CN117736495A - Flame-retardant and high-temperature resistant polyurethane foam material and preparation method thereof - Google Patents
Flame-retardant and high-temperature resistant polyurethane foam material and preparation method thereof Download PDFInfo
- Publication number
- CN117736495A CN117736495A CN202311740611.5A CN202311740611A CN117736495A CN 117736495 A CN117736495 A CN 117736495A CN 202311740611 A CN202311740611 A CN 202311740611A CN 117736495 A CN117736495 A CN 117736495A
- Authority
- CN
- China
- Prior art keywords
- polyurethane foam
- solution
- parts
- temperature
- foam material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920005830 Polyurethane Foam Polymers 0.000 title claims abstract description 68
- 239000011496 polyurethane foam Substances 0.000 title claims abstract description 68
- 239000003063 flame retardant Substances 0.000 title claims abstract description 51
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 239000000463 material Substances 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title claims abstract description 34
- 229920002472 Starch Polymers 0.000 claims abstract description 38
- 239000008107 starch Substances 0.000 claims abstract description 38
- 235000019698 starch Nutrition 0.000 claims abstract description 38
- 239000004114 Ammonium polyphosphate Substances 0.000 claims abstract description 25
- 235000019826 ammonium polyphosphate Nutrition 0.000 claims abstract description 25
- 229920001276 ammonium polyphosphate Polymers 0.000 claims abstract description 25
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 20
- -1 silicon-boron modified hydroxyapatite Chemical class 0.000 claims abstract description 20
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 19
- 239000010452 phosphate Substances 0.000 claims abstract description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims abstract description 14
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims abstract description 12
- 239000004327 boric acid Substances 0.000 claims abstract description 8
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 7
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims abstract description 3
- 239000012752 auxiliary agent Substances 0.000 claims abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 49
- 239000008367 deionised water Substances 0.000 claims description 41
- 229910021641 deionized water Inorganic materials 0.000 claims description 41
- 238000003756 stirring Methods 0.000 claims description 32
- 229920001451 polypropylene glycol Polymers 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 22
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 claims description 21
- 239000000945 filler Substances 0.000 claims description 18
- 229920005862 polyol Polymers 0.000 claims description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 150000003077 polyols Chemical class 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 8
- 229920000570 polyether Polymers 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 claims description 8
- 239000004088 foaming agent Substances 0.000 claims description 6
- 229910021389 graphene Inorganic materials 0.000 claims description 6
- 229910000403 monosodium phosphate Inorganic materials 0.000 claims description 6
- 235000019799 monosodium phosphate Nutrition 0.000 claims description 6
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 5
- 239000004094 surface-active agent Substances 0.000 claims description 5
- 239000012974 tin catalyst Substances 0.000 claims description 5
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 239000006261 foam material Substances 0.000 claims 2
- 238000002156 mixing Methods 0.000 claims 2
- 238000001816 cooling Methods 0.000 claims 1
- 238000007598 dipping method Methods 0.000 claims 1
- 235000019441 ethanol Nutrition 0.000 claims 1
- 230000003301 hydrolyzing effect Effects 0.000 claims 1
- 230000003472 neutralizing effect Effects 0.000 claims 1
- 238000000967 suction filtration Methods 0.000 claims 1
- 238000009210 therapy by ultrasound Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 239000007864 aqueous solution Substances 0.000 abstract description 39
- 238000002791 soaking Methods 0.000 abstract description 8
- 229910002804 graphite Inorganic materials 0.000 abstract description 6
- 239000010439 graphite Substances 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 229910052796 boron Inorganic materials 0.000 abstract description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 3
- 230000004048 modification Effects 0.000 abstract description 3
- 238000012986 modification Methods 0.000 abstract description 3
- 230000000704 physical effect Effects 0.000 abstract description 3
- 238000003786 synthesis reaction Methods 0.000 abstract description 3
- 229920000620 organic polymer Polymers 0.000 abstract description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract 2
- 229910000077 silane Inorganic materials 0.000 abstract 2
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 239000006260 foam Substances 0.000 description 42
- 239000000243 solution Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 10
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical group [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 238000005470 impregnation Methods 0.000 description 6
- 229920002635 polyurethane Polymers 0.000 description 6
- 239000004814 polyurethane Substances 0.000 description 6
- 238000005303 weighing Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005886 esterification reaction Methods 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000032050 esterification Effects 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical group C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910014472 Ca—O Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- CFOAUMXQOCBWNJ-UHFFFAOYSA-N [B].[Si] Chemical compound [B].[Si] CFOAUMXQOCBWNJ-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- DWSWCPPGLRSPIT-UHFFFAOYSA-N benzo[c][2,1]benzoxaphosphinin-6-ium 6-oxide Chemical compound C1=CC=C2[P+](=O)OC3=CC=CC=C3C2=C1 DWSWCPPGLRSPIT-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 210000000497 foam cell Anatomy 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000707 layer-by-layer assembly Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical group [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
技术领域Technical field
本发明属于有机高分子合成技术领域,具体涉及一种阻燃耐高温聚氨酯泡沫材料及其制备方法。The invention belongs to the technical field of organic polymer synthesis, and specifically relates to a flame-retardant and high-temperature-resistant polyurethane foam material and a preparation method thereof.
背景技术Background technique
聚氨酯泡沫是一种具有轻质、高强度、隔热、隔音和耐候性的多功能材料。可以追溯到20世纪40年代,当时德国科学家发明了这种材料,并最初应用在航空航天领域。聚氨酯泡沫具有优异的隔热性能,可减少能源损耗,提高建筑物的能效;它还可以有效阻挡噪音的传播,在许多方面具有优异的性能,但也存在一些耐热阻燃方面的缺点。以下是一些常见的缺点:聚氨酯泡沫的耐热性能受到温度的限制。在高温环境下,聚氨酯泡沫可能会融化、炭化或产生有毒烟雾。容易燃烧:尽管聚氨酯泡沫可以添加阻燃剂提高其阻燃性能,但仍然存在着燃烧的风险。在火灾发生时,聚氨酯泡沫可能会助燃,产生火焰和有毒气体。综上所述,聚氨酯泡沫的耐热阻燃性能存在一些缺点,需要在使用和处理过程中加以注意。在需要更高耐热阻燃性能的情况下,可能需要考虑其他替代材料。Polyurethane foam is a versatile material that is lightweight, high-strength, thermally insulating, soundproofing and weather-resistant. It dates back to the 1940s, when German scientists invented the material and initially applied it in aerospace. Polyurethane foam has excellent thermal insulation properties, which can reduce energy loss and improve the energy efficiency of buildings; it can also effectively block the spread of noise and has excellent performance in many aspects, but it also has some shortcomings in heat resistance and flame retardancy. Here are some common disadvantages: The heat resistance of polyurethane foam is limited by temperature. In high-temperature environments, polyurethane foam may melt, char, or produce toxic fumes. Easy to burn: Although flame retardants can be added to polyurethane foam to improve its flame retardant properties, there is still a risk of burning. In the event of a fire, polyurethane foam may support combustion, producing flames and toxic gases. In summary, the heat-resistant and flame-retardant properties of polyurethane foam have some shortcomings, which need to be paid attention to during use and handling. Where higher thermal and flame retardant properties are required, other alternative materials may need to be considered.
传统上,提高聚氨酯泡沫的耐高温性能的方法主要包括添加阻燃剂和无机填料。阻燃剂如三聚氰胺和DOPO可以有效地抑制泡沫在高温下的燃烧,但这些阻燃剂往往具有一定的毒性和环境问题。另一种方法是添加无机填料,如白炭黑和可膨胀石墨。这些填料可以增加泡沫的热稳定性和抗热膨胀性能。然而,该方法的主要弊端是无机填料与聚氨酯基体的结合不牢固,导致填料在泡沫表面留下痕迹,影响泡沫的外观和性能。此外,传统方法也存在一些其他问题,如增加材料的密度、降低泡沫的力学性能以及限制了泡沫的应用温度范围。Traditionally, methods to improve the high temperature resistance of polyurethane foam mainly include adding flame retardants and inorganic fillers. Flame retardants such as melamine and DOPO can effectively inhibit the burning of foam at high temperatures, but these flame retardants often have certain toxicity and environmental problems. Another approach is to add inorganic fillers such as silica and expandable graphite. These fillers can increase the thermal stability and resistance to thermal expansion of the foam. However, the main drawback of this method is that the bonding between the inorganic filler and the polyurethane matrix is not strong, causing the filler to leave traces on the foam surface, affecting the appearance and performance of the foam. In addition, traditional methods also have other problems, such as increasing the density of the material, reducing the mechanical properties of the foam, and limiting the application temperature range of the foam.
发明内容Contents of the invention
本发明的目的在于提供一种阻燃耐高温聚氨酯泡沫材料及其制备方法。在不改变原有聚氨酯泡沫结构、力学性能的基础上,大大增强其在高温下的物理性能稳定性,阻燃性可达到离火自熄,制备过程中使用较为环保的二苯基甲烷二异氰酸酯、水等作为原料进行发泡,适用于实际生产应用。The object of the present invention is to provide a flame-retardant and high-temperature resistant polyurethane foam material and a preparation method thereof. Without changing the structure and mechanical properties of the original polyurethane foam, the stability of its physical properties at high temperatures is greatly enhanced. The flame retardancy can achieve self-extinguishing when leaving fire. The more environmentally friendly diphenylmethane diisocyanate is used in the preparation process. , water, etc. are used as raw materials for foaming, which is suitable for actual production applications.
为实现上述目的,本发明采用如下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
一种耐高温耐水解聚氨酯泡沫材料,由下列原料按重量份数组成:聚醚多元醇40-60份、聚丙二醇40-60份、聚合物多元醇0-20份(其中聚醚多元醇、聚丙二醇、聚合物多元醇重量份数总和为100份),胺类催化剂0.4-1.0份、锡类催化剂0.8-1.4份、表面活性剂0.8-1.2份、发泡剂2.8-3.6份、耐高温填料1-5份、二苯基甲烷二异氰酸酯MDI 60-90份,将制备好的聚氨酯泡沫浸渍在含有阻燃助剂的水溶液中得到阻燃耐高温聚氨酯泡沫材料。A high-temperature resistant and hydrolysis-resistant polyurethane foam material, which is composed of the following raw materials in parts by weight: 40-60 parts of polyether polyol, 40-60 parts of polypropylene glycol, and 0-20 parts of polymer polyol (including polyether polyol, The total weight of polypropylene glycol and polymer polyol is 100 parts), 0.4-1.0 parts of amine catalyst, 0.8-1.4 parts of tin catalyst, 0.8-1.2 parts of surfactant, 2.8-3.6 parts of foaming agent, high temperature resistance Filler 1-5 parts, diphenylmethane diisocyanate MDI 60-90 parts, the prepared polyurethane foam is immersed in an aqueous solution containing flame retardant additives to obtain a flame retardant and high temperature resistant polyurethane foam material.
所述的耐高温填料为硅硼改性的羟基磷灰石BSHA。其制备过程如下:The high temperature resistant filler is silicon boron modified hydroxyapatite BSHA. Its preparation process is as follows:
(1)称取5g纳米羟基磷灰石,加入装有100mL去离子水的烧杯中搅拌0.5h形成水溶液,再取另一烧杯加入100mL90%wt的乙醇溶液,加入2mLKH550使其水解0.5h,之后将两种溶液混合并在40℃下反应4h得到KH550改性的羟基磷灰石。(1) Weigh 5g of nano-hydroxyapatite, add it to a beaker containing 100mL of deionized water and stir for 0.5h to form an aqueous solution. Then add 100mL of 90%wt ethanol solution to another beaker, add 2mL of LKH550 to hydrolyze it for 0.5h, and then The two solutions were mixed and reacted at 40°C for 4 hours to obtain KH550 modified hydroxyapatite.
(2)将步骤(1)中反应后得到的NHA抽滤洗涤,并重新加入到100mL去离子水中得到NHA水溶液,称取1g硼酸加入NHA溶液中在40℃下反应3h后,真空抽滤并烘干得到硅硼改性的羟基磷灰石BSHA。(2) Filter and wash the NHA obtained after the reaction in step (1), and re-add it to 100 mL of deionized water to obtain an NHA aqueous solution. Weigh 1g of boric acid and add it to the NHA solution. After reacting for 3 hours at 40°C, vacuum filter and After drying, silicon boron modified hydroxyapatite BSHA is obtained.
所述阻燃浸渍溶液制备过程如下:The preparation process of the flame retardant impregnation solution is as follows:
(1)磷酸酯化淀粉水溶液的制备:通过湿法制备磷酸酯化淀粉P-CS,称取3g的磷酸二氢钠至于250mL三颈烧瓶中,添加50mL去离子水,超声0.5h进行分散,加入20g淀粉于混合液中,充分搅拌,采用稀盐酸调节其pH=6.5,将三颈烧瓶转移至水浴锅中,回流冷却,在65℃下反应0.5h后,冷却,采用1mol/LNaOH中和至中性,用无水乙醇及去离子水洗涤,抽滤,在50℃干燥24h得到P-CS。称取10g P-CS加入装有200mL去离子水的烧杯中得到5%wt P-CS水溶液。(1) Preparation of phosphated starch aqueous solution: Prepare phosphated starch P-CS by wet method, weigh 3g of sodium dihydrogen phosphate into a 250mL three-neck flask, add 50mL of deionized water, and disperse with ultrasonic for 0.5h. Add 20g starch to the mixed solution, stir thoroughly, use dilute hydrochloric acid to adjust the pH = 6.5, transfer the three-neck flask to a water bath, reflux and cool, react at 65°C for 0.5h, cool, and neutralize with 1mol/L NaOH to neutrality, washed with absolute ethanol and deionized water, filtered with suction, and dried at 50°C for 24 hours to obtain P-CS. Weigh 10 g of P-CS and add it to a beaker containing 200 mL of deionized water to obtain a 5% wt P-CS aqueous solution.
(2)通过改进的Hummers法制备可膨胀氧化石墨烯EGO,称取0.5g EGO加入装有100mL去离子水的烧杯中超声分散1h,之后配制2%wt 100mL十六烷基三甲基溴化铵水溶液加入超声分散后的EGO水溶液中并搅拌2h得到改性后的EGO水溶液。(2) Prepare expandable graphene oxide EGO by the improved Hummers method. Weigh 0.5g EGO and add it to a beaker filled with 100mL deionized water for ultrasonic dispersion for 1 hour. Then prepare 2% wt 100mL cetyl trimethyl bromide. The ammonium aqueous solution was added to the ultrasonic dispersed EGO aqueous solution and stirred for 2 hours to obtain a modified EGO aqueous solution.
(3)将1g-5g聚磷酸铵加入到装有100mL去离子水的烧杯中配制成聚磷酸铵水溶液。(3) Add 1g-5g of ammonium polyphosphate into a beaker containing 100 mL of deionized water to prepare an aqueous ammonium polyphosphate solution.
所述耐高温聚氨酯泡沫材料的制备包括以下步骤:The preparation of the high temperature resistant polyurethane foam material includes the following steps:
(1)将聚醚多元醇、聚丙二醇、聚合物多元醇按比例加入到容器中,然后按配方加入耐高温填料、胺类催化剂、锡类催化剂、表面活性剂、发泡剂,在转速为1500r/min的搅拌机下搅拌2-3min,记为A组分;(1) Add polyether polyol, polypropylene glycol, and polymer polyol into the container in proportion, then add high-temperature-resistant filler, amine catalyst, tin catalyst, surfactant, and foaming agent according to the formula, and rotate at a speed of Stir for 2-3 minutes with a mixer at 1500r/min, and record it as component A;
(2)将二苯基甲烷二异氰酸酯MDI按比例加入到另一个容器中,在转速为1000r/min的搅拌机下搅拌10-30s,记为B组分;(2) Add diphenylmethane diisocyanate MDI into another container in proportion, stir for 10-30 seconds with a mixer rotating at 1000 r/min, and record it as component B;
(3)将A组分转速提高至2500-3000r/min,之后将B组分倒入装有A组分的容器中,高速拌机下搅拌10-15s,待体系发白,将体系倒入模具中,控制模具温度25±0.5℃,24-72h后切割,即得到耐高温聚氨酯泡沫材料。(3) Increase the speed of component A to 2500-3000r/min, then pour component B into the container containing component A, and stir for 10-15 seconds with a high-speed mixer. When the system turns white, pour the system into In the mold, control the mold temperature to 25±0.5°C and cut after 24-72 hours to obtain high-temperature resistant polyurethane foam.
所述阻燃耐高温聚氨酯泡沫材料其浸泡方法如下:The soaking method of the flame-retardant and high-temperature-resistant polyurethane foam material is as follows:
(1)将泡沫先浸渍在磷酸酯淀粉水溶液中,经过多次捏挤后浸渍0.5h,之后将浸渍好的泡沫60℃烘干2h;(1) Dip the foam into the phosphate starch aqueous solution first, squeeze it several times and then immerse it for 0.5h, and then dry the soaked foam at 60°C for 2h;
(2)再将烘干好的泡沫浸入改性后的可膨胀氧化石墨烯水溶液中,重复捏挤后浸渍0.5h,在60℃烘干2h;(2) Then immerse the dried foam into the modified expandable graphene oxide aqueous solution, squeeze repeatedly, then immerse for 0.5h, and dry at 60°C for 2h;
(3)再将烘干好的泡沫浸入聚磷酸铵水溶液中,重复捏挤后浸渍0.5h,之后60℃烘干2h得到阻燃耐高温聚氨酯泡沫材料。(3) Then immerse the dried foam into the ammonium polyphosphate aqueous solution, squeeze repeatedly and then soak for 0.5 hours, and then dry at 60°C for 2 hours to obtain a flame-retardant and high-temperature resistant polyurethane foam material.
所述聚醚多元醇为美国亨斯迈集团生产的聚醚多元醇 The polyether polyol is a polyether polyol produced by Huntsman Group in the United States.
所述聚丙二醇为江苏省海安石油化工厂生产的Mn=3000的聚丙二醇PPG;The polypropylene glycol is polypropylene glycol PPG with Mn=3000 produced by Hai'an Petrochemical Plant in Jiangsu Province;
所述聚合物多元醇为宁波宏义化工有限公司生产的POP-2045。The polymer polyol is POP-2045 produced by Ningbo Hongyi Chemical Co., Ltd.
所述胺类催化剂为美国迈图高新材料集团生产的三乙烯二胺A-33;The amine catalyst is triethylenediamine A-33 produced by Momentive Advanced Materials Group in the United States;
所述锡类催化剂为上海阿拉丁生化科技有限公司生产的辛酸亚锡T-9;The tin catalyst is stannous octoate T-9 produced by Shanghai Aladdin Biochemical Technology Co., Ltd.;
所述表面活性剂为美国迈图高新材料集团生产的硅油6008;The surfactant is silicone oil 6008 produced by the American Momentive High-Tech Materials Group;
所述发泡剂为去离子水;The foaming agent is deionized water;
所述二苯基甲烷二异氰酸酯为美国亨斯迈集团生产的MDI-8002。The diphenylmethane diisocyanate is MDI-8002 produced by Huntsman Group in the United States.
本发明的有益效果在于:The beneficial effects of the present invention are:
经过合理设计的生产配方及工艺,采用无毒的水作为发泡剂,使用较安全的二苯基甲烷二异氰酸酯制备的聚氨酯海绵具有健康环保的效益,兼备传统聚氨酯海绵的特点,更具有高强度、耐高温性、阻燃效果好的特点,即在温度170℃下仍保持着优秀的热稳定性,不会出现鞋垫模压过程中高温裂解等现象。After rationally designing the production formula and process, using non-toxic water as the foaming agent, and using the safer diphenylmethane diisocyanate, the polyurethane sponge has the benefits of health and environmental protection. It has the characteristics of traditional polyurethane sponge and has high strength. , high temperature resistance and good flame retardant effect, that is, it still maintains excellent thermal stability at a temperature of 170°C, and will not suffer from high-temperature cracking during the insole molding process.
将纳米羟基磷灰石单独加入时,由于其羟基存在,相对于一部分的小分子多元醇,会导致泡沫变软,且添加量多会导致容易塌泡,而本发明对羟基磷灰石进行表面改性,得到硅烷接枝的羟基磷灰石,再使用硼酸添加阻燃耐高温元素硼,得到硅硼改性的羟基磷灰石,作为纳米填料添加,占据其大部分羟基且经KH550改性后与基体结合更好,不仅可以增加强度,而且硅硼磷元素的存在可以能够提高其耐温性。When nano-hydroxyapatite is added alone, due to the presence of its hydroxyl group, the foam will become softer than a part of the small molecule polyol, and adding a large amount will cause the foam to easily collapse. However, the present invention performs surface treatment on hydroxyapatite. Modify to obtain silane-grafted hydroxyapatite, and then use boric acid to add the flame-retardant and high-temperature resistant element boron to obtain silicon-boron-modified hydroxyapatite, which is added as a nanofiller to occupy most of its hydroxyl groups and is modified with KH550 Afterwards, it is better combined with the matrix, which not only increases the strength, but also the presence of silicon, boron and phosphorus elements can improve its temperature resistance.
由于使用添加法添加阻燃填料时,由于EGO的比表面积大,较难分散在泡沫体系内,而聚磷酸铵与磷酸酯淀粉会团聚,会在泡沫中形成成核点,发泡不均导致塌泡或者收缩,而浸泡法会使阻燃填料覆盖在泡沫上,特别是使用淀粉的高粘性以及生物相容性,作为基低第一层覆盖效果好。本发明首先对淀粉进行磷酸酯化的改性,得到磷酸酯淀粉,以磷酸酯淀粉为碳源能使高分子化合物在燃烧时形成一层致密的炭层,将可膨胀石墨进行氧化得到膨胀氧化石墨EGO,在EGO上使用十六烷基三甲基溴化铵进行改性,使其带正电,由于磷酸酯淀粉在水中带负电荷,可以与磷酸酯淀粉自组装以更好结合,且以EGO作为气源,同时在燃烧时膨胀达到阻燃目的;再配制好聚磷酸铵水溶液,由于聚磷酸铵水溶液为负电荷,可以与在表面的EGO相互吸附,使添加了耐高温助剂的聚氨酯泡沫分别在三种水溶液中浸泡烘干,得到阻燃耐高温聚氨酯泡沫材料,该方法使用生物相容性较好的羟基磷灰石作为耐高温填料,且无毒无害,与制得泡沫强度高,而使用浸渍法使其在不改变原有聚氨酯泡沫结构、力学性能的基础上,大大增强其在高温下的物理性能稳定性,阻燃性可达到离火自熄。When adding flame retardant fillers using the additive method, EGO has a large specific surface area and is difficult to disperse in the foam system. Ammonium polyphosphate and phosphate starch will aggregate and form nucleation points in the foam, resulting in uneven foaming. The foam collapses or shrinks, and the soaking method will make the flame retardant filler cover the foam, especially the high viscosity and biocompatibility of starch, which has a good first layer coverage effect as a base. In the present invention, starch is first modified by phosphate esterification to obtain phosphate starch. Using phosphate starch as a carbon source can cause the polymer compound to form a dense carbon layer when burned, and the expandable graphite is oxidized to obtain expanded oxidized graphite. Graphite EGO, modified with cetyltrimethylammonium bromide on EGO to make it positively charged. Since phosphate starch is negatively charged in water, it can self-assemble with phosphate starch for better combination, and EGO is used as the gas source, and it expands during combustion to achieve the purpose of flame retardancy; then prepare an aqueous solution of ammonium polyphosphate. Since the aqueous ammonium polyphosphate solution has a negative charge, it can adsorb each other with the EGO on the surface, so that the high-temperature-resistant additives can be added. The polyurethane foam is soaked and dried in three aqueous solutions to obtain a flame-retardant and high-temperature-resistant polyurethane foam material. This method uses hydroxyapatite with good biocompatibility as a high-temperature resistant filler and is non-toxic and harmless. It is similar to the foam produced. It has high strength, and the use of impregnation method greatly enhances the stability of its physical properties at high temperatures without changing the original polyurethane foam structure and mechanical properties. The flame retardancy can achieve self-extinguishing when leaving fire.
附图说明Description of drawings
图1为硅硼改性的羟基磷灰石红外谱图;Figure 1 shows the infrared spectrum of silicon boron modified hydroxyapatite;
图2为磷酸酯淀粉的红外谱图;Figure 2 is the infrared spectrum of phosphate starch;
图3为阻燃耐高温聚氨酯泡沫的扫描电镜图。Figure 3 is a scanning electron microscope image of flame-retardant and high-temperature resistant polyurethane foam.
具体实施方式Detailed ways
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。In order to make the content of the present invention easier to understand, the technical solutions of the present invention will be further described below in conjunction with specific embodiments, but the present invention is not limited thereto.
实施例1(1g聚磷酸铵1%溶液浓度)Example 1 (1g ammonium polyphosphate 1% solution concentration)
耐高温填料为硅硼改性的羟基磷灰石BSHA。其制备过程如下:The high temperature resistant filler is silicon boron modified hydroxyapatite BSHA. Its preparation process is as follows:
(1)称取5g纳米羟基磷灰石,加入装有100mL去离子水的烧杯中搅拌0.5h形成水溶液,再取另一烧杯加入100mL90%wt的乙醇溶液,加入2mLKH550使其水解0.5h,之后将两种溶液混合并在40℃下反应4h得到KH550改性的羟基磷灰石。(1) Weigh 5g of nano-hydroxyapatite, add it to a beaker containing 100mL of deionized water and stir for 0.5h to form an aqueous solution. Then add 100mL of 90%wt ethanol solution to another beaker, add 2mL of LKH550 to hydrolyze it for 0.5h, and then The two solutions were mixed and reacted at 40°C for 4 hours to obtain KH550 modified hydroxyapatite.
(2)将(1)中反应后得到的NHA抽滤洗涤,并重新加入到100mL去离子水中得到NHA水溶液,称取1g硼酸加入NHA溶液中在40℃下反应3h后,真空抽滤并烘干得到硅硼改性的羟基磷灰石BSHA。(2) Filter and wash the NHA obtained after the reaction in (1), and re-add it to 100 mL of deionized water to obtain an NHA aqueous solution. Weigh 1g of boric acid and add it to the NHA solution. After reacting for 3 hours at 40°C, vacuum filter and dry. Silica boron modified hydroxyapatite BSHA was obtained by drying.
阻燃浸渍溶液制备过程如下:The preparation process of flame retardant impregnation solution is as follows:
(1)磷酸酯化淀粉水溶液的制备:通过湿法制备磷酸酯化淀粉P-CS,称取3g的磷酸二氢钠至于250mL三颈烧瓶中,添加50mL去离子水,超声0.5h进行分散,加入20g淀粉于混合液中,充分搅拌,采用稀盐酸调节其pH=6.5,将三颈烧瓶转移至水浴锅中,回流冷却,在65℃下反应0.5h后,冷却,采用1mol/LNaOH中和至中性,用无水乙醇及去离子水洗涤,抽滤,在50℃干燥24h得到P-CS。(1) Preparation of phosphated starch aqueous solution: Prepare phosphated starch P-CS by wet method, weigh 3g of sodium dihydrogen phosphate into a 250mL three-neck flask, add 50mL of deionized water, and disperse with ultrasonic for 0.5h. Add 20g starch to the mixed solution, stir thoroughly, use dilute hydrochloric acid to adjust the pH = 6.5, transfer the three-neck flask to a water bath, reflux and cool, react at 65°C for 0.5h, cool, and neutralize with 1mol/L NaOH to neutrality, washed with absolute ethanol and deionized water, filtered with suction, and dried at 50°C for 24 hours to obtain P-CS.
称取10g P-CS加入装有200mL去离子水的烧杯中得到5%wt P-CS水溶液。Weigh 10 g of P-CS and add it to a beaker containing 200 mL of deionized water to obtain a 5% wt P-CS aqueous solution.
(2)通过改进的Hummers法制备可膨胀氧化石墨烯EGO,称取0.5g EGO加入装有100mL去离子水的烧杯中超声分散1h,之后配制2%wt 100mL十六烷基三甲基溴化铵水溶液加入超声分散后的EGO水溶液中并搅拌2h得到改性后的EGO水溶液。(2) Prepare expandable graphene oxide EGO by the improved Hummers method. Weigh 0.5g EGO and add it to a beaker filled with 100mL deionized water for ultrasonic dispersion for 1 hour. Then prepare 2% wt 100mL cetyl trimethyl bromide. The ammonium aqueous solution was added to the ultrasonic dispersed EGO aqueous solution and stirred for 2 hours to obtain a modified EGO aqueous solution.
(3)将1g聚磷酸铵加入到装有100mL去离子水的烧杯中配制成聚磷酸铵水溶液。(3) Add 1g of ammonium polyphosphate into a beaker containing 100 mL of deionized water to prepare an aqueous solution of ammonium polyphosphate.
耐高温聚氨酯泡沫材料的制备包括以下步骤:The preparation of high temperature resistant polyurethane foam materials includes the following steps:
(1)称取AQUAPUR 40份、PPG 40份、POP20份、A-330.4份、T-90.8份、L-60020.8份、去离子水3.2份、BSHA 3份、MDI 70份(1)Weighing AQUAPUR 40 parts, PPG 40 parts, POP 20 parts, A-330.4 parts, T-90.8 parts, L-600 20.8 parts, deionized water 3.2 parts, BSHA 3 parts, MDI 70 parts
(2)将AQUAPUR、PPG、PPG按比例加入到容器中,然后按配方加入BSHA、A-33、T-9、L-6002、去离子水,在转速为1500r/min的搅拌机下搅拌2-3min,记为A组分;(2) will Add AQUAPUR, PPG, and PPG into the container in proportion, then add BSHA, A-33, T-9, L-6002, and deionized water according to the formula, and stir for 2-3 minutes with a mixer rotating at 1500r/min, recorded as Component A;
(3)将MDI按比例加入到另一个容器中,在转速为1000r/min的搅拌机下搅拌10-30s,记为B组分;(3) Add MDI into another container in proportion, stir for 10-30 seconds with a mixer rotating at 1000r/min, and record it as component B;
(4)将A组分转速提高至2500-3000r/min,之后将B组分倒入装有A组分的容器中,高速拌机下搅拌10-15s,待体系发白,将体系倒入模具中,控制模具温度25±0.5℃,24-72h后切割,即得到耐高温聚氨酯泡沫材料。(4) Increase the speed of component A to 2500-3000r/min, then pour component B into the container containing component A, and stir for 10-15 seconds with a high-speed mixer. When the system turns white, pour the system into In the mold, control the mold temperature to 25±0.5°C and cut after 24-72 hours to obtain high-temperature resistant polyurethane foam.
所述阻燃耐高温聚氨酯泡沫材料其浸泡方法如下:The soaking method of the flame-retardant and high-temperature-resistant polyurethane foam material is as follows:
(1)将泡沫先浸渍在磷酸酯淀粉水溶液中,经过多次捏挤后浸渍0.5h,之后将浸渍好的泡沫60℃烘干2h;(1) Dip the foam into the phosphate starch aqueous solution first, squeeze it several times and then immerse it for 0.5h, and then dry the soaked foam at 60°C for 2h;
(2)再将烘干好的泡沫浸入改性后的可膨胀氧化石墨烯水溶液中,重复捏挤后浸渍0.5h,在60℃烘干2h;(2) Then immerse the dried foam into the modified expandable graphene oxide aqueous solution, squeeze repeatedly, then immerse for 0.5h, and dry at 60°C for 2h;
(3)再将烘干好的泡沫浸入聚磷酸铵水溶液中,重复捏挤后浸渍0.5h,之后60℃烘干2h得到阻燃耐高温聚氨酯泡沫材料。(3) Then immerse the dried foam into the ammonium polyphosphate aqueous solution, squeeze repeatedly and then soak for 0.5 hours, and then dry at 60°C for 2 hours to obtain a flame-retardant and high-temperature resistant polyurethane foam material.
实施例2(3g聚磷酸铵,溶液浓度为3%)Example 2 (3g ammonium polyphosphate, solution concentration is 3%)
(1)耐高温填料为硅硼改性的羟基磷灰石BSHA:同时实例1。(1) The high temperature resistant filler is silicon boron modified hydroxyapatite BSHA: Simultaneous Example 1.
(2)阻燃浸渍溶液制备:同时实例1,且将其中聚磷酸铵增至3g,溶液浓度为3%。(2) Preparation of flame retardant impregnation solution: At the same time as Example 1, increase the amount of ammonium polyphosphate to 3 g, and the solution concentration is 3%.
(3)耐高温聚氨酯泡沫材料的制备:同时实例1。(3) Preparation of high temperature resistant polyurethane foam materials: Simultaneous Example 1.
(4)阻燃耐高温聚氨酯泡沫材料制备:同时实例1。(4) Preparation of flame-retardant and high-temperature-resistant polyurethane foam materials: Simultaneous Example 1.
实施例3(5g聚磷酸铵,溶液浓度为5%)Example 3 (5g ammonium polyphosphate, solution concentration is 5%)
(1)耐高温填料为硅硼改性的羟基磷灰石BSHA:同时实例1。(1) The high temperature resistant filler is silicon boron modified hydroxyapatite BSHA: Simultaneous Example 1.
(2)阻燃浸渍溶液制备:同时实例1,且将其中聚磷酸铵增至5g,溶液浓度为5%。(2) Preparation of flame retardant impregnation solution: At the same time as Example 1, and increase the amount of ammonium polyphosphate to 5g, and the solution concentration is 5%.
(3)耐高温聚氨酯泡沫材料的制备:同时实例1。(3) Preparation of high temperature resistant polyurethane foam materials: Simultaneous Example 1.
(4)阻燃耐高温聚氨酯泡沫材料制备:同时实例1。(4) Preparation of flame-retardant and high-temperature-resistant polyurethane foam materials: Simultaneous Example 1.
对比例1(空白组,不添加耐高温填料以及不浸泡阻燃溶液)Comparative Example 1 (blank group, no high temperature resistant filler added and no immersion in flame retardant solution)
聚氨酯泡沫材料的制备:Preparation of polyurethane foam materials:
(1)称取AQUAPUR 40份、PPG 40份、POP20份、A-330.4份、T-90.8份、L-60020.8份、去离子水3.2份、MDI 70份。(1)Weighing AQUAPUR 40 parts, PPG 40 parts, POP 20 parts, A-330.4 parts, T-90.8 parts, L-600 20.8 parts, deionized water 3.2 parts, MDI 70 parts.
(2)将AQUAPUR、PPG、PPG按比例加入到容器中,然后按配方加入BSHA、A-33、T-9、L-6002、去离子水,在转速为1500r/min的搅拌机下搅拌2-3min,记为A组分;(2) will Add AQUAPUR, PPG, and PPG into the container in proportion, then add BSHA, A-33, T-9, L-6002, and deionized water according to the formula, and stir for 2-3 minutes with a mixer rotating at 1500r/min, recorded as Component A;
(3)将MDI按比例加入到另一个容器中,在转速为1000r/min的搅拌机下搅拌10-30s,记为B组分;(3) Add MDI into another container in proportion, stir for 10-30 seconds with a mixer rotating at 1000r/min, and record it as component B;
(4)将A组分转速提高至2500-3000r/min,之后将B组分倒入装有A组分的容器中,高速拌机下搅拌10-15s,待体系发白,将体系倒入模具中,控制模具温度25±0.5℃,24-72h后切割,即得到聚氨酯泡沫材料。(4) Increase the speed of component A to 2500-3000r/min, then pour component B into the container containing component A, and stir for 10-15 seconds with a high-speed mixer. When the system turns white, pour the system into In the mold, control the mold temperature to 25±0.5°C and cut after 24-72 hours to obtain the polyurethane foam material.
对比例2(只进行P-CS浸泡)Comparative Example 2 (only P-CS soaking)
聚氨酯泡沫材料的制备:Preparation of polyurethane foam materials:
(1)称取AQUAPUR 40份、PPG 40份、POP20份、A-330.4份、T-90.8份、L-60020.8份、去离子水3.2份、BSHA 3份、MDI 70份。(1)Weighing AQUAPUR 40 parts, PPG 40 parts, POP 20 parts, A-330.4 parts, T-90.8 parts, L-600 20.8 parts, deionized water 3.2 parts, BSHA 3 parts, MDI 70 parts.
(2)将AQUAPUR、PPG、PPG按比例加入到容器中,然后按配方加入BSHA、A-33、T-9、L-6002、去离子水,在转速为1500r/min的搅拌机下搅拌2-3min,记为A组分;(2) will Add AQUAPUR, PPG, and PPG into the container in proportion, then add BSHA, A-33, T-9, L-6002, and deionized water according to the formula, and stir for 2-3 minutes with a mixer rotating at 1500r/min, recorded as Component A;
(3)将MDI按比例加入到另一个容器中,在转速为1000r/min的搅拌机下搅拌10-30s,记为B组分;(3) Add MDI into another container in proportion, stir for 10-30 seconds with a mixer rotating at 1000r/min, and record it as component B;
(4)将A组分转速提高至2500-3000r/min,之后将B组分倒入装有A组分的容器中,高速拌机下搅拌10-15s,待体系发白,将体系倒入模具中,控制模具温度25±0.5℃,24-72h后切割,即得到耐高温聚氨酯泡沫材料。(4) Increase the speed of component A to 2500-3000r/min, then pour component B into the container containing component A, and stir for 10-15 seconds with a high-speed mixer. When the system turns white, pour the system into In the mold, control the mold temperature to 25±0.5°C and cut after 24-72 hours to obtain high-temperature resistant polyurethane foam.
阻燃耐高温聚氨酯泡沫材料的制备:Preparation of flame retardant and high temperature resistant polyurethane foam materials:
(1)磷酸酯化淀粉水溶液的制备:通过湿法制备磷酸酯化淀粉P-CS,称取3g的磷酸二氢钠至于250mL三颈烧瓶中,添加50mL去离子水,超声0.5h进行分散,加入20g淀粉于混合液中,充分搅拌,采用稀盐酸调节其pH=6.5,将三颈烧瓶转移至水浴锅中,回流冷却,在65℃下反应0.5h后,冷却,采用1mol/LNaOH中和至中性,用无水乙醇及去离子水洗涤,抽滤,在50℃干燥24h得到P-CS。(1) Preparation of phosphated starch aqueous solution: Prepare phosphated starch P-CS by wet method, weigh 3g of sodium dihydrogen phosphate into a 250mL three-neck flask, add 50mL of deionized water, and disperse with ultrasonic for 0.5h. Add 20g starch to the mixed solution, stir thoroughly, use dilute hydrochloric acid to adjust the pH = 6.5, transfer the three-neck flask to a water bath, reflux and cool, react at 65°C for 0.5h, cool, and neutralize with 1mol/L NaOH to neutrality, washed with absolute ethanol and deionized water, filtered with suction, and dried at 50°C for 24 hours to obtain P-CS.
称取10g P-CS加入装有200mL去离子水的烧杯中得到5%wt P-CS水溶液。Weigh 10 g of P-CS and add it to a beaker containing 200 mL of deionized water to obtain a 5% wt P-CS aqueous solution.
(2)将泡沫浸渍在磷酸酯淀粉水溶液中,经过多次捏挤后浸渍0.5h,之后将浸渍好的泡沫60℃烘干2h得到阻燃聚氨酯泡沫。(2) Dip the foam into the phosphate starch aqueous solution, squeeze it several times and then immerse it for 0.5 hours. Then dry the soaked foam at 60°C for 2 hours to obtain a flame-retardant polyurethane foam.
对比例3(只进行P-CS以及改性EGO浸泡)Comparative Example 3 (only soaking P-CS and modified EGO)
聚氨酯泡沫材料的制备:Preparation of polyurethane foam materials:
(1)称取AQUAPUR 40份、PPG 40份、POP 20份、A-330.4份、T-90.8份、L-60020.8份、去离子水3.2份、BSHA 3份、MDI 70份。(1)Weighing AQUAPUR 40 parts, PPG 40 parts, POP 20 parts, A-330.4 parts, T-90.8 parts, L-600 20.8 parts, deionized water 3.2 parts, BSHA 3 parts, MDI 70 parts.
(2)将AQUAPUR、PPG、PPG按比例加入到容器中,然后按配方加入BSHA、A-33、T-9、L-6002、去离子水,在转速为1500r/min的搅拌机下搅拌2-3min,记为A组分;(2) will Add AQUAPUR, PPG, and PPG into the container in proportion, then add BSHA, A-33, T-9, L-6002, and deionized water according to the formula, and stir for 2-3 minutes with a mixer rotating at 1500r/min, recorded as Component A;
(3)将MDI按比例加入到另一个容器中,在转速为1000r/min的搅拌机下搅拌10-30s,记为B组分;(3) Add MDI into another container in proportion, stir for 10-30 seconds with a mixer rotating at 1000r/min, and record it as component B;
(4)将A组分转速提高至2500-3000r/min,之后将B组分倒入装有A组分的容器中,高速拌机下搅拌10-15s,待体系发白,将体系倒入模具中,控制模具温度25±0.5℃,24-72h后切割,即得到耐高温聚氨酯泡沫材料。(4) Increase the speed of component A to 2500-3000r/min, then pour component B into the container containing component A, and stir for 10-15 seconds with a high-speed mixer. When the system turns white, pour the system into In the mold, control the mold temperature to 25±0.5°C and cut after 24-72 hours to obtain high-temperature resistant polyurethane foam.
阻燃耐高温聚氨酯泡沫材料的制备:Preparation of flame retardant and high temperature resistant polyurethane foam materials:
(1)磷酸酯化淀粉水溶液的制备:通过湿法制备磷酸酯化淀粉P-CS,称取3g的磷酸二氢钠至于250mL三颈烧瓶中,添加50mL去离子水,超声0.5h进行分散,加入20g淀粉于混合液中,充分搅拌,采用稀盐酸调节其pH=6.5,将三颈烧瓶转移至水浴锅中,回流冷却,在65℃下反应0.5h后,冷却,采用1mol/LNaOH中和至中性,用无水乙醇及去离子水洗涤,抽滤,在50℃干燥24h得到P-CS。(1) Preparation of phosphated starch aqueous solution: Prepare phosphated starch P-CS by wet method, weigh 3g of sodium dihydrogen phosphate into a 250mL three-neck flask, add 50mL of deionized water, and disperse with ultrasonic for 0.5h. Add 20g starch to the mixed solution, stir thoroughly, use dilute hydrochloric acid to adjust the pH = 6.5, transfer the three-neck flask to a water bath, reflux and cool, react at 65°C for 0.5h, cool, and neutralize with 1mol/L NaOH to neutrality, washed with absolute ethanol and deionized water, filtered with suction, and dried at 50°C for 24 hours to obtain P-CS.
称取10g P-CS加入装有200mL去离子水的烧杯中得到5%wt P-CS水溶液。Weigh 10 g of P-CS and add it to a beaker containing 200 mL of deionized water to obtain a 5% wt P-CS aqueous solution.
(2)通过改进的Hummers法制备可膨胀氧化石墨烯EGO,称取0.5g EGO加入装有100mL去离子水的烧杯中超声分散1h,之后配制2%wt 100mL十六烷基三甲基溴化铵水溶液加入超声分散后的EGO水溶液中并搅拌2h得到改性后的EGO水溶液。(2) Prepare expandable graphene oxide EGO by the improved Hummers method. Weigh 0.5g EGO and add it to a beaker filled with 100mL deionized water for ultrasonic dispersion for 1 hour. Then prepare 2% wt 100mL cetyl trimethyl bromide. The ammonium aqueous solution was added to the ultrasonic dispersed EGO aqueous solution and stirred for 2 hours to obtain a modified EGO aqueous solution.
(3)将泡沫浸渍在磷酸酯淀粉水溶液中,经过多次捏挤后浸渍0.5h,之后将浸渍好的泡沫60℃烘干2h;再将烘干好的泡沫浸入聚磷酸铵水溶液中,重复捏挤后浸渍0.5h,之后60℃烘干2h得到阻燃耐高温聚氨酯泡沫材料。(3) Dip the foam into the phosphate starch aqueous solution, squeeze it for 0.5 hours several times, and then dry the soaked foam at 60°C for 2 hours; then immerse the dried foam into the ammonium polyphosphate aqueous solution, and repeat After extrusion, it was soaked for 0.5h, and then dried at 60°C for 2h to obtain a flame-retardant and high-temperature resistant polyurethane foam material.
对比例4(添加1份的耐高温填料)Comparative Example 4 (add 1 part of high temperature resistant filler)
聚氨酯泡沫材料的制备:Preparation of polyurethane foam materials:
(1)称取AQUAPUR 40份、PPG 40份、POP 20份、A-330.4份、T-90.8份、L-60020.8份、去离子水3.2份、BSHA 1份、MDI 70份。(1)Weighing AQUAPUR 40 parts, PPG 40 parts, POP 20 parts, A-330.4 parts, T-90.8 parts, L-600 20.8 parts, deionized water 3.2 parts, BSHA 1 part, MDI 70 parts.
(2)将AQUAPUR、PPG、PPG按比例加入到容器中,然后按配方加入BSHA、A-33、T-9、L-6002、去离子水,在转速为1500r/min的搅拌机下搅拌2-3min,记为A组分;(2) will Add AQUAPUR, PPG, and PPG into the container in proportion, then add BSHA, A-33, T-9, L-6002, and deionized water according to the formula, and stir for 2-3 minutes with a mixer rotating at 1500r/min, recorded as Component A;
(3)将MDI按比例加入到另一个容器中,在转速为1000r/min的搅拌机下搅拌10-30s,记为B组分;(3) Add MDI into another container in proportion, stir for 10-30 seconds with a mixer rotating at 1000r/min, and record it as component B;
(4)将A组分转速提高至2500-3000r/min,之后将B组分倒入装有A组分的容器中,高速拌机下搅拌10-15s,待体系发白,将体系倒入模具中,控制模具温度25±0.5℃,24-72h后切割,即得到耐高温聚氨酯泡沫材料。(4) Increase the speed of component A to 2500-3000r/min, then pour component B into the container containing component A, and stir for 10-15 seconds with a high-speed mixer. When the system turns white, pour the system into In the mold, control the mold temperature to 25±0.5°C and cut after 24-72 hours to obtain high-temperature resistant polyurethane foam.
对比例5(添加5份的耐高温填料)Comparative Example 5 (add 5 parts of high temperature resistant filler)
聚氨酯泡沫材料的制备:Preparation of polyurethane foam materials:
(1)称取AQUAPUR 40份、PPG 40份、POP 20份、A-330.4份、T-90.8份、L-60020.8份、去离子水3.2份、BSHA 5份、MDI 70份。(1)Weighing AQUAPUR 40 parts, PPG 40 parts, POP 20 parts, A-330.4 parts, T-90.8 parts, L-600 20.8 parts, deionized water 3.2 parts, BSHA 5 parts, MDI 70 parts.
(2)将AQUAPUR、PPG、PPG按比例加入到容器中,然后按配方加入BSHA、A-33、T-9、L-6002、去离子水,在转速为1500r/min的搅拌机下搅拌2-3min,记为A组分;(2) will Add AQUAPUR, PPG, and PPG into the container in proportion, then add BSHA, A-33, T-9, L-6002, and deionized water according to the formula, and stir for 2-3 minutes with a mixer rotating at 1500r/min, recorded as Component A;
(3)将MDI按比例加入到另一个容器中,在转速为1000r/min的搅拌机下搅拌10-30s,记为B组分;(3) Add MDI into another container in proportion, stir for 10-30 seconds with a mixer rotating at 1000r/min, and record it as component B;
(4)将A组分转速提高至2500-3000r/min,之后将B组分倒入装有A组分的容器中,高速拌机下搅拌10-15s,待体系发白,将体系倒入模具中,控制模具温度25±0.5℃,24-72h后切割,即得到耐高温聚氨酯泡沫材料。(4) Increase the speed of component A to 2500-3000r/min, then pour component B into the container containing component A, and stir for 10-15 seconds with a high-speed mixer. When the system turns white, pour the system into In the mold, control the mold temperature to 25±0.5°C and cut after 24-72 hours to obtain high-temperature resistant polyurethane foam.
性能测试Performance Testing
将实施例1-3及对比例1-5得到的海绵切割成不同大小的尺寸,根据国家标准GB/T24451—2020《慢回弹软质聚氨酯泡沫塑料》、GBT 6344-2008《软质泡沫聚合材料拉伸强度和断裂伸长率的测定》、GBT 10807-2006《软质泡沫聚合材料硬度的测定(压陷法)》GB/T9640—2008《GB/T 9640-2008软质和硬质泡沫聚合材料加速老化试验方法》的要求对海绵产品进行泡沫密度、撕裂强度的试验,并对海绵的拉伸强度、断裂伸长率、压缩永久变形及三者的热存放(170℃,140h处理)后变化率进行测试。所得海绵的检测结果见表1。The sponges obtained in Examples 1-3 and Comparative Examples 1-5 were cut into different sizes. According to the national standards GB/T24451-2020 "Slow rebound soft polyurethane foam" and GBT 6344-2008 "Soft foam polymerization" Determination of tensile strength and elongation at break of materials", GBT 10807-2006 "Determination of hardness of soft foam polymeric materials (indentation method)" GB/T 9640-2008 "GB/T 9640-2008 Soft and rigid foams According to the requirements of "Accelerated Aging Test Method for Polymeric Materials", the foam density and tear strength of sponge products are tested, and the tensile strength, elongation at break, compression permanent deformation of the sponge and the thermal storage of the three (170℃, 140h treatment ) and then test the rate of change. The test results of the sponge obtained are shown in Table 1.
表1聚氨酯泡沫成品性能检测Table 1 Performance testing of finished polyurethane foam products
表1数据表明:由本发明所述的阻燃耐高温聚氨酯泡沫材料(实施例1-3),在170℃的热环境下处理后,其物理机械性能变化率没有超过5%,相比于对比例中1、4、5号的泡沫,其耐高温性能有了很大的提升,可以看出随着改性后的HA添加量由1份增加到5份,其强度逐渐提升,但是断裂伸长率逐渐降低,这是因为HA颗粒作为填充物加入聚氨酯泡沫体系中,能够提供额外的强度和支撑,且其具有良好的亲附性,与聚氨酯分子能够形成良好的界面粘附。这种粘附能够加强羟基磷灰石与聚氨酯泡沫之间的结合,提高材料的综合力学性能。HA的化学组成主要是钙、磷、氧和羟基等元素,其中磷酸根和羟基的结合形成了稳定的磷酸钙结构。这种结构在高温条件下具有较好的化学稳定性,不易发生分解、溶解或氧化反应。羟基磷灰石的晶体结构稳定,呈现出六方晶系,具有较高的结晶度。其晶体结构中含有大量的Ca-O键和P-O键,这些键的强度较高,能够在高温下保持稳定性。通过硅硼改性后的HA后的表面能提高,能与聚氨酯泡沫相容性更好,且硼酸的加入可以与聚氨酯泡沫中的氮反应,形成硼酸胺进一步提高耐热性与阻燃性。The data in Table 1 shows that the change rate of the physical and mechanical properties of the flame-retardant and high-temperature-resistant polyurethane foam material (Examples 1-3) according to the present invention does not exceed 5% after being treated in a thermal environment of 170°C. The high-temperature resistance of foams No. 1, 4, and 5 in the ratio has been greatly improved. It can be seen that as the amount of modified HA increased from 1 part to 5 parts, its strength gradually increased, but the elongation at break The length gradually decreases because HA particles are added as fillers to the polyurethane foam system, which can provide additional strength and support, and they have good affinity and can form good interfacial adhesion with polyurethane molecules. This adhesion can strengthen the bond between hydroxyapatite and polyurethane foam and improve the comprehensive mechanical properties of the material. The chemical composition of HA is mainly calcium, phosphorus, oxygen, hydroxyl and other elements. The combination of phosphate and hydroxyl forms a stable calcium phosphate structure. This structure has good chemical stability under high temperature conditions and is not prone to decomposition, dissolution or oxidation reactions. The crystal structure of hydroxyapatite is stable, showing a hexagonal crystal system, and has a high degree of crystallinity. Its crystal structure contains a large number of Ca-O bonds and P-O bonds. These bonds have high strength and can maintain stability at high temperatures. The surface energy of HA modified by silicon boron is increased and it has better compatibility with polyurethane foam. The addition of boric acid can react with the nitrogen in the polyurethane foam to form boric acid amine to further improve the heat resistance and flame retardancy.
由实施例1-3可以看出,浸泡后的泡沫阻燃性能与聚磷酸铵浸渍液浓度有关,当聚磷酸铵浓度达5%时效果最好,与磷酸酯淀粉、EGO相互配合达到阻燃效果,燃烧时可以看到在其表面迅速形成碳层,隔绝氧气,火焰熄灭。与对比例相比可知,单独使用或者其中两者使用时,只有达到延缓燃烧时间的效果,对其自熄灭效果不佳,综上所述,证明了BSHA对聚氨酯海绵起到高温增强作用,使海绵在高温下基本不变,而浸泡后的海绵在燃烧时也可快速形成一层致密的炭层,快速阻燃,二者协同作用则起到更佳的效果。It can be seen from Examples 1-3 that the flame retardant performance of the foam after soaking is related to the concentration of ammonium polyphosphate impregnation liquid. The best effect is when the concentration of ammonium polyphosphate reaches 5%. It cooperates with phosphate starch and EGO to achieve flame retardancy. The effect is that when burning, you can see that a carbon layer quickly forms on its surface, cutting off oxygen and extinguishing the flame. Compared with the comparative example, it can be seen that when used alone or both of them are used, they can only achieve the effect of delaying the burning time, but have poor self-extinguishing effect. In summary, it is proved that BSHA plays a high-temperature reinforcing effect on polyurethane sponge, making it The sponge is basically unchanged at high temperatures, and the soaked sponge can quickly form a dense carbon layer when burned, which is quickly flame-retardant. The synergy of the two provides a better effect.
在图1中,HA存在磷酸根基团特征振动峰,包括1099cm-1和1041cm-1处的P-O反对称伸缩振动峰,962cm-1处的P-O伸缩振动峰,603cm-1和566cm-1处的O-P-O弯曲振动峰。3569cm-1、1637cm-1处的峰为羟基基团特征振动峰,3450cm-1处的宽峰代表产品中有一定量的结晶水存在。在1340cm-1处形成的新峰是由于KH550通过硅醇键与羟基形成Si-O-C键,表面KH550的成功接枝,而在750cm-1左右的峰加强表面B-N键的存在,表面硼酸与KH550上面的氨基反应。综上所述,表面硅硼改性的羟基磷灰石的成功合成。In Figure 1, HA has characteristic vibration peaks of the phosphate group, including PO antisymmetric stretching vibration peaks at 1099cm -1 and 1041cm -1 , PO stretching vibration peaks at 962cm -1 , and PO stretching vibration peaks at 603cm -1 and 566cm -1 OPO bending vibration peak. The peaks at 3569cm -1 and 1637cm -1 are the characteristic vibration peaks of the hydroxyl group, and the broad peak at 3450cm -1 represents the presence of a certain amount of crystal water in the product. The new peak formed at 1340cm -1 is due to the successful grafting of surface KH550 by the formation of Si-OC bonds between KH550 and hydroxyl groups through silanol bonds, while the peak at around 750cm -1 strengthens the existence of surface BN bonds, surface boric acid and KH550 Amino reaction above. In summary, the surface silicon-boron modified hydroxyapatite was successfully synthesized.
在图2中,P-CS的成功合成在于933cm-1处的吸收峰及1400cm-1至1150cm-1的吸收峰,933cm-1处的吸收峰为P-O-C特征峰,因此可以判断磷酸二氢钠成功与淀粉上的羟基进行酯化反应,在1400cm-1至1150cm-1之间出现多个小峰,属于P=N的特征峰,能够证明淀粉中引入了P=N双键及P-O-C,酯化反应只是在其原有的结构上增加磷酸基团,以达到磷酸酯化的效果。In Figure 2, the successful synthesis of P-CS lies in the absorption peak at 933cm -1 and the absorption peak from 1400cm -1 to 1150cm -1 . The absorption peak at 933cm -1 is the characteristic peak of POC, so sodium dihydrogen phosphate can be judged The esterification reaction was successfully carried out with the hydroxyl groups on the starch. Multiple small peaks appeared between 1400cm -1 and 1150cm -1 , which are characteristic peaks of P=N, which can prove that P=N double bonds and POC were introduced into the starch, and esterification The reaction only adds phosphate groups to its original structure to achieve the effect of phosphate esterification.
在图3中,(a)图显示出添加了BSHA后的泡沫泡孔形态,可以看出其泡沫开孔率较好,孔径在100到200微米之间,泡孔膜壁较薄,泡孔间隙较小。(b)图中为浸泡了磷酸酯淀粉水溶液烘干后的泡沫,可以看出淀粉的附着量较多且能够渗透入泡沫内部。(c)图表示由再有EGO浸泡后的泡沫,可以看出在泡沫表面存在明显褶皱,且吸附较好,基本能包覆住泡沫表面,在燃烧时能够迅速膨胀,释放气体达到阻燃效果。(d)图表示浸泡了三种阻燃溶液后的泡沫,可以看出磷酸酯淀粉分布在泡沫上,且EGO附在泡沫上的程度高,而附图可以看到P元素分布整个泡沫上,表面聚磷酸铵能够与改性后的EGO形成静电自组装,使其结合更加紧密。In Figure 3, (a) shows the morphology of the foam cells after adding BSHA. It can be seen that the foam has a good opening rate, the pore diameter is between 100 and 200 microns, the cell membrane wall is thin, and the cells are The gap is smaller. (b) The picture shows the foam soaked in phosphate starch aqueous solution and dried. It can be seen that the starch has a large amount of adhesion and can penetrate into the foam. (c) The picture shows the foam after being soaked in EGO. It can be seen that there are obvious wrinkles on the surface of the foam, and the adsorption is good. It can basically cover the foam surface. It can expand rapidly when burning and release gas to achieve the flame retardant effect. . The picture (d) shows the foam after soaking in three flame retardant solutions. It can be seen that the phosphate starch is distributed on the foam, and the degree of EGO attached to the foam is high. In the attached picture, it can be seen that the P element is distributed throughout the foam. The surface ammonium polyphosphate can form electrostatic self-assembly with the modified EGO, making it more tightly combined.
宏观性能由表1测试可知,高温时与聚氨酯基体结合紧密的BSHA可起到增强结构稳定的作用,燃烧时P-CS、EGO、聚磷酸铵相互配合起协同阻燃效果。From the macroscopic performance test in Table 1, it can be seen that BSHA, which is closely combined with the polyurethane matrix at high temperatures, can enhance structural stability. During combustion, P-CS, EGO, and ammonium polyphosphate cooperate with each other to achieve a synergistic flame retardant effect.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the patentable scope of the present invention shall fall within the scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311740611.5A CN117736495A (en) | 2023-12-15 | 2023-12-15 | Flame-retardant and high-temperature resistant polyurethane foam material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311740611.5A CN117736495A (en) | 2023-12-15 | 2023-12-15 | Flame-retardant and high-temperature resistant polyurethane foam material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117736495A true CN117736495A (en) | 2024-03-22 |
Family
ID=90253997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311740611.5A Pending CN117736495A (en) | 2023-12-15 | 2023-12-15 | Flame-retardant and high-temperature resistant polyurethane foam material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117736495A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119505519A (en) * | 2025-01-21 | 2025-02-25 | 湖南强泰新材料有限公司 | A polyurethane composite material and its preparation method and application |
-
2023
- 2023-12-15 CN CN202311740611.5A patent/CN117736495A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119505519A (en) * | 2025-01-21 | 2025-02-25 | 湖南强泰新材料有限公司 | A polyurethane composite material and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Meng et al. | Self-healing polyelectrolyte complex coating for flame retardant flexible polyurethane foam with enhanced mechanical property | |
Shang et al. | Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene | |
Yu et al. | Interfacial engineering to construct P-loaded hollow nanohybrids for flame-retardant and high-performance epoxy resins | |
CN112831174B (en) | Preparation and application of ZnO @ MOF @ polyphosphazene flame retardant | |
CN106674597B (en) | A kind of modified layered inorganic matter of nitrogen phosphorus synergistic flame retardant and its preparation method and application | |
CN108410066B (en) | SiO (silicon dioxide)2Preparation method of nano particle modified expandable graphite and flame-retardant polypropylene | |
CN106279634A (en) | A kind of high-strength anti-flaming hard polyaminoester insulation material for building and preparation method thereof | |
CN117736495A (en) | Flame-retardant and high-temperature resistant polyurethane foam material and preparation method thereof | |
CN108003620A (en) | A kind of bio-based foaming agent foam silastic material and preparation method thereof | |
CN101307129A (en) | A kind of polyurethane/organic montmorillonite nanocomposite material and preparation method thereof | |
Jia et al. | Applications of GO/OA‐POSS Layer‐by‐Layer self‐assembly nanocoating on flame retardancy and smoke suppression of flexible polyurethane foam | |
Yuan et al. | Tri-phase flame retardant system towards advanced energy-saving building materials with highly efficient fire and smoke toxicity reductions | |
CN117048160A (en) | Automobile light interior material and preparation method thereof | |
CN114591557B (en) | Flame-retardant low-density polyethylene composite material and preparation method thereof | |
CN115465852A (en) | Preparation of smoke suppressant, flame retardant and smoke suppressant rigid polyurethane foam | |
de Souza et al. | Recent development on flame retardants for polyurethanes | |
Li et al. | Investigation of MXene@ APP/FDS/AgNPs@ EG system for preparing multifunctional thermoplastic polyurethane composites with flame retardancy and electromagnetic shielding performance | |
Han et al. | Optimal design of energy-saving foam with multifunctional characteristics: Superb flame retardancy, outstanding hydrophobic, excellent thermal insulation and robust mechanical performances | |
CN115182158A (en) | A kind of flame retardant TPU fiber membrane material and preparation method thereof | |
CN116355276B (en) | A kind of halogen-free silicone material with core-shell structure, preparation method and application | |
CN114773707B (en) | Beta-cyclodextrin microcapsule ammonium polyphosphate intumescent flame-retardant low-density polyethylene and preparation method thereof | |
CN116769369A (en) | Intumescent fire-retardant coating and preparation method thereof | |
Gao et al. | Highly flame retardant of cotton fabric with a sandwich-like CoMnAl-LDH/bio-waterborne polyurethane/phytic acid nanocoating | |
CN116462825A (en) | Smoke-inhibiting flame-retardant polyurethane soft foam and preparation method thereof | |
CN115141350A (en) | Environment-friendly flame-retardant semi-rigid polyurethane foam plastic for automobile engine hood and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |