~80nm,可以得到合适厚度的本征体21的中间区域212。In any embodiment of the present invention, the size of the middle region 212 of the intrinsic body 21 in the first direction is 20 to 80 nm, and the middle region 212 of the intrinsic body 21 with a suitable thickness can be obtained.

在本发明的任意实施方式中,所述本征体21的中间区域212在第二方向上的尺寸为100~200nm,可以缩短本征体21的中间区域212在第二方向上的厚度,减少电子和空穴传输的距离,进而提高光电探测器的带宽。In any embodiment of the present invention, the size of the middle region 212 of the intrinsic body 21 in the second direction is 100-200 nm, and the thickness of the middle region 212 of the intrinsic body 21 in the second direction can be shortened to reduce The distance that electrons and holes travel, thereby increasing the bandwidth of the photodetector.

在本发明的任意实施方式中,所述本征体21的中间区域212在第三方向上的尺寸为10~50μm,因为本征体21的长度与探测器的结电容正相关,而探测器的带宽又与结电容负相关。所述本征体21的中间区域212在第三方向上的尺寸在此范围内可以确保探测器具有合适的响应度同时又不至于因为本征体21过长导致其带宽下降。如图4a所示,其中所述第三方向与所述第一方向与所述第二方向分别相交。In any embodiment of the present invention, the size of the middle region 212 of the intrinsic body 21 in the third direction is 10-50 μm, because the length of the intrinsic body 21 is positively related to the junction capacitance of the detector, and the detector's Bandwidth is inversely related to junction capacitance. The size of the middle region 212 of the intrinsic body 21 in the third direction is within this range to ensure that the detector has appropriate responsivity while not causing a decrease in bandwidth due to the intrinsic body 21 being too long. As shown in Figure 4a, the third direction intersects the first direction and the second direction respectively.

所述N型半导体层213的材料包括在Ge中掺杂的磷或砷原子形成的N型半导体层,或在InGaAs掺杂碲或锡或硅原子形成的N型半导体层,或在InGaAsP中掺杂碲或锡或硅原子形成的N型半导体层。The material of the N-type semiconductor layer 213 includes an N-type semiconductor layer formed by doping Ge with phosphorus or arsenic atoms, or an N-type semiconductor layer formed by doping InGaAs with tellurium, tin or silicon atoms, or InGaAsP doped with N-type semiconductor layer formed by mixed tellurium or tin or silicon atoms.

所述P型半导体层214的材料包括在Ge中掺杂硼原子形成的P型半导体层、或在InGaAs中掺杂的锌原子形成的P型半导体层,或在InGaAsP中掺杂的锌原子形成的P型半导体层。The material of the P-type semiconductor layer 214 includes a P-type semiconductor layer formed by doping boron atoms in Ge, a P-type semiconductor layer formed by doping zinc atoms in InGaAs, or a P-type semiconductor layer formed by doping zinc atoms in InGaAsP. P-type semiconductor layer.

需要说明的是,上述本征体21的中间区域212在第一方向、第二方向、第三方向上的尺寸、N型半导体层213的选择、P型半导体层214的选择可以同时设置也可以分开设置,同时设置时,光电探测器的探测效率更佳。It should be noted that the dimensions of the middle region 212 of the intrinsic body 21 in the first direction, the second direction, and the third direction, the selection of the N-type semiconductor layer 213, and the selection of the P-type semiconductor layer 214 can be set simultaneously or separately. When set at the same time, the detection efficiency of the photodetector is better.

在本发明的任意实施方式中,每一所述侧部211包括沿第一方向延伸的侧部主体2111、以及自所述侧部主体2111靠近所述衬底1的一端向外延伸出的侧凸部2112;其中一所述侧部211的所述侧部主体2111和所述侧凸部2112均嵌设有N型掺杂的离子,以使得所述N型半导体层213呈L型设置;另一所述侧部211的所述侧部主体2111和所述侧凸部2112均嵌设有P型掺杂的离子,以使得所述P型半导体层214呈L型设置。通过将N型半导体层213和P型半导体层214设置成L型,可以提高本征体21的中间区域212的电场的均匀性,确保光电探测器拥有较高的带宽。In any embodiment of the present invention, each side portion 211 includes a side body 2111 extending along a first direction, and a side body extending outward from an end of the side body 2111 close to the substrate 1 . The convex portion 2112; the side body 2111 and the side convex portion 2112 of one of the side portions 211 are both embedded with N-type doped ions, so that the N-type semiconductor layer 213 is arranged in an L-shape; The side body 2111 and the side convex part 2112 of the other side part 211 are both embedded with P-type doped ions, so that the P-type semiconductor layer 214 is arranged in an L shape. By setting the N-type semiconductor layer 213 and the P-type semiconductor layer 214 to be L-shaped, the uniformity of the electric field in the middle region 212 of the intrinsic body 21 can be improved, ensuring that the photodetector has a higher bandwidth.

在本发明的任意实施方式中,所述N型半导体层213的侧部主体2111在第二方向上的尺寸为1~3μm,优选为1.5微米,可以得到合适宽度的N型半导体层213的侧部主体2111。所述N型半导体层213的侧凸部2112在第一方向上的尺寸为20~80nm,优选为50nm,可以得到合适厚度的N型半导体层213的侧凸部2112。In any embodiment of the present invention, the size of the side body 2111 of the N-type semiconductor layer 213 in the second direction is 1 to 3 μm, preferably 1.5 μm, so that a suitable width of the side body 2111 of the N-type semiconductor layer 213 can be obtained. Department body 2111. The size of the lateral convex portion 2112 of the N-type semiconductor layer 213 in the first direction is 20 to 80 nm, preferably 50 nm. The lateral convex portion 2112 of the N-type semiconductor layer 213 can be obtained with a suitable thickness.

所述N型半导体层213的侧部主体2111和侧凸部2112在第三方向上的尺寸为10~50μm,可以得到合适长度的N型半导体层。The size of the side body 2111 and the side convex portion 2112 of the N-type semiconductor layer 213 in the third direction is 10 to 50 μm, and an N-type semiconductor layer of appropriate length can be obtained.

所述P型半导体层214的侧部主体2111在第二方向上的尺寸为1~3μm,优选为1.5微米以上,可以得到合适宽度的P型半导体层214的侧部主体2111。The size of the side body 2111 of the P-type semiconductor layer 214 in the second direction is 1 to 3 μm, preferably 1.5 μm or more. The side body 2111 of the P-type semiconductor layer 214 with a suitable width can be obtained.

所述第二P型半导体层214的侧凸部2112在第一方向上的尺寸为20~80nm,优选为50nm,可以得到合适厚度的P型半导体层214的侧凸部2112。The size of the lateral convex portion 2112 of the second P-type semiconductor layer 214 in the first direction is 20 to 80 nm, preferably 50 nm, so that the lateral convex portion 2112 of the P-type semiconductor layer 214 can be obtained with a suitable thickness.

所述P型半导体层214的侧部主体2111和侧凸部2112在第三方向上的尺寸为10~50μm,可以得到合适长度的P型半导体层。The size of the side body 2111 and the side convex portion 2112 of the P-type semiconductor layer 214 in the third direction is 10 to 50 μm, and a P-type semiconductor layer of appropriate length can be obtained.

在本发明的任意实施方式中,所述本征体21的材料包括Ge、InGaAs及InGaAsP中的至少一种,采用上述本征体21的材料中的至少一种,可以确保探测器在光纤通信波长范围(1260~1625nm)内具有较高的探测效率。In any embodiment of the present invention, the material of the intrinsic body 21 includes at least one of Ge, InGaAs and InGaAsP. Using at least one of the materials of the intrinsic body 21 can ensure that the detector operates in optical fiber communication. It has high detection efficiency in the wavelength range (1260~1625nm).

在本发明的任意实施方式中,所述衬底1包括:衬底硅层11、掩埋二氧化硅层12以及顶层硅层,所述掩埋二氧化硅层12位于所述衬底硅层11的一侧;所述顶层硅层位于所述掩埋二氧化硅层12背离衬底硅层11的一侧,部分所述衬底硅层11、所述掩埋二氧化硅层12和所述顶层硅层形成光耦合区14和波导区15;所述光耦合区14包括光栅141及端面耦合器中的任意一种;所述波导区15包括光波导151及硅锥152,所述光波导151位于所述硅锥152与所述光耦合区14之间。光纤中的光通过光栅141或者端面耦合器耦合进入光波导151并在其中激发单模,波导的单模光传输至硅锥152时,光波模场逐渐变大,可以降低光从单模光波导151进入脊形波导时的反射损耗。In any embodiment of the present invention, the substrate 1 includes: a substrate silicon layer 11, a buried silicon dioxide layer 12 and a top silicon layer. The buried silicon dioxide layer 12 is located on the substrate silicon layer 11. One side; the top silicon layer is located on the side of the buried silicon dioxide layer 12 away from the substrate silicon layer 11, and part of the substrate silicon layer 11, the buried silicon dioxide layer 12 and the top silicon layer An optical coupling region 14 and a waveguide region 15 are formed; the optical coupling region 14 includes any one of a grating 141 and an end coupler; the waveguide region 15 includes an optical waveguide 151 and a silicon cone 152, and the optical waveguide 151 is located at between the silicon cone 152 and the optical coupling region 14 . The light in the optical fiber is coupled into the optical waveguide 151 through the grating 141 or the end-face coupler and excites a single mode therein. When the single-mode light of the waveguide is transmitted to the silicon cone 152, the light wave mode field gradually becomes larger, which can reduce the light from the single-mode optical waveguide. 151Reflection losses as it enters the ridge waveguide.

在本发明的任意实施方式中,所述硅锥152包括第一硅锥1521和第二硅锥1522以及设于所述第一硅锥1521和第二硅锥1522之间的刻蚀阻挡层锥1523,其中:所述第一硅锥1521包括单晶硅锥152;所述第二硅锥1522包括多晶硅锥152和非晶硅锥152中的任意一种。光在硅锥152中传输时,因多晶硅锥152与硅锥152之间有刻蚀阻挡层所标识,因此硅锥152中的部分光能量通过倏逝耦合进入多晶硅锥152中并向前传播;在硅锥152中向前传播的光能量通过倏逝耦合的方式进入光吸收层中,在多晶硅锥152中向前传播的光能量则通过对接耦合的方式进入光吸收层;相比于单纯的倏逝耦合,多晶硅锥152的引入能够提高光吸收层吸收的光功率,从而在一定程度上提高光响应度。光在光吸收层中被吸收从而激发出电子-空穴对,在外电场的作用下,光生电子、空穴分别向n型掺杂区、p型掺杂区运动,并分别被阴极、阳极搜集,并在外电路中形成电流。In any embodiment of the present invention, the silicon cone 152 includes a first silicon cone 1521 and a second silicon cone 1522 and an etching barrier cone disposed between the first silicon cone 1521 and the second silicon cone 1522 1523, wherein: the first silicon cone 1521 includes a single crystal silicon cone 152; the second silicon cone 1522 includes any one of a polycrystalline silicon cone 152 and an amorphous silicon cone 152. When light is transmitted in the silicon cone 152, because there is an etching barrier between the polysilicon cone 152 and the silicon cone 152, part of the light energy in the silicon cone 152 enters the polysilicon cone 152 through evanescent coupling and propagates forward; The light energy propagating forward in the silicon cone 152 enters the light absorption layer through evanescent coupling, and the light energy propagating forward in the polysilicon cone 152 enters the light absorption layer through butt coupling; compared with a simple Due to evanescent coupling, the introduction of the polysilicon cone 152 can increase the optical power absorbed by the light absorbing layer, thereby improving the photoresponsivity to a certain extent. Light is absorbed in the light-absorbing layer to excite electron-hole pairs. Under the action of the external electric field, the photo-generated electrons and holes move to the n-type doped region and p-type doped region respectively, and are collected by the cathode and anode respectively. , and form a current in the external circuit.

需要说明的是,本发明不限制所述刻蚀阻挡层的材料和厚度,所述刻蚀阻挡层可以是二氧化硅层,也可以是氮化硅层或氮氧化硅层,所述刻蚀阻挡层的厚度一般为10nm左右,具体厚度取决于被刻蚀材料与刻蚀阻挡层的刻蚀选择比。It should be noted that the present invention does not limit the material and thickness of the etching barrier layer. The etching barrier layer may be a silicon dioxide layer, a silicon nitride layer or a silicon oxynitride layer. The thickness of the barrier layer is generally about 10 nm, and the specific thickness depends on the etching selectivity ratio between the material to be etched and the etching barrier layer.

如图2所示,本发明还提出了一种光电探测器的制备方法,包括以下步骤:As shown in Figure 2, the present invention also proposes a method for preparing a photodetector, which includes the following steps:

S10、提供衬底1;S10. Provide substrate 1;

S20、在衬底1的第一侧形成光电转换部2,所述光电转换部2包括本征体21,所述本征体21具有处在第二方向上的中间区域212和位于中间区域212两侧的两侧部211,所述本征体21的两侧部211对应嵌设有N型掺杂的离子和P型掺杂的离子,以对应形成N型半导体层213和P型半导体层214;其中,所述第一方向与所述第二方向相交设置。S20. Form a photoelectric conversion part 2 on the first side of the substrate 1. The photoelectric conversion part 2 includes an intrinsic body 21. The intrinsic body 21 has a middle region 212 in the second direction and a middle region 212 in the second direction. The two side portions 211 on both sides of the intrinsic body 21 are embedded with N-type doped ions and P-type doped ions correspondingly to form the N-type semiconductor layer 213 and the P-type semiconductor layer. 214; wherein the first direction intersects the second direction.

通过本征体21具有处在第二方向上的中间区域212和位于中间区域212两侧的两侧部211,在本征体21的两侧部211对应嵌设有N型掺杂的离子和P型掺杂的离子,以对应形成N型半导体层213和P型半导体层214,使得N型掺杂和P型掺杂均在本征层发生,无需多晶硅淀积,简化了器件制备工艺降低了器件制备成本,同时避免了在多晶硅中掺杂形成N型掺杂和P型掺杂过程中离子渗入本征层,确保有足够宽的中间区域212来吸收入射光子从而确保探测器有足够高的探测效率。The intrinsic body 21 has a middle region 212 in the second direction and two side portions 211 located on both sides of the middle region 212. N-type doped ions and ions are embedded in the two side portions 211 of the intrinsic body 21. P-type doped ions are used to form the N-type semiconductor layer 213 and the P-type semiconductor layer 214 correspondingly, so that both N-type doping and P-type doping occur in the intrinsic layer, without the need for polysilicon deposition, simplifying the device preparation process and reducing the The device preparation cost is reduced, and at the same time, it avoids the infiltration of ions into the intrinsic layer during the formation of N-type doping and P-type doping in polysilicon, ensuring that there is a wide enough middle area 212 to absorb the incident photons to ensure that the detector has a sufficiently high detection efficiency.

如图3所示,在本发明的任意实施方式中,步骤S20包括:As shown in Figure 3, in any implementation of the present invention, step S20 includes:

S210、在衬底1的一侧形成本征体21;S210. Form the intrinsic body 21 on one side of the substrate 1;

S220、在本征层体的第二方向上的第一侧刻蚀出凹部,所述凹部对应贯穿所述本征部背对所述衬底的一端设置,以使得所述凹部对应形成侧部,所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部;S220. Etch a recess on the first side of the intrinsic layer in the second direction, and the recess is provided correspondingly through an end of the intrinsic part facing away from the substrate, so that the recess corresponds to a side part. , the side portion includes a side body extending along the first direction, and a side protrusion extending outward from an end of the side body close to the substrate;

S230、在侧部主体和侧凸部注入使本征层形成第一类型掺杂的离子,形成第一类型半导体层;S230. Inject ions into the side body and the side convex portion to form a first type doped intrinsic layer, thereby forming a first type semiconductor layer;

S240、在本征层体的第二方向上的第二侧刻蚀出凹部,所述凹部对应贯穿所述本征部背对所述衬底的一端设置,以使得所述凹部对应形成侧部,所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部;S240. Etch a recessed portion on the second side of the intrinsic layer in the second direction, and the recessed portion is provided correspondingly through one end of the intrinsic portion facing away from the substrate, so that the recessed portion corresponds to a side portion. , the side portion includes a side body extending along the first direction, and a side protrusion extending outward from an end of the side body close to the substrate;

S250、在侧部主体和侧凸部注入使本征层形成第二类型掺杂的离子,形成第二类型半导体层;S250. Inject ions into the side body and the side convex portion to form a second type doped intrinsic layer, thereby forming a second type semiconductor layer;

其中,所述第一类型掺杂的离子与所述第二类型掺杂的离子其中之一为N型掺杂离子,另一个为P型掺杂离子;Wherein, one of the first type doped ions and the second type doped ions is an N-type doping ion, and the other is a P-type doping ion;

所述第一类型半导体层与所述第二类型半导体层其中之一为N型半导体层,另一个为P型半导体层。One of the first type semiconductor layer and the second type semiconductor layer is an N-type semiconductor layer, and the other is a P-type semiconductor layer.

通过在本征层两侧依次注入不同的离子形成N型掺杂半导体层和P型半导体层214,可以避免使用高精度的光刻工艺,降低光电探测器的制备成本。By sequentially injecting different ions on both sides of the intrinsic layer to form the N-type doped semiconductor layer and the P-type semiconductor layer 214, the use of high-precision photolithography processes can be avoided and the preparation cost of the photodetector can be reduced.

如图3所示,在本发明的任意实施方式中,步骤S10包括:As shown in Figure 3, in any implementation of the present invention, step S10 includes:

S110、提供含顶层硅层的晶圆;制备波导集成Ge/Si pin光电探测器通常采用SOI(Silicon-On-Insulator)晶圆,其通常由底部的硅衬底1、中间的掩埋二氧化硅层12以及顶部的顶层硅层所组成,其中硅衬底1主要起机械支撑作用,掩埋二氧化硅层12作为光波导151下包层,顶层硅层为光电子器件所在加工层。目前加工硅基光电子器件包括波导集成Ge/Si pin光电探测器的主流晶圆尺寸为8英寸;其典型规格:750μm硅衬底1,约2~3μm掩埋二氧化硅层12,约220nm顶层硅层,为避免外延过程中顶层硅层中杂质向本征层即本征体中扩散影响器件性能,顶层硅层多是高电阻率也即低掺杂浓度。S110. Provide a wafer containing a top silicon layer; preparing waveguide integrated Ge/Si pin photodetectors usually uses SOI (Silicon-On-Insulator) wafers, which usually consist of a silicon substrate 1 at the bottom and a buried silicon dioxide in the middle. It is composed of layer 12 and the top silicon layer, in which the silicon substrate 1 mainly plays a mechanical supporting role, the buried silicon dioxide layer 12 serves as the lower cladding layer of the optical waveguide 151, and the top silicon layer is the processing layer where the optoelectronic device is located. The current mainstream wafer size for processing silicon-based optoelectronic devices, including waveguide integrated Ge/Si pin photodetectors, is 8 inches; its typical specifications: 750 μm silicon substrate 1, about 2 to 3 μm buried silicon dioxide layer 12, and about 220 nm top silicon layer, in order to avoid impurities in the top silicon layer from diffusing into the intrinsic layer, i.e., the intrinsic body, during the epitaxial process and affecting device performance, the top silicon layer is mostly of high resistivity, that is, low doping concentration.

S120、在晶圆的顶层硅层表面沉积刻蚀阻挡层;在整个晶圆表面淀积一层刻蚀阻挡层,作为多晶硅刻蚀停止层,因顶层硅层为单晶硅与多晶硅材料化学性质相近,二者刻蚀选择比较低,在多晶硅刻蚀过程中为确保除多晶硅锥152外其他区域多晶硅被全部刻蚀,同时避免破坏顶层硅层,需要淀积此刻蚀阻挡层作为刻蚀停止层,其厚度取决于多晶硅厚度及其与刻蚀阻挡层的刻蚀选择比。一般地,多晶硅对刻蚀阻挡层的刻蚀选择比不低于100。对于干法刻蚀工艺而言,通常需一定时间的过刻蚀以确保被刻蚀的膜层被完全刻蚀干净。比如说刻蚀200nm厚的多晶硅,假设刻蚀速率恒定为20nm/min,理论上需要的刻蚀时间为10min(主刻蚀时间)。然而,实际上整个晶圆上多晶硅膜的厚度存在一定的涨落,有些位置是200nm,有些位置是210nm,有些位置是195nm,而且刻蚀速率也并不恒定,为确保晶圆各个位置的多晶硅膜被完全刻蚀干净,需要在理论的刻蚀时间到达后再继续刻蚀一段时间(这一过程也称为过刻蚀),比如说20%的主刻蚀时间即2min,在过刻蚀期间,理论上被刻蚀掉的多晶硅厚度为40nm,如果多晶硅对其底部的刻蚀阻挡层的刻蚀选择比为100,那么过刻蚀期间晶圆上有些位置的刻蚀阻挡层的被刻蚀量为40nm/100=0.4nm。具体的刻蚀选择比取决于实际的刻蚀条件,并且与多种因素比如刻蚀腔体的压强,温度,等离子功率有关。S120. Deposit an etching barrier layer on the surface of the top silicon layer of the wafer; deposit an etching barrier layer on the entire wafer surface as a polysilicon etching stop layer, because the top silicon layer has the chemical properties of single crystal silicon and polysilicon. Similar, the etching selectivity of the two is relatively low. During the polysilicon etching process, in order to ensure that all polysilicon areas except the polysilicon cone 152 are etched and avoid damaging the top silicon layer, it is necessary to deposit this etching barrier layer as an etching stop layer. , its thickness depends on the polysilicon thickness and its etching selectivity ratio to the etching barrier layer. Generally, the etching selectivity ratio of polysilicon to the etching barrier layer is not less than 100. For dry etching processes, over-etching for a certain period of time is usually required to ensure that the etched film layer is completely etched clean. For example, when etching 200nm thick polysilicon, assuming the etching rate is constant at 20nm/min, the theoretical etching time required is 10min (main etching time). However, in fact, there are certain fluctuations in the thickness of the polysilicon film on the entire wafer. Some locations are 200nm, some locations are 210nm, and some locations are 195nm. Moreover, the etching rate is not constant. In order to ensure that the polysilicon film at each location on the wafer has After the film is completely etched clean, it is necessary to continue etching for a period of time after the theoretical etching time is reached (this process is also called over-etching). For example, 20% of the main etching time is 2 minutes. During this period, the theoretical thickness of the polysilicon etched away is 40nm. If the etching selectivity ratio of polysilicon to the etching barrier layer at the bottom is 100, then during over-etching, the etching barrier layer at some locations on the wafer will be etched. The etching amount is 40nm/100=0.4nm. The specific etching selectivity ratio depends on the actual etching conditions and is related to various factors such as the pressure, temperature, and plasma power of the etching chamber.

S130、在刻蚀阻挡层背离顶层硅层的一侧沉积多晶硅层;S130. Deposit a polysilicon layer on the side of the etching barrier layer away from the top silicon layer;

S140、在含多晶硅层上刻蚀出多晶硅锥152,在顶层硅层刻蚀出光栅141、波导及单晶硅锥152。通过光刻、刻蚀等技术将除多晶硅锥152外其他区域多晶硅全部刻蚀干净。通过光刻、刻蚀等技术将光栅141所在区域顶层硅层向下刻蚀掉一部分,形成具有一定占空比和周期的光栅141。通过光刻、刻蚀等技术将特定区域内顶层硅层向下刻蚀,用于形成光波导151芯层以及硅锥152。S140. Etch the polysilicon cone 152 on the polysilicon-containing layer, and etch the grating 141, waveguide and single-crystal silicon cone 152 on the top silicon layer. All polysilicon areas except the polysilicon cone 152 are etched cleanly through photolithography, etching and other techniques. A portion of the top silicon layer in the area where the grating 141 is located is etched downward through photolithography, etching and other techniques to form a grating 141 with a certain duty cycle and period. The top silicon layer in a specific area is etched downward through photolithography, etching and other techniques to form the core layer of the optical waveguide 151 and the silicon cone 152 .

在本发明的任意实施方式中,所述刻蚀阻挡层的材料包括二氧化硅、氮化硅及氮氧化硅中的至少一种。采用上述刻蚀阻挡层的材料中的至少一种,可以确保除多晶硅锥外的其他区域的多晶硅被完全刻蚀干净而不损伤其下方的顶层硅层。In any embodiment of the present invention, the material of the etching barrier layer includes at least one of silicon dioxide, silicon nitride, and silicon oxynitride. Using at least one of the above materials for the etching barrier layer can ensure that the polysilicon in other areas except the polysilicon cone is completely etched without damaging the top silicon layer below it.

在本发明的任意实施方式中,步骤S210包括:In any implementation of the present invention, step S210 includes:

S2101、在衬底1上刻蚀出脊波导,通过光刻、刻蚀等技术将特定区域内顶层硅层向下刻蚀,用于形成脊形波导。S2101. Etch a ridge waveguide on the substrate 1, and use photolithography, etching and other techniques to etch downward the top silicon layer in a specific area to form a ridge waveguide.

S2102、在衬底1的第一侧的表面形成二氧化硅薄膜层,在整个晶圆表面淀积一层一定厚度的二氧化硅薄膜,随后利用CMP技术,对晶圆表面进行抛光处理,形成平坦表面,以确保后续光刻工艺顺利进行。S2102. Form a silicon dioxide film layer on the surface of the first side of the substrate 1, deposit a silicon dioxide film of a certain thickness on the entire wafer surface, and then use CMP technology to polish the wafer surface to form Flat surface to ensure smooth subsequent photolithography process.

S2103、在脊波导中部刻蚀二氧化硅薄膜层及部分脊波导,刻蚀出凹部,通过光刻、刻蚀等技术将晶圆表面特定区域内SiO2全部去除干净,定义出后续Ge选择性外延生长窗口即凹部。本征层例如Ge外延以SOI晶圆顶层硅层表面作为生长模板,对其表面粗糙度十分敏感,因此在外延生长窗口形成过程中要尽可能地避免损伤SOI晶圆顶层硅层表面。为达上述目的,去除SiO2的可能手段包括但不限于:(1)仅采用优化的干法刻蚀工艺;(2)采用干法刻蚀工艺移除大部分SiO2,而后通过湿法腐蚀工艺去除剩余的一层薄的SiO2膜。S2103. Etch the silicon dioxide film layer and part of the ridge waveguide in the middle of the ridge waveguide to create a concave portion. Use photolithography, etching and other techniques to remove all SiO 2 in a specific area of the wafer surface to define the subsequent Ge selectivity. The epitaxial growth window is the recess. Intrinsic layers such as Ge epitaxy use the surface of the silicon layer of the SOI crystal dome layer as a growth template and are very sensitive to its surface roughness. Therefore, during the formation of the epitaxial growth window, damage to the surface of the silicon layer of the SOI crystal dome layer must be avoided as much as possible. To achieve the above purpose, possible means of removing SiO 2 include but are not limited to: (1) only using an optimized dry etching process; (2) using a dry etching process to remove most of SiO 2 and then wet etching The process removes the remaining thin SiO2 film.

需要说明的是,在本发明的一些实施例中,还可以在外延生长窗口形成过程中,在外延生长窗口内的SiO2全部被刻蚀完后,通过刻蚀工艺去除一定厚度的顶层硅层从而形成一定深度的凹槽,并通过包括但不限于牺牲氧化在内的工艺手段对凹槽内壁进行平滑处理从而达到Ge外延的要求,使光电探测器的光学耦合方式由倏逝耦合转变为对接耦合,从而提高探测器的响应度。It should be noted that in some embodiments of the present invention, during the formation of the epitaxial growth window, after all SiO 2 in the epitaxial growth window has been etched, a certain thickness of the top silicon layer can be removed through an etching process. Thus, a groove of a certain depth is formed, and the inner wall of the groove is smoothed through process means including but not limited to sacrificial oxidation to meet the requirements of Ge epitaxy, so that the optical coupling mode of the photodetector is changed from evanescent coupling to docking coupling, thereby improving the detector’s responsivity.

S2104、在凹部内通过异质外延法生长Ge层,得含本征层的衬底1。通过异质外延工艺在处理好的外延生长窗口中生长一定厚度的Ge。在Ge选择性外延生长过程中,外延Ge的厚度通常大于所定义的外延生长窗口的深度,因此需要采用CMP技术将Ge薄膜减薄到指定厚度同时对晶圆表面进行平坦化处理。通过光刻、刻蚀等技术将刻蚀掉特定区域的大部分Ge而只保留较薄的一层,剩余Ge薄层在第一方向上的厚度通常在50~100nm。S2104. Grow the Ge layer in the recessed part by heteroepitaxial method to obtain the substrate 1 containing the intrinsic layer. A certain thickness of Ge is grown in the processed epitaxial growth window through a heteroepitaxial process. In the Ge selective epitaxial growth process, the thickness of epitaxial Ge is usually greater than the depth of the defined epitaxial growth window, so CMP technology needs to be used to thin the Ge film to a specified thickness and planarize the wafer surface. Through photolithography, etching and other technologies, most of the Ge in a specific area will be etched away and only a thin layer will remain. The thickness of the remaining Ge thin layer in the first direction is usually 50 to 100 nm.

在本发明的任意实施方式中,所述异质外延法包括减压化学气相沉积法(RPCVD,Reduced Pressure Chemical Vapor Deposition)、超高真空化学气相沉积法(UHVCVD,Ultra-High Vacuum Chemical Vapor Deposition)以及分子束外延法(MBE,MoleculeBeam Epitaxy)中的至少一种。In any embodiment of the present invention, the heteroepitaxial method includes reduced pressure chemical vapor deposition (RPCVD, Reduced Pressure Chemical Vapor Deposition), ultra-high vacuum chemical vapor deposition (UHVCVD, Ultra-High Vacuum Chemical Vapor Deposition) and at least one of molecular beam epitaxy (MBE, MoleculeBeam Epitaxy).

在本发明的任意实施方式中,In any embodiment of the invention,

步骤S220包括:Step S220 includes:

S221、在整个晶圆表面涂覆光刻胶,并利用光刻版(也称光罩,英文mask,reticle)对第二方向上的第二侧的表面的光刻胶进行曝光、显影,而后在第二侧刻蚀出一凹部,所述凹部对应贯穿所述本征部背对所述衬底的一端设置,以使得所述凹部对应形成侧部,所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部;S221. Coat photoresist on the entire wafer surface, and use a photoresist plate (also called a photomask, English mask, reticle) to expose and develop the photoresist on the surface of the second side in the second direction, and then A recess is etched on the second side, and the recess is provided correspondingly through an end of the intrinsic part facing away from the substrate, so that the recess corresponds to a side part, and the side part includes a component extending along the first direction. a side body, and a side protrusion extending outward from an end of the side body close to the substrate;

步骤S240包括:将整个晶圆表面的光刻胶去除,再在整个晶圆表面重新涂覆光刻胶,并利用光刻版对第一侧的表面的光刻胶进行曝光、显影,而后在第一侧、刻蚀出一凹部,所述凹部对应贯穿所述本征部背对所述衬底的一端设置,以使得所述凹部对应形成侧部,所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部。Step S240 includes: removing the photoresist on the entire wafer surface, re-coating the photoresist on the entire wafer surface, and using a photoresist plate to expose and develop the photoresist on the first side surface, and then On the first side, a recess is etched, and the recess is provided correspondingly through an end of the intrinsic part facing away from the substrate, so that the recess corresponds to a side part, and the side part includes a side part extending along the first direction. a side body, and a side protrusion extending outward from an end of the side body close to the substrate.

利用光刻胶作为离子注入掩膜,对两个间隔设置的凹部进行离子注入,可以避免传统工艺中离子注入前光刻工艺的套刻对准误差且刻蚀过程后的光刻胶在一定程度上变硬了,这一硬化的光刻胶复用为之后离子注入过程中的掩蔽层降低了器件制备成本。Using photoresist as an ion implantation mask to implant ions into two spaced recesses can avoid the overlay alignment error of the photolithography process before ion implantation in the traditional process, and the photoresist after the etching process is to a certain extent. The hardened photoresist is reused as a masking layer during the subsequent ion implantation process, reducing device preparation costs.

在本发明的任意实施方式中,所述光刻胶在第一方向上的厚度为1~5μm。在此厚度范围内,可以确保在本整层刻蚀完成之后仍有足够厚度的光刻胶作为后续离子注入过程中的离子注入掩蔽层。In any embodiment of the present invention, the thickness of the photoresist in the first direction is 1˜5 μm. Within this thickness range, it can be ensured that after the entire layer is etched, there will still be enough photoresist to serve as an ion implantation masking layer in the subsequent ion implantation process.

在本发明的任意实施方式中,所述第一类型半导体层的侧凸部2112的第一类型离子注入的角度为7~10°;离子束需以一定的角度注入以确保Ge侧壁能够被离子注入。在此角度范围内,可以确保N型半导体侧凸部能够均匀地被掺杂。In any embodiment of the present invention, the first type ion implantation angle of the side convex portion 2112 of the first type semiconductor layer is 7 to 10°; the ion beam needs to be injected at a certain angle to ensure that the Ge sidewall can be implanted Ion Implantation. Within this angle range, it can be ensured that the N-type semiconductor side convex portion can be doped uniformly.

所述第一类型半导体层的侧凸部2112的第一类型离子注入的能量为40~80KeV,优选为50KeV,在此能量范围内可以确保后续形成良好的欧姆电学接触。离子注入能量过低导致注入的绝大多数离子都在靠近表面的薄层内,在后续的接触孔形成过程所需的介质(通常为二氧化硅)刻蚀工艺的过刻蚀阶段有可能导致上述薄层被刻蚀掉从导致最后无法形成有效的电学接触。The energy of the first type ion implantation into the lateral convex portion 2112 of the first type semiconductor layer is 40 to 80 KeV, preferably 50 KeV. Within this energy range, the subsequent formation of good ohmic electrical contact can be ensured. If the ion implantation energy is too low, most of the injected ions are in the thin layer close to the surface, which may cause over-etching during the etching process of the medium (usually silicon dioxide) required for the subsequent contact hole formation process. The above-mentioned thin layer is etched away, resulting in the final inability to form an effective electrical contact.

所述第二类型半导体层的侧凸部2112的第二类型离子注入的角度为7~10°,在此角度范围内,可以确保N型半导体侧凸部能够均匀地被掺杂。The angle of the second type ion implantation of the side protrusions 2112 of the second type semiconductor layer is 7° to 10°. Within this angle range, it can be ensured that the N-type semiconductor side protrusions can be doped uniformly.

所述第二类型半导体层的侧凸部2112的第二类型离子注入的能量为40~80KeV,优选为50KeV,在此能量范围内可以,确保后续形成良好的欧姆电学接触。离子注入能量过低导致注入的绝大多数离子都在靠近表面的薄层内,在后续的接触孔形成过程所需的介质(通常为二氧化硅)刻蚀工艺的过刻蚀阶段有可能导致上述薄层被刻蚀掉从导致最后无法形成有效的电学接触。The energy of the second type ion implantation of the side convex portion 2112 of the second type semiconductor layer is 40 to 80 KeV, preferably 50 KeV. Within this energy range, it is possible to ensure the subsequent formation of good ohmic electrical contact. If the ion implantation energy is too low, most of the injected ions are in the thin layer close to the surface, which may cause over-etching during the etching process of the medium (usually silicon dioxide) required for the subsequent contact hole formation process. The above-mentioned thin layer is etched away, resulting in the final inability to form an effective electrical contact.

如图4中的4(a)~图4(r)所示,在形成N型半导体层213和P型半导体层214后,还可以在整个晶圆远离衬底硅层11的一侧上的淀积一层SiO2膜,随后通过CMP技术对晶圆表面进行平坦化处理。将特定区域内的SiO2全部刻蚀干净并露出底部的n、p型掺杂Ge形成电学接触孔,随后在整个晶圆表面淀积钨金属,使其充分填满接触孔,最后通过CMP技术磨除除接触孔区域外的所有钨金属。然后在整个晶圆表面远离衬底硅层11的一侧淀积一定厚度的第一层金属,然后通过光刻、刻蚀等技术去除除特定区域外的所有金属。所述第一层金属可以是铝、铝硅合金、铝铜合金中的任意一种,根据具体应用中的电学布线需求,可能存在多层金属布线,多层金属布线对光电探测器的性能影响较小。As shown in Figures 4(a) to 4(r), after the N-type semiconductor layer 213 and the P-type semiconductor layer 214 are formed, the entire wafer can also be formed on the side away from the substrate silicon layer 11. A layer of SiO2 film is deposited, and the wafer surface is subsequently planarized through CMP technology. All SiO 2 in a specific area is etched cleanly and the n- and p-type doped Ge at the bottom are exposed to form electrical contact holes. Then tungsten metal is deposited on the entire wafer surface to fully fill the contact holes, and finally through CMP technology Grind away all tungsten metal except the contact hole area. Then, a first layer of metal of a certain thickness is deposited on the side of the entire wafer surface away from the substrate silicon layer 11, and then all metal except specific areas is removed through photolithography, etching and other techniques. The first layer of metal can be any one of aluminum, aluminum-silicon alloy, and aluminum-copper alloy. Depending on the electrical wiring requirements in specific applications, there may be multi-layer metal wiring. The impact of multi-layer metal wiring on the performance of the photodetector smaller.

本发明还提出了一种光电通信装置,包括所述光电探测器或所述的光电探测器的制备方法制备的光电探测器。所述光电通信装置具有所述光电探测器的所有技术方案,因而也具有所述光电探测器的所有的有益效果,本申请在此不再一一赘述。The invention also proposes an optoelectronic communication device, including the photodetector or the photodetector prepared by the photodetector preparation method. The optoelectronic communication device has all the technical solutions of the photoelectric detector, and therefore also has all the beneficial effects of the photoelectric detector, which will not be described again in this application.

在本发明的任意实施方式中,所述光电通信装置包光纤通信及数据中所使用的光模块中的光接收机,高速光电集成芯片中的光接收单元中的任意一种。In any embodiment of the present invention, the optoelectronic communication device includes any one of an optical receiver in an optical module used in optical fiber communication and data, or an optical receiving unit in a high-speed optoelectronic integrated chip.

对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本申请的专利保护范围内。Various modifications and variations may be made to this application by those skilled in the art. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of this application shall be included in the patent protection scope of this application.

Claims (18)

1.一种光电探测器,其特征在于,包括:1. A photoelectric detector, characterized in that it includes: 衬底,具有处在第一方向上的两侧;以及a substrate having two sides in a first direction; and 光电转换部,设于所述衬底的一侧,所述光电转换部包括本征体,所述本征体具有处在第二方向上的中间区域和位于中间区域两侧的两侧部,所述本征体的两侧部对应嵌设有N型掺杂的离子和P型掺杂的离子,以对应形成N型半导体层和P型半导体层;A photoelectric conversion part is provided on one side of the substrate, the photoelectric conversion part includes an intrinsic body, the intrinsic body has a middle region in the second direction and two side parts located on both sides of the middle region, Both sides of the intrinsic body are embedded with N-type doped ions and P-type doped ions correspondingly to form an N-type semiconductor layer and a P-type semiconductor layer; 其中,所述第一方向与所述第二方向相交设置。Wherein, the first direction and the second direction are arranged to intersect. 2.如权利要求1所述的光电探测器,其特征在于,2. The photodetector according to claim 1, characterized in that, 所述本征体的中间区域在第一方向上的尺寸为20~80nm;和/或,The size of the middle region of the intrinsic body in the first direction is 20 to 80 nm; and/or, 所述本征体的中间区域在第二方向上的尺寸为100~200nm;和/或,The size of the middle region of the intrinsic body in the second direction is 100-200 nm; and/or, 所述本征体的中间区域在第三方向上的尺寸为10~50μm;和/或,The size of the middle region of the intrinsic body in the third direction is 10-50 μm; and/or, 所述N型半导体层包括在Ge中掺杂的磷或砷原子形成的N型半导体层,或在InGaAs掺杂的碲或锡或硅原子形成的N型半导体层,或在InGaAsP中掺杂碲或锡或硅原子形成的N型半导体层;和/或,The N-type semiconductor layer includes an N-type semiconductor layer formed by doping phosphorus or arsenic atoms in Ge, or an N-type semiconductor layer formed by doping tellurium, tin or silicon atoms in InGaAs, or doping tellurium in InGaAsP. or an N-type semiconductor layer formed by tin or silicon atoms; and/or, 所述P型半导体层的材料包括在Ge中掺杂硼原子形成的P型半导体层、或在InGaAs中掺杂的锌原子形成的P型半导体层,或在InGaAsP中掺杂的锌原子形成的P型半导体层;The material of the P-type semiconductor layer includes a P-type semiconductor layer formed by doping boron atoms in Ge, a P-type semiconductor layer formed by doping zinc atoms in InGaAs, or a P-type semiconductor layer formed by doping zinc atoms in InGaAsP. P-type semiconductor layer; 其中所述第三方向与所述第一方向与所述第二方向分别相交。The third direction intersects the first direction and the second direction respectively. 3.如权利要求1所述的光电探测器,其特征在于,每一所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部;3. The photodetector of claim 1, wherein each side portion includes a side body extending along a first direction, and an end of the side body close to the substrate outward. Extended lateral bulge; 其中一所述侧部的所述侧部主体和所述侧凸部均嵌设有N型掺杂的离子,以使得所述N型半导体层呈L型设置;The side body and the side convex part of one of the side parts are embedded with N-type doped ions, so that the N-type semiconductor layer is arranged in an L-shape; 另一所述侧部的所述侧部主体和所述侧凸部均嵌设有P型掺杂的离子,以使得所述P型半导体层呈L型设置。The side body and the side convex part of the other side part are both embedded with P-type doped ions, so that the P-type semiconductor layer is arranged in an L-shape. 4.如权利要求3所述的光电探测器,其特征在于,4. The photodetector according to claim 3, characterized in that, 所述N型半导体层的侧部主体在第二方向上的尺寸为1~3μm;The size of the side body of the N-type semiconductor layer in the second direction is 1 to 3 μm; 所述N型半导体层的侧凸部在第一方向上的尺寸为20~80nm;The size of the side convex portion of the N-type semiconductor layer in the first direction is 20 to 80 nm; 所述N型半导体层的侧部主体和侧凸部在第三方向上的尺寸为10~50μm;The size of the side body and the side convex portion of the N-type semiconductor layer in the third direction is 10 to 50 μm; 所述P型半导体层的侧部主体在第二方向上的尺寸为1~3μm;The size of the side body of the P-type semiconductor layer in the second direction is 1 to 3 μm; 所述P型半导体层的侧凸部在第一方向上的尺寸为20~80nm;The size of the side convex portion of the P-type semiconductor layer in the first direction is 20 to 80 nm; 所述P型半导体层的侧部主体和侧凸部在第三方向上的尺寸为10~50μm;The size of the side body and the side convex portion of the P-type semiconductor layer in the third direction is 10 to 50 μm; 其中所述第三方向与所述第一方向与所述第二方向分别相交。The third direction intersects the first direction and the second direction respectively. 5.如权利要求1所述的光电探测器,其特征在于,所述本征体的材料包括Ge、InGaAs及InGaAsP中的至少一种。5. The photodetector according to claim 1, wherein the material of the intrinsic body includes at least one of Ge, InGaAs and InGaAsP. 6.如权利要求1所述的光电探测器,其特征在于,所述衬底包括:6. The photodetector of claim 1, wherein the substrate includes: 衬底硅层;substrate silicon layer; 掩埋二氧化硅层,位于所述衬底硅层的一侧;以及a buried silicon dioxide layer located on one side of the substrate silicon layer; and 顶层硅层,位于所述掩埋二氧化硅层背离衬底硅层的一侧,部分所述衬底硅层、所述掩埋二氧化硅层和所述顶层硅层形成光耦合区和波导区;The top silicon layer is located on the side of the buried silicon dioxide layer away from the substrate silicon layer, and part of the substrate silicon layer, the buried silicon dioxide layer and the top silicon layer form a light coupling area and a waveguide area; 所述光耦合区包括光栅及端面耦合器中的任意一种;The optical coupling area includes any one of a grating and an end coupler; 所述波导区包括光波导及硅锥,所述光波导位于所述硅锥与所述光耦合区之间。The waveguide area includes an optical waveguide and a silicon cone, and the optical waveguide is located between the silicon cone and the optical coupling area. 7.如权利要求6所述的光电探测器,其特征在于,所述硅锥包括第一硅锥和第二硅锥以及设于所述第一硅锥和第二硅锥之间的刻蚀阻挡层锥,其中:7. The photodetector according to claim 6, wherein the silicon cone includes a first silicon cone and a second silicon cone and an etching hole disposed between the first silicon cone and the second silicon cone. Barrier cone, where: 所述第一硅锥包括单晶硅锥;The first silicon cone includes a single crystal silicon cone; 所述第二硅锥包括多晶硅锥和非晶硅锥中的任意一种。The second silicon cone includes any one of a polycrystalline silicon cone and an amorphous silicon cone. 8.一种如权利要求1至7任意一项所述的光电探测器的制备方法,其特征在于,包括以下步骤:8. A method for preparing a photodetector according to any one of claims 1 to 7, characterized in that it includes the following steps: S10、提供衬底;S10. Provide substrate; S20、在衬底的第一侧形成光电转换部,所述光电转换部包括本征体,所述本征体具有处在第二方向上的中间区域和位于中间区域两侧的两侧部,所述本征体的两侧部对应嵌设有N型掺杂的离子和P型掺杂的离子,以对应形成N型半导体层和P型半导体层;S20. Form a photoelectric conversion part on the first side of the substrate. The photoelectric conversion part includes an intrinsic body. The intrinsic body has a middle region in the second direction and two side parts located on both sides of the middle region. Both sides of the intrinsic body are embedded with N-type doped ions and P-type doped ions correspondingly to form an N-type semiconductor layer and a P-type semiconductor layer; 其中,所述第一方向与所述第二方向相交设置。Wherein, the first direction and the second direction are arranged to intersect. 9.如权利要求8所述的光电探测器的制备方法,其特征在于,步骤S20包括:9. The method for preparing a photodetector according to claim 8, wherein step S20 includes: S210、在衬底的一侧形成本征体;S210. Form an intrinsic body on one side of the substrate; S220、在本征层体的第二方向上的第一侧刻蚀出凹部,所述凹部对应贯穿所述本征部背对所述衬底的一端设置,以使得所述凹部对应形成侧部,所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部;S220. Etch a recessed portion on the first side of the intrinsic layer in the second direction, and the recessed portion is provided correspondingly through an end of the intrinsic portion facing away from the substrate, so that the recessed portion corresponds to a side portion. , the side portion includes a side body extending along the first direction, and a side protrusion extending outward from an end of the side body close to the substrate; S230、在侧部主体和侧凸部注入使本征层形成第一类型掺杂的离子,形成第一类型半导体层;S230. Inject ions into the side body and the side convex portion to form a first type doped intrinsic layer, thereby forming a first type semiconductor layer; S240、在本征层体的第二方向上的第二侧刻蚀出凹部,所述凹部对应贯穿所述本征部背对所述衬底的一端设置,以使得所述凹部对应形成侧部,所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部;S240. Etch a recessed portion on the second side of the intrinsic layer in the second direction, and the recessed portion is provided correspondingly through one end of the intrinsic portion facing away from the substrate, so that the recessed portion corresponds to a side portion. , the side portion includes a side body extending along the first direction, and a side protrusion extending outward from an end of the side body close to the substrate; S250、在侧部主体和侧凸部注入使本征层形成第二类型掺杂的离子,形成第二类型半导体层;S250. Inject ions into the side body and the side convex portion to form a second type doped intrinsic layer, thereby forming a second type semiconductor layer; 其中,所述第一类型掺杂的离子与所述第二类型掺杂的离子其中之一为N型掺杂离子,另一个为P型掺杂离子;Wherein, one of the first type doped ions and the second type doped ions is an N-type doping ion, and the other is a P-type doping ion; 所述第一类型半导体层与所述第二类型半导体层其中之一为N型半导体层,另一个为P型半导体层。One of the first type semiconductor layer and the second type semiconductor layer is an N-type semiconductor layer, and the other is a P-type semiconductor layer. 10.如权利要求8所述的光电探测器的制备方法,其特征在于,步骤S10包括:10. The method for preparing a photodetector according to claim 8, wherein step S10 includes: S110、提供含顶层硅层的晶圆;S110, provide wafers containing top silicon layer; S120、在晶圆的顶层硅层表面沉积刻蚀阻挡层;S120. Deposit an etching barrier layer on the surface of the top silicon layer of the wafer; S130、在刻蚀阻挡层背离顶层硅层的一侧沉积多晶硅层;S130. Deposit a polysilicon layer on the side of the etching barrier layer away from the top silicon layer; S140、在含多晶硅层上刻蚀出多晶硅锥,在顶层硅层刻蚀出光栅、波导及单晶硅锥。S140. Etch polysilicon cones on the polysilicon-containing layer, and etch gratings, waveguides and single-crystal silicon cones on the top silicon layer. 11.如权利要求10所述的光电探测器的制备方法,其特征在于,所述刻蚀阻挡层的材料包括二氧化硅、氮化硅或氮氧化硅中的至少一种。11. The method for preparing a photodetector according to claim 10, wherein the material of the etching barrier layer includes at least one of silicon dioxide, silicon nitride or silicon oxynitride. 12.如权利要求9所述的光电探测器的制备方法,其特征在于,步骤S210包括:12. The method for preparing a photodetector according to claim 9, wherein step S210 includes: S2101、在衬底上刻蚀出脊波导;S2101. Etch the ridge waveguide on the substrate; S2102、在衬底的第一侧的表面形成二氧化硅薄膜层;S2102. Form a silicon dioxide film layer on the surface of the first side of the substrate; S2103、在脊波导中部刻蚀二氧化硅薄膜层及部分脊波导,刻蚀出凹部;S2103. Etch the silicon dioxide film layer and part of the ridge waveguide in the middle of the ridge waveguide, and etch out the concave portion; S2104、在凹部内通过异质外延法生长Ge层,得含本征层的衬底。S2104. Grow the Ge layer in the recessed part through heteroepitaxial growth to obtain a substrate containing an intrinsic layer. 13.如权利要求12所述的光电探测器的制备方法,其特征在于,所述异质外延法包括减压化学气相沉积法、超高真空化学气相沉积法以及分子束外延法中的至少一种。13. The method for preparing a photodetector according to claim 12, wherein the heteroepitaxial method includes at least one of a reduced pressure chemical vapor deposition method, an ultra-high vacuum chemical vapor deposition method, and a molecular beam epitaxy method. kind. 14.如权利要求9所述的光电探测器的制备方法,其特征在于,步骤S220包括:14. The method for preparing a photodetector according to claim 9, wherein step S220 includes: S221、在整个晶圆表面涂覆光刻胶,并利用光刻版对第二方向上的第二侧的表面的光刻胶进行曝光、显影,而后在第二侧刻蚀出一凹部,所述凹部对应贯穿所述本征部背对所述衬底的一端设置,以使得所述凹部对应形成侧部,所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部;S221. Coat the entire wafer surface with photoresist, use a photoresist plate to expose and develop the photoresist on the surface of the second side in the second direction, and then etch a concave portion on the second side. The recess is provided correspondingly through an end of the intrinsic part facing away from the substrate, so that the recess corresponds to a side part, and the side part includes a side body extending along the first direction, and a side body extending from the side part. a lateral protrusion extending outward from one end of the main body close to the substrate; 步骤S240包括:将整个晶圆表面的光刻胶去除,再在整个晶圆表面重新涂覆光刻胶,并利用光刻版对第一侧的表面的光刻胶进行曝光、显影,而后在第一侧、刻蚀出一凹部,所述凹部对应贯穿所述本征部背对所述衬底的一端设置,以使得所述凹部对应形成侧部,所述侧部包括沿第一方向延伸的侧部主体、以及自所述侧部主体靠近所述衬底的一端向外延伸出的侧凸部。Step S240 includes: removing the photoresist on the entire wafer surface, re-coating the photoresist on the entire wafer surface, and using a photoresist plate to expose and develop the photoresist on the first side surface, and then On the first side, a recess is etched, and the recess is provided correspondingly through an end of the intrinsic part facing away from the substrate, so that the recess corresponds to a side part, and the side part includes a side part extending along the first direction. a side body, and a side protrusion extending outward from an end of the side body close to the substrate. 15.如权利要求14所述的光电探测器的制备方法,其特征在于,所述光刻胶在第一方向上的厚度为1~5μm。15. The method for preparing a photodetector according to claim 14, wherein the thickness of the photoresist in the first direction is 1 to 5 μm. 16.如权利要求9所述的光电探测器的制备方法,其特征在于,16. The method for preparing a photodetector according to claim 9, characterized in that: 所述第一类型半导体层的侧凸部的第一类型离子注入的角度为7~10°;The angle of the first type ion implantation of the side convex portion of the first type semiconductor layer is 7 to 10°; 所述第一类型半导体层的侧凸部的第一类型离子注入的能量为40~80KeV;The energy of the first type ion implantation into the side convex portion of the first type semiconductor layer is 40 to 80 KeV; 所述第二类型半导体层的侧凸部的第二类型离子注入的角度为7~10°;The angle of the second type ion implantation of the side convex portion of the second type semiconductor layer is 7 to 10°; 所述第二类型半导体层的侧凸部的第二类型离子注入的能量为40~80KeV。The energy of the second type ion implantation into the side convex portion of the second type semiconductor layer is 40 to 80 KeV. 17.一种光电通信装置,其特征在于,包括如权利要求1至7任意一项所述的光电探测器或权利要求8至16任意一项所述的光电探测器的制备方法制备的光电探测器。17. An optoelectronic communication device, characterized by comprising a photodetector prepared by the photodetector according to any one of claims 1 to 7 or the photodetector preparation method according to any one of claims 8 to 16. device. 18.如权利要求17所述的光电通信装置,其特征在于,所述光电通信装置包括光纤通信及数据中心所使用的光模块中的光接收机,高速光电集成芯片中的光接收单元中的任意一种。18. The optoelectronic communication device according to claim 17, characterized in that the optoelectronic communication device includes an optical receiver in an optical module used in optical fiber communication and data centers, and an optical receiver in an optical receiving unit in a high-speed optoelectronic integrated chip. Any kind.
CN202311703868.3A 2023-12-12 2023-12-12 Photoelectric detector, preparation method thereof and photoelectric communication device Pending CN117766606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311703868.3A CN117766606A (en) 2023-12-12 2023-12-12 Photoelectric detector, preparation method thereof and photoelectric communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311703868.3A CN117766606A (en) 2023-12-12 2023-12-12 Photoelectric detector, preparation method thereof and photoelectric communication device

Publications (1)

Publication Number Publication Date
CN117766606A true CN117766606A (en) 2024-03-26

Family

ID=90324819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311703868.3A Pending CN117766606A (en) 2023-12-12 2023-12-12 Photoelectric detector, preparation method thereof and photoelectric communication device

Country Status (1)

Country Link
CN (1) CN117766606A (en)

Similar Documents

Publication Publication Date Title
US7902620B2 (en) Suspended germanium photodetector for silicon waveguide
US8242432B2 (en) System having light sensor with enhanced sensitivity including a multiplication layer for generating additional electrons
CN105122469B (en) Semiconductor light-receiving element and manufacturing method thereof
US7760980B2 (en) Ridge technique for fabricating an optical detector and an optical waveguide
JP6091273B2 (en) Semiconductor device and manufacturing method thereof
CN110088916B (en) Avalanche Photodiode Structure
US20250006856A1 (en) Diode with light-sensitive intrinsic region
US20200313026A1 (en) Method of fabrication of a photonic chip comprising an sacm-apd photodiode optically coupled to an integrated waveguide
WO2003073521A2 (en) Integrated photodevice and waveguide
CN113161444A (en) Semiconductor device and method of forming a semiconductor device
CN111509078B (en) Silicon-based photoelectric detector and manufacturing method thereof
US10942315B2 (en) Reducing back reflection in a photodiode
US20220344523A1 (en) Photodetectors and absorbers with slanted light incidence
US8842946B1 (en) Light sensor having reduced dark current
US11588062B2 (en) Photodetectors including a coupling region with multiple tapers
CN103000744A (en) Back-surface-incidence-type semiconductor light receiving element
CN117766606A (en) Photoelectric detector, preparation method thereof and photoelectric communication device
CN115084304B (en) Semiconductor structure and method for forming the same
CN112186075B (en) Waveguide type photoelectric detector and manufacturing method thereof
CN114566557B (en) Avalanche photodetector and preparation method thereof
CN222396002U (en) Photodetectors, chips
CN114895401B (en) Silicon photon chip optical coupling structure and manufacturing method thereof
CN115084303B (en) Semiconductor structure and forming method thereof
EP4345918A1 (en) Photodetector and method for fabricating a photodetector
CN118263354A (en) Photodetector, method for manufacturing photodetector, and chip

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination