CN117763492A - Network security tool intelligent recommendation method and device based on time sequence spatial characteristics and preference fluctuation - Google Patents
Network security tool intelligent recommendation method and device based on time sequence spatial characteristics and preference fluctuation Download PDFInfo
- Publication number
- CN117763492A CN117763492A CN202311653994.2A CN202311653994A CN117763492A CN 117763492 A CN117763492 A CN 117763492A CN 202311653994 A CN202311653994 A CN 202311653994A CN 117763492 A CN117763492 A CN 117763492A
- Authority
- CN
- China
- Prior art keywords
- user
- preference
- network security
- vector
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000013598 vector Substances 0.000 claims abstract description 117
- 239000011159 matrix material Substances 0.000 claims abstract description 81
- 230000009466 transformation Effects 0.000 claims abstract description 42
- 230000007774 longterm Effects 0.000 claims abstract description 24
- 230000002123 temporal effect Effects 0.000 claims abstract description 22
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 12
- 230000006399 behavior Effects 0.000 claims description 50
- 230000006870 function Effects 0.000 claims description 17
- 238000012546 transfer Methods 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000000844 transformation Methods 0.000 claims description 4
- 238000013528 artificial neural network Methods 0.000 claims description 3
- 230000004927 fusion Effects 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 6
- 230000007246 mechanism Effects 0.000 abstract description 4
- 230000003542 behavioural effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000002155 anti-virotic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明公开了基于时序空间特征和偏好波动的网络安全工具智能推荐方法及装置,对收集的用户使用网络安全工具的数据构建用户的历史行为序列,获取通过改进的时空GRU算法捕获用户使用网络安全工具的长期偏好,改进的时空GRU算法将连续时间因子离散化,并引入了特定的时间转换矩阵和距离转换矩阵;然后通过多头注意机制捕获用户使用网络安全工具的短期偏好;接着计算偏好波动值;最后将学习到的长期和短期偏好特征以及用户特征向量、偏好波动向量相结合来预测下一个推荐位置。与现有技术相比,本发明利用时序空间特征和用户偏好波动来更好地理解用户的网络安全工具使用习惯,从而更准确地推荐适用于用户的网络安全工具,有助于提高网络安全性。
The invention discloses an intelligent recommendation method and device for network security tools based on time-series spatial characteristics and preference fluctuations. It constructs the user's historical behavior sequence based on the collected data of users using network security tools, and obtains the user's use of network security captured through an improved spatiotemporal GRU algorithm. For the long-term preference of tools, the improved spatiotemporal GRU algorithm discretizes the continuous time factor and introduces a specific time transformation matrix and distance transformation matrix; then captures the user's short-term preference for using network security tools through a multi-head attention mechanism; and then calculates the preference fluctuation value ; Finally, the learned long-term and short-term preference features, user feature vectors, and preference fluctuation vectors are combined to predict the next recommended position. Compared with the existing technology, the present invention uses temporal spatial characteristics and user preference fluctuations to better understand users' network security tool usage habits, thereby more accurately recommending network security tools suitable for users, and helping to improve network security. .
Description
技术领域Technical field
本发明属于网络安全和推荐技术领域,特别涉及一种基于时序空间特征和偏好波动的网络安全工具智能推荐方法及装置。The invention belongs to the technical field of network security and recommendation, and particularly relates to a method and device for intelligent recommendation of network security tools based on temporal spatial characteristics and preference fluctuations.
背景技术Background technique
在当今数字化时代,网络安全是组织和个人面临的持续挑战之一。随着网络攻击和威胁不断演化和增加,选择合适的网络安全工具变得至关重要。传统网络安全工具选择方法通常依赖于专业安全人员的建议,或者是基于静态规则和特定的网络情境来选择工具。这些方法可能无法充分考虑用户和组织的实际需求和偏好。因此,有必要基于用户的历史交互序列来推荐适合的网络安全工具。In today's digital age, cybersecurity is one of the ongoing challenges facing organizations and individuals. As cyberattacks and threats continue to evolve and increase, choosing the right cybersecurity tools becomes critical. Traditional network security tool selection methods often rely on the recommendations of security professionals, or select tools based on static rules and specific network scenarios. These approaches may not adequately take into account the actual needs and preferences of users and organizations. Therefore, it is necessary to recommend suitable network security tools based on users' historical interaction sequences.
在网络安全领域,推荐技术的应用还相对较少,尤其是针对网络安全工具的选择。当前的网络安全工具选择通常受限于基于静态规则和专业建议,而较少考虑用户的历史交互信息,无法更全面地理解用户的偏好和需求,提供更加个性化、实时的网络安全工具建议。并且现有的序列推荐技术对时空信息的利用不足,挖掘用户项特征的交互性不全面,处理长序列数据的效果不理想,并且生成的下一个推荐不够个性化,推荐的质量和准确性有待提高。In the field of network security, there are relatively few applications of recommendation technology, especially for the selection of network security tools. Current network security tool selection is often limited by static rules and professional recommendations, with less consideration of users' historical interaction information and the inability to more comprehensively understand user preferences and needs and provide more personalized, real-time network security tool recommendations. Moreover, the existing sequence recommendation technology does not make sufficient use of spatiotemporal information, the interactivity of mining user item features is not comprehensive, the effect of processing long sequence data is not ideal, and the next recommendation generated is not personalized enough, and the quality and accuracy of the recommendation need to be improve.
针对以上情况提出一种基于时序空间特征和偏好波动的网络安全工具智能推荐方法。通过在传统GRU网络的基础上加入了时间转换矩阵和距离转换矩阵,时间转换矩阵能够捕捉历史中最近元素的影响,能够更好地理解和预测用户行为在不同时间段的变化;距离转换矩阵计算了用户在坐标系下的两个地理位置之间的欧氏距离,它衡量了用户在不同地点的移动距离,可以帮助模型从时空角度考虑用户的行为变化。通过考虑时间和空间因素,能够更准确地捕捉用户的长期行为特征;再通过注意力机制捕获用户近期的特征作为短期偏好;将用户特征、长期和短期偏好以及偏好波动向量融合,避免了特征表示单一的问题,可以更全面的理解用户的偏好和需求,得到完整的用户偏好特征,从而进行个性化、高质量的推荐。In view of the above situation, an intelligent recommendation method for network security tools based on temporal spatial characteristics and preference fluctuations is proposed. By adding a time transformation matrix and a distance transformation matrix to the traditional GRU network, the time transformation matrix can capture the influence of recent elements in history, and can better understand and predict changes in user behavior in different time periods; distance transformation matrix calculation It measures the Euclidean distance between the user's two geographical locations in the coordinate system. It measures the user's movement distance in different locations and can help the model consider the user's behavioral changes from a spatio-temporal perspective. By considering time and space factors, the user's long-term behavioral characteristics can be more accurately captured; and then the user's recent characteristics are captured as short-term preferences through the attention mechanism; user characteristics, long-term and short-term preferences, and preference fluctuation vectors are integrated to avoid the need for feature representation. A single question can more comprehensively understand user preferences and needs, obtain complete user preference characteristics, and make personalized, high-quality recommendations.
发明内容Contents of the invention
发明目的:针对背景技术中指出的现有的序列推荐系统对时空信息的利用不足,挖掘用户项特征的交互性不全面,处理长序列数据的效果不理想,推荐的质量和准确性有待提高等问题,公开了一种基于时序空间特征和偏好波动的网络安全工具智能推荐方法及装置,通过改进的GRU算法将连续时间因子离散化,并引入了特定的时间转换矩阵和距离转换矩阵,输出向量融合了偏好、位置和时间这些更丰富的特征,从而更准确地捕捉用户的长期行为特征。Purpose of the invention: Aiming at the existing sequence recommendation system pointed out in the background technology that the spatio-temporal information is insufficiently utilized, the interactivity of mining user item features is not comprehensive, the effect of processing long sequence data is not ideal, and the quality and accuracy of recommendations need to be improved, etc. problem, a method and device for intelligent recommendation of network security tools based on temporal spatial characteristics and preference fluctuations are disclosed. The continuous time factor is discretized through the improved GRU algorithm, and a specific time conversion matrix and distance conversion matrix are introduced to output the vector Incorporates richer features such as preferences, location, and time to more accurately capture users' long-term behavioral characteristics.
技术方案:本发明提出一种基于时序空间特征和偏好波动的网络安全工具智能推荐方法,包括如下步骤:Technical solution: The present invention proposes an intelligent recommendation method for network security tools based on temporal spatial characteristics and preference fluctuations, which includes the following steps:
步骤1:对收集到的用户使用网络安全工具的数据进行清洗和预处理,构建用户的历史行为序列,包括用户嵌入矩阵以及用户行为序列嵌入矩阵,所述用户嵌入矩阵、用户行为序列嵌入矩阵中分别包括用户特征向量、用户行为序列嵌入向量;Step 1: Clean and preprocess the collected data of users using network security tools, and construct the user's historical behavior sequence, including a user embedding matrix and a user behavior sequence embedding matrix. The user embedding matrix and user behavior sequence embedding matrix are included in the matrix. Including user feature vectors and user behavior sequence embedding vectors respectively;
步骤2:以用户行为序列嵌入矩阵为输入,通过改进的时空GRU算法学习用户使用网络安全工具的长期偏好;所述改进的时空GRU算法将连续时间因子离散化,并引入了特定的时间转换矩阵和距离转换矩阵;Step 2: Taking the user behavior sequence embedding matrix as input, learn the user's long-term preference for using network security tools through the improved spatiotemporal GRU algorithm; the improved spatiotemporal GRU algorithm discretizes the continuous time factors and introduces a specific time transformation matrix and distance transformation matrix;
步骤3:以用户行为序列嵌入矩阵为输入,通过多头注意力机学习用户近期的使用网络安全工具偏好,表示用户的短期偏好;Step 3: Using the user behavior sequence embedding matrix as input, use the multi-head attention machine to learn the user’s recent preference for using network security tools to represent the user’s short-term preference;
步骤4:计算用户的使用网络安全工具偏好波动值Fu;Step 4: Calculate the user’s preference fluctuation value F u for using network security tools;
步骤5:融合用户的长期偏好、短期偏好、用户特征向量以及偏好波动向量,得到用户的使用网络安全工具行为的综合特征表达并进行推荐。Step 5: Integrate the user's long-term preferences, short-term preferences, user feature vectors and preference fluctuation vectors to obtain a comprehensive feature expression of the user's behavior of using network security tools and make recommendations.
进一步地,所述步骤1的具体方法为:Further, the specific method of step 1 is:
步骤1.1:定义用户集合U={u1,u2,...,ua,...ulen(U)},ua为U中第a个待清洗信息数据,其中,len(U)为U中数据数量,变量a∈[1,len(U)];Step 1.1: Define the user set U = {u 1 ,u 2 ,...,u a ,...u len(U) }, u a is the a-th information data to be cleaned in U, where, len(U ) is the number of data in U, variable a∈[1,len(U)];
步骤1.2:定义网络安全工具集合I={i1,i2,...,ib,...ilen(I)},ib为I中第b个待清洗信息数据,其中,len(I)为I中数据数量,变量b∈[1,len(I)];Step 1.2: Define the network security tool set I={i 1 ,i 2 ,...,i b ,...i len(I) }, i b is the b-th information data to be cleaned in I, where, len (I) is the number of data in I, variable b∈[1,len(I)];
步骤1.3:对数据集U、I中的数据进行去重和去空操作;Step 1.3: Perform deduplication and null operations on the data in data sets U and I;
步骤1.4:得到清洗后的数据集U1={u1,u2,...,ua,...ulen(U)},ua为U1中第a个信息数据,其中,len(U)为U中数据数量,变量a∈[1,len(U)]和数据集I1={i1,i2,...,ib,...ilen(I)},ib为I1中第b个信息数据,其中,len(I1)为I1中数据数量,变量b∈[1,len(I1)];Step 1.4: Obtain the cleaned data set U1={u 1 ,u 2 ,...,u a ,...u len(U) }, u a is the a-th information data in U1, where, len( U) is the number of data in U, variable a∈[1,len(U)] and data set I1={i 1 ,i 2 ,...,i b ,...i len(I) },i b is the b-th information data in I1, where len(I1) is the number of data in I1, and the variable b∈[1,len(I1)];
步骤1.5:定义用户的历史行为序列为其中/>表示用户之前交互过的网络安全工具,/>的下标i表示网络安全工具在序列中出现的顺序;Step 1.5: Define the user’s historical behavior sequence as Among them/> Represents network security tools that the user has interacted with before, /> The subscript i represents the order in which network security tools appear in the sequence;
步骤1.6:对于用户集合U1,通过高维稀疏独热码嵌入到低维稠密特征向量中的方法得到用户嵌入矩阵为Eu,eu是用户嵌入矩阵Eu中的一个向量,表示用户特征向量;Step 1.6: For the user set U1, the user embedding matrix is obtained as E u by embedding high-dimensional sparse one-hot codes into low-dimensional dense feature vectors. e u is a vector in the user embedding matrix E u , representing the user feature vector. ;
步骤1.7:对于用户的历史行为序列通过高维稀疏独热码嵌入到低维稠密特征向量中的方法,得到用户行为序列嵌入矩阵为Ex∈Rn×k,其中n×k表示矩阵的维度,ex是用户行为序列嵌入矩阵中的一个向量,表示用户行为序列嵌入向量。Step 1.7: For the user’s historical behavior sequence By embedding high-dimensional sparse one-hot codes into low-dimensional dense feature vectors, the user behavior sequence embedding matrix is obtained as E x ∈R n×k , where n×k represents the dimension of the matrix, and e x is the user behavior sequence embedding matrix. A vector in represents the user behavior sequence embedding vector.
进一步地,所述步骤2的具体方法为:Further, the specific method of step 2 is:
步骤2.1:输入用户行为序列嵌入矩阵Ex∈Rn×k;Step 2.1: Input the user behavior sequence embedding matrix E x ∈R n×k ;
步骤2.2:定义循环变量i,且i赋初值为1;Step 2.2: Define loop variable i, and assign i an initial value of 1;
步骤2.3:如果i≤len(Xu)则跳转到步骤2.4,否则跳转到步骤2.13;Step 2.3: If i≤len(X u ), jump to step 2.4, otherwise jump to step 2.13;
步骤2.4:获取用户行为序列嵌入矩阵Ex∈Rn×k中的第i行向量ex;Step 2.4: Obtain the i-th row vector e x in the user behavior sequence embedding matrix E x ∈R n×k ;
步骤2.5:根据用户行为序列嵌入向量ex得到表示的用户u在时间t的访问位置的向量,定义用户在前一时间为t-1时的隐状态向量为ht-1;Step 2.5: Obtain the embedding vector ex according to the user behavior sequence The vector representing the access location of user u at time t defines the hidden state vector of the user at the previous time t-1 as h t-1 ;
步骤2.6:定义特定的时间变换矩阵用于表示两个时间点t和ti之间的时间间隔t-ti,其中ti表示历史时间点;Step 2.6: Define a specific temporal transformation matrix Used to represent the time interval tt i between two time points t and t i , where t i represents the historical time point;
步骤2.7:定义特定的距离转换矩阵用来表示两地理坐标间的欧几里得距离,计算公式为/>其中,/>和/>表示用户u在时刻t所访问位置的坐标,/>和/>表示用户u历史时刻ti所访问位置的坐标;Step 2.7: Define a specific distance transformation matrix It is used to express the Euclidean distance between two geographical coordinates. The calculation formula is/> Among them,/> and/> Represents the coordinates of the location visited by user u at time t,/> and/> Represents the coordinates of the location visited by user u at historical time t i ;
步骤2.8:计算输入门其中Wi1、Wi2是变换矩阵,Wi3、Wi4是/>和/>的转移矩阵,bi是偏置向量,σ是激活函数,ht-1是前一个时刻的GRU的隐状态向量;Step 2.8: Calculate the input gate Among them, W i1 and W i2 are transformation matrices, and W i3 and W i4 are/> and/> The transfer matrix of , b i is the bias vector, σ is the activation function, h t-1 is the hidden state vector of GRU at the previous moment;
步骤2.9:计算遗忘门其中Wf1、Wf2是变换矩阵,Wf3、Wf4是/>和/>的转移矩阵,bf是偏置向量;Step 2.9: Calculate the forget gate Where W f1 and W f2 are transformation matrices, W f3 and W f4 are/> and/> The transfer matrix of , b f is the bias vector;
步骤2.10:根据时间转换矩阵和距离转换矩阵/>计算新的GRU候选隐状态向量/>其中ht-1表示前一个时刻的GRU的隐状态向量,Wc1、Wc4是变换矩阵和Wc2、Wc3是/>和/>的转移矩阵,bc是偏置向量;Step 2.10: Transform matrix based on time and distance transformation matrix/> Calculate new GRU candidate hidden state vector/> Among them, h t-1 represents the hidden state vector of GRU at the previous moment, W c1 and W c4 are transformation matrices and W c2 and W c3 are/> and/> The transfer matrix, b c is the bias vector;
步骤2.11:根据输入门it和候选隐状态向量更新隐状态向量 Step 2.11: According to the input gate i t and the candidate hidden state vector Update hidden state vector
步骤2.12:增加循环变量i的值,跳转到步骤2.4;Step 2.12: Increase the value of loop variable i and jump to step 2.4;
步骤2.13:结束循环,通过tanh非线性激活函数获得最终GRU的输出即用户长期偏好gt=tanh(Ct)。Step 2.13: End the loop and obtain the final GRU output, that is, the user's long-term preference g t =tanh(C t ), through the tanh nonlinear activation function.
进一步地,所述步骤3的具体方法为:Further, the specific method of step 3 is:
步骤3.1:输入用户行为序列嵌入矩阵Ex∈Rn×k;Step 3.1: Input the user behavior sequence embedding matrix E x ∈R n×k ;
步骤3.2:循环变量i2,且i2赋初值为1;Step 3.2: Loop variable i 2 and assign i 2 an initial value of 1;
步骤3.3:如果i2≤len(Xu)则跳转到步骤3.4,否则跳转到步骤3.10;Step 3.3: If i 2 ≤ len(X u ), jump to step 3.4, otherwise jump to step 3.10;
步骤3.4:获取用户行为序列嵌入矩阵Ex∈Rn×k中的第i2行向量ex;Step 3.4: Obtain the i 2nd row vector e x in the user behavior sequence embedding matrix E x ∈R n×k ;
步骤3.5:在头空间h中,通过三种不同的线性变换将用户行为嵌入向量ex映射到查询向量键向量/>和值向量/>计算公式为:/> 其中表示可训练的参数矩阵;Step 3.5: In the head space h, map the user behavior embedding vector ex to the query vector through three different linear transformations key vector/> sum vector/> The calculation formula is:/> in Represents a trainable parameter matrix;
步骤3.6:用点乘计算查询向量和键向量/>之间的相似度,得到相似度得分函数其中dh为头空间的维度大小;Step 3.6: Calculate the query vector using dot product and key vector/> similarity between them, and obtain the similarity score function where d h is the dimension of the head space;
步骤3.7:将得分函数通过softmax归一化得到注意力权重 Step 3.7: Convert the scoring function to Obtain attention weights through softmax normalization
步骤3.8:通过注意力权重ai,j对值向量进行加权求和得到ex在头部空间h高阶特征表示/> Step 3.8: Value vector through attention weight a i,j Perform weighted summation to obtain the high-order feature representation of e x in the head space h/>
步骤3.9:增加循环变量i2的值,跳转到步骤3.4;Step 3.9: Increase the value of loop variable i 2 and jump to step 3.4;
步骤3.10:结束循环,将所有头空间学习到的高阶特征向量进行拼接,然后再进行线性变换得到用户的短期偏好表示其中N是头空间数量,并且WN是线性投影矩阵。Step 3.10: End the loop, concatenate all the high-order feature vectors learned in the head space, and then perform linear transformation to obtain the user's short-term preference representation. where N is the headspace number, and W is the linear projection matrix.
进一步地,所述步骤4的具体方法为:Further, the specific method of step 4 is:
步骤4.1:定义时间区间集合T={E,W,M,S}分别表示日、周、月、季;Step 4.1: Define the time interval set T = {E, W, M, S} to represent days, weeks, months, and seasons respectively;
步骤4.2:定义用户集合U,项目集合I,定义用户u在时间t内对网络安全工具项的评分为rui;Step 4.2: Define the user set U, the item set I, and define user u’s rating of network security tool items within time t as r ui ;
步骤4.3:定义循环变量i3,且i3赋初值为1;Step 4.3: Define loop variable i 3 and assign i 3 an initial value of 1;
步骤4.4:如果i3≤len(T)则跳转到步骤4.4,否则跳转到步骤4.8;Step 4.4: If i 3 ≤len(T), jump to step 4.4, otherwise jump to step 4.8;
步骤4.5:计算用户u在时间区间t内对网络安全工具类别j的加权评分频数其中It表示用户u在时间区间t内对网络安全工具评分过的集合,Bij表示i是否属于类别j,是为1,否为0;Step 4.5: Calculate the frequency of weighted ratings of user u on network security tool category j within time interval t Among them, I t represents the set of network security tools that user u has rated in the time interval t, and B ij represents whether i belongs to category j. It is 1 if it is, and 0 if it is not;
步骤4.6:计算时间区间t内用户u对各类别网络安全工具评分的方差其中/>表示用户u对类别j的加权评分,C为类别数目;Step 4.6: Calculate the variance of user u’s ratings of network security tools of each category within time interval t Among them/> Represents the weighted rating of category j by user u, and C is the number of categories;
步骤4.7:增加循环变量i3的值,跳转到步骤4.4;Step 4.7: Increase the value of loop variable i 3 and jump to step 4.4;
步骤4.8:结束循环,将不同时间区间的评分方差取平均,得到用户u的整体的评分方差其中P表示时间区间集T的大小;Step 4.8: End the loop, average the rating variances in different time intervals, and obtain the overall rating variance of user u. where P represents the size of the time interval set T;
步骤4.9:用户的偏好波动值为 Step 4.9: The user’s preference fluctuation value is
进一步地,所述步骤5的具体方法为:Further, the specific method of step 5 is:
步骤5.1:将偏好波动值Fu映射为一个向量Fu_vec,使用全连接层进行矢量转换,得到长度相同的Fu_vec;Step 5.1: Map the preference fluctuation value F u to a vector F u _vec, use a fully connected layer to perform vector conversion, and obtain F u _vec with the same length;
步骤5.2:将用户的长期偏好、短期偏好、用户特征向量以及偏好波动值进行多模态融合,得到目标特征向量其中,Concat表示拼接操作,/>表示用户的短期偏好,gt表示用户的长期偏好,eu表示用户特征向量,Fu_vec表示用户的偏好波动向量;Step 5.2: Perform multi-modal fusion of the user's long-term preferences, short-term preferences, user feature vectors and preference fluctuation values to obtain the target feature vector Among them, Concat represents the splicing operation,/> represents the user's short-term preference, g t represents the user's long-term preference, e u represents the user feature vector, and F u _vec represents the user's preference fluctuation vector;
步骤5.3:将目标特征向量G输入全连接神经网络进行非线性变换;Step 5.3: Input the target feature vector G into the fully connected neural network for nonlinear transformation;
步骤5.4:网络隐藏层使用Dice激活函数来学习非线性关系;Step 5.4: The hidden layer of the network uses the Dice activation function to learn nonlinear relationships;
步骤5.5:输出层使用Softmax函数计算预测概率其中WH为可训练参数矩阵,bH为偏置向量,DH为第H层的隐层输出,/>表示推荐下一个网络安全工具的概率。Step 5.5: The output layer uses the Softmax function to calculate the predicted probability Where W H is the trainable parameter matrix, b H is the bias vector, D H is the hidden layer output of layer H,/> Indicates the probability of recommending the next network security tool.
本发明还公开一种基于时序空间特征和偏好波动的网络安全工具智能推荐装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被加载至处理器时实现上述基于时序空间特征和偏好波动的网络安全工具智能推荐方法。The invention also discloses an intelligent recommendation device for network security tools based on temporal spatial characteristics and preference fluctuations, which includes a memory, a processor and a computer program stored in the memory and executable on the processor. The computer program is loaded into the processor The above-mentioned intelligent recommendation method of network security tools based on temporal spatial characteristics and preference fluctuations can be implemented in real time.
有益效果:Beneficial effects:
本发明主要通过时空GRU算法、注意力机制和偏好波动技术来学习用户的长期偏好、短期偏好和偏好波动值来学习用户的整体偏好,从而更准确、高效的进行下一个位置的推荐。具体的通过改进的GRU算法将连续时间因子离散化,并引入了特定的时间转换矩阵和距离转换矩阵,通过考虑时间和空间因素,能够更准确地捕捉用户的长期行为特征,还能够避免传统循环神经网络模型中的梯度下降问题。同时,通过多头注意力机制,我们能够从用户的短期行为中提取出最相关的特征,以准确表示用户的短期兴趣。偏好波动通过分析不同时间用户偏好变化趋势,对用户当前兴趣预测更准确;最重要的是,将时空信息、用户特征、长期和短期偏好以及偏好波动向量综合融合,以生成全面的用户兴趣特征,可以更准确地进行个性化、高质量的网络安全工具推荐,进一步提高了网络安全性。This invention mainly uses the spatiotemporal GRU algorithm, attention mechanism and preference fluctuation technology to learn the user's long-term preference, short-term preference and preference fluctuation value to learn the user's overall preference, so as to recommend the next location more accurately and efficiently. Specifically, the continuous time factors are discretized through the improved GRU algorithm, and specific time transformation matrices and distance transformation matrices are introduced. By considering time and space factors, the user's long-term behavioral characteristics can be captured more accurately and traditional loops can be avoided. Gradient descent problem in neural network models. At the same time, through the multi-head attention mechanism, we are able to extract the most relevant features from the user's short-term behavior to accurately represent the user's short-term interests. Preference fluctuation analyzes user preference change trends at different times to more accurately predict users' current interests; most importantly, it comprehensively integrates spatiotemporal information, user characteristics, long-term and short-term preferences, and preference fluctuation vectors to generate comprehensive user interest characteristics. Personalized, high-quality network security tool recommendations can be made more accurately, further improving network security.
附图说明Description of the drawings
图1为本发明整体流程图;Figure 1 is an overall flow chart of the present invention;
图2为数据预处理流程图;Figure 2 is the data preprocessing flow chart;
图3为时空GRU算法学习用户的长期偏好流程图;Figure 3 is a flow chart of the spatiotemporal GRU algorithm for learning users’ long-term preferences;
图4为多头注意力机学习用户短期偏好流程图;Figure 4 is a flow chart of the multi-head attention machine learning user’s short-term preferences;
图5为计算用户使用网络安全工具偏好波动值流程图。Figure 5 is a flow chart for calculating the fluctuation value of user preferences for using network security tools.
具体实施方式Detailed ways
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。The present invention will be further clarified below with reference to specific examples. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. After reading the present invention, those skilled in the art will be familiar with various equivalent forms of the present invention. All modifications fall within the scope defined by the appended claims of this application.
本发明公开了一种基于时序空间特征和偏好波动的网络安全工具智能推荐方法及装置,具体参见如下:The present invention discloses a method and device for intelligent recommendation of network security tools based on temporal spatial characteristics and preference fluctuations. Details are as follows:
步骤1:对收集到的用户使用网络安全工具的的数据进行清洗和预处理,构建用户的历史行为序列。Step 1: Clean and preprocess the collected data on users’ use of network security tools to construct the user’s historical behavior sequence.
步骤1.1:定义用户集合U={u1,u2,...,ua,...ulen(U)},ua为U中第a个待清洗信息数据,其中,len(U)为U中数据数量,变量a∈[1,len(U)]。Step 1.1: Define the user set U = {u 1 ,u 2 ,...,u a ,...u len(U) }, u a is the a-th information data to be cleaned in U, where, len(U ) is the number of data in U, variable a∈[1,len(U)].
步骤1.2:定义网络安全工具集合I={i1,i2,...,ib,...ilen(I)},ib为I中第b个待清洗信息数据,其中,len(I)为I中数据数量,变量b∈[1,len(I)],本实施方式中,网络安全工具是各种用于保护计算机和网络系统安全的软件、硬件或服务(如杀毒软件、漏洞扫描器、数据加密工具、身份验证工具等)。Step 1.2: Define the network security tool set I={i 1 ,i 2 ,...,i b ,...i len(I) }, i b is the b-th information data to be cleaned in I, where, len (I) is the number of data in I, and the variable b∈[1,len(I)]. In this embodiment, network security tools are various software, hardware or services (such as anti-virus software) used to protect the security of computers and network systems. , vulnerability scanners, data encryption tools, authentication tools, etc.).
步骤1.3:对数据集U,I中的数据进行去重和去空操作。Step 1.3: Perform deduplication and null operations on the data in data sets U and I.
步骤1.4:得到清洗后的数据集U1={u1,u2,...,ua,...ulen(U)},ua为U1中第a个信息数据,其中,len(U)为U中数据数量,变量a∈[1,len(U)]和数据集I1={i1,i2,...,ib,...ilen(I)},ib为I1中第b个信息数据,其中,len(I1)为I1中数据数量,变量b∈[1,len(I1)]。Step 1.4: Obtain the cleaned data set U1={u 1 ,u 2 ,...,u a ,...u len(U) }, u a is the a-th information data in U1, where, len( U) is the number of data in U, variable a∈[1,len(U)] and data set I1={i 1 ,i 2 ,...,i b ,...i len(I) }, i b is the b-th information data in I1, where len(I1) is the number of data in I1, and the variable b∈[1,len(I1)].
步骤1.5:定义用户的历史行为序列为其中/>表示用户之前交互过的网络安全工具,/>Xu的下标i表示网络安全工具在序列中出现的顺序。Step 1.5: Define the user’s historical behavior sequence as Among them/> Represents network security tools that the user has interacted with before, /> The subscript i of X u represents the order in which network security tools appear in the sequence.
步骤1.6:对于用户集合U1,通过高维稀疏独热码嵌入到低维稠密特征向量中的方法得到用户嵌入矩阵为Eu,eu表示用户特征向量。Step 1.6: For the user set U1, the user embedding matrix is obtained by embedding the high-dimensional sparse one-hot code into the low-dimensional dense feature vector as E u , where eu represents the user feature vector.
步骤1.7:对于用户的历史行为序列通过高维稀疏独热码嵌入到低维稠密特征向量中的方法,得到用户行为序列嵌入矩阵为Ex∈Rn×k,其中n×k表示矩阵的维度,ex表示用户行为序列嵌入向量。Step 1.7: For the user’s historical behavior sequence By embedding high-dimensional sparse one-hot codes into low-dimensional dense feature vectors, the user behavior sequence embedding matrix is obtained as E x ∈R n×k , where n×k represents the dimension of the matrix, and e x represents the user behavior sequence embedding vector. .
步骤2:通过时空GRU算法学习用户使用网络安全工具的长期偏好。时空GRU算法经过改进,将连续时间因子离散化,并引入了特定的时间转换矩阵和距离转换矩阵。Step 2: Learn users’ long-term preferences for using network security tools through the spatiotemporal GRU algorithm. The spatiotemporal GRU algorithm has been improved to discretize the continuous time factors and introduce specific time transformation matrices and distance transformation matrices.
步骤2.1:输入用户行为序列嵌入矩阵Ex∈Rn×k。Step 2.1: Input the user behavior sequence embedding matrix E x ∈R n×k .
步骤2.2:定义循环变量i,且i赋初值为1。Step 2.2: Define loop variable i, and assign i an initial value of 1.
步骤2.3:如果i≤len(Xu)则跳转到步骤2.4,否则跳转到步骤2.13。Step 2.3: If i≤len(X u ), jump to step 2.4, otherwise jump to step 2.13.
步骤2.4:获取用户行为序列嵌入矩阵Ex∈Rn×k中的第i行向量ex。Step 2.4: Obtain the i-th row vector e x in the user behavior sequence embedding matrix E x ∈R n×k .
步骤2.5:根据用户行为序列嵌入向量ex可以得到 表示的用户u在时间t的访问位置的向量,定义用户在前一时间为t-1时的隐状态向量为ht-1。Step 2.5: According to the user behavior sequence embedding vector ex , we can get The vector representing the access position of user u at time t defines the hidden state vector of the user at the previous time t-1 as h t-1 .
步骤2.6:定义特定的时间变换矩阵用于表示两个时间点t和ti之间的时间间隔t-ti,其中ti表示历史时间点。Step 2.6: Define a specific temporal transformation matrix It is used to represent the time interval tt i between two time points t and ti , where ti represents the historical time point.
步骤2.7:定义特定的距离转换矩阵用来表示两地理坐标间的欧几里得距离,计算公式为/>其中,/>和/>表示用户u在时刻t所访问位置的坐标,/>和/>表示用户u历史时刻ti所访问位置的坐标。Step 2.7: Define a specific distance transformation matrix It is used to express the Euclidean distance between two geographical coordinates. The calculation formula is/> Among them,/> and/> Represents the coordinates of the location visited by user u at time t,/> and/> Represents the coordinates of the location visited by user u at historical time t i .
步骤2.8:计算输入门其中Wi1、Wi2是变换矩阵,Wi3、Wi4是/>和/>的转移矩阵,bi是偏置向量。Step 2.8: Calculate the input gate Among them, W i1 and W i2 are transformation matrices, and W i3 and W i4 are/> and/> The transfer matrix of , b i is the bias vector.
步骤2.9:计算遗忘门其中Wf1、Wf2是变换矩阵,Wf3、Wf4是/>和/>的转移矩阵,bf是偏置向量;Step 2.9: Calculate the forget gate Where W f1 and W f2 are transformation matrices, W f3 and W f4 are/> and/> The transfer matrix of , b f is the bias vector;
步骤2.10:根据时间转换矩阵和距离转换矩阵/>计算新的GRU候选隐状态向量/>其中ht-1表示前一个时刻的GRU的隐状态向量,Wc1、Wc4是变换矩阵和Wc2、Wc3是/>和/>的转移矩阵,bc是偏置向量。Step 2.10: Transform matrix based on time and distance transformation matrix/> Calculate new GRU candidate hidden state vector/> Among them, h t-1 represents the hidden state vector of GRU at the previous moment, W c1 and W c4 are transformation matrices and W c2 and W c3 are/> and/> The transfer matrix, b c is the bias vector.
步骤2.11:根据输入门it和候选隐状态向量更新隐状态向量 Step 2.11: According to the input gate i t and the candidate hidden state vector Update hidden state vector
步骤2.12:增加循环变量i的值,跳转到步骤2.4。Step 2.12: Increase the value of loop variable i and jump to step 2.4.
步骤2.13:结束循环,通过tanh非线性激活函数获得最终GRU的输出即用户长期偏好gt=tanh(Ct)。Step 2.13: End the loop and obtain the final GRU output, that is, the user's long-term preference g t =tanh(C t ), through the tanh nonlinear activation function.
步骤3:通过多头注意力机学习用户近期的使用网络安全工具偏好,表示用户的短期偏好。Step 3: Use the multi-head attention machine to learn the user’s recent preferences for using network security tools to represent the user’s short-term preferences.
步骤3.1:输入用户行为序列嵌入矩阵Ex∈Rn×k。Step 3.1: Input the user behavior sequence embedding matrix E x ∈R n×k .
步骤3.2:循环变量i2,且i2赋初值为1。Step 3.2: Loop variable i 2 , and assign i 2 an initial value of 1.
步骤3.3:如果i2≤len(Xu)则跳转到步骤3.4否则跳转到步骤3.10。Step 3.3: If i 2 ≤ len(X u ), jump to step 3.4, otherwise jump to step 3.10.
步骤3.4:获取用户行为序列嵌入矩阵Ex∈Rn×k中的第i2行向量ex。Step 3.4: Obtain the i 2nd row vector e x in the user behavior sequence embedding matrix E x ∈R n×k .
步骤3.5:在头空间h中,通过三种不同的线性变换将用户行为嵌入向量ex映射到查询向量键向量/>和值向量/>计算公式为:/> 其中表示可训练的参数矩阵。Step 3.5: In the head space h, map the user behavior embedding vector ex to the query vector through three different linear transformations key vector/> sum vector/> The calculation formula is:/> in Represents a trainable parameter matrix.
步骤3.6:用点乘计算查询向量和键向量/>之间的相似度,得到相似度得分函数其中dh为头空间的维度大小。Step 3.6: Calculate the query vector using dot product and key vector/> similarity between them, and obtain the similarity score function where d h is the dimension of the head space.
步骤3.7:将得分函数通过softmax归一化得到注意力权重 Step 3.7: Convert the scoring function to Obtain attention weights through softmax normalization
步骤3.8:通过注意力权重ai,j对值向量进行加权求和得到ex在头部空间h高阶特征表示/> Step 3.8: Value vector through attention weight a i,j Perform weighted summation to obtain the high-order feature representation of e x in the head space h/>
步骤3.9:增加循环变量i2的值,跳转到步骤3.4。Step 3.9: Increase the value of loop variable i 2 and jump to step 3.4.
步骤3.10:结束循环,将所有头空间学习到的高阶特征向量进行拼接,然后再进行线性变换得到用户的短期偏好表示其中N是头空间数量,并且WN是线性投影矩阵。Step 3.10: End the loop, concatenate all the high-order feature vectors learned in the head space, and then perform linear transformation to obtain the user's short-term preference representation. where N is the headspace number, and W is the linear projection matrix.
步骤4:计算用户的使用网络安全工具偏好波动值。Step 4: Calculate the fluctuation value of the user's preference for using network security tools.
步骤4.1:定义时间区间集合T={E,W,M,S}分别表示日、周、月、季。Step 4.1: Define the time interval set T = {E, W, M, S} to represent days, weeks, months, and seasons respectively.
步骤4.2:定义用户集合U,项目集合I,定义用户u在时间t内对网络安全工具项的评分为rui。Step 4.2: Define the user set U, the item set I, and define user u's rating of network security tool items within time t as r ui .
步骤4.3:定义循环变量i3,且i3赋初值为1。Step 4.3: Define loop variable i 3 and assign i 3 an initial value of 1.
步骤4.4:如果i3≤len(T)则跳转到步骤4.4,否则跳转到步骤4.8。Step 4.4: If i 3 ≤len(T), jump to step 4.4, otherwise jump to step 4.8.
步骤4.5:计算用户u在时间区间t内对网络安全工具类别j的加权评分频数其中It表示用户u在时间区间t内对网络安全工具评分过的集合,Bij表示i是否属于类别j(是为1,否为0)。Step 4.5: Calculate the frequency of weighted ratings of user u on network security tool category j within time interval t Among them, I t represents the set of network security tools that user u has rated in the time interval t, and B ij represents whether i belongs to category j (yes is 1, no is 0).
步骤4.6:计算时间区间t内用户u对各类别网络安全工具评分的方差其中/>表示用户u对类别j的加权评分,C为类别数目。Step 4.6: Calculate the variance of user u’s ratings of network security tools of each category within time interval t Among them/> represents the weighted rating of category j by user u, and C is the number of categories.
步骤4.7:增加循环变量i3的值,跳转到步骤4.4。Step 4.7: Increase the value of loop variable i 3 and jump to step 4.4.
步骤4.8:结束循环,将不同时间区间的评分方差取平均,得到用户u的整体的评分方差其中P表示时间区间集T的大小。Step 4.8: End the loop, average the rating variances in different time intervals, and obtain the overall rating variance of user u. where P represents the size of the time interval set T.
步骤4.9:用户的偏好波动值为 Step 4.9: The user’s preference fluctuation value is
步骤5:融合用户的长期偏好、短期偏好、用户特征向量以及偏好波动向量,得到用户的使用网络安全工具行为的综合特征表达并进行推荐。Step 5: Integrate the user's long-term preferences, short-term preferences, user feature vectors and preference fluctuation vectors to obtain a comprehensive feature expression of the user's behavior of using network security tools and make recommendations.
步骤5.1:将偏好波动值Fu映射为一个向量Fu_vec,使用全连接层进行矢量转换,得到长度相同的Fu_vec。Step 5.1: Map the preference fluctuation value F u to a vector F u _vec, use a fully connected layer to perform vector conversion, and obtain F u _vec with the same length.
步骤5.2:将用户的长期偏好、短期偏好、用户特征向量以及偏好波动值进行多模态融合,得到目标特征向量其中,Concat表示拼接操作,/>表示用户的短期偏好,gt表示用户的长期偏好,eu表示用户特征向量,Fu_vec表示用户的偏好波动向量。Step 5.2: Perform multi-modal fusion of the user's long-term preferences, short-term preferences, user feature vectors and preference fluctuation values to obtain the target feature vector Among them, Concat represents the splicing operation,/> represents the user's short-term preference, g t represents the user's long-term preference, eu represents the user feature vector, and F u _vec represents the user's preference fluctuation vector.
步骤5.3:将目标特征向量G输入全连接神经网络进行非线性变换。Step 5.3: Input the target feature vector G into the fully connected neural network for nonlinear transformation.
步骤5.4:网络隐藏层使用Dice激活函数来学习非线性关系。Step 5.4: The hidden layer of the network uses the Dice activation function to learn non-linear relationships.
步骤5.5:输出层使用Softmax函数计算预测概率其中,WH为可训练参数矩阵,bH为偏置向量,DH为第H层的隐层输出,/>表示推荐下一个网络安全工具的概率。Step 5.5: The output layer uses the Softmax function to calculate the predicted probability Among them, W H is the trainable parameter matrix, b H is the bias vector, D H is the hidden layer output of layer H,/> Indicates the probability of recommending the next network security tool.
对于上述的基于时序空间特征和偏好波动的网络安全工具智能推荐方法,将其以计算机程序存储在在存储器中,与存储器、处理器共同构成基于时序空间特征和偏好波动的网络安全工具智能推荐装置,计算机程序被加载至处理器时实现上述基于时序空间特征和偏好波动的网络安全工具智能推荐方法。For the above-mentioned intelligent recommendation method of network security tools based on temporal spatial characteristics and preference fluctuations, it is stored in the memory as a computer program, and together with the memory and the processor, constitutes an intelligent recommendation device for network security tools based on temporal spatial characteristics and preference fluctuations. , when the computer program is loaded into the processor, the above-mentioned intelligent recommendation method of network security tools based on temporal spatial characteristics and preference fluctuations is implemented.
上述实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此技术的人能够了解本发明的内容据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变换或装饰,都应涵盖在本发明的保护范围之内。The above embodiments are only for illustrating the technical concepts and features of the present invention. Their purpose is to enable those familiar with the technology to understand the contents of the present invention and implement them accordingly. This does not limit the scope of protection of the present invention. All equivalent transformations or decorations based on the spirit and essence of the present invention shall be included in the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311653994.2A CN117763492B (en) | 2023-12-04 | 2023-12-04 | Intelligent recommendation method and device for network security tools based on temporal spatial characteristics and preference fluctuations |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311653994.2A CN117763492B (en) | 2023-12-04 | 2023-12-04 | Intelligent recommendation method and device for network security tools based on temporal spatial characteristics and preference fluctuations |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117763492A true CN117763492A (en) | 2024-03-26 |
CN117763492B CN117763492B (en) | 2024-06-11 |
Family
ID=90311454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311653994.2A Active CN117763492B (en) | 2023-12-04 | 2023-12-04 | Intelligent recommendation method and device for network security tools based on temporal spatial characteristics and preference fluctuations |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117763492B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109062962A (en) * | 2018-06-27 | 2018-12-21 | 华南理工大学 | A kind of gating cycle neural network point of interest recommended method merging Weather information |
CN110910215A (en) * | 2019-11-20 | 2020-03-24 | 深圳前海微众银行股份有限公司 | Product recommendation method, apparatus, device, and computer-readable storage medium |
CN110929164A (en) * | 2019-12-09 | 2020-03-27 | 北京交通大学 | A Point-of-Interest Recommendation Method Based on User Dynamic Preference and Attention Mechanism |
CN112488155A (en) * | 2020-11-09 | 2021-03-12 | 北京三快在线科技有限公司 | User information prediction method, device, equipment and medium |
CN112861012A (en) * | 2021-03-09 | 2021-05-28 | 河南工业大学 | Recommendation method and device based on context and user long-term and short-term preference adaptive learning |
CN113139140A (en) * | 2021-05-17 | 2021-07-20 | 辽宁工程技术大学 | Tourist attraction recommendation method based on space-time perception GRU and combined with user relation preference |
CN114971784A (en) * | 2022-05-21 | 2022-08-30 | 内蒙古工业大学 | Graph neural network-based session recommendation method and system integrating self-attention mechanism |
CN115757919A (en) * | 2022-11-24 | 2023-03-07 | 淮阴工学院 | Symmetric deep network and dynamic multi-interaction human resource post recommendation method |
CN115952355A (en) * | 2022-12-05 | 2023-04-11 | 北京电子工程总体研究所 | Next interest point recommendation system based on space-time power law attention |
CN115982468A (en) * | 2023-01-04 | 2023-04-18 | 重庆邮电大学 | A Point-of-Interest Recommendation Method Combining User Periodic Preferences and Short-term Interests |
US20230214925A1 (en) * | 2021-11-23 | 2023-07-06 | Strong Force TX Portfolio 2018, LLC | Transaction platforms where systems include sets of other systems |
-
2023
- 2023-12-04 CN CN202311653994.2A patent/CN117763492B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109062962A (en) * | 2018-06-27 | 2018-12-21 | 华南理工大学 | A kind of gating cycle neural network point of interest recommended method merging Weather information |
CN110910215A (en) * | 2019-11-20 | 2020-03-24 | 深圳前海微众银行股份有限公司 | Product recommendation method, apparatus, device, and computer-readable storage medium |
CN110929164A (en) * | 2019-12-09 | 2020-03-27 | 北京交通大学 | A Point-of-Interest Recommendation Method Based on User Dynamic Preference and Attention Mechanism |
CN112488155A (en) * | 2020-11-09 | 2021-03-12 | 北京三快在线科技有限公司 | User information prediction method, device, equipment and medium |
CN112861012A (en) * | 2021-03-09 | 2021-05-28 | 河南工业大学 | Recommendation method and device based on context and user long-term and short-term preference adaptive learning |
CN113139140A (en) * | 2021-05-17 | 2021-07-20 | 辽宁工程技术大学 | Tourist attraction recommendation method based on space-time perception GRU and combined with user relation preference |
US20230214925A1 (en) * | 2021-11-23 | 2023-07-06 | Strong Force TX Portfolio 2018, LLC | Transaction platforms where systems include sets of other systems |
CN114971784A (en) * | 2022-05-21 | 2022-08-30 | 内蒙古工业大学 | Graph neural network-based session recommendation method and system integrating self-attention mechanism |
CN115757919A (en) * | 2022-11-24 | 2023-03-07 | 淮阴工学院 | Symmetric deep network and dynamic multi-interaction human resource post recommendation method |
CN115952355A (en) * | 2022-12-05 | 2023-04-11 | 北京电子工程总体研究所 | Next interest point recommendation system based on space-time power law attention |
CN115982468A (en) * | 2023-01-04 | 2023-04-18 | 重庆邮电大学 | A Point-of-Interest Recommendation Method Combining User Periodic Preferences and Short-term Interests |
Non-Patent Citations (7)
Title |
---|
SIZHE YIN等: "Fusing User Preferences and Spatiotemporal Information for Sequential Recommendation", 《IEEE ACCESS 》, vol. 10, 22 August 2022 (2022-08-22), pages 89545 - 89554 * |
TIANKUO LI等: "A spatiotemporal multi-feature extraction framework for opinion mining", 《NEUROCOMPUTING》, vol. 490, 14 June 2022 (2022-06-14), pages 337 - 346, XP087021420, DOI: 10.1016/j.neucom.2021.11.098 * |
XIAOLING XIA等: "Based on Multiple Attention and User Preferences for Recommendation", 《2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE)》, 13 May 2021 (2021-05-13), pages 1102 - 1106 * |
YAN CHENG等: "Sentiment Analysis Using Multi-Head Attention Capsules With Multi-Channel CNN and Bidirectional GRU", 《IEEE ACCESS》, vol. 9, 19 April 2021 (2021-04-19), pages 60383 - 60395, XP011851258, DOI: 10.1109/ACCESS.2021.3073988 * |
吴逸群: "基于用户偏好网络的点击率预估模型研究", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》, no. 02, 15 February 2021 (2021-02-15), pages 138 - 2837 * |
张柯文等: "基于多特征双向门控神经网络的领域专家实体抽取方法", 《南京师大学报(自然科学版)》, vol. 44, no. 01, 25 January 2021 (2021-01-25), pages 128 - 135 * |
李全等: "融合时空感知GRU和注意力的下一个地点推荐", 《计算机应用》, vol. 40, no. 03, 25 October 2019 (2019-10-25), pages 677 - 682 * |
Also Published As
Publication number | Publication date |
---|---|
CN117763492B (en) | 2024-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110046304B (en) | User recommendation method and device | |
Wen et al. | Multilabel image classification via feature/label co-projection | |
CN112307472B (en) | Abnormal user identification method and device based on intelligent decision and computer equipment | |
WO2021203854A1 (en) | User classification method and apparatus, computer device and storage medium | |
CN111538912A (en) | Content recommendation method, device, equipment and readable storage medium | |
CN103246672B (en) | User is carried out method and the device of personalized recommendation | |
WO2020192013A1 (en) | Directional advertisement delivery method and apparatus, and device and storage medium | |
CN110717099B (en) | Method and terminal for recommending film | |
CN110232480A (en) | The item recommendation method and model training method realized using the regularization stream of variation | |
Wang et al. | Low-rank transfer human motion segmentation | |
CN110737730B (en) | User classification method, device, equipment and storage medium based on unsupervised learning | |
CN117390289B (en) | House construction scheme recommending method, device and equipment based on user portrait | |
Dery et al. | BoostLR: a boosting-based learning ensemble for label ranking tasks | |
CN113656699B (en) | User feature vector determining method, related equipment and medium | |
Liu et al. | Collaborative prediction for multi-entity interaction with hierarchical representation | |
CN113887214B (en) | Willingness presumption method based on artificial intelligence and related equipment thereof | |
US20220230262A1 (en) | Patent assessment method based on artificial intelligence | |
CN111259264A (en) | Time sequence scoring prediction method based on generation countermeasure network | |
CN116205700A (en) | Recommendation method and device for target product, computer equipment and storage medium | |
CN113641900A (en) | Information recommendation method and device | |
CN117763492A (en) | Network security tool intelligent recommendation method and device based on time sequence spatial characteristics and preference fluctuation | |
CN112364192A (en) | Zero sample Hash retrieval method based on ensemble learning | |
CN116680475A (en) | Personalized recommendation method, system and electronic device based on heterogeneous graph attention | |
Hu et al. | Learning mixed multinomial logits with provable guarantees | |
CN116150465A (en) | Method for determining delivery information and related equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |