CN117744476A - Real-time dosage monitoring method and system for finished product slurry tank - Google Patents
Real-time dosage monitoring method and system for finished product slurry tank Download PDFInfo
- Publication number
- CN117744476A CN117744476A CN202311692864.XA CN202311692864A CN117744476A CN 117744476 A CN117744476 A CN 117744476A CN 202311692864 A CN202311692864 A CN 202311692864A CN 117744476 A CN117744476 A CN 117744476A
- Authority
- CN
- China
- Prior art keywords
- feeding speed
- lstm
- model
- state
- material feeding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 107
- 239000002002 slurry Substances 0.000 title claims abstract description 88
- 238000012544 monitoring process Methods 0.000 title claims abstract description 27
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 81
- 230000008569 process Effects 0.000 claims abstract description 72
- 238000012360 testing method Methods 0.000 claims abstract description 24
- 238000012545 processing Methods 0.000 claims abstract description 21
- 230000000694 effects Effects 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 124
- 239000011159 matrix material Substances 0.000 claims description 96
- 238000012546 transfer Methods 0.000 claims description 42
- 238000005259 measurement Methods 0.000 claims description 39
- 238000012549 training Methods 0.000 claims description 22
- 230000006870 function Effects 0.000 claims description 19
- 238000004364 calculation method Methods 0.000 claims description 17
- 238000003860 storage Methods 0.000 claims description 12
- 230000007246 mechanism Effects 0.000 claims description 7
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 6
- 238000002790 cross-validation Methods 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 6
- 230000003044 adaptive effect Effects 0.000 claims description 5
- 238000012795 verification Methods 0.000 claims description 4
- 238000010200 validation analysis Methods 0.000 claims description 3
- 238000013480 data collection Methods 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052744 lithium Inorganic materials 0.000 abstract description 3
- 238000004513 sizing Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 12
- 238000001914 filtration Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical Field
本发明属于锂电池合浆技术领域,涉及一种成品浆料罐实时用量监测方法及系统。The invention belongs to the technical field of lithium battery slurry mixing, and relates to a real-time usage monitoring method and system for a finished product slurry tank.
背景技术Background Art
在锂电池合浆工序中,合浆线各组分的精度直接影响最终浆料的质量。合浆过程中的成品浆料罐实际用量、对应的理论用量预测、传感器输出以及下料速度这几类数据之间存在着复杂的动态关联和相互影响。传统的跟踪主要依赖操作人员经验,通过人工统计两者差异来辅助调整,但精度难以保证,跟踪不够及时。虽然应用了自动流量计等在线测量设备,但对动态变化的跟踪效果仍较差。In the lithium battery slurry mixing process, the accuracy of each component of the slurry mixing line directly affects the quality of the final slurry. There are complex dynamic correlations and mutual influences between the actual amount of finished slurry tank in the slurry mixing process, the corresponding theoretical amount prediction, sensor output, and material feeding speed. Traditional tracking mainly relies on the experience of operators and assists in adjustment by manually counting the differences between the two, but the accuracy is difficult to guarantee and the tracking is not timely enough. Although online measurement equipment such as automatic flow meters are used, the tracking effect of dynamic changes is still poor.
近年来基于数据驱动的预测方法被初步应用,如时序神经网络可以对规律进行建模。但这类单模型方法泛化性有限,难以适应不同合浆工艺。一些状态估计算法如卡尔曼滤波也可用于数据融合,但对下料速度的动态响应较慢。当前跟踪技术中存在诸多不足。传统依赖经验法则的跟踪机制,难以对过程的动态变化做出实时响应;而现有自动测量设备的精度有限,也难以准确反映多变量复杂耦合的过程;仅依赖单一数据驱动模型的预测技术,则存在泛化性差的问题,难以适应不同工艺条件。另外,独立的状态估计算法对动态响应下料速度较慢,未能实现稳定精准的跟踪。更严重的是,现有技术普遍对异常情况的识别能力较弱,无法进行有效预警。In recent years, data-driven prediction methods have been initially applied, such as time series neural networks, which can model regularities. However, this type of single model method has limited generalization and is difficult to adapt to different pulping processes. Some state estimation algorithms such as Kalman filtering can also be used for data fusion, but the dynamic response to the material feeding speed is slow. There are many shortcomings in current tracking technology. The traditional tracking mechanism that relies on empirical rules is difficult to respond to the dynamic changes of the process in real time; the accuracy of existing automatic measurement equipment is limited, and it is difficult to accurately reflect the complex coupling process of multiple variables; the prediction technology that relies only on a single data-driven model has the problem of poor generalization and is difficult to adapt to different process conditions. In addition, the independent state estimation algorithm is slow to respond to the dynamic feeding speed and fails to achieve stable and accurate tracking. What is more serious is that the existing technology generally has a weak ability to identify abnormal situations and cannot provide effective early warning.
综上,现有跟踪技术难以兼顾准确性与稳定性,对多变量间相互影响考虑不足,且针对不同工艺需要重复调试模型,复用性较差。因此,需要研发一种新的跟踪方法,实现对成品浆料罐实时用量的准确监测,确保合浆配方精度。In summary, the existing tracking technology is difficult to balance accuracy and stability, and the mutual influence between multiple variables is not considered enough. In addition, the model needs to be repeatedly debugged for different processes, and the reusability is poor. Therefore, it is necessary to develop a new tracking method to achieve accurate monitoring of the real-time usage of the finished slurry tank and ensure the accuracy of the slurry formula.
发明内容Summary of the invention
本发明所要解决的技术问题在于如何准确监测成品浆料罐的实时用量。The technical problem to be solved by the present invention is how to accurately monitor the real-time usage of the finished product slurry tank.
本发明是通过以下技术方案解决上述技术问题的:The present invention solves the above technical problems through the following technical solutions:
一种成品浆料罐实时用量监测方法,包括以下步骤:A method for real-time consumption monitoring of a finished product slurry tank comprises the following steps:
步骤1、构建基于LSTM-KF算法的浆料用量预测模型;Step 1: Construct a slurry dosage prediction model based on LSTM-KF algorithm;
步骤2、采集当前合浆过程中浆料罐用量以及传感器下料速度数据,并对采集的数据进行处理;Step 2: Collect the slurry tank usage and sensor feeding speed data during the current slurry mixing process, and process the collected data;
步骤3、对LSTM-KF算法进行训练、验证和检验;Step 3: Train, verify and test the LSTM-KF algorithm;
步骤4、采用训练好的LSTM-KF算法进行成品浆料罐实时用量的连续预测。Step 4: Use the trained LSTM-KF algorithm to continuously predict the real-time usage of the finished slurry tank.
进一步地,步骤1中所述的构建基于LSTM-KF算法的浆料用量预测模型的方法如下:Furthermore, the method for constructing a slurry dosage prediction model based on the LSTM-KF algorithm described in step 1 is as follows:
(1)基于KF算法建立转移过程矩阵,使用高斯噪声对目标的量测信息中的误差进行建模,通过预测状态噪声协方差矩阵和测量噪声协方差矩阵得到卡尔曼增益,使用卡尔曼增益将转移后所得状态预测向量与传感器获取得状态向量结合,得到滤波器的状态向量和状态估计噪声协方差矩阵;(1) Based on the KF algorithm, the transfer process matrix is established, and Gaussian noise is used to model the error in the target measurement information. The Kalman gain is obtained by predicting the state noise covariance matrix and the measurement noise covariance matrix. The state prediction vector obtained after the transfer is combined with the state vector obtained by the sensor using the Kalman gain to obtain the state vector of the filter and the state estimation noise covariance matrix;
(2)建立LSTM模型,采用遗忘门过滤需要丢弃的信息,输入门确定存方单元状态中的新信息,输出门决定当前单元的输出;正向传播过程结束后,通过反向传播更新LSTM的参数,不断重复该过程直到模型收敛,LSTM使用遗忘门,输入门和输出门的机制达成之前时刻输入与新时刻输入之间的权衡,建立数据间的映射关系。(2) Establish an LSTM model and use the forget gate to filter the information that needs to be discarded. The input gate determines the new information in the state of the storage unit, and the output gate determines the output of the current unit. After the forward propagation process is completed, the parameters of the LSTM are updated through backpropagation. This process is repeated until the model converges. The LSTM uses the forget gate, input gate, and output gate mechanism to achieve a trade-off between the input at the previous moment and the input at the new moment, and establish a mapping relationship between the data.
进一步地,所述的转移过程矩阵的公式如下:Furthermore, the formula of the transfer process matrix is as follows:
Xk|k-1=FXk-1+wX k|k-1 =FX k-1 +w
Pk|k-1=FPk-1FT+QP k|k-1 = FP k-1 F T + Q
其中,w为扰动噪声,Xk|k-1为状态预测向量,Pk|k-1为预测状态噪声协方差矩阵,Xk-1为k-1时刻滤波输出的状态向量,Pk-1为k-1时刻滤波输出的状态估计协方差矩阵;F为转移矩阵,FT为转移矩阵转置矩阵,Q为匀速下扰动噪声协方差矩阵;Wherein, w is the disturbance noise, X k|k-1 is the state prediction vector, P k|k-1 is the predicted state noise covariance matrix, X k-1 is the state vector of the filtered output at time k-1, and P k-1 is the state estimation covariance matrix of the filtered output at time k-1; F is the transfer matrix, FT is the transfer matrix transpose matrix, and Q is the disturbance noise covariance matrix under uniform speed;
令扰动噪声服从均值为0,方差为q的高斯噪声,在匀速下扰动噪声协方差矩阵,公式如下:Let the disturbance noise obey the Gaussian noise with mean 0 and variance q. The covariance matrix of the disturbance noise at a uniform speed is as follows:
目标的状态转移方式通过转移矩阵F描述,公式如下:The state transition mode of the target is described by the transfer matrix F, and the formula is as follows:
其中,Δt为量测间隔。Wherein, Δt is the measurement interval.
进一步地,所述的通过预测状态噪声协方差矩阵和测量噪声协方差矩阵得到卡尔曼增益,使用卡尔曼增益将转移后所得状态预测向量与传感器获取得状态向量结合,得到滤波器的状态向量和状态估计噪声协方差矩阵的过程具体如下:Furthermore, the process of obtaining the Kalman gain by predicting the state noise covariance matrix and the measurement noise covariance matrix, combining the state prediction vector obtained after the transfer with the state vector obtained by the sensor using the Kalman gain, and obtaining the state vector of the filter and the state estimation noise covariance matrix is as follows:
所述的测量噪声协方差矩阵的公式为:The formula of the measurement noise covariance matrix is:
其中,σc 2为用量噪声的方差,σv 2为下料速度量测噪声的方差;Among them, σ c 2 is the variance of the usage noise, σ v 2 is the variance of the feeding speed measurement noise;
通过预测状态噪声协方差矩阵Pk|k-1和量测噪声协方差矩阵R得到卡尔曼增益为:The Kalman gain is obtained by predicting the state noise covariance matrix P k|k-1 and the measurement noise covariance matrix R:
K=Pk|k-1HT(HPk|k-1HT+R)-1 K=P k|k-1 H T (HP k|k-1 H T +R) -1
其中观测矩阵为:The observation matrix is:
使用卡尔曼增益Kk将转移后所得状态预测向量Xk|k-1与传感器获取得状态向量Z=[ck,vk]结合,得到滤波器的状态向量和状态估计噪声协方差矩阵为:The Kalman gain K k is used to combine the state prediction vector X k|k-1 obtained after the transfer with the state vector Z = [c k ,v k ] obtained by the sensor to obtain the state vector and state estimation noise covariance matrix of the filter:
Xk=Xk|k-1+Kk(Zk-HXk|k-1)X k =X k|k-1 +K k (Z k -HX k|k-1 )
Pk=(I-KkH)Xk|k-1 P k =(IK k H)X k|k-1
其中,Xk和Pk作为下一时刻的输入,持续的对剂量值进行预测。Among them, Xk and Pk are used as inputs at the next moment to continuously predict the dose value.
进一步地,所述的采用遗忘门过滤需要丢弃的信息的方法如下:Furthermore, the method of using the forget gate to filter the information to be discarded is as follows:
当前时刻的输入xt和上一时刻的输出ht-1经遗忘门后的输出为:The output of the current input xt and the previous output ht -1 after the forget gate is:
Ft=sigmod(Wf[ht-1,xt]+bf)F t =sigmod(W f [h t-1 ,x t ]+b f )
其中,Wf和bf为遗忘门的权重和偏置;Among them, Wf and bf are the weight and bias of the forget gate;
所述的输入门确定存方单元状态中的新信息的方法如下:The method by which the input gate determines the new information in the storage unit state is as follows:
通过sigmod的部分决定值的更新,输出向量it,通过tanh的部分则创建一个新的候选值~Ct加入到状态中,则当前的状态为:The sigmoid part determines the update of the value and outputs the vector it . The tanh part creates a new candidate value ~ Ct and adds it to the state. The current state is:
it=sigmoid(Wi[ht-1,xt]+bi)i t =sigmoid(W i [h t-1 ,x t ]+b i )
其中,Wi和bi为输入门的权重和偏置,Wn和bn为tanh部分的权重和偏置;Among them, Wi and bi are the weight and bias of the input gate, Wn and bn are the weight and bias of the tanh part;
所述的输出门决定当前单元的输出的方法如下:The method by which the output gate determines the output of the current unit is as follows:
上一时刻的输出ht-1和xt经处理后,输出的ot和当前时刻的状态Ct,通过tanh的部分相乘,得到最终输出为:After the previous moment's output h t-1 and x t are processed, the output o t and the current moment's state C t are multiplied by the tanh part to obtain the final output:
ht=ottanh(Ct)h t = o t tanh(C t )
ot=sigmoid(Wo[ht-1,xt]+b0)o t =sigmoid(W o [h t-1 ,x t ]+b 0 )
其中Wo和bo为输入门的权重和偏置。Where W o and b o are the weight and bias of the input gate.
进一步地,步骤2中所述的采集当前合浆过程中浆料罐用量以及传感器下料速度数据的过程如下:采集的用量的时间序列长度为N,令Li={cr,k,k=1,2,...,N}为数据集中第i条用量的时间序列数据集,vi={vr,k,k=1,2,...,N}为真实下料速度集,其中cr,k和vr,k分别为传感器的真实用量和真实下料速度;Furthermore, the process of collecting the slurry tank usage and sensor feeding speed data in the current slurry mixing process described in step 2 is as follows: the length of the time series of the collected usage is N, let Li = {c r,k, k = 1, 2, ..., N} be the time series data set of the i-th usage in the data set, and vi = {v r,k , k = 1, 2, ..., N} be the real feeding speed set, where cr ,k and v r,k are the real usage and real feeding speed of the sensor respectively;
所述的对采集的数据进行处理的过程如下:The process of processing the collected data is as follows:
使用滑动窗口从用量时间序列数据集Li中提取长度为wL数据,得到:Use a sliding window to extract data of length w L from the usage time series dataset Li and obtain:
I={cr,k,k=j,j+1,...,WL+j-1}I={c r,k ,k=j,j+1,...,W L+j-1 }
使用公式对用量进行差分处理,将输入的用量转化为平均下料速度:Use the formula to perform differential processing on the amount and convert the input amount into an average feeding speed:
考虑到目标瞬时下料速度与期望输出的平均下料速度同样存在时序特征上的关联,在预测平均下料速度时,将瞬时下料速度也作为输入,则预测平均下料速度的LSTM的第j个输入向量为:Considering that the target instantaneous material feeding speed and the expected average material feeding speed also have a correlation in time series characteristics, when predicting the average material feeding speed, the instantaneous material feeding speed is also used as input. Then the j-th input vector of the LSTM for predicting the average material feeding speed is:
使用滑动窗口从下料速度数据集vi中提取长度wL下料速度数据,得到预测瞬时下料速度的LSTM模型第j个输入向量为:Use the sliding window to extract the length wL of the material feeding speed data from the material feeding speed dataset v i , and get the jth input vector of the LSTM model for predicting the instantaneous material feeding speed:
IV={vr,k,k=j,...,WL+j-1}I V ={v r,k ,k=j,...,W L+j-1 }
对数据进行归一化,获取归一化的瞬时下料速度和平均下料速度时间序列,即I′L和I′v,其中归一化公式如下:The data is normalized to obtain the normalized instantaneous material feeding speed and average material feeding speed time series, namely I′ L and I′ v , where the normalization formula is as follows:
构建出的预测用量平均下料速度的LSTM和预测用量瞬时下料速度的LSTM的输入分别为,其中j的范围为从1到N:The inputs of the constructed LSTM for predicting the average feeding speed of the usage and the LSTM for predicting the instantaneous feeding speed of the usage are respectively, where j ranges from 1 to N:
I′V,j={v′r,k,k=1,...,WL}I′ V,j ={v′ r,k ,k=1,...,W L }
其中,I'表示归一化后的数据集,Ii表示时序数据集,Imax和Imin分表表示各特征序列中的最小值。Among them, I' represents the normalized data set, Ii represents the time series data set, and Imax and Imin represent the minimum values in each feature sequence.
进一步地,步骤3中所述的对LSTM-KF算法进行训练、验证和检验的过程如下:以最小化均方根误差为损失函数,预测平均下料速度和预测瞬时下料速度的LSTM模型;学习率使用Adam优化器进行自适应学习率调整,同时设置当前批量大小;采用训练集数据对LSTM模型进行训练,通过损失函数可视化验证模型的收敛;采用验证集数据进行五折交叉验证来验证模型的泛化性;采用测试集数据对时序数据分类效果及模型拟合情况进行检验;Furthermore, the process of training, verifying and testing the LSTM-KF algorithm described in step 3 is as follows: using the root mean square error as the loss function to minimize, the LSTM model predicting the average feeding speed and the instantaneous feeding speed; using the Adam optimizer to perform adaptive learning rate adjustment on the learning rate, and setting the current batch size; using the training set data to train the LSTM model, and verifying the convergence of the model through loss function visualization; using the verification set data to perform five-fold cross-validation to verify the generalization of the model; using the test set data to test the classification effect of the time series data and the model fitting;
所述的损失函数的公式如下:The formula of the loss function is as follows:
其中,L表示均方根误差计算,N表示输入向量的长度,vr表示输入的用量下料速度,vp表示模型预测的下料速度。Among them, L represents the root mean square error calculation, N represents the length of the input vector, v r represents the input dosage and feeding speed, and v p represents the feeding speed predicted by the model.
进一步地,步骤4中所述的采用训练好的LSTM-KF算法进行成品浆料罐实时用量的连续预测的步骤如下:Furthermore, the steps of using the trained LSTM-KF algorithm to continuously predict the real-time consumption of the finished slurry tank described in step 4 are as follows:
(1)通过预处理构建输入向量,输入到LSTM模型中,由LSTM模型分别对目标的平均下料速度和瞬时下料速度进行预测;完成预测后,进行反归一化处理,得到平均下料速度预测以及瞬时下料速度预测值 (1) The input vector is constructed through preprocessing and input into the LSTM model. The LSTM model predicts the average material feeding speed and instantaneous material feeding speed of the target respectively. After the prediction is completed, the denormalization is performed to obtain the average material feeding speed prediction. And the instantaneous feeding speed prediction value
(2)KF算法使用的匀速运动模型将上一时刻的滤波下料速度vf,k-1作为k-1时刻到k时刻之间的平均下料速度,计算k时刻的用量预测结果;同理,KF算法将k-1时刻滤波下料速度直接作为k时刻的瞬时下料速度;(2) The uniform motion model used by the KF algorithm takes the filtered material feeding speed v f,k-1 at the previous moment as the average material feeding speed between moment k-1 and moment k, and calculates the usage prediction result at moment k; similarly, the KF algorithm directly takes the filtered material feeding speed at moment k-1 as the instantaneous material feeding speed at moment k;
所述的k时刻的用量预测结果的计算公式为:The calculation formula for the usage prediction result at the k moment is:
(3)LSTM-KF算法则通过使用由LSTM预测出的瞬时下料速度和修正的速度预测vf,k-1,通过KF算法,得到最终的下料速度预测vp,k,计算公式为:(3) The LSTM-KF algorithm uses the instantaneous material feeding speed predicted by LSTM And the corrected speed prediction v f,k-1 , through the KF algorithm, the final feeding speed prediction v p,k is obtained, and the calculation formula is:
vp,k=U(vp,k,vf,k-1)v p,k =U(v p,k ,v f,k-1 )
(4)再次使用KF算法将k时刻的用量预测cp,k和下料速度vp,k与k时刻量测用量cm,k以及量测下料速度vm,k结合,得到k时刻的最终用量估计和下料速度估计,分别为:(4) The KF algorithm is used again to combine the predicted consumption c p,k and material feeding speed v p,k at time k with the measured consumption c m,k and material feeding speed v m,k at time k to obtain the final consumption estimate and material feeding speed estimate at time k, which are:
cf,k=U(cp,k,cm,k)c f,k =U(c p,k ,c m,k )
vf,k=U(vp,k,vm,k)v f,k =U(v p,k ,v m,k )
(5)重复以上步骤,实现成品浆料罐实时用量的连续预测。(5) Repeat the above steps to achieve continuous prediction of the real-time usage of the finished slurry tank.
一种成品浆料罐实时用量监测系统,包括:模型构建模块、数据采集与处理模块、模型训练模块、模型应用模块;A finished product slurry tank real-time usage monitoring system, comprising: a model building module, a data acquisition and processing module, a model training module, and a model application module;
所述的模型构建模块用于构建基于LSTM-KF算法的浆料用量预测模型;The model building module is used to build a slurry dosage prediction model based on the LSTM-KF algorithm;
所述的数据采集与处理模块用于采集当前合浆过程中浆料罐用量以及传感器下料速度数据,并对采集的数据进行处理;The data acquisition and processing module is used to collect the slurry tank usage and sensor feeding speed data during the current slurry mixing process, and process the collected data;
所述的模型训练模块用于对LSTM-KF算法进行训练、验证和检验;The model training module is used to train, verify and test the LSTM-KF algorithm;
所述的模型应用模块用于采用训练好的LSTM-KF算法进行成品浆料罐实时用量的连续预测。The model application module is used to use the trained LSTM-KF algorithm to continuously predict the real-time usage of the finished slurry tank.
进一步地,模型构建模块中所述的构建基于LSTM-KF算法的浆料用量预测模型的方法如下:Furthermore, the method for constructing a slurry dosage prediction model based on the LSTM-KF algorithm described in the model construction module is as follows:
(1)基于KF算法建立转移过程矩阵,使用高斯噪声对目标的量测信息中的误差进行建模,通过预测状态噪声协方差矩阵和测量噪声协方差矩阵得到卡尔曼增益,使用卡尔曼增益将转移后所得状态预测向量与传感器获取得状态向量结合,得到滤波器的状态向量和状态估计噪声协方差矩阵;(1) Based on the KF algorithm, the transfer process matrix is established, and Gaussian noise is used to model the error in the target measurement information. The Kalman gain is obtained by predicting the state noise covariance matrix and the measurement noise covariance matrix. The state prediction vector obtained after the transfer is combined with the state vector obtained by the sensor using the Kalman gain to obtain the state vector of the filter and the state estimation noise covariance matrix;
(2)建立LSTM模型,采用遗忘门过滤需要丢弃的信息,输入门确定存方单元状态中的新信息,输出门决定当前单元的输出;正向传播过程结束后,通过反向传播更新LSTM的参数,不断重复该过程直到模型收敛,LSTM使用遗忘门,输入门和输出门的机制达成之前时刻输入与新时刻输入之间的权衡,建立数据间的映射关系。(2) Establish an LSTM model and use the forget gate to filter the information that needs to be discarded. The input gate determines the new information in the state of the storage unit, and the output gate determines the output of the current unit. After the forward propagation process is completed, the parameters of the LSTM are updated through backpropagation. This process is repeated until the model converges. The LSTM uses the forget gate, input gate, and output gate mechanism to achieve a trade-off between the input at the previous moment and the input at the new moment, and establish a mapping relationship between the data.
进一步地,所述的转移过程矩阵的公式如下:Furthermore, the formula of the transfer process matrix is as follows:
Xk|k-1=FXk-1+wX k|k-1 =FX k-1 +w
Pk|k-1=FPk-1FT+QP k|k-1 = FP k-1 F T + Q
其中,w为扰动噪声,Xk|k-1为状态预测向量,Pk|k-1为预测状态噪声协方差矩阵,Xk-1为k-1时刻滤波输出的状态向量,Pk-1为k-1时刻滤波输出的状态估计协方差矩阵;F为转移矩阵,FT为转移矩阵转置矩阵,Q为匀速下扰动噪声协方差矩阵;Wherein, w is the disturbance noise, X k|k-1 is the state prediction vector, P k|k-1 is the predicted state noise covariance matrix, X k-1 is the state vector of the filtered output at time k-1, and P k-1 is the state estimation covariance matrix of the filtered output at time k-1; F is the transfer matrix, FT is the transfer matrix transpose matrix, and Q is the disturbance noise covariance matrix under uniform speed;
令扰动噪声服从均值为0,方差为q的高斯噪声,在匀速下扰动噪声协方差矩阵,公式如下:Let the disturbance noise obey the Gaussian noise with mean 0 and variance q. The covariance matrix of the disturbance noise at a uniform speed is as follows:
目标的状态转移方式通过转移矩阵F描述,公式如下:The state transition mode of the target is described by the transfer matrix F, and the formula is as follows:
其中,Δt为量测间隔。Wherein, Δt is the measurement interval.
进一步地,所述的通过预测状态噪声协方差矩阵和测量噪声协方差矩阵得到卡尔曼增益,使用卡尔曼增益将转移后所得状态预测向量与传感器获取得状态向量结合,得到滤波器的状态向量和状态估计噪声协方差矩阵的过程具体如下:Furthermore, the process of obtaining the Kalman gain by predicting the state noise covariance matrix and the measurement noise covariance matrix, combining the state prediction vector obtained after the transfer with the state vector obtained by the sensor using the Kalman gain, and obtaining the state vector of the filter and the state estimation noise covariance matrix is as follows:
所述的测量噪声协方差矩阵的公式为:The formula of the measurement noise covariance matrix is:
其中,σc 2为用量噪声的方差,σv 2为下料速度量测噪声的方差;Among them, σ c 2 is the variance of the usage noise, σ v 2 is the variance of the feeding speed measurement noise;
通过预测状态噪声协方差矩阵Pk|k-1和量测噪声协方差矩阵R得到卡尔曼增益为:The Kalman gain is obtained by predicting the state noise covariance matrix P k|k-1 and the measurement noise covariance matrix R:
K=Pk|k-1HT(HPk|k-1HT+R)-1 K=P k|k-1 H T (HP k|k-1 H T +R) -1
其中观测矩阵为:The observation matrix is:
使用卡尔曼增益Kk将转移后所得状态预测向量Xk|k-1与传感器获取得状态向量Z=[ck,vk]结合,得到滤波器的状态向量和状态估计噪声协方差矩阵为:The Kalman gain K k is used to combine the state prediction vector X k|k-1 obtained after the transfer with the state vector Z = [c k ,v k ] obtained by the sensor to obtain the state vector and state estimation noise covariance matrix of the filter:
Xk=Xk|k-1+Kk(Zk-HXk|k-1)X k =X k|k-1 +K k (Z k -HX k|k-1 )
Pk=(I-KkH)Xk|k-1 P k =(IK k H)X k|k-1
其中,Xk和Pk作为下一时刻的输入,持续的对剂量值进行预测。Among them, Xk and Pk are used as inputs at the next moment to continuously predict the dose value.
进一步地,所述的采用遗忘门过滤需要丢弃的信息的方法如下:Furthermore, the method of using the forget gate to filter the information to be discarded is as follows:
当前时刻的输入xt和上一时刻的输出ht-1经遗忘门后的输出为:The output of the current input xt and the previous output ht -1 after the forget gate is:
Ft=sigmod(Wf[ht-1,xt]+bf)F t =sigmod(W f [h t-1 ,x t ]+b f )
其中,Wf和bf为遗忘门的权重和偏置;Among them, Wf and bf are the weight and bias of the forget gate;
所述的输入门确定存方单元状态中的新信息的方法如下:The method by which the input gate determines the new information in the storage unit state is as follows:
通过sigmod的部分决定值的更新,输出向量it,通过tanh的部分则创建一个新的候选值加入到状态中,则当前的状态为:The sigmoid part determines the update of the value and outputs the vector it , while the tanh part creates a new candidate value Added to the state, the current state is:
it=sigmoid(Wi[ht-1,xt]+bi)i t =sigmoid(W i [h t-1 ,x t ]+b i )
其中,Wi和bi为输入门的权重和偏置,Wn和bn为tanh部分的权重和偏置;Among them, Wi and bi are the weight and bias of the input gate, Wn and bn are the weight and bias of the tanh part;
所述的输出门决定当前单元的输出的方法如下:The method by which the output gate determines the output of the current unit is as follows:
上一时刻的输出ht-1和xt经处理后,输出的ot和当前时刻的状态Ct,通过tanh的部分相乘,得到最终输出为:After the previous moment's output h t-1 and x t are processed, the output o t and the current moment's state C t are multiplied by the tanh part to obtain the final output:
ht=ottanh(Ct)h t = o t tanh(C t )
ot=sigmoid(Wo[ht-1,xt]+b0)o t =sigmoid(W o [h t-1 ,x t ]+b 0 )
其中Wo和bo为输入门的权重和偏置。Where W o and b o are the weight and bias of the input gate.
进一步地,数据采集与处理模块中所述的采集当前合浆过程中浆料罐用量以及传感器下料速度数据的过程如下:采集的用量的时间序列长度为N,令Li={cr,k,k=1,2,...,N}为数据集中第i条用量的时间序列数据集,vi={vr,k,k=1,2,...,N}为真实下料速度集,其中cr,k和vr,k分别为传感器的真实用量和真实下料速度;Furthermore, the process of collecting the slurry tank usage and sensor feeding speed data in the current slurry mixing process described in the data collection and processing module is as follows: the time series length of the collected usage is N, let Li = {c r,k , k = 1, 2, ..., N} be the time series data set of the i-th usage in the data set, and vi = {v r,k , k = 1, 2, ..., N} be the real feeding speed set, where cr ,k and v r,k are the real usage and real feeding speed of the sensor respectively;
所述的对采集的数据进行处理的过程如下:The process of processing the collected data is as follows:
使用滑动窗口从用量时间序列数据集Li中提取长度为wL数据,得到:Use a sliding window to extract data of length w L from the usage time series dataset Li and obtain:
I={cr,k,k=j,j+1,...,WL+j-1}I={c r,k ,k=j,j+1,...,W L+j-1 }
使用公式对用量进行差分处理,将输入的用量转化为平均下料速度:Use the formula to perform differential processing on the amount and convert the input amount into an average feeding speed:
考虑到目标瞬时下料速度与期望输出的平均下料速度同样存在时序特征上的关联,在预测平均下料速度时,将瞬时下料速度也作为输入,则预测平均下料速度的LSTM的第j个输入向量为:Considering that the target instantaneous feeding speed and the expected average feeding speed also have a correlation in time series characteristics, when predicting the average feeding speed, the instantaneous feeding speed is also used as input. Then the j-th input vector of the LSTM for predicting the average feeding speed is:
使用滑动窗口从下料速度数据集vi中提取长度wL下料速度数据,得到预测瞬时下料速度的LSTM模型第j个输入向量为:Use the sliding window to extract the length wL of the material feeding speed data from the material feeding speed dataset v i , and get the jth input vector of the LSTM model for predicting the instantaneous material feeding speed:
IV={vr,k,k=j,...,WL+j-1}I V ={v r,k ,k=j,...,W L+j-1 }
对数据进行归一化,获取归一化的瞬时下料速度和平均下料速度时间序列,即I′L和I′v,其中归一化公式如下:The data is normalized to obtain the normalized instantaneous material feeding speed and average material feeding speed time series, namely I′ L and I′ v , where the normalization formula is as follows:
构建出的预测用量平均下料速度的LSTM和预测用量瞬时下料速度的LSTM的输入分别为,其中j的范围为从1到N:The inputs of the constructed LSTM for predicting the average feeding speed of the usage and the LSTM for predicting the instantaneous feeding speed of the usage are respectively, where j ranges from 1 to N:
I′V,j={v′r,k,k=1,...,WL}I′ V,j ={v′ r,k ,k=1,...,W L }
其中,I'表示归一化后的数据集,Ii表示时序数据集,Imax和Imin分表表示各特征序列中的最小值。Among them, I' represents the normalized data set, Ii represents the time series data set, and Imax and Imin represent the minimum values in each feature sequence.
进一步地,模型训练模块中所述的对LSTM-KF算法进行训练、验证和检验的过程如下:以最小化均方根误差为损失函数,预测平均下料速度和预测瞬时下料速度的LSTM模型;学习率使用Adam优化器进行自适应学习率调整,同时设置当前批量大小;采用训练集数据对LSTM模型进行训练,通过损失函数可视化验证模型的收敛;采用验证集数据进行五折交叉验证来验证模型的泛化性;采用测试集数据对时序数据分类效果及模型拟合情况进行检验;Furthermore, the process of training, verifying and testing the LSTM-KF algorithm described in the model training module is as follows: using the root mean square error as the loss function to minimize, the LSTM model predicting the average feeding speed and the instantaneous feeding speed; using the Adam optimizer to perform adaptive learning rate adjustment on the learning rate, and setting the current batch size; using the training set data to train the LSTM model, and verifying the convergence of the model through loss function visualization; using the verification set data to perform five-fold cross-validation to verify the generalization of the model; using the test set data to test the classification effect of the time series data and the model fitting;
所述的损失函数的公式如下:The formula of the loss function is as follows:
其中,L表示均方根误差计算,N表示输入向量的长度,vr表示输入的用量下料速度,vp表示模型预测的下料速度。Among them, L represents the root mean square error calculation, N represents the length of the input vector, v r represents the input dosage and feeding speed, and v p represents the feeding speed predicted by the model.
进一步地,模型应用模块中所述的采用训练好的LSTM-KF算法进行成品浆料罐实时用量的连续预测的步骤如下:Furthermore, the steps of using the trained LSTM-KF algorithm to continuously predict the real-time consumption of the finished slurry tank described in the model application module are as follows:
(1)通过预处理构建输入向量,输入到LSTM模型中,由LSTM模型分别对目标的平均下料速度和瞬时下料速度进行预测;完成预测后,进行反归一化处理,得到平均下料速度预测以及瞬时下料速度预测值 (1) The input vector is constructed through preprocessing and input into the LSTM model. The LSTM model predicts the average material feeding speed and instantaneous material feeding speed of the target respectively. After the prediction is completed, the denormalization is performed to obtain the average material feeding speed prediction. And the instantaneous feeding speed prediction value
(2)KF算法使用的匀速运动模型将上一时刻的滤波下料速度vf,k-1作为k-1时刻到k时刻之间的平均下料速度,计算k时刻的用量预测结果;同理,KF算法将k-1时刻滤波下料速度直接作为k时刻的瞬时下料速度;(2) The uniform motion model used by the KF algorithm takes the filtered material feeding speed v f,k-1 at the previous moment as the average material feeding speed between moment k-1 and moment k, and calculates the usage prediction result at moment k; similarly, the KF algorithm directly takes the filtered material feeding speed at moment k-1 as the instantaneous material feeding speed at moment k;
所述的k时刻的用量预测结果的计算公式为:The calculation formula for the usage prediction result at the k moment is:
(3)LSTM-KF算法则通过使用由LSTM预测出的瞬时下料速度和修正的速度预测vf,k-1,通过KF算法,得到最终的下料速度预测vp,k,计算公式为:(3) The LSTM-KF algorithm uses the instantaneous material feeding speed predicted by LSTM And the corrected speed prediction v f,k-1 , through the KF algorithm, the final feeding speed prediction v p,k is obtained, and the calculation formula is:
vp,k=U(vp,k,vf,k-1)v p,k =U(v p,k ,v f,k-1 )
(4)再次使用KF算法将k时刻的用量预测cp,k和下料速度vp,k与k时刻量测用量cm,k以及量测下料速度vm,k结合,得到k时刻的最终用量估计和下料速度估计,分别为:(4) The KF algorithm is used again to combine the predicted consumption c p,k and material feeding speed v p,k at time k with the measured consumption c m,k and material feeding speed v m,k at time k to obtain the final consumption estimate and material feeding speed estimate at time k, which are:
cf,k=U(cp,k,cm,k)c f,k =U(c p,k ,c m,k )
vf,k=U(vp,k,vm,k)v f,k =U(v p,k ,v m,k )
(5)重复以上步骤,实现成品浆料罐实时用量的连续预测。(5) Repeat the above steps to achieve continuous prediction of the real-time usage of the finished slurry tank.
一种存储介质,存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行所述成品浆料罐实时用量监测方法的步骤。A storage medium stores a computer program, which executes the steps of the method for real-time consumption monitoring of a finished product slurry tank when the computer program is run by a processor.
本发明的优点在于:The advantages of the present invention are:
本发明的技术方案通过训练并应用LSTM网络对历史进行模式学习,可快速响应变化;与此同时,将LSTM预测输出与卡尔曼滤波递归估计进行融合,可使状态评估更稳定准确;相比依赖预置单一模型,本发明具有更强大的适应性,可减少针对不同工艺条件的重复建模,通过建立规律的LSTM预测模型,能够对合浆过程的动态变化做出快速响应,提高跟踪的实时性。相较于现有技术,本发明的技术方案采用LSTM与卡尔曼滤波的融合,可显著提升状态估计的精度和稳定性;充分利用LSTM对复杂时序模式的建模能力和卡尔曼滤波的递归估计算法,增强了方案对动态变化的适应性。该方案提供实时、准确、可靠的状态评估,大大提升了合浆质量监控水平;该方案计算量适中,可通过并行化实现工业过程的实时在线监测与控制。通过快速、精准地识别异常,该方案增强了合浆过程的稳定性,降低了质量风险。综上,该方案显著提高了合浆的可控性,对保证电池质量具有重要意义。The technical solution of the present invention can quickly respond to changes by training and applying the LSTM network to learn patterns from history; at the same time, the LSTM prediction output is integrated with the Kalman filter recursive estimation, which can make the state evaluation more stable and accurate; compared with relying on a preset single model, the present invention has stronger adaptability, can reduce repeated modeling for different process conditions, and by establishing a regular LSTM prediction model, can quickly respond to the dynamic changes of the slurry mixing process and improve the real-time tracking. Compared with the prior art, the technical solution of the present invention adopts the fusion of LSTM and Kalman filtering, which can significantly improve the accuracy and stability of state estimation; fully utilizes the LSTM modeling ability for complex time series patterns and the recursive estimation algorithm of Kalman filtering to enhance the adaptability of the solution to dynamic changes. The solution provides real-time, accurate and reliable state evaluation, which greatly improves the level of slurry quality monitoring; the solution has moderate computational complexity and can realize real-time online monitoring and control of industrial processes through parallelization. By quickly and accurately identifying anomalies, the solution enhances the stability of the slurry mixing process and reduces quality risks. In summary, the solution significantly improves the controllability of slurry mixing, which is of great significance to ensuring battery quality.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明实施例的成品浆料罐实时用量监测方法流程图;FIG1 is a flow chart of a method for real-time consumption monitoring of a finished product slurry tank according to an embodiment of the present invention;
图2是本发明实施例的成品浆料罐实时用量监测方法的LSTM-KF算法的浆料用量预测模型结构图。FIG2 is a structural diagram of a slurry consumption prediction model of an LSTM-KF algorithm of a method for real-time consumption monitoring of a finished product slurry tank according to an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the embodiments of the present invention clearer, the technical solution in the embodiments of the present invention will be clearly and completely described in combination with the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
下面结合说明书附图以及具体的实施例对本发明的技术方案作进一步描述:The technical solution of the present invention is further described below in conjunction with the accompanying drawings and specific embodiments:
实施例一Embodiment 1
如图1所示,本发明实施例的成品浆料罐实时用量监测方法,包括以下步骤:As shown in FIG1 , the method for real-time consumption monitoring of a finished product slurry tank according to an embodiment of the present invention comprises the following steps:
1、构建基于LSTM-KF算法的浆料用量预测模型,包括:KF算法和LSTM模型,具体如下:1. Construct a slurry dosage prediction model based on the LSTM-KF algorithm, including: KF algorithm and LSTM model, as follows:
1.1、KF算法1.1 KF algorithm
令ck-1为k-1时刻的成品用量,vk-1为k-1时刻的下料速度估计,则k-1时刻滤波输出的状态向量为Xk-1=[ck-1,vk-1],那么Pk-1为k-1时刻滤波输出的状态估计协方差矩阵。Xk|k-1=[ck,vk]为状态预测向量,Pk|k-1为状态预测噪声协方差矩阵,则转移过程可以描述为:Let c k-1 be the finished product consumption at time k-1, v k-1 be the estimated material feeding speed at time k-1, then the state vector of the filter output at time k-1 is X k-1 = [c k-1 , v k-1 ], then P k-1 is the state estimation covariance matrix of the filter output at time k-1. X k|k-1 = [c k , v k ] is the state prediction vector, P k|k-1 is the state prediction noise covariance matrix, then the transfer process can be described as:
Xk|k-1=FXk-1+wX k|k-1 =FX k-1 +w
Pk|k-1=FPk-1FT+QP k|k-1 = FP k-1 F T + Q
其中,w为扰动噪声,表示转移过程中的干扰。令转移噪声服从均值为0,方差为q的高斯噪声,在匀速下转移噪声协方差矩阵,公式如下:Among them, w is the disturbance noise, which represents the interference in the transfer process. Let the transfer noise obey the Gaussian noise with a mean of 0 and a variance of q, and transfer the noise covariance matrix at a uniform speed, the formula is as follows:
目标的状态转移方式通过转移矩阵F描述,公式如下:The state transition mode of the target is described by the transfer matrix F, and the formula is as follows:
其中Δt为量测间隔。Where Δt is the measurement interval.
使用高斯噪声对目标的量测信息中的误差进行建模,则量测噪声协方差矩阵为:Gaussian noise is used to model the error in the target's measurement information, and the measurement noise covariance matrix is:
其中:为σc 2用量噪声的方差,σv 2为下料速度量测噪声的方差。Where: σ c 2 is the variance of the usage noise, σ v 2 is the variance of the feeding speed measurement noise.
通过预测状态噪声协方差矩阵Pk|k-1和量测噪声协方差矩阵R得到卡尔曼增益为:The Kalman gain is obtained by predicting the state noise covariance matrix P k|k-1 and the measurement noise covariance matrix R:
K=Pk|k-1HT(HPk|k-1HT+R)-1 K=P k|k-1 H T (HP k|k-1 H T +R) -1
其中观测矩阵为:The observation matrix is:
则KF算法使用卡尔曼增益Kk将转移后所得状态预测向量Xk|k-1与传感器获取得状态向量Z=[ck,vk]结合,得到滤波器的状态向量和状态估计噪声协方差矩阵为:The KF algorithm uses the Kalman gain Kk to combine the state prediction vector Xk |k-1 obtained after the transfer with the state vector Z=[c k ,v k ] obtained by the sensor to obtain the state vector and state estimation noise covariance matrix of the filter:
Xk=Xk|k-1+Kk(Zk-HXk|k-1)X k =X k|k-1 +K k (Z k -HX k|k-1 )
Pk=(I-KkH)Xk|k-1 P k =(IK k H)X k|k-1
其中,Xk和Pk作为下一时刻的输入,持续的对剂量值进行预测。Among them, Xk and Pk are used as inputs at the next moment to continuously predict the dose value.
1.2、LSTM模型1.2 LSTM Model
如图2所示,首先,遗忘门过滤需要丢弃的信息。当前时刻的输入xt和上一时刻的输出ht-1经遗忘门后的输出为:As shown in Figure 2, first, the forget gate filters the information that needs to be discarded. The output of the current moment input xt and the previous moment output ht-1 after the forget gate is:
Ft=sigmod(Wf[ht-1,xt]+bf)F t =sigmod(W f [h t-1 ,x t ]+b f )
其中Wf和bf为遗忘门的权重和偏置。Where Wf and bf are the weight and bias of the forget gate.
接着,输入门确定存方单元状态中的新信息。通过sigmod的部分决定值的更新,输出向量it。通过tanh的部分则创建一个新的候选值加入到状态中,则当前的状态为:Next, the input gate determines the new information in the state of the storage unit. The sigmoid part determines the update of the value and outputs the vector it . The tanh part creates a new candidate value Added to the state, the current state is:
it=sigmoid(Wi[ht-1,xt]+bi)i t =sigmoid(W i [h t-1 ,x t ]+b i )
其中,Wi和bi为输入门的权重和偏置,Wn和bn为tanh部分的权重和偏置。Among them, Wi and bi are the weight and bias of the input gate, and Wn and bn are the weight and bias of the tanh part.
最后,输出门决定当前单元的输出。上一时刻的输出ht-1和xt经处理后,输出的ot和当前时刻的状态Ct通过tanh的部分相乘,得到最终输出为:Finally, the output gate determines the output of the current unit. After the outputs h t-1 and x t of the previous moment are processed, the output o t and the current state C t are multiplied by the tanh part to obtain the final output:
ht=ot tanh(Ct)h t = o t tanh(C t )
ot=sigmoid(Wo[ht-1,xt]+b0)o t =sigmoid(W o [h t-1 ,x t ]+b 0 )
其中Wo和bo为输入门的权重和偏置;Where W o and b o are the weight and bias of the input gate;
正向传播过程结束后,通过反向传播更新LSTM的参数,不断重复该过程直到模型收敛。LSTM使用遗忘门,输入门和输出门的机制达成之前时刻输入与新时刻输入之间的权衡,建立数据间的映射关系。After the forward propagation process is completed, the parameters of the LSTM are updated through back propagation, and the process is repeated until the model converges. LSTM uses the forget gate, input gate, and output gate mechanism to achieve a trade-off between the input at the previous moment and the input at the new moment, and establish a mapping relationship between the data.
2、采集当前合浆过程中浆料罐用量以及传感器下料速度数据,并对采集的数据进行处理2. Collect the slurry tank usage and sensor feeding speed data during the current slurry mixing process, and process the collected data
目前将用量直接作为输入,将期望用量作为标签,实现对用量的预测。由于训练集使用的用量为有限集,而实际场景中的用量为无限集,模型无法对所有的用量进行训练,因此在更换使用场景或者坐标系后难以达到较高的预测精度。LSTM_KF算法使用LSTM分别预测目标在k-1时刻和k时刻之间的平均下料速度和k时刻瞬时下料速度进一步通过计算获取当前的用量。Currently, the usage is directly used as input and the expected usage is used as a label to achieve the prediction of usage. Since the usage used in the training set is a finite set, while the usage in the actual scenario is an infinite set, the model cannot train all usages, so it is difficult to achieve a high prediction accuracy after changing the usage scenario or coordinate system. The LSTM_KF algorithm uses LSTM to predict the average unloading speed of the target between time k-1 and time k respectively and instantaneous material feeding speed at time k The current usage is further obtained through calculation.
令用量的时间序列长度为N,令Li={cr,k,k=1,2,...,N}为数据集中第i条用量的时间序列数据集,vi={vr,k,k=1,2,...,N}为真实下料速度集,其中cr,k和vr,k分别为传感器的真实用量和真实下料速度。Let the length of the time series of usage be N, let Li = {c r,k , k = 1, 2, ..., N} be the time series data set of the i-th usage in the data set, and vi = {v r,k , k = 1, 2, ..., N} be the real material discharge speed set, where cr ,k and v r,k are the real usage and real material discharge speed of the sensor respectively.
具体的数据处理过程如下:The specific data processing process is as follows:
首先,使用滑动窗口从用量时间序列数据集Li中提取长度为wL数据,得到:First, use a sliding window to extract data of length w L from the usage time series dataset Li , and obtain:
I={cr,k,k=j,j+1,...,WL+j-1}I={c r,k ,k=j,j+1,...,W L+j-1 }
进一步使用公式对用量进行差分处理,将输入的用量转化为平均下料速度:The formula is further used to perform differential processing on the amount, converting the input amount into the average feeding speed:
考虑到目标瞬时下料速度与期望输出的平均下料速度同样存在时序特征上的关联,在预测平均下料速度是,将瞬时下料速度也作为输入,可以增加一维信息,提高预测的精度。则预测平均下料速度的LSTM的第j个输入向量为:Considering that the target instantaneous material feeding speed and the expected average material feeding speed also have a temporal correlation, when predicting the average material feeding speed, taking the instantaneous material feeding speed as input can add one-dimensional information and improve the prediction accuracy. Then the j-th input vector of the LSTM for predicting the average material feeding speed is:
使用滑动窗口从下料速度数据集vi中提取长度wL下料速度数据,可以得到预测瞬时下料速度的LSTM模型第j个输入向量为:Using a sliding window to extract the length wL of the material feeding speed data from the material feeding speed dataset v i , the j-th input vector of the LSTM model for predicting the instantaneous material feeding speed can be obtained as:
IV={vr,k,k=j,...,WL+j-1}I V ={v r,k ,k=j,...,W L+j-1 }
根据验证,这里设置滑动窗口的大小为9。According to verification, the size of the sliding window is set to 9 here.
进一步的,这里对数据进行归一化,获取归一化的瞬时下料速度和平均下料速度时间序列,即I′L和I′v,其中归一化公式如下:Furthermore, the data is normalized here to obtain the normalized instantaneous material feeding speed and average material feeding speed time series, namely I′ L and I′ v , where the normalization formula is as follows:
其中,I'表示归一化后的数据集,Ii表示时序数据集,Imax和Imin分表表示各特征序列中的最小值。Among them, I' represents the normalized data set, Ii represents the time series data set, and Imax and Imin represent the minimum values in each feature sequence.
所构建出的预测用量平均下料速度的LSTM和预测用量瞬时下料速度的LSTM的输入分别为,其中j的范围为从1到N:The inputs of the constructed LSTM for predicting the average feeding speed of the usage and the LSTM for predicting the instantaneous feeding speed of the usage are respectively, where j ranges from 1 to N:
I′V,j={v′r,k,k=1,...,WL}I′ V,j ={v′ r,k ,k=1,...,W L }
3、对LSTM-KF算法进行训练、验证和检验3. Train, verify and test the LSTM-KF algorithm
3.1、LSTM-KF算法流程3.1 LSTM-KF algorithm flow
1)对数据进行特征分析,提出基于平均下料速度和瞬时下料速度的方法实现预测,解决了已有的非参数模型方案存在的泛化性差的问题。随后,对用量数据和下料速度数据进行处理,转化为LSTM需要的特征。1) Perform feature analysis on the data and propose a method based on average feeding speed and instantaneous feeding speed to achieve prediction, which solves the problem of poor generalization of existing non-parametric model solutions. Subsequently, the usage data and feeding speed data are processed and converted into the features required by LSTM.
2)选择合理的结构和损失函数,通过反向传播算法,分别训练出预测平均下料速度的LSTM和预测瞬时下料速度的LSTM。2) Select a reasonable structure and loss function, and use the back-propagation algorithm to train the LSTM for predicting the average feeding speed and the LSTM for predicting the instantaneous feeding speed.
3)对坐标和下料速度输入数据进行预处理,输入LSTM中进行预测。输出的平均下料速度预测与滤波下料速度结合,所得平均下料速度预测用于计算用量cp,k;输出的瞬时下料速度预测与滤波下料速度vf,k-1结合,得到下料速度预测vp,k。最后,将用量cp,k与下料速度预测vp,k结合当前时刻的量测cm,k与vm,k,得到最终的估计cf,k和下料速度估计vf,k。3) Preprocess the coordinate and feeding speed input data and input them into LSTM for prediction. Output average feeding speed prediction And filter feeding speed The average material feeding speed prediction is used to calculate the consumption c p,k ; the instantaneous material feeding speed prediction is output Combined with the filtered material feeding speed v f,k-1 , the material feeding speed prediction v p,k is obtained. Finally, the usage c p,k and the material feeding speed prediction v p,k are combined with the current measurements c m,k and v m,k to obtain the final estimate c f,k and the material feeding speed estimate v f,k .
3.2、模型训练3.2 Model Training
模型以最小化均方根误差(RMSE,rootmeansquareerror)为损失函数,预测平均下料速度和预测瞬时下料速度的LSTM模型的损失函数设置如下:The model uses the minimum root mean square error (RMSE) as the loss function. The loss function of the LSTM model for predicting the average feeding speed and predicting the instantaneous feeding speed is set as follows:
其中,L表示均方根误差计算,N表示输入向量的长度,vr表示输入的用量下料速度,vp表示模型预测的下料速度。Among them, L represents the root mean square error calculation, N represents the length of the input vector, v r represents the input dosage and feeding speed, and v p represents the feeding speed predicted by the model.
针对学习率(learningrate)这里使用Adam优化器进行自适应学习率调整。同时设置当前批量大小(batchsize)。For the learning rate, the Adam optimizer is used here for adaptive learning rate adjustment. At the same time, the current batch size is set.
这里按照7:1:2的比例来划分训练集、验证集、测试集。其中70%的数据LSTM模型进行训练通过损失函数可视化验证模型的收敛效果。通过在10%的数据上进行五折交叉验证来验证模型的泛化性。最后将得到的模型最佳参数应用于剩下的20%测试集,对时序数据分类效果及模型拟合情况进行检验。Here, the training set, validation set, and test set are divided according to the ratio of 7:1:2. The LSTM model of 70% of the data is trained to verify the convergence effect of the model through loss function visualization. The generalization of the model is verified by performing a five-fold cross-validation on 10% of the data. Finally, the optimal model parameters are applied to the remaining 20% test set to test the classification effect of time series data and the model fitting.
4、采用训练好的LSTM-KF算法进行成品浆料罐实时用量的连续预测4. Use the trained LSTM-KF algorithm to continuously predict the real-time consumption of the finished slurry tank
首先,已有的数据长度可以满足LSTM要求后,通过预处理构建输入向量,输入到LSTM中。由LSTM模型分别对目标的平均下料速度和瞬时下料速度进行预测。完成预测后,将2个模型进行反归一化处理,得到平均下料速度预测以及瞬时下料速度预测值 First, after the existing data length meets the LSTM requirements, the input vector is constructed through preprocessing and input into the LSTM. The LSTM model predicts the average material feeding speed and instantaneous material feeding speed of the target respectively. After the prediction is completed, the two models are denormalized to obtain the average material feeding speed prediction And the instantaneous feeding speed prediction value
接着,KF算法使用的匀速运动模型将上一时刻的滤波下料速度vf,k-1作为k-1时刻到k时刻之间的平均下料速度,计算k时刻的用量预测结果。LSTM-KF算法通过使用由LSTM预测出的平均下料速度和上一时刻的下料速度估计vf,k-1,通过KF算法来计算k时刻的用量预测cp,k,能够使得用量下料速度更为接近真实的下料速度值,从而提高预测的精度。k时刻的用量预测为:Next, the uniform motion model used by the KF algorithm takes the filtered material feeding speed v f,k-1 of the previous moment as the average material feeding speed between moment k-1 and moment k, and calculates the usage prediction result at moment k. The LSTM-KF algorithm uses the average material feeding speed predicted by LSTM and the previous material feeding speed estimate v f,k-1 , the KF algorithm is used to calculate the usage prediction cp ,k at time k, which can make the usage material feeding speed closer to the actual material feeding speed value, thereby improving the prediction accuracy. The usage prediction at time k is:
同理,KF算法将k-1时刻滤波下料速度直接作为k时刻的瞬时下料速度。LSTM-KF算法则通过使用由LSTM预测出的瞬时下料速度和修正的速度预测vf,k-1,通过KF算法,得到最终的下料速度预测vp,k,可以提高预测的精度。k时刻的用量瞬时下料速度为:Similarly, the KF algorithm uses the filtered material feeding speed at time k-1 as the instantaneous material feeding speed at time k. The LSTM-KF algorithm uses the instantaneous material feeding speed predicted by LSTM. And the modified speed prediction v f,k-1 , through the KF algorithm, the final feeding speed prediction v p,k is obtained, which can improve the prediction accuracy. The instantaneous feeding speed of the amount at time k is:
vp,k=U(vp,k,vf,k-1)v p,k =U(v p,k ,v f,k-1 )
最后,再次使用KF算法将k时刻的用量预测cp,k和下料速度vp,k与k时刻量测用量cm,k以及量测下料速度vm,k结合,得到k时刻的最终用量估计和下料速度估计,分别为:Finally, the KF algorithm is used again to combine the predicted usage c p,k and material feeding speed v p,k at time k with the measured usage c m,k and material feeding speed v m,k at time k to obtain the final usage estimate and material feeding speed estimate at time k, which are:
cf,k=U(cp,k,cm,k)c f,k =U(c p,k ,c m,k )
vf,k=U(vp,k,vm,k)v f,k =U(v p,k ,v m,k )
重复以上步骤,实现用量的连续预测。Repeat the above steps to achieve continuous prediction of usage.
实施例二Embodiment 2
一种成品浆料罐实时用量监测系统,包括:模型构建模块、数据采集与处理模块、模型训练模块、模型应用模块;A finished product slurry tank real-time usage monitoring system, comprising: a model building module, a data acquisition and processing module, a model training module, and a model application module;
所述的模型构建模块用于构建基于LSTM-KF算法的浆料用量预测模型,方法如下:The model building module is used to build a slurry dosage prediction model based on the LSTM-KF algorithm, and the method is as follows:
(1)令ck-1为k-1时刻的成品用量,vk-1为k-1时刻的下料速度估计,则k-1时刻滤波输出的状态向量为Xk-1=[ck-1,vk-1],那么Pk-1为k-1时刻滤波输出的状态估计协方差矩阵;Xk|k-1=[ck,vk]为状态预测向量,Pk|k-1为状态预测噪声协方差矩阵,则转移过程描述为:(1) Let c k-1 be the finished product quantity at time k-1, v k-1 be the estimated material feeding speed at time k-1, then the state vector of the filter output at time k-1 is X k-1 = [c k-1 , v k-1 ], then P k-1 is the state estimation covariance matrix of the filter output at time k-1; X k|k-1 = [c k , v k ] is the state prediction vector, P k|k-1 is the state prediction noise covariance matrix, then the transfer process can be described as:
Xk|k-1=FXk-1+wX k|k-1 =FX k-1 +w
Pk|k-1=FPk-1FT+QP k|k-1 = FP k-1 F T + Q
其中,w为扰动噪声,表示转移过程中的干扰。令转移噪声服从均值为0,方差为q的高斯噪声,在匀速下转移噪声协方差矩阵,公式如下:Among them, w is the disturbance noise, which represents the interference in the transfer process. Let the transfer noise obey the Gaussian noise with a mean of 0 and a variance of q, and transfer the noise covariance matrix at a uniform speed, the formula is as follows:
目标的状态转移方式通过转移矩阵F描述,公式如下:The state transition mode of the target is described by the transfer matrix F, and the formula is as follows:
其中Δt为量测间隔;Where Δt is the measurement interval;
使用高斯噪声对目标的量测信息中的误差进行建模,则量测噪声协方差矩阵为:Gaussian noise is used to model the error in the target's measurement information, and the measurement noise covariance matrix is:
其中:为σc 2用量噪声的方差,σv 2为下料速度量测噪声的方差;Where: σ c 2 is the variance of the usage noise, σ v 2 is the variance of the feeding speed measurement noise;
通过预测状态噪声协方差矩阵Pk|k-1和量测噪声协方差矩阵R得到卡尔曼增益为:The Kalman gain is obtained by predicting the state noise covariance matrix P k|k-1 and the measurement noise covariance matrix R:
K=Pk|k-1HT(HPk|k-1HT+R)-1 K=P k|k-1 H T (HP k|k-1 H T +R) -1
其中观测矩阵为:The observation matrix is:
则KF算法使用卡尔曼增益Kk将转移后所得状态预测向量Xk|k-1与传感器获取得状态向量Z=[ck,vk]结合,得到滤波器的状态向量和状态估计噪声协方差矩阵为:The KF algorithm uses the Kalman gain Kk to combine the state prediction vector Xk |k-1 obtained after the transfer with the state vector Z=[c k ,v k ] obtained by the sensor to obtain the state vector and state estimation noise covariance matrix of the filter:
Xk=Xk|k-1+Kk(Zk-HXk|k-1)X k =X k|k-1 +K k (Z k -HX k|k-1 )
Pk=(I-KkH)Xk|k-1 P k =(IK k H)X k|k-1
其中,Xk和Pk作为下一时刻的输入,持续的对剂量值进行预测;Among them, X k and P k are used as inputs at the next moment to continuously predict the dose value;
(2)当前时刻的输入xt和上一时刻的输出ht-1经遗忘门后的输出为:(2) The output of the current input xt and the previous output ht -1 after the forget gate is:
Ft=sigmod(Wf[ht-1,xt]+bf)F t =sigmod(W f [h t-1 ,x t ]+b f )
其中Wf和bf为遗忘门的权重和偏置;Where Wf and bf are the weight and bias of the forget gate;
输入门确定存方单元状态中的新信息,通过sigmod的部分决定值的更新,输出向量it,通过tanh的部分则创建一个新的候选值加入到状态中,则当前的状态为:The input gate determines the new information in the state of the storage unit, the sigmoid part determines the update of the value, the output vector it , and the tanh part creates a new candidate value. Added to the state, the current state is:
it=sigmoid(Wi[ht-1,xt]+bi)i t =sigmoid(W i [h t-1 ,x t ]+b i )
其中,Wi和bi为输入门的权重和偏置,Wn和bn为tanh部分的权重和偏置;Among them, Wi and bi are the weight and bias of the input gate, Wn and bn are the weight and bias of the tanh part;
输出门决定当前单元的输出,上一时刻的输出ht-1和xt经处理后,输出的ot和当前时刻的状态Ct通过tanh的部分相乘,得到最终输出为:The output gate determines the output of the current unit. After the outputs h t-1 and x t of the previous moment are processed, the output o t and the state C t of the current moment are multiplied by the tanh part to obtain the final output:
ht=ot tanh(Ct)h t = o t tanh(C t )
ot=sigmoid(Wo[ht-1,xt]+b0)o t =sigmoid(W o [h t-1 ,x t ]+b 0 )
其中Wo和bo为输入门的权重和偏置;Where W o and b o are the weight and bias of the input gate;
正向传播过程结束后,通过反向传播更新LSTM的参数,不断重复该过程直到模型收敛;LSTM使用遗忘门,输入门和输出门的机制达成之前时刻输入与新时刻输入之间的权衡,建立数据间的映射关系。After the forward propagation process is completed, the parameters of LSTM are updated through back propagation, and the process is repeated until the model converges; LSTM uses the forget gate, input gate and output gate mechanism to achieve a trade-off between the input at the previous moment and the input at the new moment, and establish a mapping relationship between the data.
所述的数据采集与处理模块用于采集当前合浆过程中浆料罐用量以及传感器下料速度数据,采集的用量的时间序列长度为N,令Li={cr,k,k=1,2,...,N}为数据集中第i条用量的时间序列数据集,vi={vr,k,k=1,2,...,N}为真实下料速度集,其中cr,k和vr,k分别为传感器的真实用量和真实下料速度,并对采集的数据进行处理;The data acquisition and processing module is used to collect the slurry tank usage and sensor feeding speed data in the current slurry mixing process. The time series length of the collected usage is N. Let Li = {c r,k , k = 1, 2, ..., N} be the time series data set of the i-th usage in the data set, and vi = {v r,k , k = 1, 2, ..., N} be the real feeding speed set, where cr,k and v r,k are the real usage and real feeding speed of the sensor respectively, and the collected data is processed;
所述的对采集的数据进行处理的过程如下:The process of processing the collected data is as follows:
使用滑动窗口从用量时间序列数据集Li中提取长度为wL数据,得到:Use a sliding window to extract data of length w L from the usage time series dataset Li and obtain:
I={cr,k,k=j,j+1,...,WL+j-1}I={c r,k ,k=j,j+1,...,W L+j-1 }
使用公式对用量进行差分处理,将输入的用量转化为平均下料速度:Use the formula to perform differential processing on the amount and convert the input amount into an average feeding speed:
考虑到目标瞬时下料速度与期望输出的平均下料速度同样存在时序特征上的关联,在预测平均下料速度时,将瞬时下料速度也作为输入,则预测平均下料速度的LSTM的第j个输入向量为:Considering that the target instantaneous feeding speed and the expected average feeding speed also have a correlation in time series characteristics, when predicting the average feeding speed, the instantaneous feeding speed is also used as input. Then the j-th input vector of the LSTM for predicting the average feeding speed is:
使用滑动窗口从下料速度数据集vi中提取长度wL下料速度数据,得到预测瞬时下料速度的LSTM模型第j个输入向量为:Use the sliding window to extract the length wL of the material feeding speed data from the material feeding speed dataset v i , and get the jth input vector of the LSTM model for predicting the instantaneous material feeding speed:
IV={vr,k,k=j,...,WL+j-1}I V ={v r,k ,k=j,...,W L+j-1 }
对数据进行归一化,获取归一化的瞬时下料速度和平均下料速度时间序列,即I′L和I′v,其中归一化公式如下:The data is normalized to obtain the normalized instantaneous material feeding speed and average material feeding speed time series, namely I′ L and I′ v , where the normalization formula is as follows:
构建出的预测用量平均下料速度的LSTM和预测用量瞬时下料速度的LSTM的输入分别为,其中j的范围为从1到N:The inputs of the constructed LSTM for predicting the average feeding speed of the usage and the LSTM for predicting the instantaneous feeding speed of the usage are respectively, where j ranges from 1 to N:
I′V,j={v′r,k,k=1,...,WL}I′ V,j ={v′ r,k ,k=1,...,W L }
其中,I'表示归一化后的数据集,Ii表示时序数据集,Imax和Imin分表表示各特征序列中的最小值。Among them, I' represents the normalized data set, Ii represents the time series data set, and Imax and Imin represent the minimum values in each feature sequence.
所述的模型训练模块用于以最小化均方根误差为损失函数,预测平均下料速度和预测瞬时下料速度的LSTM模型;学习率使用Adam优化器进行自适应学习率调整,同时设置当前批量大小;采用训练集数据对LSTM模型进行训练,通过损失函数可视化验证模型的收敛效果;采用验证集数据进行五折交叉验证来验证模型的泛化性;采用测试集数据对时序数据分类效果及模型拟合情况进行检验;The model training module is used to minimize the root mean square error as the loss function, and predict the LSTM model of the average feeding speed and the instantaneous feeding speed; the learning rate is adaptively adjusted using the Adam optimizer, and the current batch size is set at the same time; the LSTM model is trained using the training set data, and the convergence effect of the model is verified by visualizing the loss function; the validation set data is used for five-fold cross validation to verify the generalization of the model; the test set data is used to test the classification effect of the time series data and the model fitting;
所述的最小化均方根误差损失函数的公式如下:The formula for minimizing the root mean square error loss function is as follows:
其中,L表示均方根误差计算,N表示输入向量的长度,vr表示输入的用量下料速度,vp表示模型预测的下料速度。Among them, L represents the root mean square error calculation, N represents the length of the input vector, v r represents the input dosage and feeding speed, and v p represents the feeding speed predicted by the model.
所述的模型应用模块用于采用训练好的LSTM-KF算法进行成品浆料罐实时用量的连续预测,步骤如下:The model application module is used to continuously predict the real-time consumption of the finished slurry tank using the trained LSTM-KF algorithm, and the steps are as follows:
(1)通过预处理构建输入向量,输入到LSTM模型中,由LSTM模型分别对目标的平均下料速度和瞬时下料速度进行预测;完成预测后,进行反归一化处理,得到平均下料速度预测以及瞬时下料速度预测值 (1) The input vector is constructed through preprocessing and input into the LSTM model. The LSTM model predicts the average material feeding speed and instantaneous material feeding speed of the target respectively. After the prediction is completed, the denormalization is performed to obtain the average material feeding speed prediction. And the instantaneous feeding speed prediction value
(2)KF算法使用的匀速运动模型将上一时刻的滤波下料速度vf,k-1作为k-1时刻到k时刻之间的平均下料速度,计算k时刻的用量预测结果;同理,KF算法将k-1时刻滤波下料速度直接作为k时刻的瞬时下料速度;(2) The uniform motion model used by the KF algorithm takes the filtered material feeding speed v f,k-1 at the previous moment as the average material feeding speed between moment k-1 and moment k, and calculates the usage prediction result at moment k; similarly, the KF algorithm directly takes the filtered material feeding speed at moment k-1 as the instantaneous material feeding speed at moment k;
所述的k时刻的用量预测结果的计算公式为:The calculation formula for the usage prediction result at the k moment is:
(3)LSTM-KF算法则通过使用由LSTM预测出的瞬时下料速度和修正的速度预测vf,k-1,通过KF算法,得到最终的下料速度预测vp,k,计算公式为:(3) The LSTM-KF algorithm uses the instantaneous material feeding speed predicted by LSTM And the corrected speed prediction v f,k-1 , through the KF algorithm, the final feeding speed prediction v p,k is obtained, and the calculation formula is:
vp,k=U(vp,k,vf,k-1)v p,k =U(v p,k ,v f,k-1 )
(4)再次使用KF算法将k时刻的用量预测cp,k和下料速度vp,k与k时刻量测用量cm,k以及量测下料速度vm,k结合,得到k时刻的最终用量估计和下料速度估计,分别为:(4) The KF algorithm is used again to combine the predicted consumption c p,k and material feeding speed v p,k at time k with the measured consumption c m,k and material feeding speed v m,k at time k to obtain the final consumption estimate and material feeding speed estimate at time k, which are:
cf,k=U(cp,k,cm,k)c f,k =U(c p,k ,c m,k )
vf,k=U(vp,k,vm,k)v f,k =U(v p,k ,v m,k )
(5)重复以上步骤,实现成品浆料罐实时用量的连续预测。(5) Repeat the above steps to achieve continuous prediction of the real-time usage of the finished slurry tank.
实施例三Embodiment 3
一种存储介质,存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行实施例一中的成品浆料罐实时用量监测方法的步骤。A storage medium stores a computer program, which, when executed by a processor, executes the steps of the method for real-time consumption monitoring of a finished product slurry tank in Example 1.
本发明的技术方案面对跟踪中存在的动态响应不敏锐、评估不稳定、泛化适用性差等问题,本技术方案旨在构建一个集成学习与估计算法的统一跟踪框架,以实现对复杂动态过程的实时精准捕捉。通过训练并应用LSTM网络对历史进行模式学习,可快速响应变化;与此同时,将LSTM预测输出与卡尔曼滤波递归估计进行融合,可使状态评估更稳定准确。相比依赖预置单一模型,本框架具有更强大的适应性,可减少针对不同工艺条件的重复建模,更好服务于广泛的智能制造应用。总体而言,本方案旨在实现一个智能、精准、响应敏锐的跟踪技术,以适应工业过程质量控制的需要,保证产出稳定。The technical solution of the present invention faces the problems of insensitive dynamic response, unstable evaluation, poor generalization applicability, etc. in tracking. The technical solution aims to build a unified tracking framework that integrates learning and estimation algorithms to achieve real-time and accurate capture of complex dynamic processes. By training and applying the LSTM network to learn patterns from history, changes can be responded to quickly; at the same time, the LSTM prediction output is integrated with the Kalman filter recursive estimation to make the state evaluation more stable and accurate. Compared with relying on a preset single model, this framework has stronger adaptability, can reduce repeated modeling for different process conditions, and better serve a wide range of intelligent manufacturing applications. In general, this solution aims to achieve an intelligent, accurate, and responsive tracking technology to meet the needs of industrial process quality control and ensure stable output.
相比当前技术,本发明的技术的核心创新在于充分融合了LSTM预测与卡尔曼滤波估计算法这两类算法的优势,实现更强大的跟踪效果。具体来说,该技术通过构建统一的数据驱动框架,运用LSTM网络学习历史模式,实现了对动态规律的在线建模与预测,大幅提升了对变化的响应下料速度。与此同时,该技术将LSTM的预测输出与卡尔曼滤波的状态估计进行信息融合,使最终的状态评估更加准确稳定。这种预测与滤波的有效结合,不仅增强了对异常的识别与预警能力,还使该技术框架拥有较强的复用性,简化了针对不同应用场景的模型构建与调整过程,并实现了实时在线监测。总体来说,该技术通过算法的协同创新,取得了当前跟踪技术难以兼顾的准确性与高响应性Compared with the current technology, the core innovation of the technology of the present invention is that it fully integrates the advantages of the two types of algorithms, LSTM prediction and Kalman filter estimation algorithm, to achieve a more powerful tracking effect. Specifically, this technology builds a unified data-driven framework and uses the LSTM network to learn historical patterns to achieve online modeling and prediction of dynamic rules, greatly improving the response and feeding speed to changes. At the same time, this technology fuses the prediction output of LSTM with the state estimation of Kalman filter to make the final state assessment more accurate and stable. This effective combination of prediction and filtering not only enhances the ability to identify and warn of anomalies, but also makes the technical framework highly reusable, simplifies the model construction and adjustment process for different application scenarios, and realizes real-time online monitoring. Overall, through the collaborative innovation of algorithms, this technology has achieved accuracy and high responsiveness that are difficult to balance with current tracking technologies.
通过建立规律的LSTM预测模型,能够对合浆过程的动态变化做出快速响应,提高跟踪的实时性。相较于现有技术,该方案采用LSTM与卡尔曼滤波的融合,可显著提升状态估计的精度和稳定性。充分利用LSTM对复杂时序模式的建模能力和卡尔曼滤波的递归估计算法,增强了方案对动态变化的适应性。该方案提供实时、准确、可靠的状态评估,大大提升了合浆质量监控水平。该方案计算量适中,可通过并行化实现工业过程的实时在线监测与控制。通过快速、精准地识别异常,该方案增强了合浆过程的稳定性,降低了质量风险。综上,该方案显著提高了合浆的可控性,对保证电池质量具有重要意义。By establishing a regular LSTM prediction model, it is possible to respond quickly to the dynamic changes of the slurry mixing process and improve the real-time tracking. Compared with the existing technology, this solution adopts the fusion of LSTM and Kalman filtering, which can significantly improve the accuracy and stability of state estimation. By making full use of LSTM's modeling ability for complex time series patterns and Kalman filtering's recursive estimation algorithm, the adaptability of the solution to dynamic changes is enhanced. This solution provides real-time, accurate and reliable state assessment, greatly improving the level of slurry mixing quality monitoring. The solution has a moderate amount of computation and can achieve real-time online monitoring and control of industrial processes through parallelization. By quickly and accurately identifying anomalies, the solution enhances the stability of the slurry mixing process and reduces quality risks. In summary, this solution significantly improves the controllability of slurry mixing, which is of great significance to ensuring battery quality.
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit the same. Although the present invention has been described in detail with reference to the aforementioned embodiments, a person skilled in the art should understand that the technical solutions described in the aforementioned embodiments may still be modified, or some of the technical features may be replaced by equivalents. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311692864.XA CN117744476A (en) | 2023-12-05 | 2023-12-05 | Real-time dosage monitoring method and system for finished product slurry tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311692864.XA CN117744476A (en) | 2023-12-05 | 2023-12-05 | Real-time dosage monitoring method and system for finished product slurry tank |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117744476A true CN117744476A (en) | 2024-03-22 |
Family
ID=90278560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311692864.XA Pending CN117744476A (en) | 2023-12-05 | 2023-12-05 | Real-time dosage monitoring method and system for finished product slurry tank |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117744476A (en) |
-
2023
- 2023-12-05 CN CN202311692864.XA patent/CN117744476A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114048600B (en) | Digital twin-driven multi-model fusion industrial system anomaly detection method | |
CN110580021B (en) | An intelligent monitoring system for granary environment safety based on field bus | |
CN118133203A (en) | A method for fault diagnosis of electric energy metering detection information | |
CN111461187B (en) | An intelligent detection system for building settlement | |
CN109407654A (en) | A kind of non-linear causality analysis method of industrial data based on sparse depth neural network | |
CN114943179A (en) | Reliability evaluation and residual life prediction method based on multi-source degradation data fusion | |
CN114397043B (en) | Multi-point temperature intelligent detection system | |
CN116668083A (en) | A method and system for detecting network traffic anomalies | |
CN113536671B (en) | A Lithium Battery Life Prediction Method Based on LSTM | |
CN118689119A (en) | Crop growth monitoring method and system in cloud planting cabin based on big data technology | |
CN117575328A (en) | Industrial chain risk assessment method and device based on graph attention neural network | |
CN119148664B (en) | Intelligent factory management platform and management method based on digital twinning | |
CN113726559B (en) | Based on artificial intelligence network safety analysis early warning system | |
Saxena et al. | Software effort estimation using neuro-fuzzy approach | |
CN114548701A (en) | Process early warning method and system for analyzing and estimating coupling structure of full-scale measuring point | |
CN112561203B (en) | Method and system for realizing water level early warning based on clustering and GRU | |
CN117744476A (en) | Real-time dosage monitoring method and system for finished product slurry tank | |
CN113222268A (en) | Multi-mode reasoning-based tobacco baking quality prediction model establishing method | |
CN117214179A (en) | Intelligent detection method for big product defect data and cloud platform system thereof | |
CN117590746A (en) | Pressure detection and intelligent control method and its cloud platform system | |
CN118075782A (en) | AI-driven 5G (Internet of things) based data processing system | |
Wang et al. | Innovative risk early warning model based on internet of things under big data technology | |
CN115659201A (en) | Internet of things gas concentration detection method and monitoring system | |
CN119415365B (en) | An intelligent online learning system and method for optimizing energy consumption of multiple devices | |
Zeng et al. | An Improved Convolution Neural Network-Based Fast Estimation Method for Construction Project Cost |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |