CN117730146A - Production of lytic phages - Google Patents

Production of lytic phages Download PDF

Info

Publication number
CN117730146A
CN117730146A CN202280049285.0A CN202280049285A CN117730146A CN 117730146 A CN117730146 A CN 117730146A CN 202280049285 A CN202280049285 A CN 202280049285A CN 117730146 A CN117730146 A CN 117730146A
Authority
CN
China
Prior art keywords
virus
phage
bacterial cell
genes
synonym
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280049285.0A
Other languages
Chinese (zh)
Inventor
J·费尔南德斯罗德里格斯
A·德克鲁勒
A·勒沃
I·卡纳达斯布拉斯科
A·马修
T·卡利尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erig Biotechnology Co ltd
Original Assignee
Erig Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erig Biotechnology Co ltd filed Critical Erig Biotechnology Co ltd
Priority claimed from PCT/EP2022/062987 external-priority patent/WO2022238555A1/en
Publication of CN117730146A publication Critical patent/CN117730146A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a producer bacterial cell for producing lytic phage particles or a lytic phage-derived delivery vehicle, said producer bacterial cell stably comprising at least one phage structural gene and at least one phage DNA packaging gene, said phage structural gene and phage DNA packaging gene being derived from a lytic bacterial phage, wherein the expression of at least one of said phage structural genes and/or at least one of said phage DNA packaging genes in said producer bacterial cell is controlled by an induction mechanism.

Description

Production of lytic phages
Technical Field
The present invention relates to bacterial cells for producing lytic phage particles and methods of using such bacterial cells.
Background
Lytic bacteriophages (phages) are a self-replicating virus that is able to infect and lyse its specific host bacteria. Lytic phages are considered as an alternative solution against antimicrobial resistant pathogens due to their host specificity and non-toxicity.
However, lytic phages are naturally not stably maintained in the genome and/or as episomes/in strains, which makes their production on an industrial scale extremely complex.
Furthermore, most current phage or phage-derived delivery vehicle generation methods mean the use of bacterial species or strains as natural hosts for the phage as production cells. Such methods may be dangerous as a result when such bacterial cells are pathogenic, for example when they produce toxins. Furthermore, many bacterial species cannot be easily manipulated, for example, because of their growth conditions, or because these bacteria have no effective genetic tools.
Thus, there is a need for methods that allow for safe, easier and efficient production of lytic phages or lytic phage-derived particles.
The inventors believe that the phage may be regarded as a more or less large genetic circuit, the final output of which is to produce more phage particles. To this end, whether the phage is lytic, temperate or chronic (e.g., filamentous phage such as M13), the inventors believe that the information encoded in its genome can be broadly classified as:
genes specific for insertion/excision (for temperate phages).
Genes specifically for DNA replication, RNA transcription, etc. In fact, for example, some lytic phages encode their own RNA or DNA polymerase. Some genes modify the RNA polymerase of the host to be able to work beyond the terminator and if the prophage sequence is present in plasmid or linear plasmid form, some other genes are involved in the isolation of the prophage sequence.
Genes specifically used to package the newly synthesized phage genome into the newly synthesized phage capsid: termination enzymes and accessory proteins, ligases, and the like.
-structural genes specific for the construction of protein capsids for DNA: in addition to stringent structural genes such as capsid genes, tape measures, fibers, substrates, etc., many other genes are needed to assemble the components (chaperones, proteases) and proteins that can be packaged within the capsid, either as scaffolds or as leader proteins injected into the cell (e.g., RNA polymerase of phage N4 or some small leader proteins in other phages (minor pilot protein)).
Genes associated with defenses against host anti-phage mechanisms, degradation/modification of host elements to complete the cleavage cycle, super-rejection mechanisms or genes beneficial to the host.
DNA packaging and structural gene classes are deeply linked in that the packaging mechanism recognizes the pre-assembled heads and the DNA to be packaged in these heads, starting and stopping DNA packaging.
The inventors hypothesize that by extracting and differentiating all the modules defined above, it is possible to construct a system containing all the excision/insertion, replication and regulatory elements from non-lytic phages and encoding packaging/structural elements of lytic phages, since they can be considered as independent genetic modules as the inventors believe.
Treating them as independent genetic modules may also allow the construction of a system containing only the desired lytic phage structures and/or regulatory elements to be produced under the control of a primary regulatory element (e.g., an inducible repressor) that may not originate from a phage. For example, only the structural operon and DNA packaging machinery of lytic phage can be placed under the control of a repressor that responds to small molecules or physical/chemical signals (LacI, araC, phlF, λci, etc.), triggering the production of all elements required to produce a pure mature lytic phage delivery particle (phage or packaged phagemid). This "reduced" version of the phage genome is stably maintained in the bacterial production strain.
Summary of The Invention
The present invention stems from the unexpected discovery by the inventors that by exchanging the structural operon of an Escherichia coli (Escherichia coli) producing strain encoding a system that produces pure Lambda-packaged phagemid with structural elements of a strictly lytic phage, such as a T7 phage, the assembly and packaging of pure heterologous lytic phagemid particles can be driven upon supplementation with a plasmid containing the correct packaging signal (LTR for T7 phage). Thus, the inventors herein demonstrate that packaged phagemids can be structurally based on T7 lytic phage production, but are regulated and maintained in a lysogenic state by the Lambda prophage mechanism in E.coli producing strains.
The inventors have also shown that the structural operon of Propionibacterium freudenreichii (P.freudenreichii) prophage can be exchanged with the structural operon of the lytic phage of the skin bacillus acnes (C.acnes) strain. In this way, the inventors have shown that the assembly and packaging of pure Clostridium acnes phagemid can be driven by exchanging the structural operon of the Prophage of Propionibacterium freudenreichii with that of the lytic phage of the dermatophyte acnes strain.
The present invention thus relates to a producer bacterial cell for producing lytic phage particles or a lytic phage-derived delivery vehicle, said producer bacterial cell stably comprising at least one phage structural gene and at least one phage DNA packaging gene, said phage structural gene and phage DNA packaging gene being derived from a lytic bacteriophage,
wherein the expression of at least one of said phage structural genes and/or at least one of said phage DNA packaging genes in said producer bacterial cell is controlled by an induction mechanism.
The invention also relates to a method for producing lytic phage particles or a lytic phage-derived delivery vehicle comprising:
(a) Providing a producer bacterial cell of the invention, and
(b) In the production bacterial cell, inducing expression of the at least one of the phage structural genes and the at least one of the phage DNA packaging genes, and assembly of products expressed by the at least one phage structural gene and the at least one phage DNA packaging gene, thereby producing lytic phage particles or a lytic phage-derived delivery vehicle.
Another object of the present invention relates to a hybrid helper phage system comprising:
(i) At least one phage DNA packaging gene derived from a lytic bacteriophage,
(i') at least one phage structural gene derived from said lytic bacteriophage,
(i ") optionally, at least one phage gene involved in phage regulation derived from said lytic bacteriophage, and
(ii) At least one gene derived from a non-lytic bacteriophage involved in phage excision/insertion, phage DNA replication and/or phage regulation,
wherein the genes (i), (i') and (ii) are contained in separate nucleic acid molecules or separate nucleic acid molecules, and
wherein the hybrid helper phage system does not comprise any expressed phage structural genes derived from the non-lytic bacteriophage.
Detailed Description
Production of bacterial cells
The present invention relates to a producer bacterial cell for producing lytic phage particles or a lytic phage-derived delivery vehicle, said producer bacterial cell stably comprising at least one phage structural gene derived from a lytic bacteriophage and at least one phage DNA packaging gene,
wherein the expression of at least one of said phage structural genes and at least one of said phage DNA packaging genes in said producer bacterial cell is controlled by an induction mechanism.
As used herein, the term "phage particle" refers to a functional or nonfunctional (e.g., non-proliferative and/or replicative) viral particle.
As used herein, the term "lytic phage particle" refers to a particle derived from a phage that is not naturally stable in the genome and/or remains as an episome/in a strain and thus has a strictly lytic (as opposed to lysogenic) lifestyle, i.e. the infection process always ends with lysis of the strain of interest.
As used herein, the term "lytic phage-derived delivery vehicle" refers to any means that allows the payload to be transferred into bacteria and derived from lytic bacteriophage. In the context of the present invention, the term "lytic phage-derived delivery vehicle" further encompasses lytic phage-derived particles that do not comprise any payload but are capable of targeting bacterial cells.
Lytic phage-derived delivery vehicles may refer to lytic phage-derived scaffolds and may be obtained from natural, evolved or engineered lytic phage.
Bacterial cells
The producer bacterial cells of the invention may belong to any bacterial species or strain, in particular as defined under the "target bacteria" section below.
However, the producer bacterial cell is preferably a non-pathogen bacterial cell. Still preferably, the producer bacterial cell is an easily manipulable bacterial cell.
By "readily manipulable" is meant herein that bacterial cells may be cultured and/or modified using well known techniques.
In certain preferred embodiments, the producer bacterial cell is an E.coli bacterial cell. Alternatively, the producer bacterial cell may be a Bacteroides (bacterioides) bacterial cell, more particularly a Bacteroides thetaiotaomicron (Bacteroides thetaiotaomicron) bacterial cell, a propionibacterium freudenreichii (Fusobacterium) bacterial cell or a Streptococcus (Streptococcus) bacterial cell. In a particular embodiment, the producer bacterial cell is a propionibacterium freudenreichii bacterial cell.
The production bacterial cells of the present invention may be obtained by any technique well known to the skilled person, in particular by introducing said phage structural genes and phage DNA packaging genes derived from lytic bacterial phages into the bacterial cells by any technique well known in the art.
The producer bacterial cells of the invention can generally be obtained by homologous recombination or recombinant engineering involving, for example, MAGE (Wannier et al Recombineering and MAGE. Nat Rev Methods Primers, 7 (2021)), e.g., using CRISPR, TALEN, meganuclease and/or zinc finger techniques, or site-specific recombination with phage integrase, PASTE (Ioanidi et al, drag-and-drop genome insertion without DNA cleavage with CRISPR-directed integers. Biorxiv 2021.11.01.466786 (2021) doi 10.1101/2021.11.01.466786), or transposon-related CRISPR-Cas system (Ma et al, trends Microbiol 29,565-568 (2021)).
Phage DNA packaging gene and phage structural gene
The production bacterial cells of the present invention stably comprise at least one phage structural gene derived from a lytic bacteriophage and at least one phage DNA packaging gene.
By "stably included" or "stably included (stably comprising)" is meant herein that the production bacterial cell retains the phage structural gene and phage DNA packaging gene, either incorporated into its chromosome or on an episome that is typically maintained in the cell by selection (e.g., with an auxotroph, or drug resistance marker). Each gene stably contained by the producer bacterial cell may be independently located on a plasmid, on a helper phage, or integrated into the producer bacterial cell chromosome.
In certain embodiments, the producer bacterial cell stably comprises at least two, 3, 4, or all phage structural genes derived from the lytic bacteriophage, and at least one phage DNA packaging gene derived from the lytic bacteriophage.
In certain embodiments, the producer bacterial cell stably comprises at least one phage structural gene derived from the lytic bacteriophage and at least two or all phage DNA packaging genes derived from the lytic bacteriophage.
In particular embodiments, the producer bacterial cell stably comprises at least two, 3, 4 or all phage structural genes derived from the lytic bacteriophage and at least two or all phage DNA packaging genes derived from the lytic bacteriophage.
In particular embodiments, the producer bacterial cell stably comprises all phage structural genes derived from the lytic bacteriophage and all phage DNA packaging genes derived from the lytic bacteriophage.
By "phage structural gene" is meant herein a gene from a bacteriophage that is involved in the construction of the capsid of a bacteriophage protein. Phage structural genes include genes encoding phage structural elements; genes encoding phage proteins involved in the assembly of phage structural elements; and genes encoding phage proteins packaged within the capsid as scaffolds or as lead proteins to be injected into targeted bacterial cells.
Phage building elements are well known to the skilled person and depend on the type of bacteriophage from which they are derived. Phage building elements can be proteins, but also RNAs (e.g., phi29 of some phages, such as bacillus subtilis (Bacillus subtilis), encodes a structural scaffold made of RNA). Phage structural elements generally include capsid proteins, tape proteins, fibers, substrate proteins, tail sheath proteins, whisker proteins, ornamental proteins, and the like.
Phage proteins involved in the assembly of structural elements are well known to the skilled person and depend on the type of bacteriophage from which they are derived and optionally on the structural elements encoded by other phage structural genes. Phage proteins involved in the assembly of structural elements generally include phage chaperones and phage proteases.
Phage proteins that are packaged within the capsid as scaffolds or as lead proteins to be injected into target host cells are well known to the skilled artisan and depend on the type of bacteriophage from which they are derived. Examples of such phage proteins are RNA polymerase or small leader proteins from phage N4.
As the skilled artisan will appreciate, the presence of a particular phage structural gene in a production bacterial cell of the invention will depend on the bacteriophage from which the phage structural gene is derived.
By "phage DNA packaging gene" is meant herein a gene from a bacteriophage that participates in packaging the bacteriophage genome into the bacteriophage capsid. Phage DNA packaging genes are well known to the skilled artisan and include genes encoding phage terminases, genes encoding phage accessory proteins, genes encoding phage ligases, genes encoding phage exonucleases involved in DNA packaging, and genes encoding phage endonucleases involved in DNA packaging.
In certain embodiments, the producer bacterial cell further stably comprises at least one gene derived from the lytic bacteriophage involved in phage regulation.
By "genes involved in phage regulation" is meant herein phage genes involved in phage interaction with a host. Examples of genes involved in phage regulation include phage genes encoding the primary repressor, phage genes encoding anti-stop proteins, phage genes involved in transcription (such as phage genes encoding RNA polymerase), phage genes involved in superrejection mechanisms, phage genes involved in defense against host anti-phage mechanisms, phage genes involved in degradation and/or modification of host elements, e.g., to complete the lytic cycle, and phage genes that are beneficial to the host.
In particular embodiments, the producer bacterial cell stably comprises phage genes derived from the lytic bacteriophage that are involved in defense against host anti-phage mechanisms.
In another specific embodiment, the producer bacterial cell stably comprises a bacteriophage gene involved in transcription, such as a bacteriophage gene encoding an RNA polymerase, derived from the lytic bacteriophage.
In a specific embodiment, said phage structural gene and phage DNA packaging gene derived from said lytic bacteriophage, and optionally said gene derived from said lytic bacteriophage involved in phage regulation, are contained in at least one plasmid, chromosome and/or helper phage. In a specific embodiment, the phage structural gene and phage DNA packaging gene derived from the lytic bacteriophage, and optionally the gene derived from the lytic bacteriophage involved in phage regulation, are comprised in at least two separate nucleic acid molecules, in particular at least two plasmids, chromosomes, helper phage, or a combination thereof.
In a specific embodiment, the phage structural genes and phage DNA packaging genes derived from the lytic bacteriophage, and optionally the participating phage controls, genes derived from the lytic bacteriophage are included in a hybrid helper phage system as defined below.
In a specific embodiment, the phage structural gene and phage DNA packaging gene derived from the lytic bacteriophage and optionally the gene derived from the lytic bacteriophage involved in phage control are contained in a helper phage.
Induction mechanism
In the context of the present invention, the expression of at least one of said phage structural genes and/or at least one of said phage DNA packaging genes in said producer bacterial cells as defined in the "phage DNA packaging genes and phage structural genes" section above is controlled by at least one induction mechanism.
In a specific embodiment, the expression of at least one of said phage structural genes, in particular at least two, at least three or all of said phage structural genes in said producer bacterial cells is controlled by at least one induction mechanism, in particular by one induction mechanism.
In a specific embodiment, the expression of at least one, in particular at least two, at least three or all of said phage DNA packaging genes in said producing bacterial cells is controlled by at least one induction mechanism, in particular by one induction mechanism.
In certain embodiments, the same induction mechanism controls the expression of at least one of the phage structural genes and at least one of the phage DNA packaging genes.
In alternative embodiments, the expression of at least one of the phage structural genes and the expression of at least one of the phage DNA packaging genes are controlled by different induction mechanisms.
By "induction mechanism" is meant herein a mechanism encoded by a gene or set of genes contained, in particular stably contained, in the producer bacterial cell, which is capable of inducing their controlled gene expression in response to a given trigger.
In certain embodiments, the induction mechanism further controls the copy number of the at least one of the phage structural genes and/or the at least one of the phage DNA packaging genes. In other words, in a specific embodiment, the induction mechanism further controls the replication of said at least one of said phage structural genes and/or said at least one of said phage DNA packaging genes, in particular the replication of a nucleic acid molecule carrying said at least one of said phage structural genes and/or said at least one of said phage DNA packaging proteins.
In certain embodiments, the induction mechanism further controls assembly of products expressed by the at least one of the phage structural genes and the at least one of the phage DNA packaging genes.
Examples of such induction mechanisms include:
an induction system based on protein repressors or activators, which react to small molecules (e.g. sugars, quorum sensing molecules, gases, synthetic molecules, peptides, amino acids, metabolites, etc.), physical signals (temperature, pressure, etc.), chemical signals (osmotic pressure, pH, etc.), biological signals (cell density, DNA damage, etc.); these systems may be activated by secondary proteins such as orthogonal RNA polymerase or sigma factors.
Activating or repressing the protein degradation system due to transcription of the promoter.
RNA-based induction systems such as aptamers that react to the above signals, such as RNAi, CRISPRi, fulcrum systems, riboswitches, etc.
-one or more nucleic acids comprising at least one gene derived from a non-lytic bacteriophage involved in phage excision/insertion, phage DNA replication and/or phage regulation.
In particular embodiments, the induction mechanism comprises at least one gene derived from a non-lytic bacteriophage involved in phage excision/insertion, phage DNA replication, and/or phage regulation.
Thus, in particular embodiments, the producer bacterial cell further comprises at least one gene derived from a non-lytic bacteriophage involved in phage excision/insertion, phage DNA replication, and/or phage regulation.
Genes involved in phage excision/insertion, phage DNA replication and/or phage regulation
By "genes involved in phage excision/insertion" is meant herein genes from lysophage involved in excision of the phage (present as a prophage) from the genome or episome of the bacterial cell and/or insertion of the phage (present as a prophage) into the genome or episome of the bacterial cell.
By "genes involved in phage DNA replication" is meant herein genes from lysophage involved in phage DNA replication mechanisms. Examples of genes involved in phage DNA replication include genes encoding DNA polymerase and genes involved in isolation thereof if the prophage sequence is present in plasmid or linear plasmid form.
By "genes involved in phage regulation" is meant herein phage genes involved in phage interaction with a host. Examples of genes involved in phage regulation include phage genes encoding the primary repressor, phage genes encoding anti-stop proteins, phage genes involved in the superrepulsion mechanism, phage genes involved in the defense host against phage mechanisms, phage genes involved in degradation and/or modification of host elements, e.g., to complete the lytic cycle, and phage genes that are beneficial to the host.
In the context of the present invention, the genes involved in phage excision/insertion, phage DNA replication and/or phage regulation are not DNA packaging genes or structural genes as defined above.
In a preferred embodiment, the production bacterial cells of the present invention comprise at least one gene, preferably all genes, derived from a second type of bacteriophage involved in phage excision/insertion; at least one gene, preferably all genes, derived from a non-lytic bacteriophage involved in phage DNA replication; and/or at least one gene, preferably all genes, derived from a non-lytic bacteriophage involved in phage regulation.
In the context of the present invention, the producer bacterial cells do not comprise genes derived from lytic bacterial phages involved in phage excision/insertion and/or phage DNA replication.
In certain embodiments, the genes derived from the non-lytic bacteriophage involved in phage excision/insertion, phage DNA replication, and/or phage regulation are contained in at least one plasmid, chromosome, and/or helper phage. In a specific embodiment, the genes derived from the non-lytic bacteriophage involved in phage excision/insertion, phage DNA replication and/or phage regulation are comprised in at least two separate nucleic acid molecules, in particular at least two plasmids, chromosomes, helper phage or combinations thereof.
In a specific embodiment, the genes derived from the non-lytic bacteriophage involved in phage excision/insertion, phage DNA replication and/or phage regulation are comprised in a hybrid helper phage system as defined below.
In a specific embodiment, the genes derived from the non-lytic bacteriophage involved in phage excision/insertion, phage DNA replication and/or phage regulation are comprised in a helper phage system, more particularly on the same helper phage system as the phage structural genes and phage DNA packaging genes derived from the lytic bacteriophage and optionally the genes involved in phage regulation derived from the lytic bacteriophage.
In particular embodiments, the producer bacterial cell is from the same bacterial species or strain from which the non-lytic bacteriophage is derived and/or to which the non-lytic bacteriophage is targeted.
In a more specific embodiment, the producer bacterial cell is an E.coli bacterial cell. In another specific embodiment, the producer bacterial cell is a propionibacterium freudenreichii bacterial cell.
Other elements
In a particular embodiment, the producer bacterial cell of the invention further comprises at least one gene involved in the transcription of phage RNA.
By "gene involved in phage RNA transcription" is meant a gene from a temperate or lytic phage involved in phage RNA transcription machinery. Examples of such genes include genes encoding phage RNA polymerase and phage genes encoding proteins that modify the RNA polymerase of the host that are generally capable of exceeding terminator operation.
Bacteriophage and genes derived from bacteriophage
By "gene derived from a bacteriophage" is meant herein that the sequence of the gene is obtained from the bacteriophage, which is optionally modified, recoded and/or optimized compared to the sequence originally present in the bacteriophage. For example, the sequences may be recoded for codon exchange or optimization or prevention of recombination.
Bacteriophages are obligate intracellular parasites that multiply within bacteria by the selection of some or all of the host biosynthetic machinery (co-opt). Alternatively, some bacteriophages (lytic bacteriophages) are not naturally stable in the bacterial genome and/or as episomes in bacteria and cause bacterial lysis. Most phages range in size from 24-200nm in diameter. Phages contain nucleic acids (i.e., genomes) and proteins, and can be encapsulated by lipid membranes. Depending on the phage, the nucleic acid genome may be DNA or RNA, and may exist in circular or linear form. The size of the phage genome varies depending on the phage. The simplest phage has a genome that is only a few thousand nucleotides in size, whereas more complex phages can contain more than 100,000 nucleotides in their genome, and in rare cases more than 1,000,000. The number and amount of individual types of proteins in a phage particle will vary depending on the phage.
By "lytic phage" is meant herein a bacteriophage that infects bacteria or archaea, and which is naturally unable to be stably maintained in the genome and/or as an episome/in a strain, and thus has a strictly lytic (as opposed to lysogenic) lifestyle, and causes lysis and destruction of bacteria or microbial cells after phage replication. Once the cells are destroyed, phage progeny can seek new host cells (e.g., bacteria) to infect. The skilled artisan knows which of the bacteriophages listed below are lytic phages.
In particular embodiments, the non-lytic bacteriophage is a temperate bacteriophage, a filamentous bacteriophage, or a pseudolysogenic bacteriophage.
By "temperate bacteriophage" or "lysogenic bacteriophage" is meant herein a bacteriophage that infects bacteria or archaea, which can be stably maintained in the genome and/or as an episome/in a strain, and which in its lysogenic state accompanies cell replication without production of viral particles. It is well known to the skilled person which bacteriophages are temperate phages among the bacteriophages listed below.
"filamentous phage" is herein intended to mean a bacteriophage characterized by having a single-stranded DNA genome surrounded by a long protein capsid cylinder. Generally, bacteria infected with filamentous phage do not lyse during the life cycle and replication of the phage, but rather experience a decrease in growth rate as phage particles are secreted from the membrane. It is well known to the skilled person which bacteriophages are filamentous phages among the bacteriophages listed below.
By "pseudolysogenic phage" is meant herein a bacteriophage in a host cell in a stage of arrested development that neither has multiplication of the phage genome (as in lytic development) nor its replication in synchronization with the cell cycle and stable maintenance in the cell line (as in lysogenic), which takes place without degradation of the viral genome, allowing subsequent restart of viral development.
In a particular embodiment, the lytic bacteriophage is selected from the group consisting of lytic bacteriophages of the order of the end phage (Order Caudovirales) and/or non-lytic bacteriophages are selected from the group consisting of non-lytic bacteriophages of the order of the end phage based on the classification by Krupovic et al (Krupovic et al, arch virol.2016Jan;161 (1): 233-47):
Myophagidae (Myoviridae) (such as, without limitation, the following genera: cp220 virus, cp8 virus, ea214 virus, felixo1 virus, moogle virus, susp virus, hp1 virus, P2 virus, kay virus, P100 virus, silvia virus, spo1 virus, tcarboma virus, twart virus, cc31 virus, jd18 virus, js98 virus, kp15 virus, moon virus, rb49 virus, rb69 virus, S16 virus, schizot4 virus, sp18 virus, T4 virus, cr3 virus, se1 virus, V5 virus, abouo virus, agate virus, agrican357 virus, ap22 virus, arv virus, B4 virus, bastille virus Bc431 virus, bep 78 virus, bsepmu virus, biquarta virus, bxz virus, cd119 virus, cp51 virus, cvm virus, eah virus, el virus, hapuna virus, jimmer virus, kpp10 virus, M12 virus, machina virus, martha virus, msw3 virus, mu virus, myohalo virus, nit1 virus, P1 virus, pakpuna virus, pbena virus, phikz virus, rheph4 virus, rsl2 virus, rslena virus, securda 5 virus, sep1 virus, spn3 virus, svuna virus, tg1 virus, vhml virus and Wph virus
Podovidae (Podovidae) (such as, without limitation, fri1 virus, kp32 virus, kp34 virus, phikmv virus, prado virus, sp6 virus, T7 virus, cp1 virus, P68 virus, phi29 virus, nona33 virus, pocj virus, tl2011 virus, bpep 22 virus, bpp virus, cba41 virus, dfl virus, ea92 virus, epsilon15 virus, F116 virus, G7c virus, jwalpha virus, kf1 virus, kpp25 virus, lit1 virus, luz24 virus, luz7 virus, N4 virus, nonana virus, P22 virus, page virus, phieco32 virus, prtb virus, sp58 virus, una virus and Vp5 virus)
Longfoot phage (Siphoviridae) (such as, without limitation: cam virus, lika virus, R4 virus, acacian virus, cooper virus, pg1 virus, pipiffish virus, rosebus virus, brujita virus, che9C virus, hawkeye virus, lot virus, jersey virus, K1g virus, sp31 virus, lmd virus, una virus, bongo virus, rey virus, butters virus, charlie virus, redi virus, baxter virus, nyphadora virus, bignuz virus, fishe burn virus, phayonce virus, kp36 virus, rogue1 virus, rtp virus, T1 virus Tls virus, ab18 virus, amigo virus, anatole virus, andromeda virus, attis virus, barnyard virus, bernal13 virus, biseptima virus, bron virus, C2 virus, C5 virus, cba181 virus, cbast virus, ceci virus, che8 virus, chi virus, cjw virus, corndog virus, crones virus, D3112 virus, D3 virus, decurro virus, demoshenes virus, doucette virus, E125 virus, eiau virus, ff47 virus, gaia virus, giles virus, tls virus, ab18 virus, amigo virus, anatole virus, andromeda virus, attis virus, barnyard virus, bernal13 virus, biseptima virus, bron virus, C2 virus, C5 virus, cba181 virus, cbast virus, ceci virus, che8 virus, chi virus, cjw virus, corndog virus, crones virus, D3112 virus, D3 virus, decurro virus, demosghenes virus, doucette virus, E125 virus, eiau virus, ff47 virus, gaia virus, giles virus, tria virus, trigintaduo virus, vegas virus, vendetta virus, wbeta virus, wildcat virus, wizard virus, woes virus, xp10 virus, ydn virus and Yua virus
Ekkaman virus family (Ackermannviridae) (such as, without limitation, the following genera: ag3 virus, limestone virus, cba120 virus and Vi1 virus)
In particular embodiments, lytic and/or non-lytic bacteriophages are not part of the end phage purpose, but are derived from a source having an unspecified purpose such as, without limitation, the multi-layered phage family (tectviridae) (such as the following genera: the genus A, B, cover phage (Cortovirus), the family of filoviridae (Inoviridae), the family of filoviridae (such as the genus Protovora (fibre virus), the family of zonal phage (Habenivirus), the family of filoviruses (Inovirus), the genus Linear phage (Lineavirus), the genus short-rod phage (Plactrovirus), the genus MarshAN_SNe (Saetevirus), the genus bat phage (Vesperovirus), the family of vesicular (Cytosviidae) (such as the genus Cytosviidae (Cytosviidae)), the family of smooth phage (Levidae) (such as the genus Isovides (Allevirus)), the family of smooth phage (Levidae), the genus Picoviridae (Levidae) (such as the genus Alvovirus), the genus Phamygdavirus (Phamivirus) and the genus Phamygdalidae (Phillips), the genus Phamygdaliotavirus (Phillips), the genus of Picoviridae (Phillips), the genus (Phillips) and the genus of the genus Phalamitis (Phillips).
In particular embodiments, the archaebacteria targeted by lytic and/or non-lytic bacteriophages is not part of a tailed phage of interest, but is derived from a family of unspecified interest such as, without limitation, the family of bottle-forming viruses (Ampulloviridae), the family of mini spindle-forming phages (Fuseloviridae), the family of globoviridae (globoviridae), the family of microdroplets (Guttaoviridae), the family of lipophage (lipotricxividae), the family of polymorphic enveloped viruses (Plaolioviridae), the family of rod-forming phages (Rudiviidae), the genus salt terminal protein phages (Salterprovirus), and the family of biperiviridae (Bicaudaviridae).
In particular embodiments, the lytic bacteriophage is from a given bacterial species or strain. In another particular embodiment, the non-lytic bacteriophage is from the same or different given bacterial species or bacteria.
By "bacteriophage from a given bacterial species or strain" is meant herein a bacteriophage that specifically targets a particular bacterial species or strain and/or a bacteriophage that is hosted by a particular bacterial species or strain.
A non-exhaustive list of bacterial genera and their known host-specific bacterial viruses is presented in the following paragraphs. Synonyms and spelling variants are indicated in brackets. Homonyms repeat as frequently as they occur (e.g., D, D, d). Unnamed phages are indicated by "NN" beside their genus, and their numbers are given in brackets.
Bacteria of the genus actinomycetes (actinomycetes) can be infected with the following phages: av-I, av-2, av-3, BF307, CT1, CT2, CT3, CT4, CT6, CT7, CT8 and 1281.
Bacteria of the genus Aeromonas (Aeromonas) can be infected by the following phages: AA-I, aeh2, N, PMl, TP446, 3, 4, 11, 13, 29, 31, 32, 37, 43-10T, 51, 54, 55r.1, 56RR2, 57, 58, 59.1, 60, 63, aehl, F, PM2, 1, 25, 31, 40rr2.8t, (synonym=44R), (synonym=44rr2.8t), 65, PM3, PM4, PM5, and PM6.
Bacteria of the genus Bacillus (Bacillus) can be infected by the following phages: A. aizl, al-K-I, B, BCJAl, BCl, BC2, BLLl, BLl, BP, BSLl, BSL2, BSl, BS3, BS8, BS15, BS18, BS22, BS26, BS28, BS31, BS104, BS105, BS106, BTB, B1715V1, C, CK-I, coll, corl, CP-53, CS-I, CSi, D, D, D, D5, entl, FP8, FP9, FSi, FS2, FS3, FS5, FS8, FS9, G, GH, GT8, GV-I, GV-2, GT-4, g3, gl2, gl3, gl4, gl6, gl7, g21, g23, g24, g29, H2, kenl, KK-88, kuml, kyul, J W-1, LP52, (synonyms = LP-52), L7, mexl, MJ-I, mor2, MP-7, MPLO, MP12 MP14, MP15, neol, N2, N5, N6P, PBCl, PBLA, PBPl, P2, S-a, SF2, SF6, shal, sill, SP02, (synonym = ΦSPP1), SP beta, STI, STi, SU-Il, t, tbI, tb2, tb5, tbIO, tb26, tb51, tb53, tb55, tb77, tb97, tb99, tb560, tb595, td8, td6, tdl5, tgI, tg4, tg6, tg7, tg9, tgIO, tgIl, tgl, tgl5, tg21, tinl, tin7, tin8, tinl3, tm3, tocl, togl, toll, TP-I, TP-10vir, TP-15C, TP-16C, TP-17C, TP-19, TP35, TP51, TP-84, tt4, tt6, A, B, C, D, E, VA-9、W、wx23、wx26、Yunl、α、γ、pl l、/> IA. IB, 1-97A, 1-97B, 2, 3, 5, 12, 14, 20, 30, 35, 36, 37, 38, 41C, 51, 63, 64, 138D, I, II, IV, NN-Bacillus (13), alel, ARl, AR2, AR3, AR7, AR9, bace-11, (synonym=11), bastille, BLl, BL2, BL3, BL4, BL5, BL6, BL8, BL9, BP124, BS28, BS80, ch, CP-51, CP-54, D-5, darl, denl, DP-7, entl, foSi, foS2, FS4, FS6, FS7, G, gall, gamma, GEl, GF-2, GSi, GT-I, GT-2, GT-3, GT-4, GT-5, GT-6, GT-7, GV-6, gl5, 19 110, is, K, MP9, MP13, MP21, MP23, MP24, MP28, MP29, MP30, MP32, MP34, MP36, MP37, MP39, MP40, MP41, MP43, MP44, MP45, MP47, MP50, NLP-I, no. l, N17, N19, PBSl, PKl, PMBl, PMB, PMJl, S, SPOl, SP3, SP5, SP6, SP7, SP8, SP9, SPlO, SP-15, SP50, (synonym = SP-50), SP82, SST, subl, SW, tg, tgl2, tgl3, tgl4, thul, tha Λ, thas, tin4, tin23, TP-13, TP33, TP50, TSP-I, V type, VI type, V, vx, β22,> 1. 1, 2C, 3NT, 4, 5, 6, 7, 8, 9, 10, 12, 17, 18, 19, 21, 138, III, 4 (Bacillus megaterium), 4 (Bacillus sphaericus), AR13, BPP-IO, BS32, BS107, bl, B2, GA-I, GP-IO, GV-3, GV-5, g8, MP20, MP27, MP49, nf, PP5, PP6, SF5, tgl8, TP-I, versailles, ind >1-97、837/IV、/>Bacillus (1), butlo, BSLlO, BSLI, BS6, bsil, BS16, BS23, bsllol, BS102, gl8, morl, PBLl, SN, thu2, thu3, tmI, tm2, TP-20, TP21, TP52, F-type, G-type, IV-type, h N-BacMus (3), BLE, (synonym = oc), BS2, BS4, BS5, BS7, blO, B12, BS20, BS21, F, MJ-4, PBA12, AP50-04, AP50-11, AP50-23, AP50-26, AP50-27 and Bam35. The following bacillus-specific phages were defective: DLP10716, DLP-11946, DPB5, DPB12, DPB21, DPB22, DPB23, GA-2, M, no. IM, PBLB, PBSH, PBSV, PBSW, PBSX, PBSY, PBSZ, phi, spa, type 1 and μ.
Bacteria of the genus bacteroides can be infected with the following phages: crAss-phage, ad I2, baf-44, baf-48-B, baf-64, bf-I, bf-52, B40-8, fl, β1, 11. 67.1, 67.3, 68.1, mt-Bacteroides (3), bf42, bf71, bdellovibrio (Bdellovibrio) (1) and BF-41.
Bacteria of the genus Bordetella (Bordetella) can be infected with the following phages: 134 and NN-Botrytis (3).
Bacteria of the Borrelia genus (Borrelia) can be infected with the following phages: NN-borrelia (1) and NN-borrelia (2).
Bacteria of the genus Brucella (Brucella) can be infected with the following phages: a422, bk, (synonym=berkeley), BM29, FOi, (synonym= FOl), (synonym= FQl), D, FP2, (synonym=fp2), (synonym=fd 2), fz, (synonym=fz75/13), (synonym=firenze 75/13), (synonym=fi), fi, (synonym=fl), fim, (synonym= FIm), (synonym=fim), fiU, (synonym= FlU), (synonym= FiU), F2, (synonym=f2), F3, (synonym=f3), F4, (synonym=f4), F5, (synonym=f5), F6, F7, (synonym=f7), F25, (synonym=f25), F44, (synonym= -F44), F45U, (synonym=f25u), (synonym F48, F69, F48), (w=t35), (brm=t35), (f=t35), and (synonym=t35), (t=t35), and (synonym=t35) X, 3, 6, 7, 10/1, (synonym=10), (synonym=f8), 12m, 24/11, (synonym=24), (synonym=f9), 45/111, (synonym=45), 75, 84, 212/XV, (synonym=212), (synonym=fi 0), (synonym= FlO), 371/XXIX, (synonym=371), (syn=fn), (synonym=fl) and 513.
Bacteria of the genus Burkholderia (Burkholderia) can be infected with the following phages: CP75, NN-Burkholderia (1) and 42.
Bacteria of the genus Campylobacter (Campylobacter) can be infected with the following phages: type C, NTCC12669, NTCC12670, NTCC12671, NTCC12672, NTCC12673, NTCC12674, NTCC12675, NTCC12676, NTCC12677, NTCC12678, NTCC12679, NTCC12680, NTCC12681, NTCC12682, NTCC12683, NTCC12684, 32f, 111C, 191, NN-campylobacter (2), vfi-6, (synonym = V19), vfV-3, V2, V3, V8, V16, (synonym = Vfi-1), V19, V20 (V45), V45, (synonym = V-45) and NN-campylobacter (1).
Bacteria of the genus Chlamydia (Chlamydia) can be infected with the following phages: chpl.
Bacteria of the genus Clostridium (Clostridium) can be infected with the following phages: CAKl, CA5, CA7, CE beta, (synonym=1c), CE gamma, cldl, C-n71, C-203Tox-, de beta, (synonym=id), (synonym= lDt 0x+), HM3, KMl, KT, ms, NAl, (synonym=naltox+), PA135Oe, pf, PL73, PL78, PL81, PL, P50, P5771, P19402, lCt0x+, 2Ct0X 2d3 (synonym=2dt0x+), 3C, (synonym=3ctox+), 4C, (synonym=4ct0x+), 56, III-l, NN-Clostridium (61), NBlt0X+, alpha l, CAl, HMT, HM2, PFl 5P-23, P-46, Q-05, Q-Oe, Q-16, Q-21, Q-26, Q-40, Q-46, S111, SA02, WA01, WA03, wm, W523, 80, C, CA2, CA3, CPTl, CPT4, cl, C4, C5, HM7, H11/A1, H18/Ax, FWS23, hi58ZA1, K2ZA1, K21ZS23, ML, NA2t0X; pf2, pf3, pf4, S9ZS3, S41ZA1, S44ZS23, α2, 41, 112ZS23, 214/S23, 233/Ai, 234/S23, 235/S23, II-l, II-2, II-3, NN-Clostridium (12), CAl, fl, K, S2, 1, 5, and NN-Clostridium (8).
Bacteria of the genus Corynebacterium (Corynebacterium) can be infected with the following phages: CGKl (defective), A, A, A3, alOl, a128, a133, a137, a139, a155, a182, B, BF, B17, B18, B51, B271, B275, B276, B277, B279, B282, C, capi, CCl, CGl, CG2, CG33, CL31, cog, (synonym=cg 5), D, E, F, H, H-I, hqi, hq2, 11ZH33, ii/31, J, K, K, (synonym=ktox "), L, L, (synonym=ltox+), M, MC-I, MC-2, MC-3, MC-4, MLMa, N, O, ovi, ov2, ov3, P, P, R, RP, RS29, S, T, U, UB1, ub2, UH1, UH3, UH5, UH6, β, (synonym=βtox+), βhv64, βvir, γ, (synonym=γto-), γl9, δ, (δ= pto +), Φ -, (synonym), = pto-), and (n-)Omega, IA, 1/1180, 2/1180, 5ad/9717, 7/4465, 8ad/10269, 10/9253, 13Z9253, 15/3148, 21/9253, 28, 29, 55, 2747, 2893, 4498 and 5848.
Bacteria of the Enterococcus genus (Enterococcus) are infected with the following phages: DF78, fl, F2, 1, 2, 4, 14, 41, 867, dl, SB24, 2BV, 182, 225, C2F, E3, E62, DS96, H24, M35, P3, P9, SBlOl, S2, 2BII, 5, 182a, 705, 873, 881, 940, 1051, 1057, 21096C, NN-enterococcus (1), PEl, fl, F3, F4, VD13, 1, 200, 235 and 341.
Bacteria of the Erysipelothrix genus (erysiphe thrix) can be infected with the following phages: NN-erysipelothrix (1).
Bacteria of the genus Escherichia may be infected with the following phages: BW73, B278, D6, D108, E, el, E24, E41, FI-2, FI-4, FI-5, HI8A, ffl8B, i, MM, mu, (synonym = mu), (homonymMeaning = MuI), (synonym = Mu-I), (synonym = MuI), (synonym = μ), 025, phI-5, pk, PSP3, pl, plD, P2, P4 (defective), sl,(defective), -> Psi (defect type), 7A,15 (defective), 18, 28-1, 186, 299, H-Escherichia (2), AB48, CM, C4, C16, DD-VI, (synonym=dd-VI), (synonym=DDVI), (synonym=DDVi), E4, E7, E28, FIl, FI3, H, hl, H3, H8, K3, M, N, ND-2, ND-3, ND4, ND-5, ND6, ND-7, ox-I (synonym=OXl), (synonym=HF), ox-2 (synonym=0x2), ox-3, ox-4, ox-5, (synonym=0x5), ox-6, (synonym=66F), ox-4, ox-5,5 0111, phI-I, RB, RB43, RB49, RB69, S, saI-I, sal-2, sal-3, sal-4, sal-5, sal-6, TC23, TC45, tuII-6, (synonym=tuii), tuIP-24, tuII 46, tuIP-60, T2, (synonym=ganutia), (synonym=γ), (synonym=pc), (synonym=p.c.), (synonym=t-2), (synonym=t2), (synonym=p4), T4, (synonym=t4), T6, T35, αl, 1, IA, 3, (synonym=c3), 3a, 3t+, (synonym=3), (synonym=ml), and (synonym=ml) >9266Q, CFO, HK620, J, K, klF, m, 59, no. a, no. e, no.3, no.9, N4, sd, (synonym=sd), (synonym=sa) 3 (synonym=sd), a,(synonym=cd), T3, (synonym=t-3), (synonym=t3), T7, (synonym=t-7), (synonym=t7), WPK, W31, Δh,Φ04-CF、Φ05、Φ06、Φ07、Omega 8, 1, 3, 7, 8, 26, 27, 28-2, 29, 30, 31, 32, 38, 39, 42, 933W, NN-escherichia (1), esc-7-11, AC30, CVX-5, cl, DDUP, ECl, EC, E21, E29, fl, F26S, F S, hi, HK022, HK97, (synonym = Φhk 97), HK139, HK253, HK256, K7, ND-I, no. D, PA-2, q, S2, tl, (synonym = α), (synonym = P28), (synonym = T-I), (synonym = Tx), T3C, T, (synonym = T-5), (synonym = T5), UC-I, w, β4, γ2, λ (synonym = lambda), (synonym = λ), Φd326, -j, (synonym = P28)>Φ06、Φ7、Φ10、/>χ, (synonym=χi),2. 4, 4A, 6, 8A, 102, 150, 168, 174, 3000, AC6, AC7, AC28, AC43, AC50, AC57, AC81, AC95, HK243, klO, ZG/3A, 5A, 21EL, H19-J, 933H, O, 157 typing phage 1-16, JES-2013, 121Q, 172-1, 1720a-02, ADB-2, AKFV33, av-05, bV_EcoS_AHP42, bV_EcoS_AHP24, bC_EcoS_AHS24, bV_EcoS_AKS96, CBA120.
Bacteria of the genus fusobacterium are infected with the following phages: NN-Fusobacterium (2), fv83-554/3, fv88-531/2, 227, fv2377, fv2527 and fv8501.
Bacteria of the genus Haemophilus (Haemophilus) are infected with the following phages: HP1, S2 and N3.
Bacteria of the genus Helicobacter (Helicobacter) are infected with the following phages: HP1 and the genus-helicobacter (1).
Bacteria of the genus Klebsiella (Klebsiella) are infected with the following phages: AIO-2, KI4B, kl6B, kl9, (synonym=k19), kl14, kl15, kl21, kl28, kl29, KI32, kl33, kl35, kl106B, kl171B, kl181 6732B, AIO-I, AO-I, AO-2, AO-3, FC3-10, K, kl1, (synonym= KIl), kl2, (synonym=k12), kl3, (synonym=k13), (synonym=kl70/11), kl4, (synonym=k14), kl5, (synonym=k15), kl6, (synonym=k16), kl7, (synonym=k17), kl8, (synonym=k18), kl19, (synonym=k19), and so on Kl27, (synonym=k127), kl31, (synonym=k131), kl35, kl171 7513-I, kl4B, kl8, kl11, kl12, kl13, kl16, kl17, kl18, kl20, kl22, kl23, kl24, kl26, kl30, kl34, kl106B, KIi B, kl B, kl xi 328, P5046, 11, 380, III, IV, VII, VIII, FC3-11, kl2B, (synonym=k12B), kl25, (synonym=k125), kl42B, (synonym=k142) and (synonym=k142B, kl181B, (synonym= KIl 81) K1181B, kl765/! (synonym=k1765/1), kl842B (synonym=k1832B), kl937B (synonym=k1937b), ll, 7. 231, 483, 490, 632, and 864/100.
Bacteria of the genus leptospira (Lepitospira) are infected with the following phages: LEl, LE3, LE4 and-NN-leptospira (1).
Bacteria of the Listeria genus (Listeria) are infected with the following phages: a511, 01761, 4211, 4286, (synonym = BO 54), a005, a006, a020, a500, a502, a511, al 18, a620, a640, B012, B021, B024, B025, B035, B051, B053, B054, B055, B056, blOl, BI lO, B545, B604, B653, C707, D441, HSO47, hlOG, H8/73, H19, H21, H43, H46, H107, H108, HI lO, H163/84, H312, H340, H387, H391/73, H684/74, H924A, PSA, U153,(synonym = P35), 00241, 00611, 02971A, 02971C, 5/476, 5/911, 5/939, 5/11302, 5/11605, 5/11704, 184, 575, 633, 699/694, 744, 900, 1090, 1317, 1444, 1652, 1806, 1807, 1921/959, 1921/11367, 1921/11500, 1921/11566, 1921/12460, 1921/12582, 1967, 2389, 2425, 2671, 2685, 3274, 3550, 3551, 3552, 4276, 4277, 4292, 4477, 5337, 5348/11363, 5348/11646, 5348/12430, 5348/12434, 10072, 11355C, 11711A, 12029, 12981, 13441, 90666, 90816, 93253, 907515, 910716 and nnl-listeria (15).
Bacteria of the genus Morganella (Morganella) are infected with the following phages: 47.
bacteria of the genus Mycobacterium (Mycobacterium) are infected with the following phages: 13. AGl, ALi, ATCC 11759, A2, B.C3, BG2, BKl, BK5, butyl, B-I, B, B7, B30, B35, clark, cl, C2, DNAIII, DSP1, D4, D29, GS4E, (synonym=GS 4E), GS7, (synonym=GS-7), (synonym=GS 7), IPa, lacticola, legendre, leo, L5, (synonym=ΦL-5), MC-I, MC-3, MC-4, minetti, MTPHI, mx4, myF P/59a, phlei, (synonym=phlei1), phlei4, polonus II, rabinovitschi, smegmatis, TM4, TM9, TMlO, TM20, Y7, ylO,IB. IF, IH, 1/1, 67, 106, 1430, bl, (synonym=bol), B24, D, D29, F-K, F-S, HP, polonus I, roy, rl, (synonym=rl-Myb), (synonym=ri), 11, 31, 40, 50, 103a, 103B, 128, 3111-D, 3215-D, and NN-mycobacterium (1).
Bacteria of the Neisseria genus (neissenia) are infected with the following phages: group I, group II and NPl.
Bacteria of the genus Nocardia (Nocardia) are infected with the following phages: MNP8, NJ-L, NS-8, N5 and Ttin-nocardia.
Bacteria of the genus Proteus (Proteus) are infected with the following phages: pm5, 13vir, 2/44, 4/545, 6/1004, 13/807, 20/826, 57, 67b, 78, 107/69、121、9/0、22/608、30/680、PmI、Pm3、Pm4、Pm6、Pm7、Pm9、PmIO、PmI l、Pv2、πl、7/549、9B/2、10A/31、12/55、14、15、16/789、17/971、19A/653、23/532、25/909、26/219、27/953、32A/909、33/971、34/13、65、5006M、7480b、VI、13/3a、Clichy 12、π2600、/>1/1004, 5/742, 9, 12, 14, 22, 24/860, 2600/D52, pm8 and 24/2514.
Providencia (Providencia) bacteria are infected with the following phages: PL25, PL26, PL37, 9211/9295, 9213/921Ib, 9248, 7/R49, 7476/322, 7478/325, 7479, 7480, 9000/9402 and 9213/921Ia.
Bacteria of the genus Pseudomonas (Pseudomonas) are infected with the following phages: pfI, (synonym=pf-I), pf2, pf3, PP7, PRRl, 7S, im-pseudomonas (1), AI-I, AI-2, B17, B89, CB3, col 2, col 11, col 18, col 21, C154, C163, C167, C2121, E79, F8, ga, gb, H22, K1, M4, N2, nu, PB-I, (synonym=pbl), pfl6, PMN17, PPl, PP8, psal, psPl, psP2, psP3, psP4, psP5 PS3, PS17, PTB80, PX4, PX7, PYOl, PYO2, psP5, psP 6, psP 9, PYOlO, PYO13, psP 14, psP 16, psP 18, psP 19, psP 20, psP 29, psP 32, psP 33, psP 35, psP 36, psP 38, psP 39, psP 41, psP 42, psP 45, psP 47, psP 48, psP 64, psP 69, psP 103, psP2, S2, un-PsP 4, yan, (synonym = Φkz), - ->Φmu78、/> 1/72, 2/79, 3/DO, 4/237, 5/406, 6C, 6/6660, 7v, 7/184, 8/280, 9/95, 10/502, 11/DE, 12/100, 12S, 16, 21, 24, 25F, 27, 31, 44, 68, 71, 95, 109, 188, 337, 352, 1214, H N-Pseudomonas (23), A856, B26, CI-I, CI-2, C5, D, gh-1, fl 16, HF, H90, K5, K6, kl 04, K109 K166, K267, N4, N5, O6N-25P, PE, pf, PPN25, PPN35, PPN89, PPN91, PP2, PP3, PP4, PP6, PP7, PP8, PP56, PP87, PPl 14, PP206, PP207, PP306, PP651, psp231a, pssy401, pssy9220, psi, PTB2, PTB20, PTB42, PXL, PX3, PXLO, PX12, PX14, PYO, PYO71, R, SH6, SH133, tf, ya5, ya7, and @>ΦKf77、/>ΦmnF82、/>1. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12B, 13, 14, 15 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 53, 73, 119x 145, 147, 170, 267, 284, 308, 525, NN-Pseudomonas (5), af, A7, B3, B33, B39, BI-I, C22, D3, D37, D40, D62, D3112, F7, flO, g, gd, ge, g ζ Hwl2, jb 19, KFL L °, OXN-32P, O6N-52P, PCH-I, PC-1, PC35-1, PH2, PH51, PH93, PH132, PMW, PM13, PM57, PM61, PM62, PM63, PM69, PM105, PMl, PM681, PM682, PO4, PPl, PP4, PP5, PP64, PP65, PP66, PP71, PP86, PP88, PP92, PP401, PP711, PP891, pssy41, pssy42, pssy403, pssy404, pssy420, pssy923, PS4, PS-IO, pz, SDl, SLl, SL3, SL5, SM, 2. 2F, 5, 7M, 11, 13/441, 14, 20, 24, 40, 45, 49, 61, 73, 148, 160, 198, 218, 222, 236, 242, 246, 249, 258, 269, 295, 297, 309, 318, 342, 350, 351, 357-1, 400-1, H, N-Pseudomonas (6), glol, M6a, ll, PB2, psyl 5, pssy4210, pssy4220, PYO12, PYO, PYO, PYO50, PYO, PYO, PYO53, PYO57, PYO, PYO, PX2, PX5, SL4, and so on>And 1214.
Bacteria of the genus Rickettsia (Rickettsia) are infected with the following phages: NN-rickettsia.
Bacteria of the genus Salmonella (Salmonella) are infected with the following phages: b. beccles, CT, d, dundee, f, feIs 2, GI, GUI, GVI, GVIII, k, K, I, j, L, 01, (synonym=0-1), (synonym=o1), (synonym=o-I), (synonym=7), 02, 03, P3, P9a, plO, sab3, sab5, sanlS, sanl7, SI, taunton, viI, (synonym= ViI), 9, imSalmonella (1), N-I, N-5, N-IO, N-17, N-22, 11, 12, 16-19, 20.2, 36, 449C/C178, 966A/C259, a, b.a.o.r., e, G4, GUI, L, LP7, M, MG, N-18, PSA68, P4, P9C, P22, (synonym=p22), (synonym=plt22), P22al, P22-4, P22-7, P22-11, SNT-I, SNT-2, SP6, villi, viIV, viV, viVI, viVII, worksop, sj, 34, 1, 37, and (40), (40=l) ])、1、422、2、2.5、3b、4、5、6、14(18)、8、14(6,7)、10、27、28B、30、31、32、33、34、36、37、39、1412、SNT-3、7-11、40.3、c、C236、C557、C625、C966N、g、GV、G5、Gl 73、h、IRA、Jersey、MB78、P22-1、P22-3、P22-12、Sabl、Sab2、Sab2、Sab4、Sanl、San2、San3、San4、San6、San7、San8、San9、Sanl3、Sanl4、Sanl6、Sanl8、Sanl9、San20、San21、San22、San23、San24、San25、San26、SasLl、SasL2、SasL3、SasL4、SasL5、SlBL、SII、ViII、1. 2, 3a, 3al, 1010, ym-Salmonella (1), N-4, sasL6 and 27.
Bacteria of the genus Serratia (Serratia) are infected with the following phages: A2P, PS, SMB3, SMP5, SM2, V40, V56, ic, ΦCP-3, ΦCP-6, 3M, 10/la, 20A, 34CC, 34H, 38T, 345G, 345P, 501B, SMB2, SMP2, BC, BT, CW2, CW3, CW4, CW5, lt232, L2232, L34, L.228, SLP, SMPA, V.43, sigma,Φcp6-1, Φcp6-2, Φcp6-5, 3T, 5, 8, 9F, 10/1, 2OE, 32/6, 34B, 34CT, 34P, 37, 41, 56D, 56P, 6OP, 61/6, 74/6, 76/4, 101/8900, 226, 227, 228, 229F, 286, 289, 290F, 512, 764a, 2847/10, 2847/1Oa, l.359, and SMBl.
Bacteria of the Shigella genus (Shigella) are infected with the following phages: fsa, (synonym=a), FSD2D, (synonym=d2d), (synonym=w2d), FSD2E, (synonym=w2e), fv, F6, F7.8, H-Sh, PE5, P90, sfII, sh, SHm, SHrv, (synonym=hiv), SHvi, (synonym=hvi), SHVvm, (synonym=hviii), skγ66, (synonym=γ66), (synonym=yββ), (synonym=γ6b), SKm, (synonym=siiib) 5 (synonym=ui), SKw, (synonym=sima), (synonym=iv), SIC TM (synonym=siva.), (synonym=iva), SKvi, (synonym= KVI), (synonym=svi), (synonym=vi), SKvm, (synonym=svm), (synonym=viii), SKV pi IA, (synonym=svma), (synonym=viiia), STvi, STK, STx1, STxn, S66, W2, (synonym=d2c), (synonym=d20), and,3-SO-R, 8368-SO-R, F, (synonym=fs7), (synonym=k29), flO, (synonym=fslo), and SO on,(synonym=k31), I1, (synonym=alfa), (synonym=fsa), (synonym=kl8), (synonym=α), I2, (synonym=a), (synonym=k19), SG33, (synonym=g35), (synonym=so-35/G), SG35, (synonym=so-55/G), SG3201, (synonym=so-3201/G), SHn, (synonym=hii), SHv, (synonym=shv), SHx, SHX, SKn, (synonym=k2), (synonym=kii), (synonym=sn), (synonym=ssii), (synonym=ii), SKrv, (synonym=sm), (synonym=iv), synonym (V), synonym=va, (synonym=swab), (synonym=iva), SKV, (synonym=k4), (synonym=kv), (synonym=sv), (synonym= SsV), (synonym=v), SKx, (synonym=k9), (sx= SsX), (SX) (synonym=x), STV, (synonym=t35), (synonym=35-50-R), STvm, (synonym=t8345), (synonym=8345-SO-S-R), W1, (synonym=d8), (synonym=fsd8), W2A, (synonym=d2a), (synonym=fs 2A), DD-2, sf6, FSi, (synonym=fl), sf6, (synonym=f6), SG42, (synonym=so-42/G), SG3203, (synonym=so-3203/G), SKF12, (synonym= SsF 12), (synonym=f12), STn, (synonym=1881-SO-R), γ66, (synonym=gamma 66 a), (synonym=ssγ66), >BIl, DDVII, (synonym=DD 7), FSD2B, (synonym=W2B), FS2, (synonym=F2), FS4, (synonym=F4), FS5, (synonym=F5), FS9, (synonym=F9), FIl, P2-S0-S, SG36, (synonym=SO-36/G), (synonym=G36), SG3204, and SO (synonym=so-3204/G), SG3244, (synonym=so-3244/G), SHi, (synonym=hi), SHv pi, (synonym=hvii), SHK, (synonym= HIX), SHx1, SHx pi, (synonym= HXn), SKI, KI, (synonym=s1), (synonym= SsI), SKVII, (synonym=kviii), (synonym=svpi), (synonym=ssvii), SKIX, (synonym= KIX), (synonym= HXnS1 x), (synonym=ssix), SKXII, (synonym=kxii), (synonym=sxn), (synonym=ssxii), STi, STffl, STrv, STVi, STv pi, S70, S206, U2-S0-S, 3210-SO-S, 3859-SO-S, 4020-SO-S, SHm, (synonym=hpi i), SH χi, (synonym= HXt) and SKxI, (synonym= KXI), (synonym=sχi), (synonym=ssxi), (synonym=xi).
Bacteria of the genus Staphylococcus (Staphylococcus) are infected with the following phages: A. EW, K, ph5, ph9, phIO, phl3, pl, P2, P3, P4, P8, P9, plO, RG, SB-I, (synonym = Sb-I), S3K, twort, Φsk311, 06. 40, 58, 119, 130, 131, 200, 1623, STCl, (synonym = STCl), STC2, (synonym = STC 2), 44AHJD, 68, ACl, AC2, A6"C", A9"C", b581, CA-I, CA-2, CA-3, CA-4, CA-5, DI L, L39X35, L54a, M42, nl, N2, N3, N4, N5, N7, N8, nlO, ni L, N12, N13, N14, N16, ph6, phl2, phl4, UC-18, U4, U15, sl, S2, S3, S4, S5, X2, Z1>ω、11、/> (synonym = P11-M15), 15, 28A, 29, 31B, 37, 42D, (synonym = P42D), 44A, 48, 51, 52A, (synonym = P52A), 52B, 53, 55, 69, 71, (synonym = P71), 71A, 72, 75, 76, 77, 79, 80 a, 82A, 83A, 84, 85, 86, 88A, 89, 90, 92, 95, 96, 102, 107,108、111、129-26、130、130A、155、157、157A、165、187、275、275A、275B、356、456、459、471、471A、489、581、676、898、1139、1154A、1259、1314、1380、1405、1563、2148、2638A、2638B、2638C、2731、2792A、2792B、2818、2835、2848A、3619、5841、12100、AC3、A8、AlO、A13、b594n、D、HK2、N9、N15、P52、P87、Sl、S6、Z4、/>3A, 3B, 3C, 6, 7, 16, 21, 42B, 42C, 42E, 44, 47a5 47C, 51, 54x1, 70, 73, 75, 78, 81, 82, 88, 93, 94, 101, 105, 110, 115, 129/16, 174, 594n, 1363/14, 2460 and mS-staphylococcus (1).
Bacteria of the streptococcus genus are infected with the following phages: EJ-I, NN-Streptococcus (1), a, cl, FL0Ths, H39, cp-I, C ρ -5, cp-7, cp-9, cp-IO, AT298, A5, alO/Jl, alO/J2, alO/J5, alO/J9, A25, BTI, b6, CAl, c20-l, c20-2, DP-I, dp-4, DTl, ET42, elO, FA101, FEThs, fkappa, FKKIOI, FKLIO, FKP, FKH, FLOThs, fyIOl, FL, F, F20140/76, g, GT-234, HB3, (synonym = HB-3), HB-623, HB-746, M102, O1205), PST, PO, pl, P2, P3, P5, P6, P8, P9, P12, P13, P14, P49, P50, P51, P52, P53, P54, P55, P56, P57, P58, P59, P64, P67, P69, P71, P73, P75, P76, P77, P82, P83, P88, sc, sch, sf, sfIl1, (synonym = SFiI l),>(synonym = Φsfil), SFil9, (synonym=sfil9), -j>Sfi21, (synonym=sfi21), -j>ST0、STX、st2、ST2、ST4、S3、/>s265、Φ17、/>Φ57、/> Φ7201, ωl, ω2, ω3, ω4, ω5, ω6, ω8, ω lO, 1, 6, 9, 1OF, 12/12, 14, 17SR, 19S, 24, 50/33, 50/34, 55/14, 55/15, 70/35, 70/36, 71/ST15, 71/45, 71/46, 74F, 79/37, 79/38, 80/J4, 80/J9, 80/ST16, 80/15, 80/47, 80/48, 101, 103/39, 103/40, 121/41, 121/42, 123/43, 123/44, 124/44, 337/ST17 and mStreptococcus (34).
Bacteria of the Treponema genus (Treponema) are infected with the following phages: NN-Treponema (1).
Bacteria of the genus Vibrio (Vibrio) are infected with the following phages: CTX- 1、>HC2-2、ΦHC2-3、ΦHC2-4、ΦHC3-1、ΦHC3-2、ΦHC3-3、ΦHD1S-1、ΦHD1S-2、ΦHD2S-1、ΦHD2S-2、ΦHD2S-3、ΦHD2S-4、ΦHD2S-5、ΦHDO-1、ΦHDO-2、ΦHDO-3、ΦHDO-4、ΦHDO-5、ΦHDO-6、ΦKL-33、ΦKL-34、ΦKL-35、ΦKL-36、ΦKWH-2、ΦKWH-3、ΦKWH-4、ΦMARQ-1、ΦMARQ-2、ΦMARQ-3、ΦMOAT-1、ΦO139、ΦPEL1A-1、ΦPEL1A-2、ΦPEL8A-1、ΦPEL8A-2、ΦPEL8A-3、ΦPEL8C-1、ΦPEL8C-2、ΦPEL13A-1、ΦPEL13B-1、ΦPEL13B-2、ΦPEL13B-3、ΦPEL13B-4、ΦPEL13B-5、ΦPEL13B-6、ΦPEL13B-7、ΦPEL13B-8、ΦPEL13B-9、ΦPEL13B-10、 1-II, 5, 13, 14, 16, 24, 32, 493, 6214, 7050, 7227, II, (synonym = group II), -a-j->V, VIII, -m-Vibrio (13), KVP20, KVP40, nt-1, O6N-22P, P, el, e2, e3, e4, e5, FK, G, I, K, nt-6, nl, N2, N3, N4, N5, O6N-34N-P, OXN-72-P, OXN-85P, OXN-100P, P, ph-I, PL163/10, Q, S, T,>1-9, 37, 51, 57, 70A-8, 72A-4, 72A-10, 110A-4, 333, 4996, I (synonym=I group), III (synonym=III group), VI (synonym=A-Sarkov), VII, IX, X, H N-Vibrio (6), pAl, 7-8, 70A-2, 71A-6, 72A-5, 72A-8, 108A-10, 109A-6, 109A-8, lOA-1, 110A-5, 110A-7, hv-1, OXN-52P, P, P38, P53, P65, P108, picl, TPl3 VP3, VP6, VP12, VP13, 70A-3, 70A-4, 70A-10, 72A-1, 108A-3, 109-B1, 110A-2, 149>IV, (synonym = group IV), NN-vibrio (22), VP5, VPIl, VP15, VP16,αl, α2, α3a, α3b, 353B and H N-Vibrio (7).
Bacteria of the genus Yersinia (Yersinia) are infected with the following phages: H. H-I, H-2, H-3, H-4, lucas110, lucas 303, lucas 404, yerA3, yerA7, yerA20, yerA41, 3/M64-76, 5/G394-76, 6/C753-76, 8/C239-76, 9/F18167, 1701, 1710, PST, 1/F2852-76, D' Herelle, EV, H, kotljarova, PTB, R, Y, yerA, and, 12, 3, 4/C1324-76, 7/F783-76, 903, 1/M6176 and Yer2AT.
In a particular embodiment, the lytic bacteriophage is selected from the lytic bacteriophages listed above, and the non-lytic bacteriophage is selected from the non-lytic bacteriophages listed above.
In the context of a particular embodiment of the present invention, the lytic bacteriophage and/or non-lytic bacteriophage is selected from Salmonella virus SKML39, shigella virus AG3, dickeya virus (Dickeya) virus Limestone, dickeya virus RC2014, escherichia virus CBA120, escherichia virus PhaxI, salmonella virus 38, salmonella Det7, salmonella virus GG32, salmonella virus PM10, salmonella virus SFP10, salmonella virus SH19, salmonella virus SJ3, escherichia virus ECML4, salmonella virus Marshall, salmonella virus Maynard, salmonella virus SJ2, salmonella virus STML131, salmonella virus ViI, erwinia virus Ea2809, klebsiella virus 0507KN21, serratia virus IME250, serratia virus MAM1, campylobacter virus CP21, campylobacter virus CP220, salmonella virus Campylobacter virus CPt10, campylobacter virus IBB35, campylobacter virus CP81, campylobacter virus CP30A, campylobacter virus CPX, campylobacter virus NCTC12673, erwinia virus Ea214, erwinia virus M7, escherichia virus AYO A, escherichia virus EC6, escherichia virus HY02, escherichia virus JH2, escherichia virus TP1, escherichia virus VpaE1, escherichia virus wV8, salmonella virus FelixO1, salmonella virus HB2014, salmonella virus Mushroum, salmonella virus UAB87, citrobacter (Citrobacter) virus Mogle, citrobacter virus Mordin, escherichia virus SUSP1, escherichia virus HP2, aeromonas virus phiO18P, haemophilus virus 1, haemophilus virus 2, haemophilus virus HP2, salmonella virus, pasteurella (Pasteurella) virus F108, vibrio virus K139, vibrio virus Kappa, burkholderia virus phi52237, burkholderia virus phiE122, burkholderia virus phiE202, escherichia virus 186, escherichia virus P4, escherichia virus P2, escherichia virus Wphi, mannheimia (Mannheimia) virus PHL101, pseudomonas virus phiCTX, ralstonia (Ralstonia) virus RSA1, salmonella virus Fels2, salmonella virus PsP, salmonella virus SopEphi, yersinia virus L413C, staphylococcus virus G1, staphylococcus virus G15, staphylococcus virus 7, staphylococcus virus K, staphylococcus virus MCE2014, staphylococcus virus P108, staphylococcus virus S253, staphylococcus virus S25, staphylococcus virus S25, and Staphylococcus 4 Staphylococcus virus SA12, listeria virus A511, listeria virus P100, staphylococcus virus Remus, staphylococcus virus SA11, staphylococcus virus Stau2, bacillus virus Camphawk, bacillus virus SPO1, bacillus virus BCP78, bacillus virus TsirBombab, staphylococcus virus Twit, enterococcus virus phiEC24C, lactobacillus (Lactobacillus) virus Lb338-1, lactobacillus virus LP65, enterobacter virus PG7, escherichia virus CC31, klebsiella virus JD18, klebsiella virus PKO111, escherichia virus Bp7, escherichia virus IME08, escherichia virus JS10, escherichia virus JS98, escherichia virus QL01, escherichia virus VR5, enterobacter virus Eap3, klebsiella virus KP15, klebsiella virus KP27, klebsiella virus Matisse, klebsiella virus Miro, citrobacter virus Merlin, citrobacter virus Moon, escherichia virus JSE, escherichia virus phi1, escherichia virus RB49, escherichia virus HX01, escherichia virus JS09, escherichia virus RB69, shigella virus UTAM, salmonella virus S16, salmonella virus STML198, vibrio virus KVP40, vibrio virus nt1, vibrio virus ValKK3, escherichia virus VR7, escherichia virus VR20, escherichia virus VR25, escherichia virus VR26, shigella virus SP18, escherichia virus AR1, escherichia virus C40, escherichia virus E112, escherichia virus HY 134, escherichia virus HY01, escherichia virus E09, im 3, im 09 Escherichia virus RB14, escherichia virus T4, shigella virus Pss1, shigella virus Shfl2, yersinia virus D1, yersinia virus PST, acinetobacter (Acinetobacter) virus 133, aeromonas virus 65, aeromonas virus Aeh1, escherichia virus RB16, escherichia virus RB32, escherichia virus RB43, pseudomonas virus 42, cronobacter (Cronobacter) virus CR3, cronobacter virus CR8, cronobacter virus CR9, cronobacter virus PBES02, pectobacterium (Pectobacter) virus phiTE, cronobacter virus GAP31, escherichia virus 4MG, salmonella virus SSE121, escherichia virus FFH2, escherichia virus FV3, JEV 5, salmonella virus, brevibacterium (Brevibacillus) virus Abouo, brevibacillus virus Davies, bacillus Agate, bacillus virus Bobb, bacillus virus Bp8pC, erwinia virus Deimos, erwinia virus Ea35-70, erwinia virus RAY, erwinia virus Simmy50, erwinia virus specialty G, acinetobacter virus AB1, acinetobacter virus AB2, acinetobacter virus AbC62, acinetobacter virus AP22, arthrobacter (Arthrobacter) virus ArV, arthrobacter virus Trina, bacillus virus AvesoBmore, bacillus virus B4, bacillus virus Bigbertha, bacillus virus Riley, bacillus virus Spock, bacillus virus Troll, bacillus virus Bastille, bacillus virus 003, bacillus virus Bc 82, bc 1, bc431 virus Bacillus virus BM15, bacillus virus deep, bacillus virus JBP901, burkholderia virus Bsep 1, burkholderia virus Bsep 43, burkholderia virus Bsep 781, burkholderia virus BsepNY 3, xanthomonas (Xanthomonas) virus OP2, burkholderia virus Bsepmu, burkholderia virus phiE255, aeromonas virus 44RR2, mycobacterium virus Alice, mycobacterium virus Bxz, mycobacterium virus Dandelion, mycobacterium virus HyRo, mycobacterium virus I3, mycobacterium virus Nappy, mycobacterium virus Sebata, clostridium virus phiC2, clostridium virus phiCD27, clostridium virus phiCD119, bacillus virus CP51, bacillus virus JL, bacillus, escherichia virus M10, and Bacillus virus M10, erwinia virus Asesino, erwinia virus EaH2, pseudomonas virus EL, halomonas (Halomonas) HAP1, vibrio virus VP882, brevibacterium virus Jimmer, brevibacterium virus Osiris, pseudomonas virus Ab03, pseudomonas virus KPP10, pseudomonas virus PAKP3, sinorhizobium (Sinorhizobium) virus M7, sinorhizobium virus M12, sinorhizobium virus N3, erwinia virus Machina, arthrobacter virus Brent, arthrobacter virus Jawnski, arthrobacter virus Martha, arthrobacter virus Sonny, edwardsiella virus MSW3, edwardsiella virus PEi21, escherichia Mucor, shigella virus Sph, salmonella virus (Halerium) spore, bacillus sp.1, bacillus sp.sp.1, and E.sp.sp.1 Aeromonas virus 43, escherichia virus P1, pseudomonas virus CAb02, pseudomonas virus JG004, pseudomonas virus PAKP1, pseudomonas virus PAKP4, pseudomonas virus PaP1, burkholderia virus BsepF 1, pseudomonas virus 141, pseudomonas virus Ab28, pseudomonas virus DL60, pseudomonas virus DL68, pseudomonas virus F8, pseudomonas virus Pseudomonas virus JG024, pseudomonas virus KPP12, pseudomonas virus LBL3, pseudomonas virus LMA2, pseudomonas virus PB1, pseudomonas virus SN, pseudomonas virus PA7, pseudomonas virus phiKZ, rhizobium (Rhizobium) virus RHEPH4, rockwell virus RSF1, rockwell virus RSL2, rockwell virus RSL1, aeromonas virus 25, aeromonas virus 31, aeromonas virus Aes12, aeromonas virus Aes508, aeromonas virus AS4, aeromonas (stenotophomonas) virus IME13, staphylococcus virus IPLAC1C, staphylococcus virus SEP1, salmonella virus SPN3US, bacillus virus 1, geobacillus (Geobacillus) virus GBSV1, yersinia virus R1RT, yersinia virus TG1, bacillus virus G, bacillus virus PBS1, microcystis (Microcystis) virus Ma-LMM01, vibrio virus MAR, vibrio virus VHML, vibrio virus VP585, bacillus virus 13, bacillus virus Hakuna, bacillus virus Megann, bacillus virus WPh, acinetobacter virus AB3, acinetobacter virus p1, acinetobacter virus Fr1, acinetobacter 200 Acinetobacter virus PD6A3, acinetobacter virus PDAB9, acinetobacter virus phiAB1, escherichia virus K30, klebsiella virus K5, klebsiella virus K11, klebsiella virus Kp1, klebsiella virus KP32, klebsiella virus KpV289, klebsiella virus F19, klebsiella virus K244, klebsiella virus Kp2, klebsiella virus KP34, klebsiella virus Klebsiella virus KpV, klebsiella virus 3271, klebsiella virus KpV475, klebsiella virus SU503, klebsiella virus SU552A, pantoea (Pantoea) virus Limelight, pantoea virus Limezero, pseudomonas virus LKA1, pseudomonas virus phiKMV, xanthomonas virus F20, xanthomonas virus F30, murilla (Xylella) virus Prado, erwinia virus Era, erwinia virus, escherichia virus K5, escherichia virus K1-5, escherichia virus K1E, salmonella virus SP6, escherichia virus T7, kluyvera (Kluyvera) virus Kvp1, pseudomonas virus gh1, prochlorococcus (Prochlorococcus) virus PSSP7, synechococcus (Synechococcus) virus P60, syn5, streptococcus virus Cp1, streptococcus virus Cp7, staphylococcus virus 44AHJD, streptococcus virus C1, bacillus virus B103, bacillus virus GA1, bacillus virus phi29, kurthia (Kurthia) virus 6, actinomyces virus 1, mycoplasma virus P1, escherichia virus 24B, escherichia virus 933W, escherichia virus Min27, escherichia virus 28, st 2, st 02J 75J 13, shigella virus II, shigella virus 75J 13, and so on. Escherichia virus 191, escherichia virus PA2, escherichia virus TL2011, shigella virus VASD, burkholderia virus Bsep 22, burkholderia virus Bsepil 02, burkholderia virus Bsepmigl, burkholderia virus DC1, bodhami virus BPP1, burkholderia virus BsepC 6B, cellularum (Cellulophaga) virus Cba41, cellophaga virus Cba172, goldkola (Dinonoseobabacter) virus DFL12, erwinia virus Ea9-2, erwinia virus Frozen, escherichia virus phiV10, salmonella virus Epsilon15, salmonella virus SPN1S, pseudomonas virus F116, pseudomonas virus H66, escherichia AP5, APE.EC 4, and Erwinia virus EC 4, escherichia virus EC1UPM, escherichia virus ECBP1, escherichia virus G7C, escherichia virus IME11, shigella virus Sb1, achromobacter (Achromobacter) virus Axp3, achromobacter virus JWAlpha, edwardsiella virus KF1, pseudomonas virus KPP25, pseudomonas virus R18, pseudomonas virus Ab09, pseudomonas virus LIT1, pseudomonas virus PA26, pseudomonas virus LIT1, and Pseudomonas Ab22, pseudomonas CHU, pseudomonas LUZ24, pseudomonas PAA2, pseudomonas PaP3, pseudomonas PaP4, pseudomonas TL, pseudomonas KPP21, pseudomonas LUZ7, escherichia N4, salmonella 9NA, salmonella SP069, salmonella BTP1, salmonella HK620 Salmonella virus P22, salmonella virus ST64T, shigella virus Sf6, bacillus virus Page, bacillus virus Palmer, bacillus virus Pascal, bacillus virus Pony, bacillus virus Pookie, escherichia virus 172-1, escherichia virus ECB2, escherichia virus NJ01, escherichia virus phiEco32, escherichia virus Septima11, escherichia virus SU10, brula virus Pr, brula virus Tb, escherichia virus Pollock, salmonella virus FSL-058, salmonella virus FSL-SP-076, helicobacter virus 1961P, helicobacter virus KHP30, helicobacter virus KHP40, hamiltonia (Hamiltonia) virus APSE1, lactococcus (KSLacca) virus Y1, WMUlmi 3, WMUlmi 4, WMUlmi 3, and Ypsilosis, pseudomonas virus 119X, roselle (Roseobacillus) virus SIO1, vibrio virus VpV, vibrio virus VC8, vibrio virus VP2, vibrio virus VP5, streptomyces (Streptomyces) virus Amela, streptomyces virus phiCAM, streptomyces virus Aarocola, streptomyces virus Caliburn, streptomyces virus Danzina, streptomyces virus hydroa, streptomyces virus Izzy, streptomyces virus Lannister, streptomyces virus Lika Streptomyces virus Sujidade, streptomyces virus Zemlya, streptomyces virus ELB20, streptomyces virus R4, streptomyces virus phiHau3, mycobacterium virus Acandian, mycobacterium virus Baee, mycobacterium virus Reprobabate, mycobacterium virus Adawi, mycobacterium virus Bane1, mycobacterium virus BrownCNA, mycobacterium virus Chrisnmic, mycobacterium virus Cooper, mycobacterium virus JAMaL, mycobacterium virus Nigel Mycobacterium virus Stinger, mycobacterium virus Vincenzo, mycobacterium virus Zemanar, mycobacterium virus Apizium, mycobacterium virus Manad, mycobacterium virus Oline, mycobacterium virus Osmaximus, mycobacterium virus Pg1, mycobacterium virus Soto, mycobacterium virus Suffolk, mycobacterium virus Athena, mycobacterium virus Bernardo, mycobacterium virus Gadjet, mycobacterium virus Pipefish, mycobacterium virus Godines, mycobacterium virus Rosebus, mycobacterium virus Babsiella, mycobacterium virus Brujita, mycobacterium virus Che9c, mycobacterium virus Sbash, mycobacterium virus Hawkeye, mycobacterium virus Plot, salmonella virus AG11, salmonella virus Ent1, salmonella virus 18SE, salmonella virus Jey, salmonella virus L13, salmonella virus LS1 PA, salmonella virus SE2, salmonella virus SETP3, salmonella virus SETP7, salmonella virus SETP13, salmonella virus LN 101, salmonella virus SS3e, salmonella virus wksl3, escherichia virus K1G, escherichia virus K1H, escherichia virus K1ind1, escherichia virus K1ind2, salmonella virus SP31, leuconostoc (Leuconostoc) virus Lmd1, leuconostoc virus LN03, leuconostoc virus LN04, leuconostoc virus LN12, leuconostoc virus LN6B, leuconostoc virus P793, leuconostoc virus 1A4, leuconostoc virus Ln8, leuconostoc virus Ln9, leuconostoc virus LN25, leuconostoc virus LN34, leuconostoc virus TR3, bacillus virus Bong, bacillus Reng, mycobacterium, miche, mycobacterium and Mycobacterium Mycobacterium virus Charlie, mycobacterium virus Picqueaks, mycobacterium virus Xeno, mycobacterium virus Panchino, mycobacterium virus Phrann, mycobacterium virus Redi, mycobacterium virus Skinyp, gordonia virus BaxterFox, gordonia virus Yezy, gordonia virus Kita, gordonia virus Zirinka, gordonia virus Nymphara, mycobacterium virus Bignuz, mycobacterium virus Brusacram, mycobacterium virus Donovan, mycobacterium virus hburn, mycobacterium virus Jebeks, mycobacterium virus Malihi, mycobacterium virus yonce, enterobacter virus F20, klebsiella virus 1513, klebsiella virus KLPN1, klebsiella virus KP36, klebsiella virus P24, klebsiella AH, klebsiella 24, and so called after the use of the virus, escherichia virus AKS96, escherichia virus C119, escherichia virus E41C, escherichia virus Eb49, escherichia virus Jk06, escherichia virus KP26, escherichia virus Rogue1, escherichia virus ACGM12, escherichia virus Rtp, escherichia virus ADB2, escherichia virus JMW 1, escherichia virus JMW 2, escherichia virus T1, shigella virus PSf2, shigella virus Shigella virus Shfl1, citrobacter virus Stevie, escherichia virus TLS, salmonella virus SP126, cronobacter virus Esp2949-1, pseudomonas virus Ab18, pseudomonas virus Ab19, pseudomonas virus PaMx11, arthrobacter virus Amigo, propionibacterium virus Anatole, propionibacterium virus B3, bacillus virus Andromada, bacillus virus Blastoid, bacillus virus Curly, bacillus virus Eoghan, bacillus virus Finn, bacillus virus Glitterin, bacillus virus Riggi, bacillus virus Taylor, gordon virus Attis, mycobacterium virus Barnyard, mycobacterium virus Konstantinine, mycobacterium virus Predator, mycobacterium virus Bernal13, staphylococcus virus 77, staphylococcus virus 108PVL, mycobacterium virus Bron, mycobacterium virus Faith1, mycobacterium virus Joedirt, mycobacterium virus Rumpelstin, lactobacillus virus bIL67, lactobacillus virus C2, lactobacillus virus C5, lactobacillus virus Ld3, lactobacillus virus Ld17, lactobacillus virus Ld25A, lactobacillus virus LLdR, lactobacillus virus phLdb, cellophagostomum virus C121, cellophagostomum virus Cbavirus Cb 171, and Phacophagostomum virus 181, bacillus virus 250, bacillus virus IEBH, mycobacterium virus Ardmere, mycobacterium virus Avani, mycobacterium virus Boomer, mycobacterium virus Che8, mycobacterium virus Che9D, mycobacterium virus Deadp, mycobacterium virus Dlane, mycobacterium virus Dorothy, mycobacterium virus Dotproduct, mycobacterium virus Drago, mycobacterium virus Frutroop, mycobacterium virus Gumbie, mycobacterium virus Ibhube, mycobacterium virus Llij, mycobacterium virus Mozy, mycobacterium virus Mutaformia 13, mycobacterium virus Pacc40, mycobacterium virus PMC, mycobacterium virus Raey, mycobacterium virus Rockyrror, mycobacterium virus SG4, mycobacterium virus Shauna1, mycobacterium virus Shacan, mycobacterium virus Sparus, mycobacterium virus Taj, mycobacterium Wee, mycobacterium Mycobacterium virus Yoshi, salmonella virus Chi, salmonella virus FSLSP030, salmonella virus FSLSP088, salmonella virus iEPS5, salmonella virus SPN19, mycobacterium virus 244, mycobacterium virus Bask21, mycobacterium virus CJW1, mycobacterium virus Eureka, mycobacterium virus Kostya, mycobacterium virus Porky, mycobacterium virus Pumpkin, mycobacterium virus Sirduracell, mycobacterium virus Toto, mycobacterium virus Corndog, mycobacterium virus Firecracker, rhodobacter (Rhodobater) virus RcCroneus, pseudomonas virus D3112, pseudomonas virus DMS3, pseudomonas virus FHA0480, pseudomonas virus LPB1, pseudomonas virus MP22, pseudomonas virus MP29, pseudomonas virus MP38, pseudomonas virus KOR, pseudomonas virus D3, pseudomonas virus G1, pseudomonas virus, the genus Arthrobacter virus Decurro, the genus Gordomorphs Katyusha, the genus Gordomorphs Kvothes, the genus Propionibacterium virus B22, the genus Propionibacterium Doucete, the genus Propionibacterium virus E6, the genus Propionibacterium virus G4, the genus Burkholderia virus phi6442, the genus Burkholderia virus phi1026B, the genus Burkholderia virus phiE125, the genus Edwardsiella virus eiAU, the genus Mycobacterium virus Ff47, the genus Mycobacterium virus Muddy, the genus Mycobacterium virus Gaia, the genus Mycobacterium virus Giles, the genus Arthrobacter virus Captenmurica, the genus Arthrobacter Gordon, the genus Gordomorphs, the genus Gordon 2, the genus Paenium (Paenibacillus) Harrison, the genus EK99P1, the genus Escherichia virus HK, the genus JL 578, the genus Soddalike 1, the genus Edison 1, the genus Ala, the genus Aldribba, the genus Aldrips 2008 virus YD 1, the genus Aldrips (YD 1) Escherichia virus HK022, escherichia virus HK75, escherichia virus HK97, escherichia virus HK106, escherichia virus HK446, escherichia virus HK542, escherichia virus HK544, escherichia virus HK633, escherichia virus mEp234, escherichia virus mEp, escherichia virus mEpX1, escherichia virus mEpX2, escherichia virus mEp043, escherichia virus 35213 Escherichia virus mEp237, escherichia virus mEp, escherichia virus mEp460, escherichia virus mEp505, escherichia virus mEp, brevibacterium virus Jent, achromobacter virus 83-24, achromobacter virus JWX, arthrobacter virus Kellezzio, arthrobacter virus Kitkat, arthrobacter virus Bennie, arthrobacter virus DrRobert, arthrobacter virus Glenn, arthrobacter virus HunterDalle, arthrobacter virus, the genus Arthrobacter virus Joann, arthrobacter virus Korra, arthrobacter virus Preamble, arthrobacter virus Pumancar, arthrobacter virus Wayne, mycobacterium virus Alma, mycobacterium virus Arturo, mycobacterium virus Astro, mycobacterium virus Backyardagan, mycobacterium virus BBPiebs31, mycobacterium virus Benedict, mycobacterium virus Bethlehem, mycobacterium virus Billknuckles, mycobacterium virus Brns, mycobacterium virus Bxb1, mycobacterium virus Bxz2, mycobacterium virus Che12, mycobacterium virus Cuco, mycobacterium virus D29, mycobacterium virus Doom, mycobacterium virus icb, mycobacterium virus Ehoria, mycobacterium virus George, mycobacterium virus Glader, mycobacterium virus Goose, mycobacterium virus Hammer, heldavirus, mycobacterium virus Jaer, mycobacterium virus JC27 Mycobacterium virus Jeffibunny, mycobacterium virus JHC117, mycobacterium virus KBG, mycobacterium virus Kssjeb, mycobacterium virus Kugel, mycobacterium virus L5, mycobacterium virus Lesedi, mycobacterium virus LHTSCC, mycobacterium virus lockley, mycobacterium virus Marcel, mycobacterium virus Microwolf, mycobacterium virus Mrgordo, mycobacterium virus Museum, mycobacterium virus Nepal, mycobacterium virus Packman, mycobacterium virus Peaches, mycobacterium virus Perseus, mycobacterium virus Pukovnik, mycobacterium virus Rebeuca, mycobacterium virus Redr, mycobacterium virus Ridgecb, mycobacterium virus Rockstar, mycobacterium virus Saintus, mycobacterium virus Skipe, mycobacterium virus on, mycobacterium virus Itzer, mycobacterium virus SWU1, mycobacterium virus Pyger 17a, mycobacterium Swinga, mycobacterium Swingta, mycobacterium virus Timshel, mycobacterium virus Trixie, mycobacterium virus Turbo, mycobacterium virus Twister, mycobacterium virus U2, mycobacterium virus Violet, mycobacterium virus Wonder, escherichia virus DE3, escherichia virus HK629, escherichia virus HK630, escherichia virus Lambda, arthrobacter virus Laroye, mycobacterium virus Halo, mycobacterium virus Lieffie, mycobacterium virus Marvin, mycobacterium virus Mosmoris, arthrobacter virus Cium, arthrobacter virus Mudcat, escherichia virus N15, escherichia virus 9g, escherichia virus JenK1, escherichia virus JenP2, pseudomonas virus NP1, pseudomonas virus Pax25, bakan virus, mycobacterium virus Omujou, mycobacterium virus Cotta, mycobacterium virus Mycobacterium virus Optimus, mycobacterium virus Thibault, polarobacter (Polarobacter) virus P12002L, polarobacter virus P12002S, non-slip bacterium (Nonlabens) virus P12024L, non-slip bacterium virus P12024S, thermus (Thermus) virus P23-45, thermus virus P74-26, listeria virus LP37, listeria virus LP110, listeria virus LP114, listeria virus P70, propionibacterium virus ATCC29399BC, propionibacterium virus ATCC29399BT, propionibacterium virus atacne, propionibacterium virus Keiki, propionibacterium virus Kubed, propionibacterium virus Lauchelly, propionibacterium virus MK, propionibacterium virus Ouroxos, propionibacterium virus P91, propionibacterium virus P105, propionibacterium virus P1001, propionibacterium virus P1. Propionibacterium virus, propionibacterium virus P100A, propionibacterium virus P100D, propionibacterium virus P101A, propionibacterium virus P104A, propionibacterium virus PA6, propionibacterium virus Pacnes201215, propionibacterium virus PAD20, propionibacterium virus PAS50, propionibacterium virus PHL009M11, propionibacterium virus PHL025M00, propionibacterium virus PHL037M02, propionibacterium virus PHL041M10, propionibacterium virus PHL060L00, propionibacterium virus PHL067M01, propionibacterium virus PHL070N00, propionibacterium virus PHL071N05, propionibacterium virus PHL082M03, propionibacterium virus PHL092M00, propionibacterium virus PHL095N00, propionibacterium virus PHL111M01, propionibacterium virus PHL112N00, propionibacterium PHL113M01, propionibacterium virus PHL 114M 00, propionibacterium virus PHL116, propionibacterium virus PHL00, PHL 01N 01, PHL132 and PHL132 Propionibacterium virus PHL151M00, propionibacterium virus PHL151N00, propionibacterium virus PHL152M00, propionibacterium virus PHL163M00, propionibacterium virus PHL171M01, propionibacterium virus PHL179M00, propionibacterium virus PHL194M00, propionibacterium virus PHL199M00, propionibacterium virus PHL301M00, propionibacterium virus PHL308M00, propionibacterium virus Picrate, procrass1, propionibacterium virus SKKY, propionibacterium virus Solid Propionibacterium virus Stormn, propionibacterium virus Wizzo, pseudomonas virus PaMx28, pseudomonas virus PaMx74, mycobacterium virus Patience, mycobacterium virus PBI1, rhodococcus (Rhodococcus) virus Pepy6, rhodococcus virus Poco6, propionibacterium virus PFR1, streptomyces virus phiBT1, streptomyces virus phiC31, streptomyces virus TG1, acinetobacter (Caulobacter) virus Karma, acinetobacter virus Magneto, acinetobacter virus phiCbK, acetobacter virus Rogue, acetobacter virus Swift, staphylococcus virus 11, staphylococcus virus 29, staphylococcus virus 37, staphylococcus virus 53, staphylococcus virus 55, staphylococcus virus 69, staphylococcus virus 71, staphylococcus virus 80, staphylococcus virus 85, staphylococcus virus 88, staphylococcus virus 92, staphylococcus virus 96, staphylococcus virus 187, staphylococcus virus 52a, staphylococcus virus 80alpha, staphylococcus virus CNPH82, staphylococcus virus EW, staphylococcus virus IPLA5, staphylococcus virus IPLA7, staphylococcus virus IPLA88, staphylococcus virus PH15, staphylococcus virus phiETA2, staphylococcus virus phiETA3, staphylococcus virus phiMR11, staphylococcus virus phiMR25, staphylococcus virus phiNM1 staphylococcus virus phiNM2, staphylococcus virus phiNM4, staphylococcus virus SAP26, staphylococcus virus X2, enterococcus virus FL1, enterococcus virus FL2, enterococcus virus FL3, lactobacillus virus ATCC8014, lactobacillus virus phiJL1, pediococcus (Pediococcus) virus cIP1, aeromonas virus pIS A, listeria virus LP302, listeria virus PSA, methanobacter (Methanobacterium) virus psiM1, rhodobacter virus RDJL2, rhodococcus virus RER2, enterococcus virus BC611, enterococcus virus IMEF 1, enterococcus virus SAP6, enterococcus virus VD13, streptococcus virus SPQS1, mycobacterium virus pyrus, mycobacterium virus Send513, burkholderia virus 1, pseudomonas virus 73, kaAb 26, and pseudomonas 25 Khemnas, escherichia virus Cajan, escherichia virus Seurat, staphylococcus virus SEP9, staphylococcus virus Sextaec, streptococcus virus 858, streptococcus virus 2972, streptococcus virus ALQ132, streptococcus virus O1205, streptococcus virus Sfi11, streptococcus virus 7201, streptococcus virus DT1, streptococcus virus phiAbc2, streptococcus virus Sfi19, streptococcus virus Sfi21, paenium virus Diva, paenium virus Hb10C2, paenium virus Rani, paenium virus Shelly, paenium virus Sitara, paenium virus Willow, lactococcus virus 712, lactococcus virus ASCC191, lactococcus virus C273, lactococcus virus C281, lactococcus virus C465, lactococcus virus ASCC532, lactococcus virus BB29, lactococcus virus 38170, bicoccoid virus CB13, bicoccoid 14 lactococcus virus CB19, lactococcus virus CB20, lactococcus virus jj50, lactococcus virus P2, lactococcus virus P008, lactococcus virus sk1, lactococcus virus Sl4, bacillus virus Slash, bacillus virus Stahl, bacillus virus Staley, bacillus virus Stills, gordon virus Bachia, gordon virus ClubL, gordon virus OneUp, gordon virus Smoothia, gordon virus Soups, bacillus virus SPbeta, vibrio virus MAR10, vibrio virus SSP002, escherichia virus AK33, escherichia virus BF23, escherichia virus DT57C, escherichia virus EPS7, escherichia virus FFH1, escherichia virus H8, escherichia virus SLL 09, escherichia virus T5, salmonella virus spp 35, salmonella virus spv 2, and Salmonella virus spp 7, and the like, salmonella virus Stitch, arthrobacter virus Tank, tsukamurella (Tsukamu villa) virus TIN2, tsukamurella virus TIN3, tsukamurella virus TIN4, rhodobacter virus RcSpartan, rhodobacter virus RcTitan, mycobacterium virus Anaya, mycobacterium virus Angelica, mycobacterium virus Crimd, mycobacterium virus Finnbarth, mycobacterium virus Jaws, mycobacterium virus Larva, mycobacterium virus Macncheese, mycobacterium virus Pixie, mycobacterium virus TM4, bacillus virus BMBtp2, bacillus virus TP21, tuber virus Tp84, vitis virus 47, vitis virus 3a, vitis virus 42e, vitis virus LA35, vitis virus phi12, vitis virus Phist, brucella virus 32, mycobacterium virus RGL, mycobacterium virus Hv 3, gata virus Hindle, and Gauss virus Bacillus virus Wbeta, mycobacterium virus Wildcat, gordonia virus Twister6, gordonia virus Wizard, gordonia virus Hotorobo, gordonia virus Monty, gordonia virus Woes, xanthomonas virus CP1, xanthomonas virus OP1, xanthomonas virus phil7, xanthomonas virus Xop, xanthomonas virus Xp10, streptomyces virus TP1604, streptomyces virus YDN12, alpha-Proteobacteria (Alphateobacteria) virus phiJl001, pseudomonas virus LKO4, pseudomonas virus M6, pseudomonas virus MP1412, pseudomonas virus PAE1, pseudomonas virus Yua, pseudomonas virus PM2, pseudomonas virus phi6, pseudomonas virus phi8, pseudomonas phi12, pseudomonas virus phi13, pseudomonas phi29, NN virus phi 54, pseudomonas virus, pseudomonas virus phiYY, vibrio virus fs1, vibrio virus VGJ, ralstonia virus RS603, ralstonia virus RSM1, ralstonia virus RSM3, escherichia virus M13, escherichia virus I22, salmonella virus Ike, acholoproma (Acholoprosma) virus L51, vibrio virus fs2, vibrio virus VFJ, escherichia virus If1, propionibacterium virus B5, pseudomonas virus Pf1, pseudomonas virus Pf3, ralstonia virus PE226, ralstonia virus RSS1, spiroplasma (Spiroplasma) virus SVTS2, sphaeromonas virus PSH1, sphaeromonas virus SMA6, sphaeromonas virus SMA7, sphaeromonas virus SMA9, vibrio virus Xi, vibrio virus KSF1, vibrio virus Vf6, vibrio virus Vf3, vibrio virus 4233, vibrio virus Vf3 Xanthomonas virus Cf1C, helicobacter C74, helicobacter R8A2B, helicobacter SkV CR23x, escherichia FI, escherichia Qbeta, escherichia BZ13, escherichia MS2, escherichia alpha3, escherichia ID21, escherichia ID32, escherichia ID62, escherichia NC28, escherichia NC29, escherichia NC35, escherichia PhiliK, escherichia St1, escherichia WA45, escherichia G4, escherichia ID52, escherichia Talmos, escherichia Philix 174, bdellovibrio MAC1, bdellovibrio 2K, chlamydia Chp, chlamydia 372, AR 34, CPP 1, CPP 23, CPP 1, CPP 2, and CPP 2, achromosoma virus L2, pseudomonas virus PR4, pseudomonas virus PRD1, bacillus virus AP50, bacillus virus Bam35, bacillus virus GIL16, bacillus virus Wip1, escherichia virus phi80, escherichia virus RB42, escherichia virus T2, escherichia virus T3, escherichia virus T6, escherichia virus VT2-Sakai, escherichia virus VT1-Sakai, escherichia virus CP-933V, escherichia virus P27, escherichia virus Stx2phi-I, escherichia virus Stx1phi the Escherichia virus Stx2phi-II, the Escherichia virus CP-1639, the Escherichia virus based BP-4795, the Escherichia virus 86, the Escherichia virus Min27, the Escherichia virus 2851, the Escherichia virus 1717, the Escherichia virus YYZ-2008, the Escherichia virus EC026_P06, the Escherichia virus ECO103_P15, the Escherichia virus ECO103_P12, the Escherichia virus ECO111_P16, the Escherichia virus ECO111_P11, the Escherichia virus VT2phi_272, the Escherichia virus TL-2011c, the Escherichia virus P13374, and the Escherichia virus Sp5; the first bacteriophage is different from the second bacteriophage.
In one embodiment, the first bacteriophage is selected from the group consisting of: BW73、B278、D6、D108、E、El、E24、E41、FI-2、FI-4、FI-5、HI8A、Ffl8B、i、MM、Mu、025、PhI-5、Pk、PSP3、Pl、PlD、P2、P4、Sl、 7A、/>18. 28-1, 186, 299, H-Escherichia (2), AB48, CM, C4, C16, DD-VI, E4, E7, E28, FIl, FI3, H, hl, H3, H8, K3, M, N, ND-2, ND-3, ND4, ND-5, ND6, ND-7, ox-I, ox-2, ox-3, ox-4, ox-5, ox-6, phI-I, RB, RB43, RB49, RB69, S, saI-I, sal-2, sal-3, sal-4, sal-5, sal-6, TC23, TC45, tuII-6, tuIP-24, tuII-46, tuIP-60, T2, T4, T6, T35, αl, 1, IA, 3A, 3T+,>9266Q、CFO103、HK620、J、K、KlF、m59、no.A、no.E、no.3、no.9、N4、sd、T3、T7、WPK、W31、ΔH、/> Φ04-CF、Φ05、Φ06、Φ07、/> omega 8, 1, 3, 7, 8, 26, 27, 28-2, 29, 30, 31, 32, 38, 39, 42, 933W, NN-Escherichia (1), esc-7-11, AC30, CVX-5, cl, DDUP, ECl, EC, E21, E29, fl, F26S, F S, hi, HK022, HK97, HK139, HK253, HK256, K7, ND-I, PA-2, q, S2, tl,), CVX-5, cl, DDUP, ECl, EC, E21, E29, fl, F26S, F S, hi, HK022, HK97, HK139, K253, HK256, K7, ND-I, PA-2, q, S2, tl,)T3C、T5、UC-I、w、β4、γ2、λ、ΦD326、/>Φ06、Φ7、Φ10、/>χ, 2, 4A, 6, 8A, 102, 150, 168, 174, 3000, AC6, AC7, AC28, AC43, AC50, AC57, AC81, AC95, HK243, klO, ZG/3A, 5A, 21EL, H19-J, and 933H.
In a preferred embodiment, the lytic bacteriophage is a T7 bacteriophage. In another preferred embodiment, the lytic bacteriophage is a dermatophyte acnes lytic bacteriophage.
In a preferred embodiment, the non-lytic bacteriophage is a lambda bacteriophage. In another preferred embodiment, the non-lytic bacteriophage is a propionibacterium freudenreichii bacteriophage.
In a preferred embodiment, the lytic bacteriophage is a T7 bacteriophage and the non-lytic bacteriophage is a lambda bacteriophage. In another preferred embodiment, the lytic bacteriophage is a dermatophyte acne lytic bacteriophage and the non-lytic bacteriophage is a propionibacterium freudenreichii bacteriophage.
Additional bacterial genes
As is well known to the skilled person, some phages use products produced by their bacterial hosts to fold and/or assemble their structural elements and/or for proper packaging of their DNA.
Thus, in a particular embodiment, the production bacterial cell further comprises at least one bacterial gene derived from a bacterial species or strain from which the lytic bacteriophage originates, involved in folding and/or assembly of the bacteriophage structural elements and/or involved in DNA packaging.
As the skilled artisan will appreciate, the bacterial genes involved in the folding and/or assembly of the phage structural elements depend on the particular bacteriophage from which the phage structural elements are obtained. They generally include bacterial genes encoding chaperones.
Similarly, the bacterial genes involved in phage DNA packaging depend on the particular bacteriophage from which the phage DNA packaging genes are obtained. Examples of such bacterial genes include genes encoding IHF proteins.
Payload
In particular embodiments, the producer bacterial cell further comprises a payload to be packaged into the phage particle or phage-derived delivery vehicle.
As used herein, the term "payload" refers to any nucleic acid sequence (DNA and/or RNA) or amino acid sequence or combination of both (such as, without limitation, peptide nucleic acid or peptide-oligonucleotide conjugate) that is transferred into bacteria with a delivery vehicle. In a particular embodiment, the payload is a nucleic acid payload, more particularly a DNA and/or RNA payload, still particularly a DNA payload.
The term "payload" may also refer to a plasmid, vector or cargo.
The payload may be a phagemid or plasmid obtained from the natural, evolved or engineered phage genome. The payload may also consist only in part of phagemids or plasmids obtained from the natural, evolved or engineered phage genome.
As used herein, the term "phagemid" or "plasmid" is equivalent and refers to a recombinant DNA vector comprising at least one bacteriophage genome sequence and is capable of allowing packaging in a capsid, and which preferably is incapable of producing offspring, more particularly a vector derived from a plasmid and bacteriophage genome. The phagemid of the present disclosure comprises a phage packaging site and optionally an origin of replication (ori), in particular an origin of replication of a bacterium and/or phage. In one embodiment, the phagemid does not comprise an origin of replication and is therefore unable to replicate itself once injected into bacteria. Alternatively, the phagemid comprises a plasmid replication origin, in particular a bacterial and/or phage replication origin.
In certain embodiments, the payload will be packaged in the form of a packaged phagemid.
As used herein, the term "packaged phagemid" refers to a phagemid encapsulated in a bacteriophage scaffold, phage-derived delivery particle or capsid. In particular, it refers to a bacteriophage scaffold, bacteriophage delivery particle or capsid that is devoid of a bacteriophage genome. Packaged phagemids can be generated using helper phage strategies well known to those skilled in the art. Helper phages generally comprise all genes encoding structural and functional proteins, which are essential for the phagemid of the invention to be packaged.
In certain embodiments, the payload is to be delivered into a targeted bacterial cell as defined below.
In more particular embodiments, the payload is stably maintained in the targeted bacterial cell. In alternative embodiments, the payload is not replicated in the targeted bacterial cell.
Sequences of interest under the control of a promoter
In certain embodiments, the payload comprises a sequence of interest, particularly under the control of a promoter.
Promoters may be classified as strong or weak according to their affinity for RNA polymerase, as known to those skilled in the art. The strength of a promoter may depend on whether transcription initiation occurs at the promoter at a high or low frequency. Different promoters with different intensities may be used in the present invention, resulting in different levels of gene/protein expression (e.g., lower levels of expression starting from mRNA derived from a weak promoter than from a strong promoter).
One of ordinary skill in the art will appreciate that the promoter sequence may be selected from a number of known bacterial genes expressed by various bacterial species. Furthermore, methods of prokaryotic promoter prediction exist and can be based on DNA stability analysis, as described by Kanhere and Bansal (BMC Bioinformatics 2005, 6:1). Thus, selection of promoters on payloads used in the context of the present invention may be made based on the bacteria targeted.
In some embodiments, the nucleic acid of interest may be under the control of a recombinant or heterologous promoter, which refers to a promoter that is not normally associated with the nucleic acid of interest in its natural environment.
Examples of bacterial promoters for use in accordance with the invention include, without limitation, positive regulated E.coli promoters such as the positive regulated sigma 70 promoter (e.g., inducible pBad/araC promoter, lux cassette right promoter, modified lambda Prm promoter, plac Or2-62 (positive), pBad/AraC, pBad, P (Las) TetO with additional REN sites, P (Las) CIO, P (Rhl), pu, fecA, pRE, cadC, hns, pLas, pLux), "s" promoter (e.g., pdps), sigma 32 promoter (e.g., heat shock) and sigma 54 promoter (e.g., glnAP 2); a negative regulated E.coli promoter, such as negatively regulated sigma 70 promoters (e.g.promoter (PRM+), modified lambda Prm promoter, tetR-TetR-4C P (Las) TetO, P (Las) CIO, P (Lac) IQ, recA_DlexO_DLac01, dapAp, fecA, pspac-hy, pel, pLux-cl, plus-Lac, cinR, cinL, glucose control, modified Pr, modified Prm+, fecA, pcya, recA (SOS), recA (SOS), emrR_regulated, betl_regulated, pLac_lux, emrR_Lac pLac/Mnt, pTet/Mnt, lsrA/cI, pLux/cI, lacl, lacIQ, pLacIQl, pLas/cI, pLas/Lux, pLux/Las, pRECA with LexA binding site, reverse BBa_R0011, pLacI/ara-1, pLacIq, rrnB PI, cadC, hns, pfhuA, pBad/araC, nhaA, ompF, rcnR), sigma S promoter (e.g. Lutz-Bujar LacO with selective sigma factor sigma 38), sigma 32 promoter (e.g. Lutz-Bujar LacO with selective sigma factor sigma 32), sigma 54 promoter (e.g. glnAP 2); negative regulated bacillus subtilis promoters such as the repressed bacillus subtilis sigma a promoter (e.g., gram positive IPTG inducible, xyl, hyper-spray), sigma promoter and the BioFAB promoter disclosed in Mutalik VK et al (Nature Methods,2013,10:354-360, see, inter alia, supplementary data) and on the BioFAB website (http:// bioofab. Synbec. Org/data). Other inducible microbial promoters and/or bacterial promoters may be used in accordance with the present invention. Inducible promoters for use in accordance with the present disclosure may be induced (or repressed) by one or more physiological conditions, such as pH, temperature, radiation, osmotic pressure, saline gradients, cell surface binding, and changes in the concentration of one or more exogenous or endogenous inducers. The exogenous inducer or inducer can include, without limitation, amino acids and amino acid analogs, sugars and polysaccharides, nucleic acids, protein transcription activators and repressors, cytokines, toxins, petroleum-based compounds, metal-containing compounds, salts, ions, enzyme substrate analogs, hormones, or combinations thereof.
Particularly preferred bacterial Promoters for use according to the invention may be selected from constitutive Promoters regulated by sigma 70, such as the Promoters of the Anderson collection (http:// parts. Igem. Org/Promoters/catalyst/Anderson): BBa J23100, BBa J23101, BBa J23102, BBa J23103, BBa J23104, BBa J23105, BBa J23106, BBa J23107, BBa J23108, BBa J23109, BBa J23110, BBa J23111, BBa J23112, BBa J23113, BBa J23114, BBa J23115, BBa J23116, BBa J23117, BBa J23118, and BBa J23119.
Other preferred bacterial promoters are those disclosed in Stanton et al, (2014) Nat.chem.biol.10:99-105 (incorporated herein by reference), including in particular TetR, icaR (A), amtR, betI, srpR, orf2, BM3R1, butR, phlF, psrA, hlyIIR, ameR, lmrA, qacR, scbR, mcbR, litR, hapR, smcR, tarA and variants thereof. In particular embodiments, the promoter is SrpR and/or PhlF or variants thereof.
In some embodiments of the invention, a promoter may or may not be used with an "enhancer," which refers to a cis-acting regulatory sequence involved in transcriptional activation of a nucleic acid sequence downstream of the promoter. Enhancers may be located at any functional position before or after the promoter.
In some embodiments, the payload may comprise a terminator sequence or terminator. As used herein, a "terminator" is a nucleic acid sequence that causes transcription to stop. The terminator may be unidirectional or bidirectional. It consists of a DNA sequence involved in the specific termination of RNA transcripts by RNA polymerase. The terminator sequence prevents transcriptional activation of the downstream nucleic acid sequence by the upstream promoter. Thus, in certain embodiments, a terminator is contemplated that ends the production of the RNA transcript. Terminators may be necessary to achieve desired gene/protein expression levels in vivo.
The most common type of terminator is the forward terminator. When placed downstream of a normally transcribed nucleic acid of interest, a forward transcription terminator will cause transcription to cease. In some embodiments, a bi-directional transcription terminator is provided that generally causes transcription termination on both the forward and reverse strands. In some embodiments, a reverse transcription terminator is provided, which generally terminates transcription only on the reverse strand. In prokaryotic systems, terminators generally fall into two categories, (1) ρ -independent terminators and (2) ρ -dependent terminators. The ρ -independent terminator usually consists of a stem-loop forming palindromic sequence enriched with G-C base pairs followed by a string of uracil bases.
The terminator for use according to the present invention includes any transcription terminator described herein or known to one of ordinary skill in the art. Examples of terminators include, without limitation, termination sequences of genes such as bovine growth hormone terminators and viral termination sequences such as TO terminators, TE terminators, λTl and T1T2 terminators found in bacterial systems. In some embodiments, the termination signal may be a sequence that cannot be transcribed or translated, such as those resulting from sequence truncation.
The terminator for use according to the present invention also includes the terminator disclosed in Chen YJ et al (2013,Nature Methods,10:659-664) and the BioFAB terminator disclosed in Camfray G et al (Nucl Acids Res,2013,41 (9): 5139-5148).
In one embodiment, the sequence of interest is a programmable nuclease circuit to be delivered to the targeted bacteria. Such a programmable nuclease loop may be capable of mediating sequence-specific elimination of bacteria containing a target gene of interest (e.g., a gene that is detrimental to humans). Some embodiments of the present disclosure relate to engineered variants of the type II CRISPR-Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) system of streptococcus pyogenes (Streptococcus pyogenes). Other programmable nucleases that can be used include other CRISPR-Cas systems, engineered TALEN (transcription activator-like effector nuclease) variants, engineered Zinc Finger Nuclease (ZFN) variants, natural, evolved or engineered meganuclease or recombinase variants, and any combination or hybrid of programmable nucleases. Thus, the autonomously designed and engineered distributed loop provided herein can be used to selectively excise DNA encoding a gene of interest, such as a toxin gene, virulence factor gene, antibiotic resistance gene, remodeling gene or regulatory gene (see WO2014124226 and US 2015/0064138).
Other sequences of interest (preferably programmable) may be added to the payload in order to be delivered to the targeted bacteria. Preferably, the sequence of interest added to the payload results in cell death of the targeted bacteria. For example, a nucleic acid sequence of interest added to a payload may encode perforins, endolysins, restriction enzymes, or toxins that affect the targeted bacteria.
Alternatively, the sequence of interest added to the payload does not result in death of the targeted bacteria. For example, the sequence of interest may encode a reporter gene that results in a luminescent or fluorescent signal. Alternatively, the sequences of interest may comprise proteins and enzymes that fulfill useful functions, such as altering the metabolism of the targeted bacteria, the composition of its environment, or affecting the host subject. More specifically, the sequence of interest may be an antigen that triggers an immune response in the host immune subject. The specific antigen may be released in the environment after induction of lysis of the target cells, or may be secreted by the target cells (Costa et al, nat Rev Microbiol.2015Jun;13 (6): 343-59; ann et al Curr Top Microbiol Immunol.2017; 404:267-308).
In particular embodiments, the nucleic acid sequence of interest is selected from Cas nuclease, cas9 nuclease, guide RNA, single guide RNA (sgRNA), CRISPR locus, genes expressing enzymes such as nucleases or kinases, TALENs, ZFNs, meganucleases, recombinases, transposases, bacterial receptors, membrane proteins, structural proteins, secreted proteins, genes expressing resistance to antibiotics or general drugs, genes expressing toxic proteins or toxic elements, and genes expressing virulence proteins or virulence elements, bacterial secreted proteins or transporters, bacterial pores, or any combination thereof. These proteins may also be modified or engineered to include additional features such as the addition or removal of a function (e.g., dCas 9), addition of secretion signals to proteins that are not normally secreted, addition of exogenous peptides in the loop, as non-limiting examples.
In particular embodiments, the nucleic acid sequence of interest encodes a guide RNA assisted targeting (INTEGRATE) system, generally as in Vo et al, nat biotechnol 2021apr;39 (4) 480-489, the INTEGRATE system includes, for example, a Vibrio cholerae type I (V.cholerae) CRISPR transposon or a V-K pseudoclade greetings (Scytonema hofmanii) CRISPR transposon. In particular embodiments, the nucleic acid sequence of interest includes nucleic acids encoding crrnas, nucleic acids encoding TniQ cascade, cas8, cas7 and cas6 proteins, nucleic acids encoding tnsA, tnsB and tnsC proteins, and further includes donor DNA encoding a protein of interest to be added to the targeted bacterial genome. In particular embodiments, the nucleic acids encoding the TniQ cascade, cas8, cas7 and cas6 proteins and encoding the tnsA, tnsB and tnsC proteins are in the form of a single polycistronic nucleic acid. In another particular embodiment, the nucleic acid sequence of interest includes a nucleic acid encoding a guide RNA, a nucleic acid encoding cas12k protein, tnsB and tnsC proteins, and a TniQ cascade, and further includes donor DNA encoding a protein of interest to be added to the targeted bacterial genome.
In particular embodiments, the payloads used in the context of the present invention comprise a sequence of interest encoding a bacteriocin, which may be a protein toxin produced by a bacterium to kill or inhibit the growth of other bacteria. Bacteriocins are classified in several ways, including producer strains, common resistance mechanisms, and killing mechanisms. Such bacteriocins from gram-negative bacteria (e.g., colicins, and tail bacteriocins (tailocins)) and from gram-positive bacteria (e.g., class I, II, III, or IV bacteriocins) have been described.
In one embodiment, the payload used in the context of the present invention further comprises a sequence of interest encoding a toxin selected from the group consisting of: colicin-like bacteriocins, cerocins, class I, class II, class III and class IV bacteriocins. The circuit may also encode transport proteins required to secrete toxins into the extracellular space.
In particular embodiments, the corresponding immune polypeptides (i.e., antitoxins) can be used to protect bacterial cells (see a review of Cotter et al, nature Reviews Microbiology 11:95, 2013) for payload generation and encapsidation purposes, but the payloads used in the context of pharmaceutical compositions and the present invention are not present in the targeted bacteria in which they are delivered.
In particular embodiments, the payload used in the context of the present invention comprises a sequence of interest encoding a CRISPR-Cas system.
The CRISPR-Cas system contains two different elements, i.e., i) an endonuclease, in this case a CRISPR-associated nuclease (Cas or "CRISPR-associated protein"), and ii) a guide RNA. Depending on the type of CRISPR system, the guide RNA may be in the form of a chimeric RNA consisting of a combination of CRISPR (crRNA) bacterial RNA and tracrRNA (transactivation RNA CRISPR) (Jinek et al, science.2012Aug17;337 (6096): 816-21). The guide RNA binds to the targeting specificity of the crRNA corresponding to the "spacer" that serves as a guide for the Cas protein, as well as the conformational nature of the tracrRNA in a single transcript. When the guide RNA is expressed simultaneously with the Cas protein in the cell, the target genomic sequence may be permanently interrupted (and, depending on the location, cause disappearance of the targeting and surrounding sequences and/or cell death) or modified. Modification may be guided by the repair matrix.
Depending on the mechanism of action of nucleases, CRISPR-Cas systems include two main categories:
class-1 consists of multi-subunit effector complexes and includes I, III and type IV;
class-2 consists of single subunit effector modules such as Cas9 nucleases and includes type II (II-A, II-B, II-C, II-C variants), type V (V-A, V-B, V-C, V-D, V-E, V-U1, V-U2, V-U3, V-U4, V-U5) and type VI (VI-A, VI-B1, VI-B2, VI-C, VI-D).
The sequence of interest according to the invention may comprise a nucleic acid sequence encoding a Cas protein. A variety of CRISPR enzymes are useful as sequences of interest on payloads used in the context of the present invention. In some embodiments, the CRISPR enzyme is a type II CRISPR enzyme, a type II-a or a type II-B CRISPR enzyme. In another embodiment, the CRISPR enzyme is a type I CRISPR enzyme or a type III CRISPR enzyme. In some embodiments, the CRISPR enzyme catalyzes DNA excision. In some other embodiments, the CRISPR enzyme catalyzes RNA excision. In one embodiment, the CRISPR enzyme can be coupled to a guide RNA or a single guide RNA (sgRNA). In certain embodiments, the guide RNA or sgRNA targets a gene selected from the group consisting of: antibiotic resistance genes, virulence protein or factor genes, toxin protein or factor genes, bacterial receptor genes, membrane protein genes, structural protein genes, secreted protein genes, genes that express resistance to general drugs, and genes that cause deleterious effects on the host subject.
The sequence of interest may comprise a nucleic acid sequence encoding a guide RNA or sgRNA to guide Cas protein endogenous to the targeted bacteria, alone or in combination with a Cas protein and/or guide RNA encoded by the payload.
Non-limiting examples of Cas proteins that are part of a multi-subunit effector or as a single subunit effector include Cas1, cas1B, cas2, cas3, cas4, cas5, cas6, cas7, cas8, cas9 (also known as Csn1 and Csx 12), cas10, cas11 (SS), cas12a (Cpf 1), cas12b (C2C 1), cas12C (C2C 3), cas12d (CasY), cas12e (CasX), C2C4, C2C8, C2C5, C2C10, C2C9, cas13a (C2), cas13b (C2C 6), cas13C (C2C 7), cas13d, csa5, csc 1' Csc2, cse1, cse2, csy3, csf1, csf2, csf3, csf4, csm1, csm2, csm3, csm4, csm5, csm6, cmr1, cmr3, cmr4, cmr5, cmr6, csn2, csb1, csb2, csb3, csx17, csx14, csx10, csx16, csax, csx13, csx1, csx15, sdcpf1, cttCpf 1, tspCpf 1, cmaCpf1, pcpf 1, erCpf1, fbcCpf 1, asCpf1, lbCpf1, mad4, mad7, cms1, homologs thereof, orthologs thereof, variants thereof, or modified versions thereof. In some embodiments, the CRISPR enzyme cleaves both strands of the target nucleic acid at a pre-spacer adjacent to a motif (PAM) site.
In particular embodiments, the CRISPR enzyme is any Cas9 protein, such as any naturally occurring bacterial Cas9 and any variant, homolog or ortholog thereof.
By "Cas9" is meant a protein Cas9 (also known as Csn1 or Csx 12) or a functional protein, peptide or polypeptide fragment thereof, i.e. capable of interacting with the guide RNA(s) and exerting an enzymatic activity (nuclease) allowing it to double-strand cleave the DNA of the target genome. "Cas9" may thus represent a modified protein, e.g. a protein domain that is truncated to remove a domain not essential for the intended function of the protein, in particular a domain not essential for interaction with the gRNA(s).
As used in the context of the present invention, sequences encoding Cas9 (whole protein or fragments thereof) can be obtained from any known Cas9 protein (Fonfara et al, nucleic Acids Res.2014Feb;42 (4): 2577-90; koonin et al, currOpinMicrobiol.2017Jun; 37:67-78). Examples of Cas9 proteins useful in the present invention include, but are not limited to, cas9 proteins of: streptococcus pyogenes (SpCas 9), streptococcus thermophilus (Streptococcus thermophiles) (St 1Cas9, st3Cas 9), streptococcus mutans (Streptococcus mutans), staphylococcus aureus (Staphylococcus aureus) (SaCas 9), campylobacter jejuni (Campylobacter jejuni) (CjCas 9), francissamum newlare (Francisella novicida) (FnCas 9), and neisseria meningitidis (Neisseria meningitides) (NmCas 9).
As used in the context of the present invention, the sequence encoding Cpfl (Cas 12 a) (whole protein or fragment thereof) may be obtained from any known Cpfl (Cas 12 a) protein (Koonin et al, currOpinMicrobiol.2017Jun; 37:67-78). Examples of Cpf1 (Cas 12 a) proteins useful in the present invention include, but are not limited to, the following Cpf1 (Cas 12 a) proteins: amino acid coccus species (Acidaminococcus sp), bacteria of the family chaetoceraceae (Lachnospiraceae bacteriu) and new inland francisco.
As used in the context of the present invention, sequences encoding Cas13a (whole protein or fragments thereof) can be obtained from any known Cas13a (C2C 2) protein (Abudayyeh et al, nature.2017Oct 12;550 (7675): 280-284). Examples of Cas13a (C2) proteins useful in the present invention include, but are not limited to, the following Cas13a (C2) proteins: wei De ciliated (Leptotrichia wadei) (LwaCas 13 a).
As used in the context of the present invention, sequences encoding Cas13d (whole protein or fragments thereof) can be obtained from any known Cas13d protein (Yan et al Mol cell.2018Apr 19;70 (2): 327-339.e5.). Examples of Cas13d proteins useful in the present invention include, but are not limited to, cas13d proteins of: eubacterium inertens (Eubacterium siraeum) and Ruminococcus species (Ruminococcus sp.).
As used in the context of the present invention, the sequence encoding Mad4 (whole protein or fragment thereof) is disclosed in international application WO 2018/236548.
As used in the context of the present invention, the sequence encoding Mad7 (whole protein or fragment thereof) is disclosed in international application WO 2018/236548.
As used in the context of the present invention, sequences encoding Cms1 (whole protein or fragments thereof) are disclosed in international patent application WO 2017/141173.
In particular embodiments, the nucleic acid sequence of interest is a CRISPR/Cas9 system for reducing expression or inactivating a gene selected from the group consisting of: antibiotic resistance genes, virulence factors or protein genes, toxin factors or protein genes, genes expressing bacterial receptors, membrane proteins, structural proteins, secreted proteins, genes expressing resistance to general drugs, and genes causing deleterious effects on the host subject.
In one embodiment, the CRISPR system is used to target and inactivate virulence factors. Virulence factors can be any substance produced by a pathogen that alters host subject-pathogen interactions by increasing the extent of damage made to the host subject. Virulence factors are used by pathogens in a number of ways including, for example, in the adhesion or colonization of cells in a niche (niche) in a host subject, to evade the host subject's immune response, to promote entry into and exit from cells in the host subject, to gain nutrition from the host subject, or to inhibit other physiological processes in the host subject. Virulence factors can include enzymes, endotoxins, adhesion factors, motility factors, factors involved in complement evasion, clearance factors, and factors that promote biofilm formation. For example, such targeted virulence factor genes may be escherichia coli virulence factor genes, such as, without limitation, EHEC-HlyA, stx1 (VT 1), stx2 (VT 2), stx2a (VT 2 a), stx2b (VT 2 b), stx2c (VT 2 c), stx2d (VT 2 d), stx2e (VT 2 e) and Stx2F (VT 2F), stx2h (VT 2 h), stx2k, fimA, fimF, fimH, neuC, kpsE, sfa, foc, iroN, aer, iha, papC, papGI, papGII, papGIII, hlyC, cnf1, hra, sat, ireA, usp ompT, ibeA, malX, fyuA, irp2, traT, afaD, ipaH, eltB, estA, bfpA, eaeA, espA, aaiC, aatA, TEM, CTX, SHV, csgA, csgB, csgC, csgD, csgE, csgF, csgG, csgH, T1SS, T2SS, T3SS, T4SS, T5SS, T6SS (secretion system). For example, such targeted virulence factor genes can be shigella dysenteriae (Shigella dysenteriae) virulence factor genes, such as, without limitation, stx1 and stx2. For example, such targeted virulence factor genes can be Yersinia pestis (Yersinia pestis) virulence factor genes, such as, without limitation, yscF (plasmid-borne (pCDl) T3SS outer needle subunit (external needle subunit)). For example, such a targeted virulence factor gene may be a Francisella tularensis (Francisella tularensis) virulence factor gene, such as, without limitation, fslA. For example, such targeted virulence factor genes can be bacillus anthracis (Bacillus anthracis) virulence factor genes, such as, without limitation, pag (anthrax toxin, cell-binding protective antigen). For example, such targeted virulence factor genes can be Vibrio cholerae (Vibrio cholera) virulence factor genes, such as, without limitation, ctxA and ctxB (cholera toxin), tcpA (toxin co-regulated pili), and toxT (major virulence regulator). For example, such targeted virulence factor genes may be pseudomonas aeruginosa (Pseudomonas aerigunosa) virulence factor genes, such as, without limitation, pyovine (e.g., sigma factor pvdS, biosynthesis gene pvdL, pvdl, pvdJ, pvdH, pvdA, pvdF, pvdQ, pvdN, pvdM, pvdO, pvdP, transporter gene pvdE, pvdR, pvdT, opmQ), siderophores pyochelin (e.g., pchD, pchC, pchB, pchA, pchE, pchF and pchG), and toxins (e.g., exoU, exoS, and exoT). For example, such targeted virulence factor genes can be klebsiella pneumoniae (Klebsiella pneumoniae) virulence factor genes, such as, without limitation, fimA (adhesion, type I bacteria Mao Zhuyao subunit) and cps (capsular polysaccharide). For example, such targeted virulence factor genes can be acinetobacter baumannii (Acinetobacter baumannii) virulence factor genes, such as, without limitation, ptk (capsular polymerization) and epsA (assembly). For example, such targeted virulence factor genes can be salmonella enterica typhi (Salmonella enterica Typhi) virulence factor genes, such as, without limitation, MIA (invasion, SPI-1 regulator), ssrB (SPI-2 regulator), and those associated with bile tolerance, including the efflux pump genes acrA, acrB, and tolC. For example, such targeted virulence factor genes can be fusobacterium nucleatum (Fusobacterium nucleatum) virulence factor genes, such as, without limitation, fadA and TIGIT. For example, such targeted virulence factor genes can be bacteroides fragilis (Bacteroides fragilis) virulence factor genes, such as, without limitation, bft. For example, such targeted virulence factor genes may be the dermatobacterium acnes (Cutibacterium acnes) porphyrin gene, the CAMP factors (CAMP 1, CAMP2, CAMP3, CAMP 4), the hyaluronate lyase (hyt-IB/II, hyt-IA), the lipase (GehA, gehB), the lysin, the sialidases, the gangliosidase, the endo- β -N-acetylglucosaminidase, the dermatan sulfate adhesins (DsA 1, dsA 2), the proline-threonine repeat (PTR) or any virulence factor included on the acne-related genomic loci 1, 2, 3 (plasmids), 4 (such as the compact adhesion locus (tad)), the streptolysin S-related gene (sag), the non-ribosomal peptide synthase (NRPS), such as Tomida et al, mhio.2013 apr 30;4 (3) e 00003-13.
In another embodiment, CRISPR/Cas systems are used to target and inactivate antibiotic resistance genes such as, without limitation, gyrB, parE, parY, AAC (1), AAC (2 '), AAC (3), AAC (6'), ANT (2 "), ANT (3"), ANT (4 '), ANT (6), ANT (9), APH (2 "), APH (3'), APH (4), APH (6), APH (7), APH (9), armA, rmtA, rmtB, rmtC, sgm, AER, BLA1, CTX-M, KPC, SHV, TEM, blaB, ccrA, IMP, NDM, VIM, ACT, ampC, CMY, LAT, PDC, OXA β -lactamase, mecA, omp36, ompF, PIB, bla (blaI, blaR 1) and mec (mecI, mecR 1) operons, chloramphenicol Acetyl Transferase (CAT), chloramphenicol phosphotransferase, ethylamine resistant arabinosyl transferase (EmbB), mupA, mupB, integrin (2), cfr rrmethyl transferase, rifampin-ADP-transferase (4), arpr-transferase, monokinetin, ADP-transferase, dfor, dfirp-2), znafalabas, zna, vgb, 75, noroxymatriptase, zna, 75, noroxymatriptase, virginase, 37, stroma, quinazoline (75, and the like FomA, fomB, fosC, fosA, fosB, fosX, vanA, vanB, vanD, vanR, vanS, lincoamide nucleotide transferase (Lin), ereA, ereB, gimA, mgt, ole, macrolide Phosphotransferase (MPH), mefA, mefE, mel, streptothricin acetyl transferase (sat), sul1, sul2, sul3, sulfanilamide resistance FolP, tetracycline inactivating enzyme TetX, tetA, tetB, tetC, tet30, tet31, tetM, tetO, tetQ, tet32, tet36, macAB-TolC, msbA, msrA, vgaB, emrD, emrAB-TolC, norB, gepA, mepA, adeABC, acrD, mexAB-OprM, mtrCDE, emrE, adeR, acrR, baeSR, mexR, phoPQ, mtrR, or any antibiotic resistance gene described in the comprehensive antibiotic resistance database (CARD https:// card.mcmaster.ca /).
In another embodiment, the CRISPR/Cas system is used to target and inactivate bacterial toxin genes. Bacterial toxins may be classified as either exotoxins or endotoxins. Exotoxins are produced and actively secreted; endotoxin remains part of the bacteria. The response to bacterial toxins may involve severe inflammation and may lead to sepsis. Such toxins may be, for example, botulinum neurotoxin, tetanus toxin, staphylococcal toxin, diphtheria toxin, anthrax toxin, alpha toxin, pertussis toxin, shiga toxin, thermostable enterotoxin (e.g., ST), colicin (colibacillus), BFT (bacteroides fragilis toxin), or any of the toxins described in Henkel et al (Toxins from Bacteria in exs.2010; 100:1-29).
In particular embodiments, the payload used in the context of the present invention comprises a sequence of interest encoding a base editing system.
Base Editing (BE) refers to the ability to substitute another base pair for a particular nucleotide base pair on a DNA or RNA molecule. Until recently, the only way to specifically substitute DNA in vivo was to use recombination of template DNA with the locus of interest that carries specific base pair changes. Base editing techniques rely on disparate strategies. Instead of DNA exchange, an enzymatic reaction converts a nucleotide to another nucleotide, resulting in a mismatch at the dsDNA level, which is then corrected by the cellular machinery.
In some embodiments, the base editing system includes one or more of the following enzymes and systems:
a) Cytosine Base Editors (CBEs) and Adenosine Base Editors (ABEs), as described by Rees, H.A.& Liu, d.r.nat Rev Genet 19,770-788 (2018).
To date, seven types of DNA base editors have been described:
cytosine Base Editor (CBE) for converting C:G to T:A (Komor, A et al Nature 533:420-4 (2016))
Adenine base editor (Gaudelli, N.M. et al, nature 551 (7681) 464-471 (2017))
Cytosine Guanine Base Editor (CGBE) for converting C: G to C (Chen, L et al Precise and programmable C: G to G: C base editing in genomic DNA. Biorxiv (2020.; kurt, I et al, CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology (2020))
Cytosine guanine base editor (Zhao, D et al New base editors change C to A in bacteria and C to G in mammalian cells Nature Biotechnology (2020)) for converting C: G to A: T
Adenine cytosine base editor converting A: T to C: G (WO 2020181180)
Adenine thymine base editor for converting A: T to T: A (WO 2020181202)
Thymine Adenine Base Editor (TABE) for converting T: A to A: T (WO 2020181193; WO2020181178; WO 2020181195)
Base editors differ in terms of base modifying enzymes. CBE relies on ssDNA cytidine deaminase, wherein: APOBEC1, rAPOBEC1, mutants or evolved versions of APOBEC1 (evoAPOBEC 1), APOBEC homologs (APOBEC 3A (eA 3A), anc 689), cytidine deaminase 1 (CDA 1), evoCDA1, FERNY, evoFERNY.
ABE relies on deoxyadenosine deaminase activity fused in tandem to TadA-TadA, an evolved version of TadA, which is an escherichia coli tRNA adenosine deaminase capable of converting adenosine to inosine on ssDNA. TadA includes TadA-8a-e and TadA-7.10.
In addition to base modifying enzymes, there are modifications made to the base editor to improve editing efficiency, accuracy and modularity:
-adding one or two uracil DNA glycosylase inhibitor domains (UGIs) to prevent base excision repair mechanisms from restoring base editing
Addition of Mu-GAM, which reduces the insertion-deletion rate by inhibiting non-homologous end joining mechanisms (NHEJ) in cells
Cas9 with nickase activity (nCas 9D 10A) is used, which facilitates its repair by making a nick on the non-editing strand, thus fixing the edited base.
Use of different Cas proteins from e.g. different organisms, mutants with different PAM motifs or different fidelity or different families (e.g. Cas12 a).
Non-limiting examples of DNA-based editor proteins include BE1, BE2, BE3, BE4-GAM, HF-BE3, marksman-BE 3, target-AID-NG, ABE, EE-BE3, YE1-BE3, YE2-BE3, YEE-BE3, BE-PLUS, saBE3, saBE4-GAM, sa (KKH) -BE3, VQR-BE3, VRER-BE3, EQR-BE3, xBE3, cas12a-BE, ea3A-BE 3A 3A-BE3, TAM, CRISPR-X, ABE7.9, ABE7.10, xABE, ABESa, VQR-ABE, VRER-ABE, sa (KKH) -ABE, ABE8e, spRY-ABE, spRY-CBE, spG-CBE4, spG-ABE, spRY-CBE4, spCas9-NG-ABE, spCas9-NG-CBE4, enasbe1.1, enasbe1.2, enasbe1.3, enasbe1.4, asbes1.1, asbest 1.4, CRISPR-Abest, CRISPR-Cbest, eA3A-BE3, ancbE4.
The Cytosine Guanine Base Editor (CGBE) consists of a nicking enzyme CRISPR fused to:
cytosine deaminase (rAPOBEC) and base excision repair proteins (e.g. rXRCC 1) (Chen, L et al Precise and programmable C: G to G: C base editing in genomic DNA. Biorxiv (2020); chen et al Nature Communications12:1384 (2021))
Rat APOBEC1 variant (R33A) protein and uracil DNA N-glycosylase (eUNG) from E.coli (Kurt, I et al, CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology (2020))
The Cytosine Adenine Base Editor (CABE) consists of Cas9 nickase, cytidine deaminase (e.g., AID) and uracil-DNA glycosylase (Ung) (Zhao, D et al New base editors change C to A in bacteria and C to G in mammalian cells.
ACBE comprises a nucleic acid programmable DNA binding protein and adenine oxidase (WO 2020181180).
ATBE consists of a Cas9 nickase and one or more adenosine deaminase or oxidase domains (WO 2020181202).
Tab consists of Cas9 nickase and an adenosine methyltransferase, thymine transferase or adenosine deaminase domain (WO 2020181193; WO2020181178; WO 2020181195).
The base editor molecule may also consist of two or more of the above listed editor enzymes (e.g., a combination of ABE and CBE) fused to a Cas protein. These biomolecules are named double base editors and allow editing of two different bases (Grunewald, J et al, A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing, nature Biotechnology (2020); li, C et al, targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors, nature Biotechnology (2020)).
In particular embodiments, the base editing system comprises a Cytosine Base Editor (CBE) and/or an Adenosine Base Editor (ABE) as defined above.
B) As described in Anzalone, a.v. et al, nature 576,149-157 (2019), the leader editor (PE) consists of nCas9 fused to reverse transcriptase, which is fused to leader editing RNA (pegRNA; guide RNAs that include a template region for reverse transcription).
Lead editing allows for the introduction of insertions, deletions (indels) and 12 base-to-base conversions. Leader editing relies on the ability of Reverse Transcriptase (RT) fused to Cas nickase variants to convert RNA sequences brought about by leader editing guide RNA (pegRNA) into DNA at the nicking site created by the Cas protein. The DNA branch (flap) resulting from this method is then included or excluded in the targeted DNA sequence.
The pilot editing system includes:
cas nickase variants such as Cas9-H840A fused to a reverse transcriptase domain such as M-MLV RT or mutant forms thereof (M-MLV RT (D200N), M-MLV RT (D200N/L603W/T330P/T306K/W313F)
Lead editing guide RNA (pegRNA)
To facilitate editing, the lead editing system can include expression of additional sgrnas that ideally target Cas nickase activity to the non-edited DNA strand only after the edited strand branches are resolved, by designing the sgrnas to anneal to the edited strand but not to the original strand.
Non-limiting examples of lead editing systems include PE1, PE1-M2, PE1-M3, PE1-M6, PE1-M15, PE1-M3inv, PE2, PE3b.
The Cas9 reverse transcript via homolog Y is compiled in parallel ('CRISPEY'), a reverse transcriptase RNA fused with sgRNA and expressed with Cas9, and the reverse transcript protein includes at least reverse transcriptase (Sharon, e.et al, cell 175,544-557.e16 (2018)).
SCRIBE strategy: reverse transcription subsystem (Farzadfard, F. & Lu, t.k.science 346,1256272 (2014)) expressed in combination with a recombinase that promotes single-stranded DNA recombination, also known as a single-stranded annealing protein (SSAP). Such recombinases include, but are not limited to, phage recombinases such as lambda red, recET, sak, sak and Wannier, T.M. et al Improved bacterial recombineering by parallelized protein discovery.Biorxiv2020.01.14.906594 (2020) doi: 10.1101/2020.01.14.906594.
The targetron system based on group II introns is described in Karberg, m.et al, nat Biotechnol 19,1162-7 (2001), which has been adapted to many bacterial species.
Other methods of gene targeting based on reverse transcripts are described in Simon, A.J., ellington, A.D, & Finkelstein, I.J., nucleic Acids Res 47,11007-11019 (2019).
C) CRISPR/Cas in various embodiments, the sequence of interest encodes a fusion protein comprising a Cas9 (e.g., cas9 nickase) domain and a deaminase domain. In some embodiments, the fusion protein comprises Cas9 and a cytosine deaminase, such as an apodec enzyme, or an adenosine deaminase, such as an ADAT enzyme, e.g., as disclosed in U.S. patent publication 2015/0166980. In one embodiment, the deaminase is ACF1/ASE deaminase.
In various embodiments, the apodec deaminase is selected from the group consisting of an apodec 1 deaminase, an apodec 2 deaminase, an apodec 3A deaminase, an apodec 3B deaminase, an apodec 3C deaminase, an apodec 3D deaminase, an apodec 3F deaminase, an apodec 3G deaminase, and an apodec 3H deaminase. In various embodiments, the fusion protein comprises a Cas9 domain, a cytosine deaminase domain, and a Uracil Glycosylase Inhibitor (UGI) domain.
In one embodiment, the deaminase is an adenosine deaminase that deaminates adenosine in DNA, e.g., as disclosed in us patent 10,113,163. In some embodiments, the fusion protein further comprises an inhibitor of base repair, such as a nuclease-inactivated inosine-specific nuclease (dsn), e.g., as disclosed in us patent 10,113,163. In various embodiments, the nucleic acid of interest encodes a fusion protein comprising a catalytically impaired Cas9 endonuclease fused to a engineered reverse transcriptase programmed with a leader editing guide RNA (pegRNA) that both specifies the target site and encodes the desired editing, e.g., as described by Anzalone et al.
In some embodiments, other programmable nucleases can be used. These include engineered TALENs (transcription activator-like effector nucleases) and variants, engineered Zinc Finger Nuclease (ZFN) variants, natural, evolved or engineered meganuclease or recombinase variants, and any combination or hybrid of programmable nucleases. Thus, the programmable nucleases provided herein can be used to selectively modify DNA encoding a DNA sequence or gene of interest such as a toxin gene, virulence factor gene, antibiotic resistance gene, remodeling gene or regulatory gene (see WO2014124226 and US 2015/0064138).
In one embodiment, a base editing system or base editor is used to inactivate expression of a gene by editing one or several nucleotides involved in transcription or translation. More specifically, the base editor targets one or several nucleotides of the promoter, RBS or start codon.
In one embodiment, a base editing system or base editor is used to introduce a premature stop codon.
In one embodiment, a base editing system or base editor is used to introduce one or several rare codons.
In another embodiment, a base editing system or base editor is used to regulate the expression of a gene by editing one or several nucleotides involved in transcription or translation. More specifically, the base editor targets one or several nucleotides of the promoter, RBS or start codon, resulting in an increase or decrease in gene expression.
In another embodiment, a base editing system or base editor is used to restore mutations that result in inactivation, reduction, or increase in gene activity or pathway.
In another embodiment, a base editing system or base editor is used to recover mutations that result in increased pathogenicity.
In one embodiment, a base editing system or base editor is used to modify the regulation of a gene by editing one or several nucleotides involved in its regulation, such as the nucleotides of an operator sequence, a transcription factor binding site, a riboswitch, an rnase recognition site, a protease cleavage site, a methylation site, or a post-translational modification site (phosphorylation, glycosylation, acetylation, prokaryotic ubiquitination (delivery) … …).
In some embodiments, the sequence of interest encodes an RNA base editing system. RNA base editing is based on the same principle as DNA base editing: enzymes that catalyze the conversion of one RNA base to another must be in close proximity to the target base to effect its conversion locally. In one embodiment, the enzyme used for RNA editing is an adenosine deaminase from the ADAR family, which converts adenosine to inosine in the dsRNA structure. Several open studies have used this specificity for dsRNA and extended ADAR deaminase domains (ADAR DD ) Fusion with antisense oligonucleotides to program local RNA base editing. Recently, the ability of some CRISPR-Cas systems to bind RNA molecules has been altered for RNA editing. Using a highly active mutant with ADAR2 deaminase domain (ADAR 2 for REPAIRv 1) DD E488Q, ADAR2 for REPAIRv2 DD The catalytic inactivation of the Cas13b enzyme (dPspCas 13 b) by E488Q-T375G fusion increases specificity and efficiency compared to previous RNA editing strategies (Cox, d.b.t. et al, science 358,1019-1027 (2017)).
Non-limiting examples of RNA base editing proteins include REPAIRv1, REPAIRv2.
In one embodiment, an RNA base editor is used to inactivate expression of a gene by editing one or several nucleotides involved in translation. More specifically, the base editor targets one or several nucleotides of the 5' utr, RBS, start codon.
In one embodiment, an RNA base editor is used to introduce a premature stop codon.
In one embodiment, an RNA base editor is used to introduce one or several rare codons.
In another embodiment, an RNA base editor is used to regulate expression of a gene by editing one or several nucleotides involved in translation. More specifically, the base editor targets one or several nucleotides of the 5' utr, RBS, start codon, resulting in an increase or decrease in gene expression.
In another embodiment, an RNA base editor is used to restore mutations that result in inactivation or reduction of the activity or pathway of a gene.
In another embodiment, a base editor is used to recover mutations that result in increased pathogenicity.
In a preferred embodiment, the sequence of interest only plays a role in the targeted bacterial cell. More preferably, the sequence of interest is expressed only in the targeted bacterial cell.
Origin of replication
In certain embodiments, the copy number of the payload in the producer bacterial cell is controlled by the at least one induction mechanism defined above. In an alternative embodiment, another induction mechanism controls the copy number of the payload in the producer bacterial cell.
Origins of replication known in the art have been derived from species-specific plasmid DNA (e.g., coIE1, rl, pT181, pSC101, pMB1, R6K, RK2, p15a, etc.), from bacterial viruses (e.g.M13, F1, and P4) and from bacterial chromosomal origins of replication (e.g., oriC).
In one embodiment, the payload used in the context of the present invention comprises a bacterial origin of replication that is functional in the targeted bacteria.
Alternatively, the payload used in the context of the present invention does not comprise any functional bacterial origin of replication or comprises an origin of replication that is inactive in the targeted bacteria. In such embodiments, the payload is unable to replicate itself once it is introduced into the bacteria by the phage particle or phage-derived delivery vehicle.
In one embodiment, the origin of replication on the payload to be packaged is inactive in the targeted bacteria, meaning that the origin of replication is not functional in bacteria targeted by the phage particle or phage-derived delivery vehicle, thereby preventing unwanted plasmid replication.
In one embodiment, the payload comprises a bacterial origin of replication that is functional in a producer bacterial cell of the invention.
Bacterial-specific origin of replication
Plasmid replication depends on host bacterial enzymes and plasmid-controlled cis-and trans-determinants. For example, some plasmids have determinants recognized in almost all gram-negative bacteria and function correctly in every host bacterium during replication initiation and regulation. Other plasmids possess this capability only in some bacteria (Kues, U and Stahl, U1989Microbiol Rev 53:491-516).
Plasmids replicate by three general mechanisms starting at the origin of replication, namely type θ, strand displacement and rolling circle (reviewed by Del Solar et al 1998Microbio and Molec Biol.Rev 62:434-464). These origins of replication contain sites required for interaction of the plasmid and/or host encoded proteins.
The origins of replication used on the payloads used in the context of the present invention may be medium copy numbers such as ColE1 ori (15-20 copies per cell) or R6K plasmids from pBR322 (15-20 copies per cell), or may be high copy numbers such as pUC oris (500-700 copies per cell), pGEM oris (300-400 copies per cell), pTZ oris (> 1000 copies per cell) or pBluescript oris (300-500 copies per cell).
In one embodiment of the present invention, in one embodiment, bacterial origins of replication are selected from the group consisting of ColE1, pMB1 and variants (pBR 322, pET, pUC, etc.), P15a, colA, colE2, pOSAK, pSC101, R6K, incW (pSa, etc.), incFII, pT181, P1, F IncP, incC, incJ, incN, incP, incP4, incQ, incH11, RSF1010, cloDF13, NTP16, R1, F5, pPS10, pC194, pE194, BBR1, pBC1, pEP2, pWVO1, pLF1311, pAP1, pWKS1, pLS11, pUB6060, pJDMb 4, pJ 101, pSN22, pAeta 1, pIP501, pIP407, ZM6100 (Sa 1, RA3, pMOL98, RK2/RP4/RP1/R68, pB10, R300B, pRO 4, pRO1600, pEM 2, pA 84, pFL 3, pFL 80, pFv 387, pFv 80 and pU 9.
More preferably, the bacterial origin of replication is an E.coli origin of replication selected from the group consisting of: colE1, pMB1 and variants (pBR 322, pET, pUC, etc.), P15a, colA, colE2, pOSAK, pSC101, R6K, incW (pSa, etc.), incFII, pT181, P1, F IncP, incC, incJ, incN, incP1, incP4, incQ, incH11, RSF1010, cloDF13, NTP16, R1, F5, pPS10.
More preferably, the bacterial origin of replication is selected from the group consisting of pC194, pE194, BBR1, pBC1, pEP2, pWVO1, pLF1311, pAP1, pWKS1, pLS11, pUB6060, pJD4, pIJ101, pSN22, pAMbreta 1, pIP501, pIP407, ZM6100 (Sa), pCU1, RA3, pMOL98, RK2/RP4/RP1/R68, pB10, R300B, pRO1614, pRO1600, pECB2, pCM1, pFA3, repFIA, repFIB, repFIC, pYVE439-80, R387, phasyl, RA1, TF-FC2, pMV158 and pUB113.
Even more preferably, the bacterial origins of replication are ColE1 and p15a.
In one embodiment, the bacterial origin of replication is functional in Propionibacterium (Propionibacterium) and dermatophytes (Cutibacillus), more specifically Propionibacterium freudenreichii (Propionibacterium freudenreichii) and dermatophytes acnes, and is selected from the group consisting of pLME108, pLME106, p545, pRGO1, pZGX01, pPG01, pYS1, FRJS12-3, FRJS25-1, pIMPLE-HL096PA1, A_15_1_R1. In a particular embodiment, the bacterial origin of replication is selected from the bacterial origins of replication disclosed in U.S. application Ser. No. 2022/135986 and U.S. application Ser. No. 2022/135787.
Phage origin of replication
Payloads used in the context of the present invention may comprise phage origins of replication that may be accompanied by complementation of the complete phage genome to initiate replication of the payload for later encapsulation into a different capsid.
Phage origins of replication can also be engineered to act as bacterial origins of replication without the need to package any phage particles.
The phage origin of replication contained in the payload used in the context of the present invention may be any origin of replication found in phage.
Preferably, the phage origin of replication is M13, f1,Wild-type or non-wild-type sequences of P4, λ, P2, 186, λ -like, HK022, mEP237, HK97, HK629, HK630, mEP043, mEP213, mEP234, mEP390, mEP460, mpex 1, mEPx2, phi80, mEP234, T2, T4, T5, T7, RB49, phiX174, R17, PRD1 Pl-like, P2-like, P22-like, N15 and N15-like bacteriophage.
More preferably, the phage origin of replication is selected from M13, f1,Phage origin of replication of P4 and lambda.
In a particular embodiment, the phage origin of replication is a P4 origin of replication.
In a particular embodiment, the phage origin of replication is from a propionibacterium phage: BW-like phages such as doucete, B22, E6, G4; BV-like phages such as anagle, E1, B3; BX-like phages such as PFR1 and PFR2; filamentous B5 phage; BU-like phage (acnes skin bacillary phage). In a particular embodiment, the phage origin of replication is selected from the phage origins of replication disclosed in U.S. application Ser. No. 2022/135986 and U.S. application Ser. No. 2022/135987, incorporated herein by reference.
Conditional origin of replication
In certain embodiments, the payload comprises a conditional origin of replication that is inactive in the targeted bacteria, but active in the producing bacterial cells.
In the context of the present invention, a "conditional origin of replication" refers to an origin of replication whose functionality can be controlled by the presence of a particular molecule.
In particular embodiments, the conditional origin of replication is an origin of replication, the replication of which is dependent on the presence of one or more given proteins, peptides, RNAs, nucleic acids, molecules or any combination thereof.
In certain embodiments, replication involving the origin of replication may be further dependent on a process such as transcription to activate the replication.
In the context of the present invention, the conditional origin of replication is inactive in the targeted bacteria, since the given protein, peptide, RNA, nucleic acid, molecule or any combination thereof is not present in the targeted bacteria.
In certain embodiments, the conditional origin of replication is active in the producer bacterial cell because the producer bacterial cell expresses the given protein, peptide, RNA, nucleic acid, molecule, or any combination thereof. In certain embodiments, the protein, peptide, RNA, nucleic acid, molecule, or any combination thereof is expressed in trans in the producer bacterial cell.
By "trans" is meant herein that the protein, peptide, RNA, nucleic acid, molecule, or any combination thereof is not encoded on the same nucleic acid molecule as the nucleic acid molecule comprising the origin of replication. In a particular embodiment, the protein, peptide, RNA, nucleic acid, molecule or any combination thereof is encoded on a chromosome or a vector, in particular a plasmid. In certain embodiments, the vector comprises an antibiotic resistance marker. In an alternative embodiment, the vector is free of an antibiotic resistance marker.
Because the conditional origin of replication is inactive in the targeted bacteria due to the absence of the given protein, peptide, RNA, nucleic acid, molecule, or any combination thereof in the targeted bacteria, the conditional origin of replication may be selected according to the particular bacteria to be targeted.
The conditional replication origin disclosed herein may originate from a plasmid, a bacteriophage or a PICI, which preferably shares the following features: they contain a repeat sequence or a repeat in their origin of replication and they encode at least one protein (i.e. Rep, protein O, protein P, pri) that interacts with the origin of replication specific for them.
For example, mention may be made of the following conditional replication systems of plasmids and bacteriophages: RK2, R1, pSC101, F, rts1, RSF1010, P1, P4, lambda, phi82, phi80.
In particular embodiments, the conditional origin of replication is selected from the group consisting of an R6K lambda DNA origin of replication and derivatives thereof, an IncP alpha oriV origin of replication and derivatives thereof, a ColE1 origin of replication modified to be under an inducible promoter, and an origin of replication from a phage-inducible chromosomal island (PICI) and derivatives thereof.
In particular embodiments, the conditional origin of replication is an origin of replication present in less than 50% or less than 40%, less than 30%, less than 20%, less than 10% or less than 5% of the microbiome bacteria of the host subject.
In another specific embodiment, the conditional origin of replication comprises or consists of: replication origin sequences which are less than 80%, in particular less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5% or less than 1% identical to the replication origin sequences of a bacterium of the microbiome of the host subject, in particular representing more than 50%, more than 70%, more than 80%, more than 90% or more than 95% of the bacteria of the microbiome of the host subject.
As used herein, the term "phage-inducible chromosomal island" or "PICI" refers to a mobile genetic element having conserved genetic organization and encoding a pair of different regulatory genes, including the PICI major repressor. Generally, in gram-positive bacteria, PICI transcribed to the left of rpr and in the same direction encodes a small set of genes, including the integrase (int) gene; to the right of rpr and transcribed in the opposite direction, the PICI encodes a excision function (xis) and a replication module consisting of a primase homolog (pri) and optionally a replication initiator (rep) sometimes fused together, followed by an origin of replication (ori); PICI, which is next to these genes and also transcribed in the same direction, encodes genes involved in phage interference and optionally terminates small subunit homologs (terS).
In a specific embodiment, the conditional origin of replication is an origin of replication derived from a phage-induced chromosomal island (PICI).
The specific conditional origin of replication is indeed derived from the PICI.
It was shown that it is possible to derive novel conditional replication vectors, in particular based on the primase-helicase and the origin of replication from PICI. These origins can be relatively rare in the target strain, and more advantageously the priming enzyme-ori pair can be unique for each PICI, significantly reducing the likelihood of undesired recombination or payload diffusion events. They may be further modified to further limit the chance of recombination and to remove restriction sites to bypass the defense system of the target bacteria.
In a particular embodiment, the conditional replication origin is derived from The replication origin of PICI from Escherichia coli strain CFT073, which is disclosed in Fillol-Salom et al, (2018) The ISME Journal 12:2114-2128.
In a particular embodiment, the conditional origin of replication is the primase ori of PICI from E.coli strain CFT073, typically having the sequence SEQ ID NO. 1.
In another particular embodiment, the conditional origin of replication is the priming enzyme ori of PICI from escherichia coli strain CFT073, comprising no at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, or at least 16 restriction sites selected from the group consisting of: GAAABCC, GCCGGC, RCCGGY, GCNGC, TWCANNNNNNTGG (SEQ ID NO: 2), TGGCCA, ACCYAC, YGGCCR, AGACC, GCWGC, GGGANGC, GKAGATD, GCCGGYYD, GGCYAC, RGCCGGYYD and VGCCGGYBD.
In a particular embodiment, the conditional origin of replication is the primase ori of PICI from E.coli strain CFT073, without the restriction site GAAABCC. Preferably, the conditional origin of replication has the sequence SEQ ID NO. 3.
In another particular embodiment, the conditional origin of replication is the priming enzyme ori of PICI from E.coli strain CFT073, free of restriction sites GAAABCC, GCCGGC, RCCGGY, GCNGC, TWCANNNNNNTGG (SEQ ID NO: 2), TGGCCA, ACCYAC, YGGCCR, AGACC, GCWGC, GGGANGC, GKAGATD, GCCGGYYD, GGCYAC, RGCCGGYYD and
VGCCGGYBD. Preferably, the conditional origin of replication has the sequence SEQ ID NO. 4.
In a specific embodiment, wherein said origin of replication is derived from a phage-induced chromosomal island (PICI), said conditional origin of replication is active in said producer bacterial cell, because said producer bacterial cell expresses a rep protein, in particular a primase-helicase of sequence SEQ ID NO:5, typically encoded by a nucleic acid comprising or consisting of sequence SEQ ID NO: 6.
These specific conditional origins of replication proved to be particularly compatible with lambda-based packaging, resulting in sufficiently high titers required for microbiota-related applications >10 10 /mL)。
Preferably, the producer bacterial cells stably contain the payload and are capable of replicating the payload.
In particular embodiments, the donor bacterial cell expresses a given protein, peptide, nucleic acid, RNA, molecule, or any combination thereof when the conditional origin of replication of the payload is one whose replication depends on the presence of the protein, peptide, nucleic acid, RNA, molecule, or any combination thereof. Preferably, the protein, peptide, nucleic acid, RNA, molecule or any combination thereof is expressed in trans, as defined above.
In particular embodiments, the producer bacterial cell stably comprises a nucleic acid encoding the protein, peptide, nucleic acid, RNA, molecule, or any combination thereof.
In a specific embodiment, when the origin of replication is derived from a phage-induced chromosomal island (PICI), the conditional origin of replication is active in the donor bacterial cell, because the donor bacterial cell expresses a rep protein, in particular a primase-helicase of sequence SEQ ID NO: 5.
In a particular embodiment, the producer bacterial cell stably comprises a nucleic acid encoding the rep protein, in particular the primase-helicase, which nucleic acid generally comprises or consists of the sequence SEQ ID NO. 6.
Packaging site
In a particular embodiment, the payload is a nucleic acid payload comprising a packaging site derived from the lytic bacteriophage.
"packaging site" means a phage baseGenome packaging into viral particles. Host-specific bacteriophages (and packaging sites therefor) include, but are not limited to, SPP1 (SPP 1 pac site), P1 (P1 pac site), T1 (T1 pac site), T7 (T7 concatemeric), lambda (cos site), mu (mu pac site), P22 (P22 pac site), and,(/>pac site), sf6 (Sf 6 pac site), 149 (149 pac site) and a1122 (a 1122-concatemer junction). For most bacteriophages, the packaging site is called the pac site. In some cases, the packaging site is referred to as a concatemer junction (e.g., a T7 concatemer junction). In each case, the packaging site is substantially separated from the naturally occurring sequences adjacent thereto in the bacteriophage genome.
For some bacteriophages, the packaging site may be unknown. In these cases, the pac site can be determined by the nature of the plasmid being packaged with the functional bacteriophage pac site. For example, the DNA sequence required for lambda packaging of a bacteriophage is determined by incorporating a small restriction fragment of the genomic DNA of the lambda bacteriophage into a plasmid (Hohn 1983PNAS USA 80:7456-7460). After introduction into the in vivo packaging strain, the efficiency of packaging/transduction was quantitatively assessed. Using similar strategies, the pac sites of many bacteriophages were determined: lambda (Miwa 1982Gene 20:267-279); mu (Croenen et al, 1985Virology 144:520-522); filamentous bacteriophage, including f1, fd, M13, and Ike (Russel et al, 1989J Virol 1989 63:3284-3295); p22 (Petri et al, 1990Gene88:47-55; wu et al, 2002MolecMicrobiol 45:1631-1646); t7 (Chung et al 1990J Mol Biol 216:927-938) and T3 (Hashimoto et al 1992Virology 187:788-795).
In particular embodiments, the packaging sites are as disclosed in U.S. applications US2022/135986 and US 2022/135987.
Other components of the payload
The payloads used in the context of the present invention are preferably devoid of antibiotic resistance markers.
Antibiotic resistance genes are well known in the art and include, but are not limited to, ampicillin Lin Kangxing (Amp), chloramphenicol resistance (Cm), tetracycline resistance (Tet), kanamycin resistance (Kan), hygromycin resistance (Qiyg or hph genes), and zeomycin resistance (Zeo).
In certain embodiments, the payloads used in the context of the present invention comprise an auxotrophic marker. Auxotrophic markers in bacteria have previously been described, for example, in U.S. Pat. nos. 4,920,048, 5,691,185, 6,291,245, 6,413,768, and 6,752,994; U.S. patent publication No. 20050186666; struhl et al, (1976) PNAS USA 73;1471-1475; macCormick et al, (1995) FEMS Microbiol. Lett.127:105-109; dickely et al, (1995) mol. Microbiol.15:839-847; sorensen et al, (2000) appl. Environ. Microbiol 66:1253-1258; and Fiedler & Skerra (2001) Gene 274:111 118, and generally includes DapA and ThyA. In a particular embodiment, the auxotrophic marker is ThyA.
In certain embodiments, the payload does not comprise any restriction sites that are frequently recognized by restriction enzymes encoded by the targeted bacterial cells. In another particular embodiment, the payload comprises no more than 40, 30, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 restriction sites that are frequently recognized by a restriction enzyme encoded by the targeted bacterial cell or group or set of targeted bacterial cells.
As used herein, the term "Restriction sites"He"Restriction enzyme site"equivalent" and refers to a position on a nucleic acid that contains a particular nucleotide sequence that is recognized by a restriction enzyme. In particular, nucleic acids comprise specific sequences that are bound and cleaved by restriction enzymes. The restriction site is typically a palindromic sequence of 4-8 base pairs in length. More precisely, a restriction site refers to a specific sequence and modification state so as to be bound and cleaved by a restriction enzyme. In particular, it refers to a specific unmodified sequence for binding and cleavage by restriction enzymes. In particular the sequence is free of methylation, methylolation and glucosyl-hydroxylsMethylation. In this case, the restriction enzyme belongs to I, II or III. Alternatively, it may refer to a specific modified sequence so as to be bound and cleaved by restriction enzymes, such as methylated, methylolated and glucosyl-methylolated DNA. In this case, the restriction enzyme belongs to type IV.
As used herein, "with respect to restriction sites and restriction enzymes"Identified by …"means that the restriction site is cut by a restriction enzyme.
In the restriction site sequence, N means that the nucleotide may be A, C, G or T; b means that the nucleotide may be C, G or T; y means that the nucleotide may be C or T; w means that the nucleotide may be a or T; r means that the nucleotide may be A or G; and D means A, G or T.
As used herein, the term "Restriction enzymes"He"Restriction endonucleases"equivalent" and refers to an enzyme that cleaves nucleic acid at or near a restriction site. Restriction enzymes are generally classified into four types (type I-type IV). The REBASE database allows the listing of restriction sites that can be recognized by a given bacterium based on the restriction enzyme expressed by it.
In the group of bacteria of interest, "Often timesBy "or" frequently "is meant that at least 10, 20, 30, 40, 50, 60, 70, 75, 80, 85, 90, 95, or 99% of the bacteria in the group encode a restriction enzyme.
The payload according to the invention preferably comprises no more than 100 restriction sites. In a preferred embodiment, the payload according to the invention comprises no more than 10 restriction sites. In a most preferred embodiment, the payload according to the invention does not comprise any restriction sites.
Targeting bacteria
The bacteria targeted by the phage particles or phage-derived delivery particles of the invention can be any bacteria present in a mammalian organism, plant or environment. It may be any commensal, commensal or pathogenic bacteria of the microbiota or microbiome.
The microbiome can comprise a variety of endogenous bacterial species, any of which can be targeted in accordance with the present disclosure. In some embodiments, the genus and/or species targeted to the endogenous bacterial cell may depend on the first type of bacteriophage as defined in the section "bacteriophage and genes derived from bacteriophage" above. For example, some bacteriophage exhibit tropism for or preferentially target a particular host bacterial species. Other bacteriophages do not exhibit such tropism and can be used to target endogenous bacterial cells of many different genera and/or species.
Examples of bacterial cells include, without limitation, cells from bacteria of the following genera: yersinia species (Yersinia spp.), escherichia species (Escherichia spp.), klebsiella species (Klebsiella spp.), acinetobacter species (Acinetobacter spp.), bolde genus species (Bordetella spp.), neisseria species (Neisseria spp.), aeromonas species (Aeromonas spp.), francisella species (Francisella spp.), corynebacterium species (Corynebacterium spp.), citrobacter species (Citrobacter spp.), chlamydia species (Chlamydia spp.), hamammitis species (Hamammitis spp.), haemophilus species (Herophila spp.), brucella spp.), bacillus species (Mycobacterium spp.), legionella species (Legionella spp.). Rhodococcus species (Rhodococcus spp.), pseudomonas species (Pseudomonas spp.), helicobacter species (Helicobacter spp.), vibrio species (Vibrio spp.), bacillus species (Bacillus spp.), erysipelas species (Erysipelothrix spp.), salmonella species (Salmonella spp.), streptomyces species (Streptomyces spp.), streptococcus species (Streptococcus spp.), rhodobacter spp Staphylococcus species (Staphylococcus spp.), bacteroides species (Bacteroides spp.), prasugrel species (Prevotella spp.), clostridium species (Clostridium spp.), bifidobacterium species (Bifidobacterium spp.), clostridium species, brevibacterium species (breve bacterium spp.), lactococcus species (Lactococcus spp.), and the like, leuconostoc species (Leuconostoc spp.), actinobacillus species (actionicos spp.), selenomonas species (selnomomonas spp.), shigella species (Shigella spp.), zymomonas species (zymomonas spp.), mycoplasma species (myccoplasma spp.), treponema spp.), leuconostoc species, corynebacterium species, enterococcus species (Enterococcus spp.), enterobacter spp), enterobacter species (Enterobacter spp.), pyrococcus spp), pyrococcus species (Pyrococcus spp.), serratia species (Serratia spp.), morganella species (Morganella spp), morganella species (Parvinus spp), clostridium species (Fusobacterium spp.), fusobacterium species (Furacius spp) actinomycete species (Actinomyces spp.), porphyrinomonas species (Porphyromonas spp.), micrococcus species (Micrococcus spp.), bartonella spp.), borrelia species (Borrelia spp.), brucella species (Brucella spp.), campylobacter species (Campylobacter spp.), chlamydophila spp.), chlamydia species (Chlamydophila spp.), dermatophyta species (Cutibacterium spp.), propionibacterium species (Propionibacterium spp.), gardnerella spp.), ehrlica species (Ehrlichia spp.), haemophilus species (Haemophilus spp), leptospira species (Leospora spp.), listeria species (Listeria spp.), mycobacterium spp, nocardia spp, rickettsia spp, ureaplasma spp, lactobacillus spp, faecalis spp, ruminococcus spp, and mixtures thereof.
Thus, phage particles, phage delivery particles, and/or phage may target (e.g., specifically target) bacterial cells from any one or more of the above bacterial genera, particularly to specifically deliver a payload according to the invention.
Preferably, the targeting bacteria may be selected from the group consisting of yersinia species, escherichia species, klebsiella species, acinetobacter species, pseudomonas species, helicobacter species, vibrio species, salmonella species, streptococcus species, staphylococcus species, bacteroides species, clostridium species, shigella species, enterococcus species, enterobacter species, listeria species, dermatophytes species, propionibacterium species, fusobacterium species, porphyromonas species, and gardnerella species.
In some embodiments, the targeted bacteria are anaerobic bacterial cells (e.g., cells that do not require oxygen for growth). Anaerobic bacterial cells include facultative anaerobic cells such as, but not limited to, escherichia coli, osnescentella (Shewanella oneidensis), gardnerella vaginalis (Gardnerella vaginalis), and listeria. Anaerobic bacterial cells also include obligate anaerobic cells such as bacteroides, clostridia, dermatophytes, propionibacteria, fusobacterium and porphyromonas species. Anaerobic bacteria are most commonly found in the gastrointestinal tract in humans. In some particular embodiments, the targeted bacteria are thus the bacteria most commonly found in the gastrointestinal tract. The bacteriophage and subsequent phage particles, phage delivery vehicles, and/or phages used to prepare the hybrid helper phage may target (e.g., specifically target) anaerobic bacterial cells according to their specificity profile known to those of skill in the art to specifically deliver plasmids.
In some embodiments, the targeted bacterial cells are, without limitation, bacteroides thetaiotaomicron (Bacteroides thetaiotaomicron), bacteroides fragilis, bacteroides dirachta (Bacteroides distasonis), bacteroides vulgare (Bacteroides vulgatus), clostridium tenella (Clostridium leptum), clostridium globosum (Clostridium coccoides), staphylococcus aureus, bacillus subtilis (Bacillus subtilis), clostridium butyricum (Clostridium butyricum), brevibacterium lactofermentum (Brevibacterium lactofermentum), streptococcus agalactiae (Streptococcus agalactiae), lactobacillus lactiae (Lactococcus lactis), leuconostoc lactis (Leuconostoc lactis), actinobacillus (Actinobacillus actinobycetemcomitans), cyanobacteria (cyanobacteria), escherichia coli, helicobacter pylori (Helicobacter pylori), selenomonas ruminants (Selnomonas ruminatium), shigella sonneisseria sonnei (Shigella sonnei), zymomonas mobilis (Zymomonas mobilis), mycoplasma (Mycoplasma mycoides), streptococcus (Treponema denticola), bacillus thuringiensis (Bacillus thuringiensis), staphylococcus (Staphilococcus lugdunensis), leuconostoc (Leuconostoc oenos), corynebacterium xerosis (Leuconostoc oenos), lactobacillus acidophilus (Leuconostoc oenos), lactobacillus (Leuconostoc oenos) and lactobacillus (Leuconostoc oenos), synechocystis (Synechocystis) strain PCC6803, bacillus liquefaciens (Bacillus liquefaciens), bacillus pumilus (Pyrococcus abyssi), zygomonas ruminant (Selenomonas nominantium), lactobacillus johnsonii (Lactobacillus hilgardii), streptococcus wildens (Streptococcus ferus), lactobacillus pentosus (Lactobacillus pentosus), bacteroides fragilis, staphylococcus epidermidis (Staphylococcus epidermidis), streptomyces secretes (Streptomyces phaechromogenes), streptomyces ganensis (Streptomyces ghanaenis), klebsiella pneumoniae (Porphyromonas endodontalis), enterobacter cloacae (Enterobacter cloacae), enterobacter aerogenes (Enterobacter aerogenes), serratia marcescens (Serratia marcescens), morganella morganii (Morganella morganii), citrobacter freundii (Citrobacter freundii), propionibacterium freudenreichii, pseudomonas aeruginosa, micromonospora parvula (Parvimona micra), primeria intermedia (Prevotella intermedia), fusarium nucleatum, proteus melanogaster (Prevotella nigrescens), serratia pseudolaris (Actinomyces israelii), porphyromonas (Porphyromonas endodontalis), porphyromonas gingivalis (Porphyromonas endodontalis), micrococcus flavus (Porphyromonas endodontalis), bacillus sphaericus (Porphyromonas endodontalis), bordetella (Porphyromonas endodontalis) and Bordetella (Porphyromonas endodontalis) are obtained by the methods of producing the strain, borrelia albopicta (Borrelia afzeli), borrelia febrile (Borrelia recurrentis), brucella abortus (Brucella abortus), brucella canis (Brucella canis), brucella ovis (Brucella melitensis), brucella suis (Brucella suis), campylobacter jejuni, campylobacter coli (Campylobacter coli), campylobacter foetidus (Campylobacter fetus), chlamydia pneumoniae (3835), chlamydia trachomatis (Chlamydia trachomatis), chlamydophila psilosis (Chlamydophila psittaci), clostridium botulinum (Clostridium botulinum), clostridium difficile (Clostridium difficile), clostridium perfringens (Clostridium perfringens), clostridium tetani (Clostridium tetani), corynebacterium diphtheriae (Corynebacterium diphtheria), acnes (formerly propionibacterium acnes (Propionibacterium acnes), canine Ehrlichia (Ehrlichia canis), escherichia coli (Ehrlichia chaffeensis), enterococcus faecium (Enterococcus faecium), francisco, haemophilus influenzae (Haemophilus influenza), pneumophila (Sang Daluo), leptospira (Sang Daluo) and leptospira (Sang Daluo, neisseria gonorrhoeae (Neisseria gonorrhoeae), neisseria meningitidis, nocardia astronomy (Nocardia asteroids), rickettsia (Rickettsia rickettsia), salmonella enteritidis (Salmonella enteritidis), salmonella typhi (Salmonella typhi), salmonella paratyphi (Salmonella paratyphi), salmonella typhimurium (Salmonella typhimurium), shigella flexneri (Shigella flexnerii), shigella dysenteriae, staphylococcus saprophyticus (Staphylococcus saprophyticus), streptococcus pneumoniae (Streptococcus pneumoniae), streptococcus pyogenes, gardnerella vaginalis, streptococcus viridis (Streptococcus viridans), treponema pallidum (Treponema pallidum), ureaplasma urealyticum (Ureaplasma urealyticum), vibrio cholerae, vibrio parahaemolyticus (Vibrio parahaemolyticus), yersinia pestis, yersinia enterocolitica (Yersinia enterocolitica), yersinia pseudotuberculosis (Yersinia pseudotuberculosis), actinobacillus baumannii (Actinobacter baumanii), pseudomonas aeruginosa and mixtures thereof, preferably the bacteria of interest are selected from the group consisting of escherichia coli, enterococcus faecium, staphylococcus aureus, staphylococcus pneumoniae, klebsiella pneumoniae (Acinetobacter baumanii), pseudomonas baumannii and mixtures thereof.
In some embodiments of the present invention, in some embodiments, the targeted bacterial cells are, without limitation, anaerobic bacteria (Anaeroruncus), acetobacter (Acetarobacterium), polyacetobacter (Acetamaculococcus), acetobacter (Acetavibrio), anaerobic coccus (Anaerocrocus), anaerobic bacteria (Anaeroaeroaeroaerofelium), anaerobic campylobacter (Anaerosporus), anaerobic bacteria (Anaerosporidium), anaerobic bacteria (Anaerosporium), anaerobic bacteria (anasporax), butyric acid bacteria (Vibrio butyricum), clostridium, faecal bacteria (Capracocucus), dehalobacter (Dehalobacter), dai A listeria (dialiter), dunaliella (Dorea), enterococcus (Entercoccus), ethanol producing bacteria (ethanol) bacteria), faecalis, clostridium, gracilomyces (Gracilomyces), and Thermomyces (Dehalobacter) the genus Gugium (Gugigeheimia), the genus Proprietaria (Hesperlla), the genus Mucor (Lachnobabacterium), the genus Mucor (Lachnospira), the genus Lactobacillus, the genus Leuconostoc, the genus Megamonas (Megamonas), the genus Mo Lishi (Morella), the genus Albaea (Mitsuokella), the genus Klebsiella (Oribacterium), the genus Acetobacter (Oxobabacter), the genus Papilobabacterium (Papilibacter), the genus Proprinimira, the genus Vibrio pseudobutyric (Pseudomonas), the genus Pseudomonas (Pseudomonas), the genus Luo Sibai (Roseburia), the genus Rumezococcus, the genus Sarcina (Sarcina), the genus Serratia (Serratia), the genus Volum (Shonikowiella), the genus Sporothia (Sporothia), the genus Sporothrina (Sporothia), spore bacteria (Sporobacterium), streptococcus, rare small coccus (Subdelloglycus), camping coccus (Synthophorcoccus), thermotolerant bacillus (Thermobacillus), zymobacter (Turibacter), weissella (Weissella), clostridium, bacteroides, ruminococcus, thermus, treponema, kochia (Phascobactirium), megasphaera, thermus, bifidobacterium, lactobacillus, saspecific bacteria (Sutterella) and/or Prevotella.
In other embodiments, the targeted bacterial cells are, without limitation, achromobacter xylosoxidans (Achromobacter xylosoxidans), achromobacter fermentum (Acidaminococcus fermentans), acidococcus enterolyticus (Acidaminococcus intestini), acidococcus species, acinetobacter baumannii, acinetobacter agaragar (Acinetobacter junii), acinetobacter lofei (Acinetobacter lwoffii), actinobacillus capsulatus (Actinobacillus capsulatus), actinobacillus naeslundii (Actinomyces naeslundii), actinobacillus neotami (Actinomyces neuii), actinobacillus lycescens (Actinomyces odontolyticus), ra Ding Fangxian (Actinomyces radingae), aldeller oxydans (Adlercreutzia equolifaciens), microbacterium malasii (Aeromicrobium massiliense), actinobacillus actinobacillus (Aggregatibacter actinomycetemcomitans), acinetobacter mucin (Akkermansia muciniphila), acidovorax oceanicus (Aliagarivorans marinus), acinetobacter fena (Alistipes finegoldii), flavobacterium shikim (Alistipes indistinctus), alisti (Alistis inogenes), alistias inogenes, altissimi (Alistipes onderdonkii), acinetobacter aiensis (Alistipes onderdonkii), anemophilus (Alistipes onderdonkii), anaerobiosae (Alistipes onderdonkii), leucopia (Paeder) and Metropsystem (Alistipes onderdonkii), human anaerobic coryneform bacterium (Anaerofustis stercorihominis), anaerobic coryneform bacterium (Anaerostipes caccae), anaerobic coryneform bacterium (Anaerostipes hadrus), anaerobic coryneform bacterium (Anaerotruncus colihominis), thioflavine Jie Liuan Bacillus (Aneurinibacillus aneurinilyticus), bacillus licheniformis (Bacillus licheniformis), bacillus anorexia mosaic (Bacillus naseioianoxius), bacillus mosaic (Bacillus massiliosenegalensis), bacillus simplex (Bacillus simplex), bacillus smithii (Bacillus smithii), bacillus subtilis, bacillus thuringiensis, bacillus caldanus (Bacillus timonensis), xylanolytic pseudobacillus (bacteroides, bacteroides acidophilus (Bacteroides acidifaciens) Bacteroides (Bacteroides caccae), bacteroides multocida (Bacteroides capillosus), bacteroides thetaiotaomicron (Bacteroides cellulosilyticus), klaugus bacteroides (Bacteroides clarus), bacteroides pteronyssinus (Bacteroides coprocola), bacteroides faecalis (Bacteroides coprophilus), bacteroides dorsalis (Bacteroides coprophilus), bacteroides elvan (Bacteroides coprophilus), bacteroides pteronyssinus (Bacteroides coprophilus), bacteroides fragilis, bacteroides gallinarum (Bacteroides coprophilus), bacteroides enterobacteroides enteroides (Bacteroides coprophilus), bacteroides nori (Bacteroides coprophilus), bacteroides oleaginous (Bacteroides coprophilus), bacteroides ovatus (Bacteroides coprophilus), bacteroides pectophilum (Bacteroides coprophilus), bacteroides pini (Bacteroides coprophilus), bacteroides salvinsis (Bacteroides salanitronis), bacteroides salvinsis (Bacteroides salyersiae), bacteroides species (Bacteroides sp.), bacteroides faecalis (Bacteroides stercoris), bacteroides thetaiotaomicron, bacteroides simplex (Bacteroides uniformis), bacteroides vulgaris, bacteroides xylan, bacteroides pectophilum (Bilophila wadsworthia), human intestinal barren's bacterium (Barnesiella intestinihominis), bavariella salicina (Bavariicoccus seileri), bifidobacterium adolescentis (Bifidobacterium adolescentis), bifidobacterium angulatus (Bifidobacterium angulatum), bifidobacterium animalis (Bifidobacterium animalis), bifidobacterium bifidum (Bifidobacterium bifidum), bifidobacterium breve (Bifidobacterium breve), bifidobacterium minor (Bifidobacterium catenulatum), bifidobacterium denticola (Bifidobacterium dentium), bifidobacterium hyperlupulum (Bifidobacterium gallicum), bifidobacterium longum (Bifidobacterium longum), bifidobacterium pseudocatenulatum (Bifidobacterium pseudocatenulatum), bifidobacterium faecalis (Bifidobacterium stercoris), cholangium (Bilophila wadsworthia), brucella faecalis (baubaiensis), brucella hanensis (Blbaumannii), bifidobacterium hydrogenotrophic (Blautia hydrogenotrophica), brucella baudiana (Blbauxitata), blbaudiana (Blbauxites) and Blbaumannii (54-3), blbaudiana (Blbaudiana, blbaudiana (Blbaumannii), blbaumannii (Bjoba, blbaumannii) and Blbaumannii (Blbaudiana) to produce Brua (Bruki) and Blbaudiana (Blbaudiana) from these species (Blbaudiana) to produce Brua (Brufii.sp., white diarrhea butyric acid coccus (Butyricicoccus pullicaecorum), viral butyric acid unicona (Butyricimonas virosa), ear of the species vibrio (Butyrivibrio crossotus), fibrinolytic butyric acid vibrio (Butyrivibrio fibrisolvens), calcium faecalis (Caldicoprobacter faecalis), campylobacter conciseness (Campylobacter concisus), campylobacter jejuni, campylobacter Uppsala (Campylobacter upsaliensis), streptococcus light (Catenibacterium mitsuokai), ceticillium dycepacia davisae (cedea davidiana), mosaic (Cellulomonas massiliensis), whale soxhlet (Cetobacterium somerae), bergamot (Cetobacterium somerae), citrobacter freundii, bergamot (Cetobacterium somerae), citrobacter species (Citrobacter sp.), bergamot (Cetobacterium somerae) clostridium avium (Cetobacterium somerae), clostridium order (clostridium bacteria), clostridium difficile (Cetobacterium somerae), clostridium asparagicum (Cetobacterium somerae), clostridium bartrefoil (Cetobacterium somerae), clostridium bovinii (Cetobacterium somerae), clostridium halinensis (Cetobacterium somerae), clostridium hainanensis (Cetobacterium somerae), clostridium tenella (Cetobacterium somerae), clostridium methylpentosum (Cetobacterium somerae), clostridium perfringens (Cetobacterium somerae), clostridium thermocellum (Cetobacterium somerae), clostridium multi-branch (Cetobacterium somerae), clostridium scinticum (Cetobacterium somerae), clostridium species, clostridium spirans (Cetobacterium somerae), clostridium sporogenes (Cetobacterium somerae), clostridium symbiotic (Clostridium symbiosum), clostridium aerogenes (Clostridium symbiosum), colibacillus enterogenes (Clostridium symbiosum), colibacillus faecalis (Clostridium symbiosum), colibacillus in the field (Clostridium symbiosum), bacillus moniliformis (Clostridium symbiosum), bacillus fastidious (Clostridium symbiosum), clostridium dexterium (Clostridium symbiosum), enterococcus faecalis (Clostridium symbiosum), corynebacterium ammoniagenes (Clostridium symbiosum), corynebacterium aceti (Clostridium symbiosum), corynebacterium pseudodiphtheriae (Clostridium symbiosum), dermatophytes acnes, dermatophytes (Clostridium symbiosum), hafnia sulfenas (Clostridium symbiosum), vibrio fei (Clostridium symbiosum), vibrio lazii (Clostridium symbiosum), listeria succinogenes (Clostridium symbiosum), dipivoxil (Clostridium symbiosum), docarum methanoicum (Clostridium symbiosum), polyfertilus (Clostridium symbiosum), polyfern (Clostridium symbiosum), campylobacter oxydans (Clostridium symbiosum), pseudomonas putida (Clostridium symbiosum), escherichia coli (Clostridium symbiosum) and escherichia coli (Clostridium symbiosum), enterobacter cloacae, enterobacter Marseis (Enterobacter massiliensis), enterobacter lead (Enterococcus casseliflavus), enterobacter durans (Enterococcus durans), enterococcus faecium, enterococcus flavus (Enterococcus flavescens), enterococcus gallinarum (Enterococcus gallinarum), enterobacter species (Enterococcus sp.), vibrio melanogaster (Enterovibrio nigricans), leptococcus polymyxa (Erysipelatoclostridium ramosum), escherichia coli, escherichia species (Escherichia sp.), eubacterium bifidum (Eubacterium biforme), eubacterium elongatum (Eubacterium dolichum), eubacterium cholerae (Eubacterium hallii), eubacterium mucilaginosum (Eubacterium hallii), eubacterium fine (Eubacterium hallii), eubacterium rectum (Eubacterium hallii), eubacterium inert, eubacterium avium (Eubacterium hallii), hai (Eubacterium hallii), microbacterium water (Eubacterium hallii), bacillus faecalis (Eubacterium hallii), bacillus coagulans (Eubacterium hallii), protoxillus (Eubacterium hallii), bacillus sp (Eubacterium hallii), funeisseria (Eubacterium hallii), fusobacterium (Eubacterium hallii) and Fusobacterium (Eubacterium hallii) are considered to be the same as the same species as the Enterobacterium (Eubacterium hallii) of the same species as Enterobacterium cloacae, clostridium ulcerans (Fusobacterium ulcerans), fusobacterium mutans (Fusobacterium varium), chicken of duck origin (Gallibacterium anatis), budding formate (Gemmiger formicilis), gordonia palustris (Gemmiger formicilis), hafnia alvei, bile helicobacter (Gemmiger formicilis), canadian helicobacter (Gemmiger formicilis), helicobacter canis (Gemmiger formicilis), homosamara helicobacter (Gemmiger formicilis), kiwi helicobacter (Gemmiger formicilis), pameti helicobacter (Gemmiger formicilis), young avian helicobacter (Gemmiger formicilis), helicobacter pylori (Gemmiger formicilis), rodent helicobacter (Gemmiger formicilis), gemmiger formicilis helicobacter (Gemmiger formicilis), mosaic (Herbazoliromassian), double-shaped hupermann (Gemmiger formicilis), filiform hupermann (Gemmiger formicilis), hupermann bacillus (Gemmiger formicilis), hupermann lactobacillus (Gemmiger formicilis), lactobacillus acidophilus (Gemmiger formicilis) and lactobacillus acidophilus (Gemmiger formicilis) of the like, lactobacillus casei (Lactobacillus buchneri), lactobacillus casei, lactobacillus curvatus (Lactobacillus curvatus), lactobacillus delbrueckii (Lactobacillus delbrueckii), lactobacillus fermentum (Lactobacillus fermentum), lactobacillus gasseri (Lactobacillus gasseri), lactobacillus helveticus (Lactobacillus helveticus), lactobacillus johnsonii, lactobacillus inertia (Lactobacillus iners), lactobacillus enterica (Lactobacillus intestinalis), lactobacillus johnsonii (Lactobacillus johnsonii), lactobacillus murinus (Lactobacillus murinus), lactobacillus paracasei (Lactobacillus paracasei), lactobacillus plantarum, lactobacillus reuteri (Lactobacillus reuteri), lactobacillus rhamnosus, lactobacillus rumen (Lactobacillus ruminis), lactobacillus sake (Lactobacillus sakei), lactobacillus salivarius (Lactobacillus salivarius), lactobacillus curvatus (Lactobacillus fermentum), lactobacillus erlenneatus (Lactobacillus ultunensis), lactobacillus vaginalis (Lactobacillus vaginalis), lactobacillus plantarum subspecies (Lactobacillus vaginalis) and Leuconostoc mesenteroides (Lactobacillus vaginalis), leuconostoc pseudocatenulatum (Lactobacillus vaginalis), listeria Listeria (Listeria), listeria (Listeria, mentha monocytogenes), lactobacillus johnsonii (Lactobacillus vaginalis), lactobacillus megaterium (Lactobacillus vaginalis) and Methanomyces (Lactobacillus vaginalis) and Methanomonas megans (Lactobacillus vaginalis), bacteria of the order Mollicutes (Mollicutes), rhizomonas enterica (Murimonas intestini), neisseria kii (Neisseria macacae), acrylonitrile acidophilus (Nitriliruptor alkaliphilus), bacillus Marseis (Oceanobacillus massiliensis), acidobacter villosa (Odoribacter laneus), acidobacter visceral (Odoribacter splanchnicus), acidobacter nasi (Ornithobacterium rhinotracheale), oxalic acid producing bacteria (Oxalobacter formigenes), paenibacillus balun (Paenibacillus barengoltzii), paenibacillus chitin (Paenibacillus chitinolyticus), paenibacillus lautus (Paenibacillus chitinolyticus), paenibacillus thuringiensis (Paenibacillus chitinolyticus), paenibacillus sainii (Paenibacillus chitinolyticus), sarcina pseudobulb (Paenibacillus chitinolyticus), paenias diradica (Paenibacillus chitinolyticus) the bacterial strain comprises the following components of a. Gordonii (Paenibacillus chitinolyticus), a. Johnsonii (Paenibacillus chitinolyticus), a. Faecalis (Paenibacillus chitinolyticus), a. Xylanophila (Paenibacillus chitinolyticus), a. Saphenous (Paenibacillus chitinolyticus), a Micromonospora, a Pediococcus acidilactici (Paenibacillus chitinolyticus), a clostridium difficile (Paenibacillus chitinolyticus), a Rake peptone (Paenibacillus chitinolyticus), an obese peptone (Paenibacillus chitinolyticus), a Seagal peptone (Paenibacillus chitinolyticus), a Di-Moonese peptone (Paenibacillus chitinolyticus), a Kara succinate (Paenibacillus chitinolyticus), a Porphyromonas incendii (Paenibacillus chitinolyticus), a Porphyromonas upper field (Paenibacillus chitinolyticus), prevotella papyrifera (Prevotella baroniae), prevotella bipivaria, prevotella faecalis (Prevotella copri), prevotella denticola (Prevotella dentalis), prevotella iridis (Prevotella micans), prevotella polyose (Prevotella multisaccharivorax), prevotella stomatalis (Prevotella oralis), prevotella salivaria (Prevotella salivae), prevotella faecalis (Prevotella stercorea), prevotella true (Prevotella veroralis), propionibacterium acnes, propionibacterium greedingii (Propionibacterium avidum), propionibacterium freudenreichii, microbacterium lymphophilicum (Propionimicrobium lymphophilum), proteus mirabilis (Proteus mirabilis), proteus penri ATCC providencia (Providencia alcalifaciens), providencia rette (Providencia rettgeri), providencia rette (Providencia rustigianii), providencia stuartii (Providencia stuartii), pseudolysis hirsutum (Huang Tongjun), pseudomonas aeruginosa (Huang Tongjun), pseudomonas pale yellow (Huang Tongjun), ralstonia pileri (Huang Tongjun), rhaponticum hyaline (Huang Tongjun), rhaponticum texas (Huang Tongjun), morganum pigeon (Huang Tongjun), morganum seashore (Huang Tongjun), ralstonia faecalis (Roseburia faecis), ralstonia enterica (Huang Tongjun), ralstonia inulin (Huang Tongjun), the composition comprises (a) a bicyclic ruminococcus (Ruminococcus bicirculans), a ruminococcus buchneri (Ruminococcus bromii), a smart ruminococcus (Ruminococcus callidus), a still-in-pal ruminococcus (Ruminococcus champanellensis), a fecal ruminococcus (Ruminococcus faecis), an active ruminococcus (Ruminococcus gnavus), a yoghurt ruminococcus (Ruminococcus lactaris), an oval ruminococcus (Ruminococcus obeum), a ruminococcus species, a chain ruminococcus (Ruminococcus torques), a sarcina (Sarcina ventriculi), a intestinal fecal uniconas (Sarcina ventriculi), a anaerobic saikoku (Sarcina ventriculi), a shigella sonnei, a pear-shaped neisseria (Sarcina ventriculi), a staphylococcus epidermidis, a slow staphylococcus (Sarcina ventriculi), a staphylococcus nepalensis (Sarcina ventriculi), a streptococcus agarici (Sarcina ventriculi), a streptococcus agalactiae (Sarcina ventriculi), a streptococcus sphaerobicus (Sarcina ventriculi), streptococcus equi (Sarcina ventriculi), streptococcus (Sarcina ventriculi) and infant (Sarcina ventriculi), streptococcus sarkovatus (Streptococcus merionis), streptococcus mitis (Streptococcus mitis), streptococcus mutans, streptococcus stomatus (Streptococcus oralis), streptococcus ovis (Streptococcus ovis), streptococcus parahaemolyticus (Streptococcus parasanguinis), streptococcus suis (Streptococcus plurextorum), streptococcus suis (Streptococcus porci), streptococcus pyogenes, streptococcus salivarius (Streptococcus salivarius), streptococcus suis (Streptococcus sobrinus), streptococcus thermophilus (Streptococcus thermophilus), streptococcus tolhaote (Streptococcus thermophilus), streptomyces albus (Streptococcus thermophilus), micrococcus anamorphic (Streptococcus thermophilus), pseudomonas shi (Streptococcus thermophilus), sarcandid (Streptococcus thermophilus), wotztec (Streptococcus thermophilus), ethylene glycol-producing agrobacterium (Streptococcus thermophilus), streptococcus thermophilus bacillus (Streptococcus thermophilus), organic matter deep sea bacillus (Streptococcus thermophilus), streptococcus saikochiae (Streptococcus thermophilus), unknown species (unowns sp.), unknown species, campylobacter buchnsonii (vabacillus), atypical (Streptococcus thermophilus), mivir (Streptococcus thermophilus), different species (Streptococcus thermophilus), and vibrio vulgare (Streptococcus thermophilus) and vibrio need of the same.
In other embodiments, the targeted bacterial cells are those common in the skin microbiota, and are, without limitation, acetobacter faveolatum (Acetobacter farinalis), acetobacter malatus (Acetobacter malorum), acetobacter alfa (Acetobacter orleanensis), acetobacter fruit (Acetobacter sicerae), acetobacter anxiety (Achromobacter anxifer), acetobacter denitrificans (Achromobacter denitrificans), acetobacter sphaeroides Ma Depu (Achromobacter marplatensis), acetobacter febrile (Achromobacter spanius), acetobacter xylosoxidans subsp (Achromobacter xylosoxidans subsp. Xylosoxidans), konjak acidovorax (Acidovorax konjaci), acetophaga (Acidovorax radicis), acetobacter johnsonii (Acinetobacter johnsonii), actinomyces lemanensis (Actinomadura citrea), cynanchumus pseudolaris (Actinomadura coerulea), actinobacillus fibrosus (Actinomadura fibrosa), actinobacillus palmatidus (Actinomadura fibrosa), actinobacillus sanguineensis (Actinomadura fibrosa), actinobacillus nitrodactylothermophilus (Actinomadura fibrosa), actinobacillus verruckerii (Actinomadura fibrosa), actinobacillus verrucosa (Actinomadura fibrosa), actinobacillus angusta (Actinomadura fibrosa), actinobacillus angustifolia (Actinomadura fibrosa) and actinobacillus angustifolia (Actinomadura fibrosa), pseudomonas putida (Aeromonas bestiarum), aeromonas bivalve (Aeromonas bivalvium), aeromonas anguillarum (Aeromonas encheleia), aeromonas spae (Aeromonas eucrenophila), aeromonas hydrophila subspecies hydrophila (Aeromonas hydrophila subsp. Hydrophila), aeromonas curiosa (Aeromonas piscicola), aeromonas boricola (Aeromonas popoffii), aeromonas lineans (Aeromonas rivuli), aeromonas salmonicida pectolylis (Aeromonas salmonicida subsp. Pecies), aeromonas salmonicida subspecies (Aeromonas salmonicida subsp. Smithia), micrococcus kapri sewer (Amaricoccus kaplicensis), verona sewer coccus (Amaricoccus veronensis), A He Ye amino bacilli (Aminobacter aganoensis), acidobacter sajohnsonii (Aminobacter aganoensis), sargassum (Aminobacter aganoensis), sinoaminobacilli (Aminobacter aganoensis), sinorhizobacter polymorphus (Aminobacter aganoensis), flavobacteria yunnanensis (Aminobacter aganoensis), bacillus nator (Aminobacter aganoensis), bacillus sp, bacillus (Aminobacter aganoensis) and Bacillus (Aminobacter aganoensis), brevibacterium flavum (Bradyrhizobium huanghuaihaiense), rhizobium japonicum (Bradyrhizobium japonicum), brevibacterium flavum (Brevundimonas aurantiaca), brevibacterium intermedia (Brevundimonas intermedia), burkholderia pinnatifida (Burkholderia aspalathi), burkholderia georginata (Burkholderia choica), burkholderia koidz (Burkholderia cordobensis), burkholderia guangdaliensis (Burkholderia diffusa), burkholderia gracilii (Burkholderia insulsa), burkholderia cervi (Burkholderia rhynchosiae), burkholderia terrestris (Burkholderia rhynchosiae), burkholderia georginata (Burkholderia rhynchosiae), bulleria ganii (Burkholderia rhynchosiae), sludge on the ground (Burkholderia rhynchosiae), carbon dioxide gum fibrous bacteria (Burkholderia rhynchosiae), bulletia papilis (Burkholderia rhynchosiae), myxobacteria (Burkholderia rhynchosiae), geobacillus glabra (Burkholderia rhynchosiae), goldali (Burkholderia rhynchosiae), nannocheir-gold (Burkholderia rhynchosiae), nannovi (Burkholderia rhynchosiae), corynebacterium parvulus (Burkholderia rhynchosiae), corynebacterium parvophilus (Burkholderia rhynchosiae), and Corynebacterium parvum (Burkholderia rhynchosiae), copper-killing bacteria (), copper-bulimium chondrium (), copper-wilt, short bacillus (), leech skin Dewok's bacteria (), riboflavin de wok's bacteria, rice beneficial bacteria (), alcaliphilia bacteria (), adhesive sword bacteria (), american sword bacteria (), enterococcus casselifaciens (), enterococcus pseudobird (), enterococcus vietnamensis (), enterococcus aromaticum (), colibacillus, rhodobacter salicina (), xanthobacter halibut (), xanthobacter arvensis (), xanthobacter Flavobacterium cold (), gluconobacter freundii (), gluconobacter thailand (), gordonia alkane (), celastomonas sea (), celastomonas axillari (), celastomonas southern (), celastomonas olive (), celastomonas mobilis (), celastomonas variabilis (), porphyra crudus subspecies (subsp. Putei), bursaphenous vein (), bursaphenous vein structure-forming a complex, pseudomonas tzeri (Herminiimonas fonticola), cytophaga intermedia (Hydrogenophaga intermedia), cytophaga pseudo Huang Qing (Hydrogenophaga pseudoflava), klebsiella oxytoca, leuconostoc (Kosakonia sacchari), lactobacillus delbrueckii subspecies bulgaricus (Lactobacillus delbrueckii subsp. Bulgarisus), lactobacillus helson (Lactobacillus modestisalitolerans), lactobacillus plantarum Azoffia subspecies (Lactobacillus modestisalitolerans), monomonas pseudoginseng (Lactobacillus modestisalitolerans), lactobacillus fragrans (Lactobacillus modestisalitolerans), leuconostoc mesenchanensis (Lactobacillus modestisalitolerans), micro5237 (Lentzea albida), california (Lactobacillus modestisalitolerans), leuconostoc fleshy (Lactobacillus modestisalitolerans), leuconostoc citrifolia (Lactobacillus modestisalitolerans), leuconostoc mesenteroides (Lactobacillus modestisalitolerans subspecies), leuconostoc mesenteroides (Lactobacillus modestisalitolerans), leucomonas stenotrophomonas (Lactobacillus modestisalitolerans), leucomonas pseudomonas (Lactobacillus modestisalitolerans), leuconostoc mesenteroides (Lactobacillus modestisalitolerans), leuconostoc (Lactobacillus modestisalitolerans) and Magjia (Lactobacillus modestisalitolerans) are described as being able to take place in the sea state of the Magzfeldes (Lactobacillus modestisalitolerans), methylobacterium columbus (Methylobacterium haplocladii), methylobacterium syringae (Methylobacterium haplocladii), methylobacterium verrucosum (Methylobacterium haplocladii), methylobacterium zakii (Methylobacterium haplocladii), microbacterium oxydanum (Methylobacterium haplocladii), micromonospora schneideriana (Methylobacterium haplocladii), micromonospora bronze (Methylobacterium haplocladii), micromonospora citrifolia (Methylobacterium haplocladii), micromonospora colkochiana (Methylobacterium haplocladii), micromonospora echinomatosis (Methylobacterium haplocladii), micromonospora halophila (Methylobacterium haplocladii), micromonospora parkeri (Methylobacterium haplocladii), micromonospora maritima (Methylobacterium haplocladii), micromonospora nigrum (Methylobacterium haplocladii), micromonospora rhodochrous (Methylobacterium haplocladii), micromonospora rhizogenes (Methylobacterium haplocladii), micromonospora cescens (Methylobacterium haplocladii), micromonospora prandium (Methylobacterium haplocladii), mycobacterium globosa (Methylobacterium haplocladii), mycobacterium guani forest subspecies (Methylobacterium haplocladii), mycobacterium aureovorans (Methylobacterium haplocladii), mycobacterium angustiforme (Methylobacterium haplocladii), mycobacterium fortunae (Methylobacterium haplocladii) and Mycobacterium fortunai (Methylobacterium haplocladii), mycobacterium megaterium (Mycobacterium obuense), mycobacterium exoticum (Mycobacterium peregrinum), mycobacterium sainformis (Mycobacterium saopaulense), mycobacterium septicemia (Mycobacterium saopaulense), mycobacterium siamensis (Mycobacterium saopaulense), mycobacterium smegmatis (Mycobacterium saopaulense), neisseria microflavonoides (Mycobacterium saopaulense), nocardia (Mycobacterium saopaulense), sphingosine (Mycobacterium saopaulense), flavosporium (Novosporium (Mycobacterium saopaulense), flavobacterium pseudogenitalium (Mycobacterium saopaulense), agrobacterium city (Mycobacterium saopaulense), paraqua Gracille (Mycobacterium saopaulense), paraqua paratuberculosis (Mycobacterium saopaulense) phenazine b.sub.Klebsiella (Mycobacterium saopaulense), immobilized b.sub.Klebsiella (Mycobacterium saopaulense), white rot fungus b.sub.Klebsiella (Mycobacterium saopaulense), b.sub.Klebsiella sojae (Mycobacterium saopaulense), b.parakochia (Mycobacterium saopaulense), d.glucose-phaga (Mycobacterium saopaulense), c.ginseng m.sub.m (Mycobacterium saopaulense), c.rhodosporum (Mycobacterium saopaulense), p.jejuni (Mycobacterium saopaulense), p.melanogenesis (Mycobacterium saopaulense), p.propinqua.acnes subspecies (Mycobacterium saopaulense subsp.elemongatum), c.vulgaris (Proteus vulgares), providencia stuartii, pseudoalteromonas agaricus (Pseudoalteromonas agarivorans), pseudoalteromonas atlantica (Pseudoalteromonas atlantica), pseudoalteromonas coral (Pseudoalteromonas paragorgicola), pseudopteromania ferox (Pseudomonas asplenii), pseudomonsa alfa at arizhou university (Pseudomonas asuensis), pseudomonsa alfa (Pseudomonas benzenivorans), pseudomonsa cannabinus (Pseudomonas cannabina), pseudomonsa albopictus (Pseudomonas cissicola), pseudomonsa icum (Pseudomonas congelans), pseudomonsa kangardii (Pseudomonas costantinii), pseudomonsa sanguinea (Pseudomonas ficuserectae), pseudomonsa virens (pseudomonsa virginiana), pseudomonsa herbaceous (Pseudomonas graminis), pseudomonsa jersensis (Pseudomonas jessenii) Pseudomonas korea (Pseudomonas koreensis), pseudomonas korea, pseudomonas kumquat (Pseudomonas kunmingensis), pseudomonas marginalis (Pseudomonas marginalis), pseudomonas fragi (Pseudomonas marginalis), pseudomonas pseudostellariae (Pseudomonas marginalis), pseudomonas fragi (Pseudomonas marginalis), pseudomonas pseudostellaria (Pseudomonas poae), pseudomonas pseudoalcaligenes (Pseudomonas marginalis), pseudomonas putida (Pseudomonas marginalis), pseudomonas Lepidii (Pseudomonas marginalis), pseudomonas rhizomae (Pseudomonas marginalis), pseudomonas selenopropionii (Pseudomonas marginalis), pseudomonas animalis (Pseudomonas marginalis), pseudomonas culpri (Pseudomonas marginalis), pseudomonas culprit (Pseudomonas marginalis), pseudomonas alfa (Pseudomonas marginalis), pseudomonas alaninetobacter (Pseudomonas marginalis), pseudomonas pseudoalcalii (Pseudomonas marginalis), pseudomonas aminoxide (Pseudomonas marginalis), autotrophic Pseudonocardia (), pseudonocardia alfa (), pseudonocardia yunnanensis (), pseudonocardia sanguinea (), pseudomonas pseudolaris (), pseudomonas indici (), pseudomonas homoandrostana (), geohydrophilic (), pseudonocardia pustulata North polar thermophilic thermophilgraphs, preparation of the preparation of psychrophilic bacillus, psychrophilic bacillus in fish house, psychrophilic bacillus in lung, ginsenoside converted to sandy loam bacillus Rheinheimia japonica (), rheimia dream, rheimia soil, rheimia down, rheimia Texas, rheimia tilapia, rheimia, rheimia Rheizobium (Rhizobium alami) Azibuergeria (), rhizobium (Rhizobium binae), rhizobium japonicum (Rhizobium etli), rhizobium japonicum (Rhizobium fabae), rhizobium freudenreichii (), rhizobium freundii, gao Lu rhizobia (Rhizobium gallicum), loess rhizobia (Rhizobium loessense), sophora rhizobia (Rhizobium sophoriradicis), taibai rhizobia (Rhizobium taibaishanense), valley rhizobia (Rhizobium vallis), cowpea rhizobia (Rhizobium vignagae), cowpea rhizobia, yang Ling rhizobia (Rhizobium yanglingense), red rhodococcus beijerinae (Rhodococcus baikonurensis), rhodococcus indicus (Rhodococcus enclensis), red rhodochrous celebrata (Rhodoferax saidenbachensis), rickettsia canadensis (Rickettsia canadensis), rickettsia nigra (Rickettsia heilongjiangensis), huo Enli g Rickettsia honei, ralstonia (Rickettsia raoultii), rose semi-photosynthetic bacteria (Roseateles aquatilis), rose semi-photosynthetic bacteria(s) aquatics Salamae enterica (Salmonella enterica subsp. Salamae), serratia fig (Serratia ficaria), serratia hepiali (Serratia mycotis), serratia hepiali (Serratia vespertilionis), shewanella tidal (Shewanella aestuarii), shewanella decolorationis (Shewanella decolorationis), sphingomonas pastoris (Shewanella decolorationis), chlorophenol (Shewanella decolorationis), copper-resistant Sphingomonas (Sphingomonas cuprimristiens), chlamys (Shewanella decolorationis), coal ash sphingosine (Shewanella decolorationis), indian sphingosine, japanese sphingosine (Shewanella decolorationis), copper-resistant Sphingomonas (Shewanella decolorationis), sphingosine-assimilating bacteria (Sphingobium lactosutens), sphingomonas uniisland (Sphingomonas dokdonensis), sphingomonas pseudohaemolyticus (Sphingomonas pseudosanguinis), chinesemetic bacteria (Sphingopyxis chilensis), sphingomonas freburgensis (Sphingopyxis fribergensis), sphingomonas gracilis (Sphingopyxis granuli), sphingomonas indicus (Sphingopyxis indica), sphingomonas wilfordii (Sphingopyxis witflariensis), staphylococcus aureus (Staphylococcus agnetis), staphylococcus aureus subsp. Sp. Aureus, staphylococcus epidermidis, human staphylococcus neomycin septicemia subsp. Staphylococcus aureus subsp. Novobiocinus, staphylococcus nepalensis, staphylococcus saprophyticus Staphylococcus aureus (Staphylococcus aureus subsp. Bots) staphylococcus pinus subspecies (Staphylococcus aureus subsp. Carnaticus), streptomyces nigrum (Staphylococcus aureus), streptomyces malachite (Staphylococcus aureus), streptomyces ascending (Staphylococcus aureus), streptomyces febrifugae (Staphylococcus aureus), streptomyces griseus (Staphylococcus aureus), streptomyces olive green (Staphylococcus aureus), streptomyces ginseng root (Staphylococcus aureus), streptomyces dark-red (Staphylococcus aureus), streptomyces pseudovenezuela (Staphylococcus aureus), streptomyces antimycin-producing (Staphylococcus aureus), deposit Staphylococcus aureus (Staphylococcus aureus), tsukamurensis microvolvulus (Staphylococcus aureus), bulimia guanfaciens (Staphylococcus aureus), fossa alcaligenes (Staphylococcus aureus), xanthomonas arborescens (Staphylococcus aureus), xanthomonas carpet (Xanthomonas axonopodis), xanthomonas cassava (Xanthomonas cassavae), xanthomonas cucurbitaceae (Xanthomonas cucurbitae), xanthomonas thistle (Xanthomonas cynarae), xanthomonas bullosa (Xanthomonas cynarae), xanthomonas strawberry (Xanthomonas cynarae), xanthomonas ganii (Xanthomonas cynarae), xanthomonas perforii (Xanthomonas cynarae), xanthomonas pisi pea (Xanthomonas pisi), xanthomonas gingivalis (Xanthomonas cynarae), xanthomonas avid (Xanthomonas cynarae), nucelia knosis (Yersinia nurmii), stenotrophomonas flacci (Xanthomonas cynarae), cystine-splitting bacteria (Xanthomonas cynarae), acinetobacter guangdong (Xanthomonas cynarae), acinetobacter parvulus (Xanthomonas cynarae), acinetobacter parvos (Xanthomonas cynarae) Acinetobacter radiodurans (Xanthomonas cynarae), acinetobacter terrestris (Xanthomonas cynarae), acinetobacter mutans (Xanthomonas cynarae), actinomycetes californica (Xanthomonas cynarae), actinomycetes odontoides (Xanthomonas cynarae), actinomycetes europaeus (Xanthomonas cynarae), actinomycetes gossypii (Xanthomonas cynarae), actinomycetes gracilii (Xanthomonas cynarae), actinomycetes johnsonii (Xanthomonas cynarae), actinomycetes mosaic (Xanthomonas cynarae), actinomycetes mechnii, actinomycetes endometrii, actinomycetes neotami nitrate-free subspecies (Xanthomonas cynarae), actinomycetes lykochia, actinomycetes stomatitis (actinomycetes oris), actinomycetes zurich (Xanthomonas cynarae), actinobacillus campylobacter (Actinotignum schaalii), actinobacillus cassii (Aerococcus christensenii), rhodococcus ureae (Aerococcus urinae), microorum flavum (Aeromicrobium flavum), microorum malasii (Sha Mana), microorum malasii (Aeromicrobium tamlense), aeromonas Sha Mana (Sha Mana), coagulobacterium acidophilus (Sha Mana), rhodobacter lahnsonii (Sha Mana), rhodobacter sphaeroides (Sha Mana), rhodobacter lazei (Sha Mana), alcaligenes olivaceus (Sha Mana), alcaligenes marinus (Sha Mana), rhodobacter sphaeroides, rhodobacter gray (Sha Mana), metal-resistant bacillus (Sha Mana), kapri sewer-collecting coccus, vinylna sewer coccus, anaerobacter (Sha Mana), anaerobacter, haemolyticus (Sha Mana), anaerobacter vaginalis (Sha Mana), haemophilus (Sha Mana), bacillus (Sha Mana), rhodobacter sphaericus (Sha Mana), rhodobacter sphaeroides (Sha Mana), stenotrophomonas (Sha Mana), rhodobacter sphaeroides (Sha Mana) and microorum (Sha Mana), acidithiobacillus (Atopobium parvulum), acidithiobacillus gingivalis (Atopobium rimae), acidithiobacillus vaginalis (Atopobium vaginae), acidovorax faciens (Aureimonas altamirensis), acidovorax faciens (Aureimonas rubiginis), aspergillus oryzae (Azospira oryzae), azospirillum oryzae (Azospirillum oryzae), bacillus circulans (Bacillus circulans), bacillus delreniensis, bacillus fastidious (Bacillus fastidiosus), bacillus stearothermophilus (Bacillus lehensis), bacillus marinus (Bacillus maceranisidiis), bacillus rhizosphere (Bacillus rhizosphaerae), vibrio stonecrop (Bacteriovorax stolpii), bacteroides coagulans (Bacteroides coagulans), bacteroides multocida, bacteroides fragilis, bacteroides simplex, bacteroides vulgaris, bdellovibrio exocarpi (Bdellovibrio exovorus), planocarpus morganii (Belnapia moabensis), nap (Belnaa soli), butterbrio Hantaenii, butterbrio bunyasis (5268), brevibacterium candidum (5282), brevibacterium flavum (Brevibacterium iodinum) and Brevibacterium flavum (35), brevibacterium flavum (Brevundimonas albigilva), brevibacterium deficiency (Brevundimonas diminuta), brevibacterium vulgare (Brevundimonas vancanneytii), brevibacterium terrestris, geobacillus indicus (Calidifontibacter indicus), campylobacter conciseum, campylobacter cilexenatis (Campylobacter gracilis), campylobacter hominis (Campylobacter hominis), campylobacter rectus (Campylobacter rectus), campylobacter shaoxidas (Campylobacter showae), campylobacter ureae (Campylobacter ureolyticus), cellovorans, LIDefibrate carbon dioxide acidophilia (Capnocytophaga leadbetteri), cellophaga (Capnocytophaga ochracea), carbon dioxide phlegm forming fiber (Capnocytophaga sputigena), human heart bacillus (Capnocytophaga sputigena), valve heart bacillus (Capnocytophaga sputigena), clostridium clockii (Capnocytophaga sputigena), karakul's bacteria (Catonella mobili), huntii (Capnocytophaga sputigena), subsurface cavity bacteria (Capnocytophaga sputigena), dexose fiber (Capnocytophaga sputigena), vibrio vulgaris (Capnocytophaga sputigena), rhizoctonia solani (Capnocytophaga sputigena), fuscoporia (Capnocytophaga sputigena), talaromyces (Capnocytophaga sputigena), tacrolimus (Capnocytophaga sputigena) and Tacrolimus (Capnocytophaga sputigena) can be prepared, golden (Chryseomicrobium aureum), barballs baumannii (Cloacibacterium haliotis), noman's tube (Cloacibacterium normanense), noman's tube, klebsiella aerogenes, de-nitrifying Comamonas (Comamonas denitrificans), tu-juna (Comamonas terrigena), congest, non-fermented Corynebacterium lipo subspecies, aminogenes, mycobacterium aceti, myxogolden (Corynebacterium aurimucosum), myxogolden corynebacteria, coleus (Corynebacterium coeae), hard corynebacterium (Corynebacterium durum), freiburg (Corynebacterium freiburgense), grey corynebacterium (Corynebacterium glaucum), glycine corynebacterium (Corynebacterium glyciniphilum), rhizoctonia, corynebacterium mimicus (Corynebacterium imitans), katsuki's corynebacterium (Corynebacterium jeikeium), katsujie's corynebacterium, koroti (Corynebacterium kroppenstedtii), lipophilic corynebacterium (Corynebacterium lipophiloflavum), corynebacterium (Corynebacterium massiliense), mastitis corynebacterium (Corynebacterium mastitidis), corynebacterium maritimum (Corynebacterium), microbacterium, corynebacterium (35), corynebacterium parvulus (6365), leucophyllum (3565), leucophyllum (6365) and Leucophyllum (6365 Corynebacterium tuberculosis, corynebacterium tachyphaga (), corynebacterium mutans (), zoozoozoobacteria of the family blue subspecies (subsp. Caeruleus), copper-resistant bacteria, brevibacterium herbicolum (), antichlorethamonas excitothecium (), deinococcus hard, deinococcus antarcticus (), deinococcus mud (), deinococcus ficuum (), deinococcus geothermal, deinococcus radiodurans (), dermatophytes vaginalis (), dermatophytes (); western coccus (), desemzia incrta, rostellus, listeria turcica (), aerosol, lesion producing, dietzia orange (), dietzia catenulatum (), dietzia diptheriae (), dietzia vensis, leucococcus lazy, leucococcus rodent (), leuconostoc, milisesurus, emmerce, brevibacterium, saccharum sinensis (), cyrtymenia, enterobacter roseum () Enterococcus faecalis (Enterococcus aquimarinus), enterococcus faecalis, enterococcus olivaceus (Enterococcus olivae), erwinia rheum, eubacterium parvulus (Eubacterium eligens), eubacterium faciens (Eubacterium infirmum), eubacterium rectum, eubacterium crypticum (Eubacterium saphenum), eubacterium aceti (Eubacterium sulci), microbacterium mexicanum (Exiguobacterium mexicanum), fuscoporia fumigatus (Fei Kelan), rhodobacter salina-resistant, golgi apparatus, flavobacterium epidermidis (Fei Kelan), bacillus (Fei Kelan), flavobacterium flavum (Fei Kelan) resistant, flavobacterium perfringens (Fei Kelan), fuscoporia nucleatum subspecies polymorpha (Fei Kelan subsp. Polymorphum) the bacterial strain comprises a haemolytic twin coccus (Fei Kelan), a measles twin coccus (Fei Kelan), a palatal twin coccus (Fei Kelan), a haemophilus (Fei Kelan), a germ bacterium aquaticus (Fei Kelan), a germ bacterium (Fei Kelan) sludge, a gordonia aurea (Fei Kelan), a gordonia polymorpha (Fei Kelan), a gordonia polyisoprene (Fei Kelan), a streptococcus agatus (Fei Kelan), a haemophilus parainfluenza (Fei Kelan), a haemophilus phlegm (Fei Kelan), a sulfide mineralocorticoid bacterium (Fei Kelan), a smooth column bacterium orange (Fei Kelan), a hydrocarbon bacterium extensor (Fei Kelan), sea-borne bacteria (Idiomarina maris), anopheles bifidus (Janibacter anophelis), holozenia (Janibacter hoylei), america (Janibacter indicus), america (Janibacter limosus), america (Janibacter melonis), salicomia Herbacea (Jeotgalicoccus halophilus), human (Rong Kaijun), lasiosphaera (Rong Kaijun), de-nitrifying (Rong Kaijun), klebsiella stomatocace (Kingella oralis), klebsiella oxytoca (Rong Kaijun), nardostachyos (Rong Kaijun), pinus albolsteri (Rong Kaijun), kocuria atrinae, gastrokudo (Rong Kaijun), klebsiella keiki (Rong Kaijun), klebsiella multock (Rong Kaijun), tarukukuke (Rong Kaijun), analox (Rong Kaijun), alterna (Rong Kaijun), acidovorax (Rong Kaijun), lactobacillus crispa (Rong Kaijun), latifolia (Rong Kaijun), legionella (Rong Kaijun), latifer (Rong Kaijun), legionella (Rong Kaijun) and Trichinella (Rong Kaijun), wei De ciliated bacteria, garcinia lutescens (Luteimonas terricola), lysine-forming bacillus (Lysinibacillus fusiformis), lysobacter sojae (Lysobacter spongiicola), lysobacter spongiicola, rhodococcus lyceum (Lysobacter spongiicola), marsdenia tenacissima (Lysobacter spongiicola), alkali-resistant Marsdenia, golden Marsdenia (Massilia aurea), folding Marsdenia (Massilia pliata), emultocida, lasiosphaera (Lysobacter spongiicola), thermus sieboldii (Lysobacter spongiicola), methylobacillus santalinus (Lysobacter spongiicola), methylobacillus griseus (Lysobacter spongiicola), methylophilus griseus, methylobacillus griseus Bacillus thuringiensis (Lysobacter spongiicola), methylobacillus salty, methylobacillus oxalicum (Lysobacter spongiicola), methylobacillus syringiensis, methylobacillus sagittifolius, methylobacillus widely used (Lysobacter spongiicola), microbacterium calcoaceticus (Lysobacter spongiicola), microbacterium hydrothermalis (Lysobacter spongiicola), microbacterium hydrothermally, microbacterium lacticum (Lysobacter spongiicola), microbacterium lacticum, microbacterium left-producing (Lysobacter spongiicola), microbacterium palum (Lysobacter spongiicola), microbacterium petroleum (Lysobacter spongiicola), microbacterium roseum (Lysobacter spongiicola), microbacterium antarcticum (Lysobacter spongiicola), micrococcus yellow (Lysobacter spongiicola), micrococcus lizicus (Lysobacter spongiicola), micrococcus (Micrococcus terreus), microzyme orange (Microlunatus aurantiacus), microcosmic (Micropruina glycogenica), microbacterium angustifolium (Microvirga aerilata), microbacterium angustifolium, microbacterium underground, microbacterium cowpea (Microvirga vignae), microbacterium prandium, micrococcus aerobicus, clostridium timum (Mogibacterium timidum), moraxella bitarvensis (Moraxella atlantae), moraxella catarrhalis (Moraxella catarrhalis), moraxella moelleriensis (Morganella morganii subsp. Morganii), moraxella cold-resistant (Morganella psychrotolerans), mercurous merkohl (Murdochiella asaccharolytica), mycobacterium asiaticus (Mycobacterium asiaticum), mycobacterium midpart (Mycobacterium chubuense), mycobacterium saffron (Mycobacterium crocinum) Mycobacterium californicum (Mycobacterium gadium), mycobacterium holstein (Mycobacterium holsaticum), mycobacterium islanguis (Mycobacterium iranicum), mycobacterium renba (Mycobacterium longobardum), mycobacterium neogolden, mycobacterium megaterium, negative succinic acid-eating coccus (Negativicoccus succinicivorans), neisseria (Neisseria bacilliformis), neisseria stomatalis (Neisseria oralis), neisseria sicca (Neisseria sicca), neisseria micro-yellow, ai Huohu Neisseria (Nesterenkonia lacusekhoensis), rhizoctonia rhizosphere (Nesterenkonia rhizosphaerae), persepia guava (Nevskia persephonica), branch-like Var.valia (Nevskia ramosa), america salishanensis (Niabella yanshanensis), moisture Bai Ganjun (Niveibacterium umoris), nocardia danabaca (Nocarpia niwae), nocardia thailand, nocardia agaophila (Nocardioides agariphilus), nocardia diluta (Nocardioides dilutus), nocardia Jiang Huadao (Nocardioides ganghwensis), nocardia cistenii (Nocardioides hwasunensis), nocardioides hwasunensis, nocardia depositional (Nocardioides hwasunensis), coccocus ampullate (Nocardioides hwasunensis), neisseria malaensis (Nocardioides hwasunensis), sphingomonas rhodochrous (Nocardioides hwasunensis), sinorhizobium rhizosphere (Nocardioides hwasunensis), nostoc, hadoku (Nocardioides hwasunensis), paracoccus parahaemophilus (Nocardioides hwasunensis), paracoccus parahaemolyticus (Nocardioides hwasunensis), micrococcus parahaemolyticus (Nocardioides hwasunensis), nostochae parapsilosis (Nocardioides hwasunensis), nostochae (Nocardioides hwasunensis), nostoc, micromonad, egionella polyflagelliforme (Parviterribacter multiflagellatus), proteus gensengides, geobacillus aquaticus (Pedobacter aquatilis), geobacillus ginseng (Pedobacter ginsengisoli), geobacillus west (Pedobacter xixiisoli), peptococcus nigricans (Peptococcus niger), cookideas peptone (Peptoniphilus coxii), goba's peptone (Peptoniphilus gorbachii), rabbit peptone, klebsiella (Peptoniphilus koenoeneniae), lacrimago peptone (Peptoniphilus lacrimalis), streptococcus anaerobacter (Peptostreptococcus anaerobius), streptococcus koxidans (Peptostreptococcus stomatis), takava (Phascolarctobacterium faecium), xenophilus (Phenylobacterium haematophilum), phenylbacterium spinosa (Phenylobacterium kunshanense), klebsiella multocida (Pluralibacter gergoviae), polyporus polysaccharideus (Polymorphobacter multimanifer), porphyromonas mandshurica, porphyromonas gingivalis (Polymorphobacter multimanifer), porphyromonas mandson (Polymorphobacter multimanifer), purpusia vinosa (Polymorphobacter multimanifer), purpusia buchnsoni (Polymorphobacter multimanifer), purpa stenia steniae (Polymorphobacter multimanifer), purpureae (Polymorphobacter multimanifer) and Purpa valia stenia (Volva) of the human body, volva (Polymorphobacter multimanifer), prevotella (Prevotella histicola), prevotella intermedia, prevotella jejuni, prevotella small-spot (Prevotella maculosa), prevotella melanogenes, prevotella iridae (Prevotella multiformis), prevotella southizinensis (Prevotella nanceiensis), prevotella melanosis, prevotella stomatalis (Prevolella oris), prevotella gingivitis (Prevotella oulorum), prevotella pallidum (Prevotella pallens), prevotella pleurisy (Prevotella pleuritidis), prevotella saccharolytica (Prevotella saccharolytica), prevotella salivaria, prevotella Sha Shipu (Prevotella shahii), prevotella pedica (Prevotella timonensis) Prevotella in the vacuum chamber, propionibacterium acidophilum (Propionibacterium acidifaciens), propionibacterium acnes subspecies acnes (Propionibacterium acnes subsp. Acnes), propionibacterium acnes subspecies acnes, propionibacterium granulose (Propionibacterium granulosum), microzyme lymphophilicum, toxoplasma gondii (Propionispira arcuata), pseudomonas stutzeri (Pseudokineococcus lusitanus), pseudomonas aeruginosa, pseudomonas chenopodii (Pseudomonas chengduensis), pseudonocardia penoxsula (Pseudonocardia benzenivorans), pseudorhodozoon besseyi (Pseudorhodoplanes sinuspersici), psychrophilum haemophilus (Psychrobacter sanguinis), ginsenoside-converted sand loam, sea water Rheimeria (Rheinheimera aquimaris), rhizobium (Rhizobium alvei), large Tian Genliu, rhizobium rosei (Rhizobium larrymoorei), rhizobia (Rhizobium rhizoryzae), rhizobia (Rhizobium rhizoli), rhizobia taibaiensis, rhizobia cowpea, glycine Luo Nahe bacillus (Rhodanobacter glycinis), rhodobacter verrucosa (Rhodobacter veldkampii), rhodococcus indicum, rhodococcus beam (Rhodococcus fascians), rhodococcus beam, rhodochrous cycloaliphatic (Rhodovarius lipocyclicus), campylobacter ranolae (Rivicola pingtungensis), rhodobacter oxyvorans (Rothia nasimurium), rosenbergii (3835), rhodobacter aerogenes (Roseomonas aerilata), rhodomonas aquaticus (Roseomonas aquatica), rhodopseudomonas mucilaginosa (Roseomonas mucosa), rhodopseudomonas rosea (Roseomonas rosea), rhodomonas vinifera (Roseomonas vinacea), rhodobacter aerogenes (Rothia), rhodobacter guli (Rothia amara e), rhodococcus equi (Rothia dentocariosa), rhodochrous endophyte (Rothia endophytica), rhodobacter mucilaginosa (Rothia mucilaginosa), rhodochrous nasolae (Rothia nasimurium), rhodobacter oxydans (5245), rhodochrous (Saccharopolyspora rectivirgula), rhodobacter oxydans (5282), rhodochrous (Saccharopolyspora rectivirgula) and other than can be expressed in the absence of the human being, rhodobacter oxydans (Saccharopolyspora rectivirgula) and rhodochrous (Saccharopolyspora rectivirgula), stereomonas acter (Selenomonas artemidis), acidovorax faciens (Selenomonas infelix), acidovorax faciens (Selenomonas noxia), acidovorax phlegm (Selenomonas sputigena), shewanella tidis, schmidwiella satellite (Shuttleworthia satelles), mu Lexi Meng Sishi (Simonsiella muelleri), shewanella aerobiotic (Skermanella aerolata), anti-Shewanella stibium (Skermanella stibiiresistens), shewanella sparsifolia (Slakia exigua), peacock Dan Qiujun (Smaragdicoccus niigatensis), xuepennisia (Sneathia sanguinegens), rhodobacter soil (Solirubrobacter soli), sphingobacterium mud (Solirubrobacter soli), bacillus megaterium (Solirubrobacter soli), and Solirubrobacter soli Bacillus thuringiensis (Solirubrobacter soli), kyoto sphingobacterium (Solirubrobacter soli), sphingobi (Solirubrobacter soli), sphingobacterium polysomum (Solirubrobacter soli), sphingobi (Solirubrobacter soli), sphingomonas sp, sphingomonas (Solirubrobacter soli), sphingomonas gingivalis (Solirubrobacter soli), sphingomonas paradoxes (Solirubrobacter soli) and Sphingomonas sp (Solirubrobacter soli), sphingomonas formosensis, sphingomonas gei, korea Sphingomonas Sphingomonas hankookensis, korea Sphingomonas Sphingomonas koreensis, kyoto Sphingomonas Sphingomonas kyeonggiensis, sphingomonas brickkilver Sphingomonas laterariae, sphingomonas sp Sphingomonas mucosissima, sphingomonas oligophenol Sphingomonas oligophenolica, sphingomonas pseudoblood, cyhingomonas zizaniae Sphingomonas sediminicola, sphingomonas salicina Sphingomonas yantingensis, sphingomonas yunnanensis Sphingomonas yunnanensis, sphingomonas indicus, sphingomonas wetland spirochesis, spongilla mesophilic vinegar producing strain Sporacetigenium mesophilum, spongilla viscosa fibrous strain Sporocytophaga myxococcoides staphylococcus aureons (Staphylococcus auricularis), staphylococcus epidermidis, staphylococcus hominis, staphylococcus lugdunensis, staphylococcus petiolus, pseudomonas febrile (Staphylococcus pettenkoferi), pseudomonas putida (Stenotrophomonas koreensis), pseudomonas putida (Stenotrophomonas rhizophila), pseudomonas putida, streptococcus agalactiae, streptococcus canis (Streptococcus canis), streptococcus crisis (Streptococcus cristatus), streptococcus gordonae, streptococcus infantis, streptococcus intermedium (Streptococcus intermedius), streptococcus mutans, streptococcus oligofermentus (Streptococcus oligofermentans), streptococcus stomatus, streptococcus sanguineus (Streptococcus sanguinis), streptomyces griseus (Streptomyces iconiensis), streptomyces Yang Linlian (Streptomyces yanglinensis), streptococcus aquaticus (Tabrizicola aquatica), bacillus thuringiensis (Tahibacter caeni), stannum (Tannerella forsythia), thermomyces salvinus (Tepidicella xavieri), thermomyces lanuginosus (Tepidimonas fonticaldi), agrobacterium luteus (Terracoccus luteus), tetracoccus luteus (Tessaracoccus flavescens), thermus thermophilus (Thermus thermophilus), thermomyces lanuginosus, arthrobacter, arthrospira amylovorus (Treponema amylovorum), treponema pallidum, treponema medum (Treponema lecithinolyticum), thermomyces lanuginosus (Turicella otitidis) Xuezurich bacillus, oligocarbohydrate coryneform bacteria (Undibacterium oligocarboniphilum), shrimp water coryneform bacteria (Undibacterium squillarum), salmon roaming coccus (Vagococcus salmoninarum), campylobacter canmanii, vibrio merrill (Vibrio metschnikovii), yellow marigold bacteria (Xanthobacter tagetidis), aerobiotic xenobiotics, anti-arsenophilus (Xenophilus arseniciresistens), micrococcus aurantiacus (yimelia lutea), bai Jimo mann bacteria (Zimmermannella alba), zimerman bacteria (Zimmermannella bifida) and/or Zoogloea (Zoogloea caeni).
In other embodiments, the targeted bacterial cells are those commonly found in vaginal microbiota, and is not limited to, acinetobacter (Acinetobacter antiviralis), acinetobacter baumannii, acinetobacter calcoaceticus (Acinetobacter calcoaceticus), acinetobacter johnsonii, actinomyces marseis (Actinobaculum massiliense), actinomyces shasii (Actinobaculum schaalii), actinomyces European, actinomyces gracilis, actinomyces israei, actinomyces mairei, actinomyces naeslundii, actinomyces lyxodentis, actinomyces zurich, actinomyces genitourinary (Actinomyces urogenitalis), actinomyces viscosus (Actinomyces viscosus), pneumococcus koani, pneumococcus ureae, pneumococcus grass, aeromonas anguillarum, aeromonas salmonicida, phillips mosaic (Afipia massiliensis), agrobacterium tumefaciens (Agrobacterium tumefaciens) aquatic psychrophila (Algoriphagus aquatilis), vibrio oldine (Aliivibrio wodanis), eimeria fenhnsonii, pediococcus otoi (Alloiococcus otitis), prevotella tannanensis (Alloprevotella tannerae), isovesicular multi-vitamin A, epoxy-feeding alternating red bacillus (Altererythrobacter epoxidivorans), oxalate ammonia-philic bacteria (Ammoniphilus oxalaticus), emammothecium bei (Amnibacterium kyonggiense), hydrogen-producing anaerobic coccus, lactolytic anaerobic coccus, mo Daoke anaerobic coccus, obesity-related anaerobic coccus (Anaerococcus obesiensis), anaerobic coccus praecox, tetranectia anaerobic coccus (Anaerococcus tetradius), anaerobic coccus vaginalis, double anaerobic spherical bacteria (Anaeroglobus geminatus), procino anaerobic bacillus (Anoxybacillus pushchinoensis), micro water bacillus, seal steal bacillus (Arcanobacterium phocae), brevibacterium flavum (Arthrobacter aurescens), achromobacter oxydans, micromirabilis (Atopobium minutum), micromirabilis gingivalis, micromirabilis vaginalis, avian Bacillus (Avibacterium gallinarum), bacillus acidophilus (Bacillus acidicola), bacillus megaterium (Bacillus atrophaeus), bacillus cereus (Bacillus cibi), bacillus paradoxus (Bacillus coahuilensis), bacillus pumilus (Bacillus gaemokensis), bacillus methanolica (Bacillus methanolicus), bacillus australis (Bacillus oleronius), bacillus pumilus, bacillus arensis (Bacillus shackletonii), bacillus thermosporus (Bacillus sporothermodurans), bacillus subtilis, and Bacillus glaucomatous (Bacillus wakoensis), bacillus Wei Enshi, bacillus tebuergerianus (Bacillus weihenstephanensis), paenium (Bacteroides barnesiae), paenibacillus coagulans Bacillus subtilis, bacillus bifidus, bifidobacterium longum subspecies, bifidobacterium pseudocatenulatum, bacillus thuringiensis, bacillus faecalis, bacteroides simplex, bacteroides vulgaris, bacteroides xylan, bacteroides actylovorus (Bacteroides zoogleoformans), bacillus thuringiensis (Barnesiella viscericola), bacillus subtilis at the center of cell molecular biology (Bhargavaea cecembensis), bifidobacterium adolescentis, bifidobacterium bifidum, bifidobacterium breve, bifidobacterium longum subsp.infafricantis, bifidobacterium pseudocatenulatum, bifidobacterium Shi Kadu, bifidobacterium volvuli, bifidobacterium volcanicum, bifidobacterium parvum, bruella hydrogenotrophic, bruella ovata, bruella producing, brevibacterium faecalis (Brachybacterium faecium), soybean slow rooting tumor bacteria, brevibacterium majus (Brevibacterium mcbrellneri), brevibacterium otoi (Brevibacterium otitidis), brevibacterium febrile, legionella slow (Bulleidia extructa), burkholderia fungus (Burkholderia fungorum), burkholderia phenolicus (Burkholderia phenoliruptix), cellulolytic bacteria (Caldicellulosiruptor saccharolyticus), caldimonas taiwanensis, campylobacter gracilis, campylobacter mansoni, campylobacter phlegm (Campylobacter sputorum), campylobacter urealyticus, carbon dioxide phaga, human heart bacillus, klebsiella, chlamydia trachomatis, chlamydophila abortus (Chlamydophila abortus), cartilage fungus (Chondromyces robustus) Flavobacterium aquaticum (Chryseobacterium aquaticum), citrobacter bergii, corynebacterium nomanii (Cloacibacterium normanense), clostridium kali (Clostridium cavendishii), clostridium dog (Clostridium colicanis), clostridium jisoyase (Clostridium jejuense), clostridium perfringens, clostridium multi-branch, clostridium soxhlet (Clostridium sordellii), clostridium viride (Clostridium viride), comamonas terrestris, corynebacterium crowded, corynebacterium appendicitis (Corynebacterium appendicis), corynebacterium colestis, corynebacterium polygluconate (Corynebacterium glucuronolyticum), corynebacterium glutamicum (Corynebacterium glutamicum), corynebacterium kaki, corynebacterium korotkohl, corynebacterium lipophilic yellow, corynebacterium parvum, corynebacterium mucicum, corynebacterium distiller's yeast (Corynebacterium nuruki), corynebacterium pseudogenital tract (Corynebacterium pseudogenitalium), corynebacterium pyruvate-producing, corynebacterium uniquely, corynebacterium striatum (Corynebacterium striatum), corynebacterium tuberculosis stearate, corynebacterium xerosis, leng Leng-philium (Cryobacterium psychrophilum), brevibacterium wilt, dermatobacterium acnes, dermatobacterium greedy (Cutibacterium avidum), cellulomophaga xylan (Cytophaga xylanolytica), deinococcus radiophilus (Deinococcus radiophilus), crane feather Tian Daier Ford (Delftia tsuruhatensis), vibrio desulphus (Desulfovibrio desulfuricans), listeria cloudiness Dai A, listeria aerobics, listeria invaginata Dai A listeria invaginated (Dialister pneumosintes), listeria propionicum Dai A, dicus chrysanthemi (Dickeya chrysanthemi), long-chain dormer, eglinium tarda Alternaria alternata (Eggerthia catenaformis), egger Ai Kenjun, aerobacter gasbag, enterobacter albophilum, enterobacter cloacae, enterococcus avium, enterococcus durans, enterococcus faecalis, enterococcus faecium (Enterococcus hirae), erwinia persicae (Erwinia persicina), eubacterium rheum officinale, erwinia toletaa, escherichia coli, fei Gesen Escherichia (Escherichia fergusonii), eubacterium breve (Eubacterium brachy), eubacterium picki, eubacterium entanglement (Eubacterium brachy), eubacterium rectum, eubacterium cryptii, eubacterium aceti, eubacterium eubacterium uligerum (Eubacterium brachy), microbacterium aceti (Eubacterium brachy), facklamia ignova, enterobacter praecox, leptogenic bacteria (Filifactor alocis), fusobacterium megaterium, fusobacterium just, fusobacterium nucleatum, fusobacterium denticola Zhou Suo, gardnerella vaginalis, gemela vanica (Gemella asaccharolytica), gemela bergii (Gemela bergeri), geomelanuginosa, xemophilia coccus, geobacillus stearothermophilus (Geobacillus stearothermophilus), geobacillus thermode (Geobacillus)
thermocatenulatus), the enzyme Geobacillus thermoglucosidase (Geobacillus)
thermoglucosidase), geobacillus (Geobacter grbiciae), streptococcus elegans, haemophilus dulcitus (Haemophilus ducreyi), haemophilus haemolyticus (Haemophilus haemolyticus), haemophilus parahaemolyticus (Haemophilus parahaemolyticus), haemophilus parahaemolyticus, hafnia alvei, halomonas farnesii (Halomonas phoceae), halomonas melitensis (Halomonas venusta), rhodospirillum septicum (Herbaspirillum seropedicae), purple blue bacillus (Janthinobacterium lividum), human Rong Kai, klebsiella granulosa (Klebsiella granulomatis), klebsiella oxytoca, klebsiella pneumoniae, lactobacillus acidophilus, lactobacillus amylovorus (Lactobacillus amylovorus), lactobacillus brevis, lactobacillus vaginalis (Lactobacillus coleohominis), lactobacillus crispatus, lactobacillus curvatus lactobacillus delbrueckii, lactobacillus fermentum, lactobacillus grignard, lactobacillus helveticus, lactobacillus inertia, lactobacillus jensenii (Lactobacillus jensenii), lactobacillus johnsonii, lactobacillus caligenes (Lactobacillus kalixensis), lactobacillus sanfranciscensis (Lactobacillus kefiranofaciens), lactobacillus sauerkraut (Lactobacillus kimchicus), lactobacillus northwest (Lactobacillus kitasatonis), lactobacillus mucosae (Lactobacillus mucosae), lactobacillus bread (Lactobacillus panis), lactobacillus paracasei, lactobacillus plantarum, lactobacillus bridge (Lactobacillus pontis), lactobacillus reuteri, lactobacillus rhamnosus, lactobacillus salivarius, lactobacillus ernata, lactobacillus vaginalis, lactobacillus lactis, lactobacillus buchneri, leuconostoc mesenteroides, leuconostoc citreum, leuconostoc mesenteroides (Leuconostoc garlicum), leuconostoc lactis, leuconostoc mesenteroides, lysomonas (Lysinimonas kribbensis) of the Korean institute of life and engineering, indomonas indoletica (Mageeibacillus indolicus), marine bacillus (Maribacter orientalis), haemomonas mutans (Marinomonas protea), sea-island helicobacter (Marinosporium, acidovorax sessiliflorus, megasphaera elhardtii (Megasphaera elsdenii), megasphaera micronutans (Megasphaera micronuciformis), rhizobium feverdanum (Mesorhizobium amorphae) in amorpha, methylobacillus radiodurans (Methylobacterium radiotolerans), bacillus methylotrophicus (Methylotenera versatilis), microbacterium halophilum (Microbacterium halophilum), micrococcus luteus, microbacterium paradiseae (Microterricola viridarii), acinetobacter kefir (Mobiluncus curtisii), acidovorax shlii (Mobiluncus mulieris), and Bacillus thuringiensis Moraxella glycerinum (Moorella glycerini), moraxella mulina (Moraxella osloensis), morganella morganii, indolenin Mo Lishi producing bacteria (Moryella indoligenes), mercduo-gram-bacteria, mycoplasma enteroides (Mycoplasma alvi), mycoplasma genitalium (Mycoplasma genitalium), mycoplasma hominus (Mycoplasma hominis), mycoplasma mice (Mycoplasma variens), mycoplasma salivarius (Mycoplasma salivarium), neisseria succinogenes, neisseria flavum (Neisseria flava), neisseria gonorrhoeae, neisseria mucilaginosa (Neisseria muricata), neisseria flavum, branch-like Zernia, mirabilis soil (Nevskia soli), alkaline nitrile-decomposing bacteria, zosteronibacterium visceratis, oligotrophic bacillus urethrai (Oligella urethralis), rhizoctonia gingivalis, bacillus amyloliquefaciens (Paenibacillus amylolyticus), paenibacillus humicola (Paenibacillus humicus), paenibacillus feed (Paenibacillus pabuli), paedena bacillus (Paenibacillus pasadenensis), paederia pinnatifida (Paenibacillus pini), paederia tonic (Paenibacillus validus), pantoea agglomerans (Pantoea agglomerans), paralopecuroides faecalis, paraorta carnivora (Paraburkholderia caryophylli), paraoccus jejuni, streptomyces abscess (Parastreptomyces abscessus), micromonospora, bevereign Guan Guojiao (Pectobacterium betavasculorum), soft rot pectobacter carotovorans (Pectobacillus carotovorum), pediococcus lactis, pediococcus ethanogenus (Pediococcus ethanolidurans), geobacillus fluvialis (Pedobacter alluvionis), geobacillus alensis (Pedobacter wanjuense), pseudomonas aquaticus (Paenibacillus pini), pediococcus melanogaster, metropolium irradiae (Peptoniphilus asaccharolyticus), geobacillus gordonii, leptophaeophilus, leptophaga, inone peptone (Peptoniphilus indolicus), lacrophila, streptococcus (Peptoniphilus massiliensis), streptococcus anaerobusta (673), streptococcus (7975), propionibacterium cold light emitting (3575), porphyromonas rhodobacter sphaeromonas, porphyromonas p.p.p.p.p.p.m (3575), porphyromonas p.p.p.p.m, makino (35) and Propionii (35) of Porphyromonas sp.sp.sp.sp.sp.sp.45, P.sp.sp.sp.sp.sp.45), prevotella, prevotella spell (Prevotella bergensis), prevotella two, prevotella cheek (Prevotella buccae), prevotella cheek (Prevotella buccalis), prevotella coloris (Prevotella colorans), prevotella faecalis, prevotella humana, prevotella denticola, prevotella deglycosis (Prevotella disiens), prevotella intermedia, prevotella lozenii (Prevotella loescheii), levobacteria Ma Shipu, prevotella melanogenes, prevotella iridae, prevotella melanogenes, prevotella stomatitis, prevotella ruminalis (Prevotella ruminicola), prevotella Sha Shipu, prevotella faecalis Levobacter calcoaceticus, prevotella calcoaceticus, microbacterium lymphophilium, proteus mirabilis, pseudomonas pinophilum (Pseudomonas abietaniphila), pseudomonas aeruginosa, pseudomonas amygdalina (Pseudomonas amygdali), pseudomonas azotoformans (Pseudomonas azotoformans), pseudomonas aeruginosa (Pseudomonas chlororaphis), pseudomonas quagensis (Pseudomonas pseudostellaria, pseudomonas fluorescens (Pseudomonas fluorescens), pseudomonas flavescens (Pseudomonas fulva), pseudomonas pseudostellaria (Pseudomonas lutea), pseudomonas stutzeri, pseudomonas oleaginis (Pseudomonas oleovorans), pseudomonas orientalis (Pseudomonas orientalis), pseudomonas pseudoalcaligenes, pseudomonas psychrophila (Pseudomonas psychrophila), pseudomonas pseudomonana (Pseudomonas synxantha), pseudomonas syringae (Pseudomonas syringae), pseudomonas syringae (Pseudomonas fluorescens), pseudomonas tolaciens (Pseudomonas tolaasii), pseudomonas propionica (Pseudopropionibacterium propionicum), ralstonia aquatica (Rahnella aquatilis), ralstonia pisiformis, ralstonia solanacearum (Ralstonia solanacearum), ralstonia plantarum (Raoultella planticola), rhizobium carotovorum (Rhizobacter dauci), rhizobium stibium crudus, rhodococcus fasciculi, rhodopseudomonas palustris (Rhodopseudomonas palustris), ralstonia enterica, ralstonia inulin-producing, ralstonia mucilaginosa, ruminococcus brotica, ruminococcus livens, ruminococcus sprain, haemophilus kadi (Sanguibacter keddieii), bacillus salmon sediment (Sediminibacterium salmoneum), zylobacter bovis (Selenomonas bovis), serratia sanguinea (Serratia fonticola), serratia liquefaciens (Serratia liquefaciens) Serratia marcescens, shewanella alga (Shewanella algae), shewanella amazonensis (Shewanella amazonensis), shigella boydii (Shigella boydii), shigella sonnei, shigella sparsa, shewanella amniovora (Sneathia amanii), serratia, mo Erlei Bacillus (Solobacterium moorei) alone, cellophane (Sorangium cellulosum), albizia, sphingomonas japonica, sphingomonas cornfield (Sphingobium yanoikuyae), sphingomonas veronii (Sphingomonas wittichii), sarcina seawater (Sporosarcina aquimarina), staphylococcus aureus, staphylococcus aurei, staphylococcus cephali (Staphylococcus capitis), staphylococcus epidermidis, staphylococcus haemolyticus (Staphylococcus haemolyticus), human staphylococci (Staphylococcus hominis), ludune staphylococci, saprophytic staphylococci, staphylococcus schneider (Staphylococcus schleiferi), staphylococcus similis (Staphylococcus simiae), staphylococcus mimicus (Staphylococcus simulans), staphylococcus wovensis (Staphylococcus warneri), stenotrophomonas maltophilia, acetobacter (Stenoxybacter acetivorans), streptococcus agalactiae, angina streptococcus, streptococcus australis, streptococcus equi, streptococcus bigeminicus (streptococcus mutans), streptococcus infantis, streptococcus intermedium, streptococcus paris, streptococcus sea (Streptococcus marimammalium), streptococcus mitis, streptococcus mutans, streptococcus stomatis, streptococcus parahaemolyticus (Streptococcus phocae), streptococcus pneumoniae (Streptococcus pseudopneumoniae), streptococcus salivarius, streptococcus thermophilus, waltz Wo Sisa, fusartan, haemophilus (Terrahaemophilus aromaticivorans), dental Treponema, haemophilus (Treponema maltophilum), microcosm (Treponema parum), venturi (Treponema vincentii), streptococcus berkovickers (Trueperella bernardiae), streptococcus pensis (5286), streptococcus equi, bacillus (Viridibacillus arenosi), bacillus parvobacteria (Virgibacillus proomii), pseudomonas aeruginosa (Virgibacillus proomii), pseudomonas aeruginosa (Streptococcus pseudopneumoniae), streptococcus equi, pseudomonas aeruginosa (Virgibacillus proomii), streptococcus equi, pseudomonas aeruginosa (Streptococcus pseudopneumoniae), streptococcus equi, pseudomonas (Virgibacillus proomii), streptococcus equi, pseudomonas (Streptococcus pseudopneumoniae), streptococcus equi) and other bacteria (Streptococcus pseudopneumoniae Weissella food (Weissella cibaria), weissella soil (Weissella soli), xanthomonas campestris (Xanthomonas campestris), xanthomonas bullosa (Xanthomonas vesicatoria), phaeophyta Zhuo Beier (Zobellia laminariae), and/or Achromobacter cladi (Zoogloea ramigera).
In one embodiment, the targeting bacterium is Escherichia coli.
In one embodiment, the targeting bacteria are dermatophytes acnes, more particularly acne-related dermatophytes from the genetic lineage (phylogroup) IA1 or RT4, RT5, RT8, RT9, RT10 or Clone Complex (CC) CC1, CC3, CC4, more particularly ST1, ST3, ST 4.
Thus, the first type of bacteriophage disclosed herein, and thus the bacteriophage particles or phage-derived delivery particles of the present invention, may specifically target (e.g., specifically target) bacterial cells from any one or more of the above-described bacterial genera and/or species, particularly to specifically deliver a payload.
In one embodiment, the targeted bacteria are pathogenic bacteria. The targeting bacteria may be toxic bacteria.
The targeting bacteria may be antibacterial resistant bacteria, preferably selected from the group consisting of ultra-broad spectrum beta-lactamase (ESBL) producing escherichia coli, ESBL klebsiella pneumoniae, vancomycin Resistant Enterococci (VRE), methicillin Resistant Staphylococcus Aureus (MRSA), multi-drug resistant (MDR) acinetobacter baumannii, MDR enterobacter species, and combinations thereof. Preferably, the targeting bacteria may be selected from the group of E.coli strains producing an ultra-broad spectrum of beta-lactamase (ESBL).
Alternatively, the targeting bacteria may be bacteria of a microbiome of a given species, preferably bacteria of a human microbiota.
In certain embodiments, the targeted bacterial cells are from a species or strain different from the producer bacterial cells.
Hybrid helper phage system and hybrid helper phage
The invention also relates to a hybrid helper phage system comprising:
(i) At least one phage DNA packaging gene as defined in the "producer bacterial cells" section above derived from lytic bacteriophage as defined in the "bacteriophage and bacteriophage derived genes" section above,
(i') at least one phage structural gene as defined in the "producer bacterial cells" section above derived from said lytic bacteriophage,
(i ") optionally, at least one phage gene involved in phage regulation as defined in the" producer bacterial cells "section above, derived from said lytic bacteriophage, and
(ii) At least one gene derived from a non-lytic bacteriophage as defined in the "bacteriophage and bacteriophage-derived genes" section above, as defined in the "producer bacterial cells" section above, which is involved in phage excision/insertion, phage DNA replication and/or phage regulation,
Wherein the genes (i), (i') and (ii) are contained in separate nucleic acid molecules or separate nucleic acid molecules, and
wherein the hybrid helper phage system does not comprise any expressed phage structural genes derived from the non-lytic bacteriophage.
In the context of the present invention, the term "hybrid helper phage system" means a set of at least one nucleic acid molecule, preferably at least two separate nucleic acid molecules, comprising the genes (i), (i '), optionally (i') and (ii) defined above, which allow the production of lytic phage particles and/or lytic phage-derived delivery vehicles by a producer bacterial cell comprising the system, wherein the genes (i), (i '), optionally (i') and (ii) are distributed over the at least two separate nucleic acid molecules when the system comprises at least two separate nucleic acid molecules.
As used herein, the term "nucleic acid" refers to a sequence of at least two nucleotides covalently linked together, which may be single-stranded or double-stranded, or contain portions of both single-stranded and double-stranded sequences. The nucleic acids of the invention may be naturally occurring, recombinant or synthetic. The nucleic acid may be in the form of a circular sequence or a linear sequence or a combination of both. The nucleic acid may be DNA (both genomic or cDNA) or RNA or a combination of both. The nucleic acid may contain any combination of deoxyribonucleotides and ribonucleotides and any combination of bases including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine, hypoxanthine, isocytosine, 5-hydroxymethylcytosine, and isoguanine. Chem rev.2016oct 26, weigele et al; 116 Further examples of modified bases that can be used in the present invention are described in detail in (20) 12655-12687. The term "nucleic acid" also includes any nucleic acid analog that may contain other backbones including, without limitation, phosphoramides, phosphorothioates, phosphorodithioates, O-methylphosphite linkages and/or deoxyribonucleotides and ribonucleotide nucleic acids. The invention also includes any combination of the above features of the nucleic acids.
In a particular embodiment, the genes (i), (i '), optionally (i') and (ii) are comprised in a bacterial chromosome, in particular in a producer bacterial cell chromosome. In more particular embodiments, the genes (i), (i '), optionally (i "), and (ii) are contained in the same region in the bacterial chromosome, and in alternative embodiments, the genes (i), (i'), optionally (i"), and (ii) are contained in different regions in the bacterial chromosome.
In alternative embodiments, the genes (i), (i'), optionally (i "), and (ii) are contained in separate plasmids. In another particular embodiment, the genes (i), (i '), optionally (i') and (ii) are all comprised in the same plasmid.
In another particular embodiment, the genes (i), (i'), optionally (i "), and (ii) are each independently contained in a bacterial chromosome or plasmid.
In a more particular embodiment, the genes (i), (i '), optionally (i') and (ii) are comprised in a hybrid helper phage.
Thus, in a particular embodiment, the hybrid helper phage system consists of hybrid helper phages comprising:
(i) At least one phage DNA packaging gene as defined in the "producer bacterial cell" section above, at least one phage structural gene as defined in the "producer bacterial cell" section above, and optionally at least one phage gene involved in phage regulation as defined in the "producer bacterial cell" section above, which is derived from lytic bacterial phage as defined in the "phage and gene derived from bacterial phage" section above, and
(ii) At least one gene as defined in the section "producing bacterial cells" above which is derived from a non-lytic bacteriophage as defined in the section "bacteriophage and bacteriophage-derived genes" above, which is involved in phage excision/insertion, phage DNA replication and/or phage regulation,
wherein the hybrid helper phage does not comprise any phage structural genes derived from the non-lytic bacteriophage.
By "helper phage" is meant herein a engineered phage that provides all necessary gene products for particle formation when using a phagemid vector. Helper phages typically have defective origins of replication or packaging signals and are therefore inefficient in self-packaging.
By "hybrid helper phage" is meant herein a engineered helper phage consisting of elements derived from at least lytic and non-lytic bacteriophages.
In a particular embodiment, the hybrid helper phage of the present invention is integrated as a prophage in the genome of the producer bacterial cell.
Production method
The invention further relates to a method for producing lytic phage particles or a lytic phage-derived delivery vehicle comprising:
(a) Providing a producer bacterial cell of the invention, and
(b) Inducing expression of at least one of said at least one phage structural gene and said phage DNA packaging gene in said producer bacterial cell, and assembling a product expressed by said at least one phage structural gene and said at least one phage DNA packaging gene, thereby producing a lytic phage particle or a lytic phage-derived delivery vehicle.
The induction step (b) may be carried out by any technique well known to the skilled person. In particular, as will be appreciated by the skilled person, the induction step will depend on the specific induction mechanism controlling the expression of the at least one of the phage structural gene and phage DNA packaging gene in the producer bacterial cell.
More particularly, the skilled artisan will appreciate that when the induction mechanism comprises at least one gene involved in phage excision/insertion, phage DNA replication and/or phage regulation derived from a non-lytic bacteriophage, the induction step will depend on the sequence-derived bacteriophage. In general, the induction step may be thermal induction (for phage naturally triggered by the signal or engineered repressor such as λci), small molecule inducers (depending on phage), any signal triggering SOS response (e.g. addition of mitomycin), etc.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
It must be noted that the singular forms "a", "an" and "the" as defined herein include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a cell" includes a plurality of such cells (e.g., a population of such cells). Similarly, reference to "a nucleic acid" includes one or more of such nucleic acids.
Although the invention has been described in conjunction with specific embodiments, many alternatives, modifications, and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations as fall within the spirit and broad scope of the appended claims.
All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that chapter titles are used, they should not be interpreted as necessarily limiting.
The following examples are given for the purpose of illustrating various embodiments of the invention and are not intended to limit the invention in any way.
Sequence(s)
/>
Brief Description of Drawings
Fig. 1: lambda genome tissue (packaging variant). The structural operon and the anti-terminator protein Q that allows transcription of the late structural operon are marked with red lines. The figure was adapted from Rajagopala et al, BMC Microbiol 11,213 (2011)).
Fig. 2: titration of T7 phagemid generated in lambda-T7 preheterozygous phage system. The production strain CY-L7 contains a payload p1883. Left panel, titration of MG 1655; right panel, titration of KEIO-waaG.
Fig. 3: titration of T7 phagemid generated in lambda-T7 preheterozygous phage system. Left panel, titration of MG 1655. Right panel, titration of KEIO-waaG. From left to right: left) payload p1883+p1885 (rapidly degrading T7 RNA polymerase); in) payload p1883+p1884 (medium strength degraded T7 RNA polymerase); right) payload p1883 only.
Fig. 4: identification of propionibacterium freudenreichii phages by PCR. PCR of ORF3 and ORF5 was performed on all phage suspensions. BW4 from plaques 1-3 gives a band for both orf3 and orf5 at the expected size. The ladder was GeneRuler 1kb+.
Fig. 5: lysogenic Pf0s14253 repeat immunization of infection. Left diagram: upper agar of Pf0s2841 with 4 different BW-like phage suspension spots. Right figure: upper agar of Pf0s14253 with 4 different BW-like phage suspension spots.
Fig. 6: high induction of BW4 phage following mitomycin C treatment. Left diagram: upper agar with Pf0s2841 from culture supernatant spots without mitomycin C (MMC) -induced Pf0s14253 (ND: undiluted to dilution 10) -3 ). Right figure: upper agar with Pf0s2841 from culture supernatant spots with 0.5. Mu.g/ml mitomycin C-induced Pf0s14253 (ND: undiluted to dilution 10) -7 )。
Fig. 7: genomic organization of BW4 and PAC7 bacteriophages. BW4 and PAC7 genomic tissues are similar, and both putative structural operons (indicated by arrows) contain packaging, head, tail and lysis modules.
Fig. 8: construction of chimeric BW4-PAC7 prophages. The pAN514 suicide plasmid was transformed into strain Pf1s22499 containing BW4 prophage. Chloramphenicol-based selection was used to select double crossover between Left Homology Arm (LHA) and Right Homology Arm (RHA). The prophage obtained is a chimeric body containing the structural operon, first BW4 gp1, then gp1-gp14 of PAC7, and the remainder of the BW4 structural gene (gp 15-gp 25) after the chloramphenicol selection cassette (CmR).
Fig. 9: plasmid map of cosmid pAN 594.
Fig. 10: titration of PAC7 phage-derived particles. Left diagram: titration of Pf1s22904 plated on erythromycin. Right figure: titration of control suspension Pf1s22903 strain plated on erythromycin without carrying any cosmids.
Fig. 11: confirmation of streaked 8 colonies from phage-derived particle titration produced by Pf1s22904 by PCR. Upper graph: SLTS PCR (Scholz 2014) of streaked 8 colonies from phage-derived titration assays. The expected size is 612bp. The following figures: pAN 594-specific PCR of 8 colonies. The expected size is 769bp. The ladder is typically 1kb+.
Examples
Example 1:exchange of structural operons for lambda of lytic phage elements
The inventors believe that the phage may be regarded as a more or less large genetic circuit, the final output of which is to produce more phage particles. To this end, whether the phage is lytic, temperate, or chronic (e.g., a filamentous phage such as M13), the information encoded in its genome can be broadly classified according to the function it performs:
genes specific for insertion/excision (for temperate phages).
Genes specific for DNA replication, RNA transcription, etc. For example, some lytic phages encode their own RNA or DNA polymerase. Some genes modify the RNA polymerase of the host to be able to work beyond the terminator and if the prophage sequence is present in plasmid or linear plasmid form, some other genes are involved in the isolation of the prophage sequence.
Genes associated with defenses against host anti-phage mechanisms, degradation/modification of host elements to complete the cleavage cycle, super-rejection mechanisms or genes beneficial to the host.
Genes specific for DNA packaging: termination enzymes and accessory proteins, ligases, and the like.
-structural genes specific for the construction of protein capsids for DNA: in addition to stringent structural genes such as capsid genes, tape measures, fibers, substrates, etc., many other genes are required to assemble the components (chaperones, proteases) and proteins that can be packaged within the capsid, either as scaffolds or as leader proteins injected into the cell (e.g., RNA polymerase of phage N4 or some small leader proteins in other phages).
The last two categories (DNA packaging and structural genes) are deeply linked, as the packaging mechanism recognizes the pre-assembled header and DNA to be packaged, starting and stopping DNA packaging.
The inventors hypothesize that by extracting and differentiating all the modules defined above, it is in principle possible to construct systems containing all excision/insertion, replication and regulatory elements from one bacteriophage, in particular a non-lytic bacteriophage, and encoding the packaging/structural genes from another bacteriophage, in particular a lytic bacteriophage, since in principle they can be regarded as independent genetic modules.
In this example, it is referred to as the "structural element" of the protein required for DNA packaging and the structural protein required for assembly of mature viral particles.
Such "heterozygous structural phages" can be very advantageous for different methods, as:
species more suitable for laboratory work/mass production/safer may be used for the production of such particles, wherein the structural gene is from another species;
the regulatory elements of a well-characterized phage (e.g.lambda) driving different phage capsid production etc. can be used to construct pure phagemid-producing strains, and
and finally, a structural hybrid prophage (i.e. carried in the genome) can be constructed that drives the production of the lytic phage capsid.
This is the method developed herein. The coding system was used to generate a producer strain of pure lambda phagemid whose structural operon had been exchanged with the structural elements of the strictly lytic E.coli phage T7 (from small termination enzyme to STF gene, about 23 kb). A schematic diagram shows the organization of the lambda genome (figure 1).
In this system, the thermolabile version of prophage lambda contains all the regulatory elements required to ablate the prophage, duplicates the circularized genome and drives expression of long, late operons, including the presence of anti-terminator protein Q. When the plasmid containing the correct packaging signal (LTR of T7) is complemented, this will drive the assembly and packaging of the pure phagemid particles entirely based on other phages.
Construction of heterozygotes
The lambda prophage structural operon (SEQ ID NO: 7) was exchanged with the structural "operon" of lytic phage T7, from gp6.5 to gp19.5 (not an operon in the strict sense, since T7 RNA polymerase drives transcription of different mRNAs in this region), using the lambda red recombination system, starting from the production strain containing lambda prophages without cos sites (s 1965). Several further modifications were made:
removal of perforin and of the cleavage genes assumed in T7 (gp 17.5 and gp 18.5)
Recoding the 3' part of the gp19 DNA maturation protein and the intergenic region between gp19 and the next (i.e.gp 19.5) as explained below
All T7 RNA polymerase promoters remain intact, but no T7 RNA polymerase is added to the system.
The fully edited construct "operon" spans approximately 20kb (SEQ ID NO: 8). The final product was designated CY-L7 and was constructed without any specific recitation.
Production and titration
The payload that should be packaged by T7 was constructed, e.g., auser et al, RNA biol.2019apr;16 (4) 595-599, referred to as pJ23115-GFP T7 cos 2.0 (p 1883, SEQ ID NO: 9). The payload contains the 5' LTR required for T7 efficient packaging. The putative packaging region of this plasmid contains the 3' portion of gp19 and the intergenic region between gp19 and gp 19.5. For this reason, the 3' portion of gp19 is recoded prior to its insertion into the genome of the production strain, thus preventing recombination.
Next, the CY-L7 strain was transformed with the p1883 payload and produced as follows.
The overnight cultures were incubated in LB+5mM CaCl supplemented with chloramphenicol 2 Diluted 1:6 and grown with shaking at 30℃for 30min. Thereafter, thermal shock was performed at 42℃for 45 minutes. Finally, the cultures were grown at 37℃with shaking for 3 hours. After this period of time, the cells were recovered by centrifugation and lysed using 3mL of B-PER protein extraction reagent, and the biological beads were removed by adding 600mg of detergent and incubated at room temperature with gentle shaking for 1 hour. Thereafter, the lysate was centrifuged at 10,000g for 10min and the supernatant was filtered through a 0.2 micron pore size membrane.
Lysates were titrated in E.coli MG1655 and KEIO-waaG, a derivative with a deletion of the waaG gene that has been shown to be necessary for T7 binding (Qiaron et al Proc Natl Acad Sci U S A. (2006) 103 (50): 19039-19044). If phagemids were produced, colonies should be detected only in the MG1655 strain, since KEIO-waaG does not contain the T7 receptor.
As shown in fig. 2, only a small number of colonies were detectable in the MG1655 column. This result is the first demonstration, strict lytic phage can be "tamed" and its structure and packaging genes by lysogenic (lambda) control, to produce a T7 based pure phagemid particle.
The titer obtained was very low, although a pure T7-based phagemid was produced. The inventors have attempted to increase titres by applying different rational methods. For example, it is known that transcription from a promoter within the 5' LTR is required for T7 plasmid or genomic packaging by T7 RNA polymerase (Chung et al, J Mol biol.1990Dec 20;216 (4): 927-38). In addition, the T7 genome was transcribed by its cognate RNA polymerase, and many different T7 promoters were found, even in regions encoding different structural elements (Dunn et al, J Mol biol.1983Jun5;166 (4): 477-535). This resulted in different mRNAs which were then treated by E.coli RNase III (Studier et al, "Processing of bacteriophage T RNAs by RNase III" Ed: thomas R.Russell, keith Brew, harvey Faber, julius Schultz, from Gene to Protein: information Transfer in Normal and Abnormal Cells, academic Press,1979, p.261-269). For both reasons, the production strain was trans-complemented with T7 RNA polymerase in an inducible plasmid under the control of the PhlF repressor.
Initially, transformation of the T7 RNA polymerase plasmid in the CY-L7 strain containing the p1883 payload did not produce colonies, presumably due to toxicity caused by leakage of the inducible pphlF promoter (data not shown). For this reason, two alternative plasmids encoding T7 RNA polymerase with two different degradation tags of different intensities were constructed (p 1884, SEQ ID NO:10; and p1885, SEQ ID NO: 11). The sequences of the T7 RNA polymerase encoded in these two plasmids are disclosed (SEQ ID NO:12 for version AAV and SEQ ID NO:13; SEQ ID NO:14 for version LVA and SEQ ID NO: 15). It has been demonstrated that by adding a degradation tag to a protein, the potential impact of leaky expression from a repressed promoter can be ameliorated (Fernandez-Rodriguez et al, nucleic Acids res. (2016)
44(13):6493-6502)。
Production was performed from strain CY-L7 carrying payload p1883 and supplemented with either plasmid p1884 or the T7RNA polymerase variant encoded in p1885, using the same protocol as described above. Lysates were then titrated against MG1655 or KEIO-waaG.
As shown in fig. 3, the introduction of T7RNA polymerase increased the obtained titre 100X (for medium degradation tags) or 1000X fold (for fast degradation tags) compared to the product carrying only the p1883 payload. The titer obtained in this system was about 2x 10 6 TU/mL。
These experiments indicate that for certain types of phage, regulatory proteins, in this case T7RNA polymerase, which do not strictly fall within the structural classes defined above, may be required to improve or promote the packaging reaction, or to control the amount or processing of mRNA encoding the structural components.
Example 2:production of phage-derived particles of skin bacillus acnes.
Dermatophytes acne is one of the most common and abundant skin species (Kashaf et al, nat Microbiol 7,169-179 (2022)), where it colonises the sebaceous gland unit (PSU). Unlike the stratum corneum, the bacteria present in PSU are surrounded by living cells, especially keratinocytes, sebocytes and different immune cells (Kabashima et al, nat Rev Immunol 19,19-30 (2019)). Intimate contact between the dermatophytes acne and these cells may lead to beneficial or detrimental interactions. (BrUggemann et al, front Microbiol 12,673845 (2021)). The ability to genetically modify dermatophytes acnes before the applicant's new tools as disclosed in US applications US2022/135986 and US2022/135987 is significantly challenging. In these patent applications, the inventors describe for the first time the production of phage-derived particles of dermatophytes acnes using dermatophytes acnes as production strain.
In this example, the inventors used the Propionibacterium freudenreichii strain to produce Propionibacterium acnes phage-derived particles by exchanging structural genes from Propionibacterium freudenreichii prophage for structural genes of Propionibacterium acnes.
Results
Isolation of BW4 phages
Propionibacterium freudenreichii and related bacteriophages are known to be present in some dairy products (Gautier et al, (1995) Lait 75:427-434; gautier et al, (1995) appl. Environ. Microbiol.61:2572-2576; cheng et al, (2018) BMC Microbiology 18:19). Thus, the inventors screened cheese samples for the presence of propionibacteria phage or propionibacterium freudenreichii lysogens.
Different types of cheese samples were ground, resuspended in Reinforced Clostridium Medium (RCM) and incubated for 2 days at 30 ℃ under anaerobic conditions. After incubation, dilution of the culture was carried out in lithium glycerolate broth, a medium selective for propionibacteria (WO 1994017201), and at 30 ℃Incubate for 6 days. Final dilution in rcm+mitomycin C was incubated at 30 ℃ for 1 day to induce potential prophages. The induced cultures (0.2 μm) were filtered and labeled based on the different indicator strains. One of the samples resulted in the formation of a cloudy plaque on the upper agar of the propionibacterium freudenreichii strain Pf0s 2841. 3 individual plaques were isolated by two consecutive picks and streaks on Pf0s2841 and amplified on the upper agar of Pf0s 2841. For three different plaques, amplification resulted in phage suspension-10 10 PFU/mL。
Two clusters of temperate dsDNA Propionibacterium freudenreichii phages (BW and BV) have been previously identified (Cheng et al, (2018) BMC Microbiology 18:19). Using PCR based on BW genome design from doucete phage (KX 620751), two different fragments were extracted:
ORF3 with AD1334 (SEQ ID NO: 16)/AD 1335 (SEQ ID NO: 17)
ORF5 with AD1336 (SEQ ID NO: 18)/AD 1337 (SEQ ID NO: 19).
The inventors can classify isolated phages as BW-like (fig. 4). Sequencing of ORF5 shows that all phages are likely identical and therefore from the same BW-like phage named BW 4.
Isolation of Pf0s2841 lysogens carrying BW4 phages
The inventors then isolated propionibacterium freudenreichii lysogens that carried BW4 phage as prophages. To this end, BW4 phage suspensions were spotted on strain Pf0s2841 and incubated for 3 days. The cloudy plaques were picked, resuspended and streaked. After 5 days, single colonies were obtained, several colonies were streaked and incubated a second and third time, and at each streak, after dnase treatment, the presence of the phage gene at the cohesive end (AD 1322 (SEQ ID NO: 20)/AD 1323 (SEQ ID NO: 21)) was checked by PCR to ensure the presence of phage but not phage particles.
After the third streaking, the colonies were grown as upper agar and the undiluted BW-like phage suspension was spotted on the putative lysogenic strain (Pf 0s 14253) and the ancestor strain (Pf 0s 2841). After incubation, clearance of BW13 and BW14 spots was observed for both strains, whereas clearance of Pf0s2841 was only observed in the case of BW4 spots (fig. 5). This indicates that strain Pf0s14253 was immune to re-infection with BW4 phage and carried BW4 prophages. The absence of immunity from BW14 and BW13 suggests that these phages may have different immune repressors.
BW4 prophage induction
To use BW4 lysogenic strains as production strains for phage-derived particles, the inventors first have to test the ability to produce high concentrations of BW4 phage upon induction of a lysis cycle. To this end, pf0s14253 was grown in the absence or presence of the antibiotic mitomycin C (MMC) known to induce prophages, and the presence of BW4 phage particles was titrated against the culture supernatant based on the indicator strain Pf0s 2841. A large number of BW4 phage particles, 7.4X10, were observed under mitomycin C-supplemented conditions (FIG. 6) 7 PFU/. Mu.L, 3.0X10 s relative to the conditions without mitomycin C 3 PFU/. Mu.L. This suggests that the BW4 prophage has a high dynamic range between lysis and lysogenic cycle under such conditions and demonstrates the potential of BW4 for the production of phage-derived particles.
Sequencing and annotation of BW4 phages
To engineer the BW4 phage design to produce the acnes skin phage-derived particles, the BW4 phage was sequenced. The BW4 phage suspension was subjected to DNA isolation (Promega Wizard DNA Clean-Up system) followed by Illumina sequencing. Raw reads were assembled into single contigs (contigs) using Spades and end-corrected by Sanger sequencing (SEQ ID NO: 22). Annotation was performed using a Phaster and manually selected based on homology to other BW-like phages (Cheng et al, (2018) BMC Microbiology 18:19).
BW-like phages have the typical genomic structure of other temperate phages, as described in Cheng et al, (2018) BMC Microbiology18:19, with one large putative structural operon (also called lytic operon) organized in different functional modules that are in transcription order: packaging, head, tail and lysis modules. Surprisingly, it was assumed that the first gene of the operon (gp 1) appears to be associated with HHpred-based DNA replication, as it contains domains similar to bifunctional primases and polymerase proteins. The other parts of the BW4 phage genome contain genes required for prophage integration/excision, DNA replication, DNA recombination, lytic/lysogenic cycle regulation, and other accessory proteins. This modular structure demonstrates the possibility of exchanging the genes required for BW4 phage capsid generation and phage genome packaging for their equivalents from the dermatophyte acne phage genome.
Isolation of dermatophyte acne PAC7 phage
The acnes were isolated from the skin of healthy volunteers. Simple application of the patch (Biore) to the nose allows extraction of the acne, which is resuspended in RCM, plated on MRS and incubated under anaerobic conditions at 37 ℃. For some of these plates, plaques were able to be observed on dense dermatophytes acnes. DPBS (dun phosphate buffered saline) was poured onto the plate and the potential phage resuspended and filtered to remove bacteria. The phage suspension was streaked onto plates and added to the upper agar of strain Ca0s 2345. Plates were incubated for 2 days and plaques were re-separated by three consecutive picks, streaks and top agar plates. Finally, the plaques were amplified on the upper agar using the Ca0s2345 strain and the resulting plaque suspension PEG precipitated. High titer was obtained when Ca0s 2345-based drop timing>10 6 PFU/. Mu.L) of phage suspension.
Sequencing and annotation of PAC7 phage
The PAC7 phage suspension was subjected to DNA isolation (Promega Wizard DNA Clean-Up System) followed by Illumina sequencing. Raw reads were assembled into single contigs using Spades and end-corrected by Sanger sequencing (SEQ ID NO: 23). Annotation was performed using a Phaster and manually selected based on homology to other Propionibacterium acnes (Marinelli et al, (2012) mBio 3:e00279-12). Similar to the propionibacterium freudenreichii BW4 phage, a structural operon comprising modules for packaging, head-to-tail assembly and cell lysis was identified (fig. 7). HNH endonuclease has been identified as the last gene of phage (gp 45). Such endonucleases have been shown to be essential for efficient packaging (Quiles-Puchalt et al, (2014) Proc Nat. Acad. Sci. 111:6016-6021).
Construction of lysogenic Strain Using chimeric BW4-PAC7 prophages
The genes in the BW4 prophage structural operon, from small termination enzyme gp2 to included tape measure protein gp16, were replaced by the structural PAC7 genes from gp1 to gp14 (fig. 8). This was performed by homologous recombination using plasmid pAN514 (SEQ ID NO: 24), a P.freudenreichii suicide vector cloned in E.coli DH 10B. After transformation of the vector, a double crossover event was selected with propionibacterium freudenreichii (Pf 1s 22499) by chloramphenicol-based selection. The integrity of the chimeric BW4-PAC7 structural operon was globally confirmed by PCR and sanger sequencing of the entire chimeric structural operon.
Production and production of PAC7 derived particles from lysogenic strains harboring chimeric BW4-PAC7 prophages (production) Titration
To generate propionibacterium acnes phage-derived particles from propionibacterium freudenreichii BW4-PAC7 chimeric lysogens, pAN594 cosmid (fig. 9) containing PAC7 phage packaging signals (SEQ ID NO: 25), the five genes expressing PAC7 tail module (gp 15-gp 19) and the operon of gp45 endonuclease (SEQ ID NO: 26) as well as origins of replication that are functional in propionibacterium freudenreichii and dermatobacterium acnes (as disclosed in U.S. applications US2022/135986 and US 2022/135787) were transformed into Pf1s 22903. Transformants were streaked and grown in the presence of chloramphenicol (1. Mu.g/ml) to select for the presence of prophages and in the presence of erythromycin (2.5. Mu.g/ml) to select for pAN 594. At OD 600nm About 0.4, cultures were supplemented with 0.5. Mu.g/ml mitomycin C and grown overnight at 30℃under anaerobic conditions. After incubation, cells were collected by centrifugation, lysed by bead beating (2 x 20min with 0.1mm glass beads at 30 Hz), the supernatant filtered and the presence of phage-derived particles titrated on dermatophytes acnes Ca0s 2258.
Obtain every mu L toAt most 10 2 A potential transconductor (fig. 10). 8 colonies were streaked onto Brain Heart Infusion (BHI) erythromycin (5. Mu.g/mL) and confirmed as dermatophytes acnes and transconductors carrying pAN594 using PCR (FIG. 11).
Thus, the inventors have demonstrated for the first time that a phage derived particle of Propionibacterium acnes capable of delivering DNA into the skin bacillus acnes can be produced by exchanging the structural gene of the Propionibacterium freudenreichii with the structural gene of the phage of the skin bacillus acnes.
Materials and methods
Strains used and produced
Table 1:strains used and produced
Culture conditions
All incubations of the propionibacterium freudenreichii strain were under anaerobic conditions (Thermo Scientific TM Sachet Oxoid TM AnaeroGen) at 30 ℃.
All incubations of the dermatophytes acnes strains were carried out in an anaerobic chamber at 37 ℃.
Construction of Strain Pf1s22499
Deletion of packaging signals from BW4 prophages was performed by homologous recombination and CRISPR-Cas selection recombinants using the pAN241 propionibacterium vector cloned in e.coli and then transformed into the Pf0s14253 strain. The pAN241 vector contained a template for homologous recombination (SEQ ID NO: 27) and an FnCpf1 transcriptional cassette with crRNA targeting BW4 prophage cos.
Transformation protocol of propionibacterium freudenreichii
Transformation of propionibacterium freudenreichii was adapted from Brede, d.a. et al, appl Environ Microb, 8077-8084 (2005), substituting SLB (sodium lactate broth) medium for BHI.
Titration of phage-derived particles
Strain Ca0s2258 was streaked on BHI agar plates. Once dense growth on the plates was obtained, liquid cultures were established in BHI. After overnight incubation, the turbid cultures were concentrated 10X in BHI. Mu.l of cells were mixed with 10. Mu.l of diluted 1/10 and diluted 1/100 of the pure solution of phage-derived particles generated from Pf1s22904 or Pf1s22903 as negative controls. Samples were incubated at room temperature for 2h and then 1/10 serial dilutions were made in BHI, samples were incubated under anaerobic conditions at 37℃for 2h, after which 4. Mu.L spots were placed on BHI+5. Mu.g/mL erythromycin. Plates were incubated under anaerobic conditions at 37℃for 7 days.
Sequence listing
<110> Ai Lige biotechnology Co., ltd (ELIGO BIOSCIENCE)
<120> production of lytic phage
<130> EB2021-04b
<150> US63/187,531
<151> 2021-05-12
<150> US63/187,532
<151> 2021-05-12
<160> 27
<170> patent in version 3.5
<210> 1
<211> 282
<212> DNA
<213> artificial sequence
<220>
<223> the initiating enzyme ori of PICI from Escherichia coli strain CFT073
<400> 1
tttgttgcaa tggctgtcta ccctgtctac ctgagtaaag aaaaatacat ttaattcagt 60
acattaactt gggtagacag ccttttttta ctgtctacct actatctacc ctctctacct 120
gattttacct gaatcagaca gggaggtaga tacggggtag atagtggata aaagcactct 180
accccactga aagccgcgcc attactggca tggtggccag taaggtagat aaggtagaca 240
aggggaggca caactcaaaa ctttttaaac gagggggtaa aa 282
<210> 2
<211> 13
<212> DNA
<213> artificial sequence
<220>
<223> restriction site
<220>
<221> miscellaneous_feature
<222> (5)..(10)
<223> n is a, c, g or t
<400> 2
twcannnnnn tgg 13
<210> 3
<211> 282
<212> DNA
<213> artificial sequence
<220>
<223> priming enzyme orideltaGAAABCC
<400> 3
tttgttgcaa tggctgtcta ccctgtctac ctgagtaaag aaaaatacat ttaattcagt 60
acattaactt gggtagacag ccttttttta ctgtctacct actatctacc ctctctacct 120
gattttacct gaatcagaca gggaggtaga tacggggtag atagtggata aaagcactct 180
accccactga aagcagcgcc attactggca tggtggccag taaggtagat aaggtagaca 240
aggggaggca caactcaaaa ctttttaaac gagggggtaa aa 282
<210> 4
<211> 282
<212> DNA
<213> artificial sequence
<220>
<223> primase ori without restriction site
<400> 4
tttgttgcaa tggctgtcta ccctgtctac ctgagtaaag aaaaatacat ttaattcagt 60
atattaactt gggtagacag ccttttttta ctgtctacct tctgtctacc ctctctacct 120
gattttacct gaatcagaca gggaggtaga cacggggtag acagtggata aaagcactct 180
accccactga aagcagtgcc attactggca tggttgccag taaggttgat aaggtagaca 240
aggggaggga caactcaaaa ctttttaaac gagggggtaa aa 282
<210> 5
<211> 584
<212> PRT
<213> artificial sequence
<220>
<223> PICI primase-helicase
<400> 5
Met Lys Leu Ala Pro Asn Val Lys Gln Gln Ser Arg Gly Ile Lys His
1 5 10 15
Lys Glu Thr Glu Val Ile Ile Phe Ala Gly Ser Asp Ala Trp Ser His
20 25 30
Ala Lys Gln Trp Gln Glu His Asp Ala Arg Met Ala Gly Asp Asn Glu
35 40 45
Pro Pro Val Trp Leu Gly Glu Gln Gln Leu Ser Glu Leu Asp Lys Leu
50 55 60
Gln Ile Val Pro Glu Gly Arg Lys Ser Val Arg Ile Phe Arg Ala Gly
65 70 75 80
Tyr Leu Ala Pro Val Met Ile Lys Ala Ile Gly Gln Lys Leu Ala Ala
85 90 95
Ala Gly Val Gln Asp Ala Asn Phe Tyr Pro Asp Gly Met His Gly Gln
100 105 110
Lys Val Glu Asn Trp Arg Glu Tyr Leu Ala Arg Glu Arg Gln Asn Leu
115 120 125
Ser Asp Gly Leu Val Ile Glu Leu Pro Val Lys Gln Lys Ala Gln Leu
130 135 140
Ser Gln Met Ala Asp Ser Glu Arg Ala Gln Leu Leu Ala Asp Arg Phe
145 150 155 160
Asp Gly Val Cys Val His Pro Glu Ser Glu Ile Val His Val Trp Cys
165 170 175
Gly Gly Val Trp Cys Pro Val Ser Thr Met Glu Leu Ser Arg Glu Met
180 185 190
Val Ala Ile Tyr Ser Glu His Arg Ala Thr Phe Ser Lys Arg Val Ile
195 200 205
Asn Asn Ala Val Glu Ala Leu Lys Val Ile Ala Glu Pro Met Gly Glu
210 215 220
Pro Ser Gly Asp Leu Leu Pro Phe Ala Asn Gly Ala Leu Asp Leu Lys
225 230 235 240
Thr Gly Glu Phe Ser Pro His Thr Pro Glu Asn Trp Ile Thr Thr His
245 250 255
Asn Gly Ile Glu Tyr Thr Pro Pro Ala Pro Gly Glu Asn Ile Arg Asp
260 265 270
Asn Ala Pro Asn Phe His Lys Trp Leu Glu His Ala Ala Gly Lys Asp
275 280 285
Pro Arg Lys Met Met Arg Ile Cys Ala Ala Leu Tyr Met Ile Met Ala
290 295 300
Asn Arg Tyr Asp Trp Gln Met Phe Ile Glu Ala Thr Gly Asp Gly Gly
305 310 315 320
Ser Gly Lys Ser Thr Phe Thr His Ile Ala Ser Leu Leu Ala Gly Lys
325 330 335
Gln Asn Thr Val Ser Ala Glu Met Thr Ser Leu Asp Asp Ala Gly Gly
340 345 350
Arg Ala Gln Val Val Gly Ser Arg Leu Ile Val Leu Ala Asp Gln Pro
355 360 365
Lys Tyr Thr Gly Glu Gly Thr Gly Ile Lys Lys Ile Thr Gly Gly Asp
370 375 380
Pro Val Glu Ile Asn Pro Lys Tyr Glu Lys Arg Phe Thr Ala Val Ile
385 390 395 400
Arg Ala Val Val Leu Ala Thr Asn Asn Asn Pro Met Ile Phe Thr Glu
405 410 415
Arg Ala Gly Gly Val Ala Arg Arg Arg Val Ile Phe Arg Phe Asp Asn
420 425 430
Ile Val Ser Glu Ala Glu Lys Asp Arg Glu Leu Pro Glu Lys Ile Ala
435 440 445
Ala Glu Ile Pro Val Ile Ile Arg Arg Leu Leu Ala Asn Phe Ala Asp
450 455 460
Pro Glu Lys Ala Arg Ala Leu Leu Ile Glu Gln Arg Asp Gly Asp Glu
465 470 475 480
Ala Leu Ala Ile Lys Gln Gln Thr Asp Pro Val Ile Glu Phe Cys Gln
485 490 495
Phe Leu Asn Phe Leu Glu Glu Ala Arg Gly Leu Met Met Gly Gly Gly
500 505 510
Gly Asp Ser Val Lys Tyr Thr Thr Arg Asn Ser Leu Tyr Arg Val Tyr
515 520 525
Leu Ala Phe Met Ala Tyr Ala Gly Arg Ser Lys Pro Leu Asn Val Asn
530 535 540
Asp Phe Gly Lys Ala Met Lys Pro Ala Ala Lys Val Tyr Gly His Glu
545 550 555 560
Tyr Ile Thr Arg Lys Val Lys Gly Val Thr Gln Thr Asn Ala Ile Thr
565 570 575
Thr Asp Asp Cys Asp Ala Phe Leu
580
<210> 6
<211> 1752
<212> DNA
<213> artificial sequence
<220>
<223> PICI primase-helicase
<400> 6
atgaaactgg caccgaacgt aaaacagcag tcacgcggca taaaacacaa agaaacagaa 60
gtcattattt ttgcgggtag tgatgcctgg tcacacgcaa aacaatggca ggaacatgac 120
gcgcgtatgg ccggagataa tgagcctcct gtgtggcttg gggagcagca gttatccgaa 180
ctggataagc tgcaaattgt gccggaaggc agaaaatccg tgcgcatatt cagggccgga 240
tatcttgcgc cagtaatgat aaaggcgatt ggtcagaagc tggcggcggc aggcgtacag 300
gatgcaaatt tttaccctga tggtatgcac ggtcagaagg tggagaactg gcgcgaatat 360
ctggcccgtg agcgccagaa tctttctgat ggtctggtca ttgagcttcc ggtaaagcaa 420
aaggcgcaac tttcgcagat ggcggacagt gagcgcgcgc agctgcttgc cgatcgcttt 480
gatggcgttt gcgtacatcc tgaaagtgaa atcgttcacg tatggtgcgg cggggtatgg 540
tgtccggtca gcacaatgga gctgagccgc gaaatggtgg cgatctattc agagcacagg 600
gccactttca gcaagcgcgt aatcaataac gccgtggaag cgttaaaagt tattgccgaa 660
ccaatgggcg agccgtccgg cgatttgctg ccgttcgcca atggtgcgct tgacctgaaa 720
acgggggaat tttccccgca cacgccggag aactggatca ccacgcacaa cggcattgag 780
tacacgccac cagcacccgg ggagaacatc cgcgataacg cgccaaactt tcataaatgg 840
cttgagcacg cagccggaaa agacccgcgc aagatgatgc gtatatgtgc cgcgctgtac 900
atgattatgg cgaaccggta cgactggcag atgtttattg aggccaccgg agacggcggg 960
agcggtaaaa gtacattcac acacatagcc agccttctgg cagggaaaca aaacacggta 1020
agcgctgaaa tgacatcgct tgatgatgct ggtgggcgtg cgcaggttgt cgggagtcgt 1080
cttatcgtcc tggcagacca gccgaaatat acaggcgaag gaacgggcat caagaaaatc 1140
acgggcggcg accccgtgga aattaacccg aaatatgaaa agcgttttac ggcggtaatc 1200
agggcggtgg tgctggcaac caataacaat ccgatgatat tcaccgaacg ggccggaggt 1260
gtggcacgtc gtcgggtgat attccggttc gataacatcg taagcgaggc agaaaaagac 1320
agggagctac cggaaaagat cgcggctgaa atccctgtca ttatccgccg cttgctggcg 1380
aactttgccg accctgaaaa ggcacgggct ttactcattg aacagcgtga cggtgatgaa 1440
gcactggcaa taaagcaaca gacggatccg gttattgagt tttgccagtt cctgaatttt 1500
ctggaggaag cacgcggcct gatgatgggc ggcggtggcg attcagtgaa gtacacgacc 1560
agaaacagcc tttaccgcgt ctatctggcg tttatggcgt acgcaggcag gagcaaaccg 1620
ctaaacgtaa atgactttgg caaggctatg aagccagccg cgaaagttta cggacatgaa 1680
tatattacgc ggaaagttaa aggagtaacg cagactaacg caataacaac agacgattgc 1740
gacgcgtttt ta 1752
<210> 7
<211> 22368
<212> DNA
<213> artificial sequence
<220>
<223> lambda prophage structural operon
<400> 7
atggaagtca acaaaaagca gctggctgac attttcggtg cgagtatccg taccattcag 60
aactggcagg aacagggaat gcccgttctg cgaggcggtg gcaagggtaa tgaggtgctt 120
tatgactctg ccgccgtcat aaaatggtat gccgaaaggg atgctgaaat tgagaacgaa 180
aagctgcgcc gggaggttga agaactgcgg caggccagcg aggcagatct ccagccagga 240
actattgagt acgaacgcca tcgacttacg cgtgcgcagg ccgacgcaca ggaactgaag 300
aatgccagag actccgctga agtggtggaa accgcattct gtactttcgt gctgtcgcgg 360
atcgcaggtg aaattgccag tattctcgac gggctccccc tgtcggtgca gcggcgtttt 420
ccggaactgg aaaaccgaca tgttgatttc ctgaaacggg atatcatcaa agccatgaac 480
aaagcagccg cgctggatga actgataccg gggttgctga gtgaatatat cgaacagtca 540
ggttaacagg ctgcggcatt ttgtccgcgc cgggcttcgc tcactgttca ggccggagcc 600
acagaccgcc gttgaatggg cggatgctaa ttactatctc ccgaaagaat ccgcatacca 660
ggaagggcgc tgggaaacac tgccctttca gcgggccatc atgaatgcga tgggcagcga 720
ctacatccgt gaggtgaatg tggtgaagtc tgcccgtgtc ggttattcca aaatgctgct 780
gggtgtttat gcctacttta tagagcataa gcagcgcaac acccttatct ggttgccgac 840
ggatggtgat gccgagaact ttatgaaaac ccacgttgag ccgactattc gtgatattcc 900
gtcgctgctg gcgctggccc cgtggtatgg caaaaagcac cgggataaca cgctcaccat 960
gaagcgtttc actaatgggc gtggcttctg gtgcctgggc ggtaaagcgg caaaaaacta 1020
ccgtgaaaag tcggtggatg tggcgggtta tgatgaactt gctgcttttg atgatgatat 1080
tgaacaggaa ggctctccga cgttcctggg tgacaagcgt attgaaggct cggtctggcc 1140
aaagtccatc cgtggctcca cgccaaaagt gagaggcacc tgtcagattg agcgtgcagc 1200
cagtgaatcc ccgcatttta tgcgttttca tgttgcctgc ccgcattgcg gggaggagca 1260
gtatcttaaa tttggcgaca aagagacgcc gtttggcctc aaatggacgc cggatgaccc 1320
ctccagcgtg ttttatctct gcgagcataa tgcctgcgtc atccgccagc aggagctgga 1380
ctttactgat gcccgttata tctgcgaaaa gaccgggatc tggacccgtg atggcattct 1440
ctggttttcg tcatccggtg aagagattga gccacctgac agtgtgacct ttcacatctg 1500
gacagcgtac agcccgttca ccacctgggt gcagattgtc aaagactgga tgaaaacgaa 1560
aggggatacg ggaaaacgta aaaccttcgt aaacaccacg ctcggtgaga cgtgggaggc 1620
gaaaattggc gaacgtccgg atgctgaagt gatggcagag cggaaagagc attattcagc 1680
gcccgttcct gaccgtgtgg cttacctgac cgccggtatc gactcccagc tggaccgcta 1740
cgaaatgcgc gtatggggat gggggccggg tgaggaaagc tggctgattg accggcagat 1800
tattatgggc cgccacgacg atgaacagac gctgctgcgt gtggatgagg ccatcaataa 1860
aacctatacc cgccggaatg gtgcagaaat gtcgatatcc cgtatctgct gggatactgg 1920
cgggattgac ccgaccattg tgtatgaacg ctcgaaaaaa catgggctgt tccgggtgat 1980
ccccattaaa ggggcatccg tctacggaaa gccggtggcc agcatgccac gtaagcgaaa 2040
caaaaacggg gtttacctta ccgaaatcgg tacggatacc gcgaaagagc agatttataa 2100
ccgcttcaca ctgacgccgg aaggggatga accgcttccc ggtgccgttc acttcccgaa 2160
taacccggat atttttgatc tgaccgaagc gcagcagctg actgctgaag agcaggtcga 2220
aaaatgggtg gatggcagga aaaaaatact gtgggacagc aaaaagcgac gcaatgaggc 2280
actcgactgc ttcgtttatg cgctggcggc gctgcgcatc agtatttccc gctggcagct 2340
ggatctcagt gcgctgctgg cgagcctgca ggaagaggat ggtgcagcaa ccaacaagaa 2400
aacactggca gattacgccc gtgccttatc cggagaggat gaatgacgcg acaggaagaa 2460
cttgccgctg cccgtgcggc actgcatgac ctgatgacag gtaaacgggt ggcaacagta 2520
cagaaagacg gacgaagggt ggagtttacg gccacttccg tgtctgacct gaaaaaatat 2580
attgcagagc tggaagtgca gaccggcatg acacagcgac gcaggggacc tgcaggattt 2640
tatgtatgaa aacgcccacc attcccaccc ttctggggcc ggacggcatg acatcgctgc 2700
gcgaatatgc cggttatcac ggcggtggca gcggatttgg agggcagttg cggtcgtgga 2760
acccaccgag tgaaagtgtg gatgcagccc tgttgcccaa ctttacccgt ggcaatgccc 2820
gcgcagacga tctggtacgc aataacggct atgccgccaa cgccatccag ctgcatcagg 2880
atcatatcgt cgggtctttt ttccggctca gtcatcgccc aagctggcgc tatctgggca 2940
tcggggagga agaagcccgt gccttttccc gcgaggttga agcggcatgg aaagagtttg 3000
ccgaggatga ctgctgctgc attgacgttg agcgaaaacg cacgtttacc atgatgattc 3060
gggaaggtgt ggccatgcac gcctttaacg gtgaactgtt cgttcaggcc acctgggata 3120
ccagttcgtc gcggcttttc cggacacagt tccggatggt cagcccgaag cgcatcagca 3180
acccgaacaa taccggcgac agccggaact gccgtgccgg tgtgcagatt aatgacagcg 3240
gtgcggcgct gggatattac gtcagcgagg acgggtatcc tggctggatg ccgcagaaat 3300
ggacatggat accccgtgag ttacccggcg ggcgcgcctc gttcattcac gtttttgaac 3360
ccgtggagga cgggcagact cgcggtgcaa atgtgtttta cagcgtgatg gagcagatga 3420
agatgctcga cacgctgcag aacacgcagc tgcagagcgc cattgtgaag gcgatgtatg 3480
ccgccaccat tgagagtgag ctggatacgc agtcagcgat ggattttatt ctgggcgcga 3540
acagtcagga gcagcgggaa aggctgaccg gctggattgg tgaaattgcc gcgtattacg 3600
ccgcagcgcc ggtccggctg ggaggcgcaa aagtaccgca cctgatgccg ggtgactcac 3660
tgaacctgca gacggctcag gatacggata acggctactc cgtgtttgag cagtcactgc 3720
tgcggtatat cgctgccggg ctgggtgtct cgtatgagca gctttcccgg aattacgccc 3780
agatgagcta ctccacggca cgggccagtg cgaacgagtc gtgggcgtac tttatggggc 3840
ggcgaaaatt cgtcgcatcc cgtcaggcga gccagatgtt tctgtgctgg ctggaagagg 3900
ccatcgttcg ccgcgtggtg acgttacctt caaaagcgcg cttcagtttt caggaagccc 3960
gcagtgcctg ggggaactgc gactggatag gctccggtcg tatggccatc gatggtctga 4020
aagaagttca ggaagcggtg atgctgatag aagccggact gagtacctac gagaaagagt 4080
gcgcaaaacg cggtgacgac tatcaggaaa tttttgccca gcaggtccgt gaaacgatgg 4140
agcgccgtgc agccggtctt aaaccgcccg cctgggcggc tgcagcattt gaatccgggc 4200
tgcgacaatc aacagaggag gagaagagtg acagcagagc tgcgtaatct cccgcatatt 4260
gccagcatgg cctttaatga gccgctgatg cttgaacccg cctatgcgcg ggttttcttt 4320
tgtgcgcttg caggccagct tgggatcagc agcctgacgg atgcggtgtc cggcgacagc 4380
ctgactgccc aggaggcact cgcgacgctg gcattatccg gtgatgatga cggaccacga 4440
caggcccgca gttatcaggt catgaacggc atcgccgtgc tgccggtgtc cggcacgctg 4500
gtcagccgga cgcgggcgct gcagccgtac tcggggatga ccggttacaa cggcattatc 4560
gcccgtctgc aacaggctgc cagcgatccg atggtggacg gcattctgct cgatatggac 4620
acgcccggcg ggatggtggc gggggcattt gactgcgctg acatcatcgc ccgtgtgcgt 4680
gacataaaac cggtatgggc gcttgccaac gacatgaact gcagtgcagg tcagttgctt 4740
gccagtgccg cctcccggcg tctggtcacg cagaccgccc ggacaggctc catcggcgtc 4800
atgatggctc acagtaatta cggtgctgcg ctggagaaac agggtgtgga aatcacgctg 4860
atttacagcg gcagccataa ggtggatggc aacccctaca gccatcttcc ggatgacgtc 4920
cgggagacac tgcagtcccg gatggacgca acccgccaga tgtttgcgca gaaggtgtcg 4980
gcatataccg gcctgtccgt gcaggttgtg ctggataccg aggctgcagt gtacagcggt 5040
caggaggcca ttgatgccgg actggctgat gaacttgtta acagcaccga tgcgatcacc 5100
gtcatgcgtg atgcactgga tgcacgtaaa tcccgtctct caggagggcg aatgaccaaa 5160
gagactcaat caacaactgt ttcagccact gcttcgcagg ctgacgttac tgacgtggtg 5220
ccagcgacgg agggcgagaa cgccagcgcg gcgcagccgg acgtgaacgc gcagatcacc 5280
gcagcggttg cggcagaaaa cagccgcatt atggggatcc tcaactgtga ggaggctcac 5340
ggacgcgaag aacaggcacg cgtgctggca gaaacccccg gtatgaccgt gaaaacggcc 5400
cgccgcattc tggccgcagc accacagagt gcacaggcgc gcagtgacac tgcgctggat 5460
cgtctgatgc agggggcacc ggcaccgctg gctgcaggta acccggcatc tgatgccgtt 5520
aacgatttgc tgaacacacc agtgtaaggg atgtttatga cgagcaaaga aacctttacc 5580
cattaccagc cgcagggcaa cagtgacccg gctcataccg caaccgcgcc cggcggattg 5640
agtgcgaaag cgcctgcaat gaccccgctg atgctggaca cctccagccg taagctggtt 5700
gcgtgggatg gcaccaccga cggtgctgcc gttggcattc ttgcggttgc tgctgaccag 5760
accagcacca cgctgacgtt ctacaagtcc ggcacgttcc gttatgagga tgtgctctgg 5820
ccggaggctg ccagcgacga gacgaaaaaa cggaccgcgt ttgccggaac ggcaatcagc 5880
atcgtttaac tttacccttc atcactaaag gccgcctgtg cggctttttt tacgggattt 5940
ttttatgtcg atgtacacaa ccgcccaact gctggcggca aatgagcaga aatttaagtt 6000
tgatccgctg tttctgcgtc tctttttccg tgagagctat cccttcacca cggagaaagt 6060
ctatctctca caaattccgg gactggtaaa catggcgctg tacgtttcgc cgattgtttc 6120
cggtgaggtt atccgttccc gtggcggctc cacctctgaa tttacgccgg gatatgtcaa 6180
gccgaagcat gaagtgaatc cgcagatgac cctgcgtcgc ctgccggatg aagatccgca 6240
gaatctggcg gacccggctt accgccgccg tcgcatcatc atgcagaaca tgcgtgacga 6300
agagctggcc attgctcagg tcgaagagat gcaggcagtt tctgccgtgc ttaagggcaa 6360
atacaccatg accggtgaag ccttcgatcc ggttgaggtg gatatgggcc gcagtgagga 6420
gaataacatc acgcagtccg gcggcacgga gtggagcaag cgtgacaagt ccacgtatga 6480
cccgaccgac gatatcgaag cctacgcgct gaacgccagc ggtgtggtga atatcatcgt 6540
gttcgatccg aaaggctggg cgctgttccg ttccttcaaa gccgtcaagg agaagctgga 6600
tacccgtcgt ggctctaatt ccgagctgga gacagcggtg aaagacctgg gcaaagcggt 6660
gtcctataag gggatgtatg gcgatgtggc catcgtcgtg tattccggac agtacgtgga 6720
aaacggcgtc aaaaagaact tcctgccgga caacacgatg gtgctgggga acactcaggc 6780
acgcggtctg cgcacctatg gctgcattca ggatgcggac gcacagcgcg aaggcattaa 6840
cgcctctgcc cgttacccga aaaactgggt gaccaccggc gatccggcgc gtgagttcac 6900
catgattcag tcagcaccgc tgatgctgct ggctgaccct gatgagttcg tgtccgtaca 6960
actggcgtaa tcatggccct tcggggccat tgtttctctg tggaggagtc catgacgaaa 7020
gatgaactga ttgcccgtct ccgctcgctg ggtgaacaac tgaaccgtga tgtcagcctg 7080
acggggacga aagaagaact ggcgctccgt gtggcagagc tgaaagagga gcttgatgac 7140
acggatgaaa ctgccggtca ggacacccct ctcagccggg aaaatgtgct gaccggacat 7200
gaaaatgagg tgggatcagc gcagccggat accgtgattc tggatacgtc tgaactggtc 7260
acggtcgtgg cactggtgaa gctgcatact gatgcacttc acgccacgcg ggatgaacct 7320
gtggcatttg tgctgccggg aacggcgttt cgtgtctctg ccggtgtggc agccgaaatg 7380
acagagcgcg gcctggccag aatgcaataa cgggaggcgc tgtggctgat ttcgataacc 7440
tgttcgatgc tgccattgcc cgcgccgatg aaacgatacg cgggtacatg ggaacgtcag 7500
ccaccattac atccggtgag cagtcaggtg cggtgatacg tggtgttttt gatgaccctg 7560
aaaatatcag ctatgccgga cagggcgtgc gcgttgaagg ctccagcccg tccctgtttg 7620
tccggactga tgaggtgcgg cagctgcggc gtggagacac gctgaccatc ggtgaggaaa 7680
atttctgggt agatcgggtt tcgccggatg atggcggaag ttgtcatctc tggcttggac 7740
ggggcgtacc gcctgccgtt aaccgtcgcc gctgaaaggg ggatgtatgg ccataaaagg 7800
tcttgagcag gccgttgaaa acctcagccg tatcagcaaa acggcggtgc ctggtgccgc 7860
cgcaatggcc attaaccgcg ttgcttcatc cgcgatatcg cagtcggcgt cacaggttgc 7920
ccgtgagaca aaggtacgcc ggaaactggt aaaggaaagg gccaggctga aaagggccac 7980
ggtcaaaaat ccgcaggcca gaatcaaagt taaccggggg gatttgcccg taatcaagct 8040
gggtaatgcg cgggttgtcc tttcgcgccg caggcgtcgt aaaaaggggc agcgttcatc 8100
cctgaaaggt ggcggcagcg tgcttgtggt gggtaaccgt cgtattcccg gcgcgtttat 8160
tcagcaactg aaaaatggcc ggtggcatgt catgcagcgt gtggctggga aaaaccgtta 8220
ccccattgat gtggtgaaaa tcccgatggc ggtgccgctg accacggcgt ttaaacaaaa 8280
tattgagcgg atacggcgtg aacgtcttcc gaaagagctg ggctatgcgc tgcagcatca 8340
actgaggatg gtaataaagc gatgaaacat actgaactcc gtgcagccgt actggatgca 8400
ctggagaagc atgacaccgg ggcgacgttt tttgatggtc gccccgctgt ttttgatgag 8460
gcggattttc cggcagttgc cgtttatctc accggcgctg aatacacggg cgaagagctg 8520
gacagcgata cctggcaggc ggagctgcat atcgaagttt tcctgcctgc tcaggtgccg 8580
gattcagagc tggatgcgtg gatggagtcc cggatttatc cggtgatgag cgatatcccg 8640
gcactgtcag atttgatcac cagtatggtg gccagcggct atgactaccg gcgcgacgat 8700
gatgcgggct tgtggagttc agccgatctg acttatgtca ttacctatga aatgtgagga 8760
cgctatgcct gtaccaaatc ctacaatgcc ggtgaaaggt gccgggacca ccctgtgggt 8820
ttataagggg agcggtgacc cttacgcgaa tccgctttca gacgttgact ggtcgcgtct 8880
ggcaaaagtt aaagacctga cgcccggcga actgaccgct gagtcctatg acgacagcta 8940
tctcgatgat gaagatgcag actggactgc gaccgggcag gggcagaaat ctgccggaga 9000
taccagcttc acgctggcgt ggatgcccgg agagcagggg cagcaggcgc tgctggcgtg 9060
gtttaatgaa ggcgataccc gtgcctataa aatccgcttc ccgaacggca cggtcgatgt 9120
gttccgtggc tgggtcagca gtatcggtaa ggcggtgacg gcgaaggaag tgatcacccg 9180
cacggtgaaa gtcaccaatg tgggacgtcc gtcgatggca gaagatcgca gcacggtaac 9240
agcggcaacc ggcatgaccg tgacgcctgc cagcacctcg gtggtgaaag ggcagagcac 9300
cacgctgacc gtggccttcc agccggaggg cgtaaccgac aagagctttc gtgcggtgtc 9360
tgcggataaa acaaaagcca ccgtgtcggt cagtggtatg accatcaccg tgaacggcgt 9420
tgctgcaggc aaggtcaaca ttccggttgt atccggtaat ggtgagtttg ctgcggttgc 9480
agaaattacc gtcaccgcca gttaatccgg agagtcagcg atgttcctga aaaccgaatc 9540
atttgaacat aacggtgtga ccgtcacgct ttctgaactg tcagccctgc agcgcattga 9600
gcatctcgcc ctgatgaaac ggcaggcaga acaggcggag tcagacagca accggaagtt 9660
tactgtggaa gacgccatca gaaccggcgc gtttctggtg gcgatgtccc tgtggcataa 9720
ccatccgcag aagacgcaga tgccgtccat gaatgaagcc gttaaacaga ttgagcagga 9780
agtgcttacc acctggccca cggaggcaat ttctcatgct gaaaacgtgg tgtaccggct 9840
gtctggtatg tatgagtttg tggtgaataa tgcccctgaa cagacagagg acgccgggcc 9900
cgcagagcct gtttctgcgg gaaagtgttc gacggtgagc tgagttttgc cctgaaactg 9960
gcgcgtgaga tggggcgacc cgactggcgt gccatgcttg ccgggatgtc atccacggag 10020
tatgccgact ggcaccgctt ttacagtacc cattattttc atgatgttct gctggatatg 10080
cacttttccg ggctgacgta caccgtgctc agcctgtttt tcagcgatcc ggatatgcat 10140
ccgctggatt tcagtctgct gaaccggcgc gaggctgacg aagagcctga agatgatgtg 10200
ctgatgcaga aagcggcagg gcttgccgga ggtgtccgct ttggcccgga cgggaatgaa 10260
gttatccccg cttccccgga tgtggcggac atgacggagg atgacgtaat gctgatgaca 10320
gtatcagaag ggatcgcagg aggagtccgg tatggctgaa ccggtaggcg atctggtcgt 10380
tgatttgagt ctggatgcgg ccagatttga cgagcagatg gccagagtca ggcgtcattt 10440
ttctggtacg gaaagtgatg cgaaaaaaac agcggcagtc gttgaacagt cgctgagccg 10500
acaggcgctg gctgcacaga aagcggggat ttccgtcggg cagtataaag ccgccatgcg 10560
tatgctgcct gcacagttca ccgacgtggc cacgcagctt gcaggcgggc aaagtccgtg 10620
gctgatcctg ctgcaacagg gggggcaggt gaaggactcc ttcggcggga tgatccccat 10680
gttcaggggg cttgccggtg cgatcaccct gccgatggtg ggggccacct cgctggcggt 10740
ggcgaccggt gcgctggcgt atgcctggta tcagggcaac tcaaccctgt ccgatttcaa 10800
caaaacgctg gtcctttccg gcaatcaggc gggactgacg gcagatcgta tgctggtcct 10860
gtccagagcc gggcaggcgg cagggctgac gtttaaccag accagcgagt cactcagcgc 10920
actggttaag gcgggggtaa gcggtgaggc tcagattgcg tccatcagcc agagtgtggc 10980
gcgtttctcc tctgcatccg gcgtggaggt ggacaaggtc gctgaagcct tcgggaagct 11040
gaccacagac ccgacgtcgg ggctgacggc gatggctcgc cagttccata acgtgtcggc 11100
ggagcagatt gcgtatgttg ctcagttgca gcgttccggc gatgaagccg gggcattgca 11160
ggcggcgaac gaggccgcaa cgaaagggtt tgatgaccag acccgccgcc tgaaagagaa 11220
catgggcacg ctggagacct gggcagacag gactgcgcgg gcattcaaat ccatgtggga 11280
tgcggtgctg gatattggtc gtcctgatac cgcgcaggag atgctgatta aggcagaggc 11340
tgcgtataag aaagcagacg acatctggaa tctgcgcaag gatgattatt ttgttaacga 11400
tgaagcgcgg gcgcgttact gggatgatcg tgaaaaggcc cgtcttgcgc ttgaagccgc 11460
ccgaaagaag gctgagcagc agactcaaca ggacaaaaat gcgcagcagc agagcgatac 11520
cgaagcgtca cggctgaaat ataccgaaga ggcgcagaag gcttacgaac ggctgcagac 11580
gccgctggag aaatataccg cccgtcagga agaactgaac aaggcactga aagacgggaa 11640
aatcctgcag gcggattaca acacgctgat ggcggcggcg aaaaaggatt atgaagcgac 11700
gctgaaaaag ccgaaacagt ccagcgtgaa ggtgtctgcg ggcgatcgtc aggaagacag 11760
tgctcatgct gccctgctga cgcttcaggc agaactccgg acgctggaga agcatgccgg 11820
agcaaatgag aaaatcagcc agcagcgccg ggatttgtgg aaggcggaga gtcagttcgc 11880
ggtactggag gaggcggcgc aacgtcgcca gctgtctgca caggagaaat ccctgctggc 11940
gcataaagat gagacgctgg agtacaaacg ccagctggct gcacttggcg acaaggttac 12000
gtatcaggag cgcctgaacg cgctggcgca gcaggcggat aaattcgcac agcagcaacg 12060
ggcaaaacgg gccgccattg atgcgaaaag ccgggggctg actgaccggc aggcagaacg 12120
ggaagccacg gaacagcgcc tgaaggaaca gtatggcgat aatccgctgg cgctgaataa 12180
cgtcatgtca gagcagaaaa agacctgggc ggctgaagac cagcttcgcg ggaactggat 12240
ggcaggcctg aagtccggct ggagtgagtg ggaagagagc gccacggaca gtatgtcgca 12300
ggtaaaaagt gcagccacgc agacctttga tggtattgca cagaatatgg cggcgatgct 12360
gaccggcagt gagcagaact ggcgcagctt cacccgttcc gtgctgtcca tgatgacaga 12420
aattctgctt aagcaggcaa tggtggggat tgtcgggagt atcggcagcg ccattggcgg 12480
ggctgttggt ggcggcgcat ccgcgtcagg cggtacagcc attcaggccg ctgcggcgaa 12540
attccatttt gcaaccggag gatttacggg aaccggcggc aaatatgagc cagcggggat 12600
tgttcaccgt ggtgagtttg tcttcacgaa ggaggcaacc agccggattg gcgtggggaa 12660
tctttaccgg ctgatgcgcg gctatgccac cggcggttat gtcggtacac cgggcagcat 12720
ggcagacagc cggtcgcagg cgtccgggac gtttgagcag aataaccatg tggtgattaa 12780
caacgacggc acgaacgggc agataggtcc ggctgctctg aaggcggtgt atgacatggc 12840
ccgcaagggt gcccgtgatg aaattcagac acagatgcgt gatggtggcc tgttctccgg 12900
aggtggacga tgaagacctt ccgctggaaa gtgaaacccg gtatggatgt ggcttcggtc 12960
ccttctgtaa gaaaggtgcg ctttggtgat ggctattctc agcgagcgcc tgccgggctg 13020
aatgccaacc tgaaaacgta cagcgtgacg ctttctgtcc cccgtgagga ggccacggta 13080
ctggagtcgt ttctggaaga gcacgggggc tggaaatcct ttctgtggac gccgccttat 13140
gagtggcggc agataaaggt gacctgcgca aaatggtcgt cgcgggtcag tatgctgcgt 13200
gttgagttca gcgcagagtt tgaacaggtg gtgaactgat gcaggatatc cggcaggaaa 13260
cactgaatga atgcacccgt gcggagcagt cggccagcgt ggtgctctgg gaaatcgacc 13320
tgacagaggt cggtggagaa cgttattttt tctgtaatga gcagaacgaa aaaggtgagc 13380
cggtcacctg gcaggggcga cagtatcagc cgtatcccat tcaggggagc ggttttgaac 13440
tgaatggcaa aggcaccagt acgcgcccca cgctgacggt ttctaacctg tacggtatgg 13500
tcaccgggat ggcggaagat atgcagagtc tggtcggcgg aacggtggtc cggcgtaagg 13560
tttacgcccg ttttctggat gcggtgaact tcgtcaacgg aaacagttac gccgatccgg 13620
agcaggaggt gatcagccgc tggcgcattg agcagtgcag cgaactgagc gcggtgagtg 13680
cctcctttgt actgtccacg ccgacggaaa cggatggcgc tgtttttccg ggacgtatca 13740
tgctggccaa cacctgcacc tggacctatc gcggtgacga gtgcggttat agcggtccgg 13800
ctgtcgcgga tgaatatgac cagccaacgt ccgatatcac gaaggataaa tgcagcaaat 13860
gcctgagcgg ttgtaagttc cgcaataacg tcggcaactt tggcggcttc ctttccatta 13920
acaaactttc gcagtaaatc ccatgacaca gacagaatca gcgattctgg cgcacgcccg 13980
gcgatgtgcg ccagcggagt cgtgcggctt cgtggtaagc acgccggagg gggaaagata 14040
tttcccctgc gtgaatatct ccggtgagcc ggaggcgtat ttccgtatgt cgccggaaga 14100
ctggctgcag gcagaaatgc agggtgagat tgtggcgctg gtccacagcc accccggtgg 14160
tctgccctgg ctgagtgagg ccgaccggcg gctgcaggtg cagagtgatt tgccgtggtg 14220
gctggtctgc cgggggacga ttcataagtt ccgctgtgtg ccgcatctca ccgggcggcg 14280
ctttgagcac ggtgtgacgg actgttacac actgttccgg gatgcttatc atctggcggg 14340
gattgagatg ccggactttc atcgtgagga tgactggtgg cgtaacggcc agaatctcta 14400
tctggataat ctggaggcga cggggctgta tcaggtgccg ttgtcagcgg cacagccggg 14460
cgatgtgctg ctgtgctgtt ttggttcatc agtgccgaat cacgccgcaa tttactgcgg 14520
cgacggcgag ctgctgcacc atattcctga acaactgagc aaacgagaga ggtacaccga 14580
caaatggcag cgacgcacac actccctctg gcgtcaccgg gcatggcgcg catctgcctt 14640
tacggggatt tacaacgatt tggtcgccgc atcgaccttc gtgtgaaaac gggggctgaa 14700
gccatccggg cactggccac acagctcccg gcgtttcgtc agaaactgag cgacggctgg 14760
tatcaggtac ggattgccgg gcgggacgtc agcacgtccg ggttaacggc gcagttacat 14820
gagactctgc ctgatggcgc tgtaattcat attgttccca gagtcgccgg ggccaagtca 14880
ggtggcgtat tccagattgt cctgggggct gccgccattg ccggatcatt ctttaccgcc 14940
ggagccaccc ttgcagcatg gggggcagcc attggggccg gtggtatgac cggcatcctg 15000
ttttctctcg gtgccagtat ggtgctcggt ggtgtggcgc agatgctggc accgaaagcc 15060
agaactcccc gtatacagac aacggataac ggtaagcaga acacctattt ctcctcactg 15120
gataacatgg ttgcccaggg caatgttctg cctgttctgt acggggaaat gcgcgtgggg 15180
tcacgcgtgg tttctcagga gatcagcacg gcagacgaag gggacggtgg tcaggttgtg 15240
gtgattggtc gctgatgcaa aatgttttat gtgaaaccgc ctgcgggcgg ttttgtcatt 15300
tatggagcgt gaggaatggg taaaggaagc agtaaggggc ataccccgcg cgaagcgaag 15360
gacaacctga agtccacgca gttgctgagt gtgatcgatg ccatcagcga agggccgatt 15420
gaaggtccgg tggatggctt aaaaagcgtg ctgctgaaca gtacgccggt gctggacact 15480
gaggggaata ccaacatatc cggtgtcacg gtggtgttcc gggctggtga gcaggagcag 15540
actccgccgg agggatttga atcctccggc tccgagacgg tgctgggtac ggaagtgaaa 15600
tatgacacgc cgatcacccg caccattacg tctgcaaaca tcgaccgtct gcgctttacc 15660
ttcggtgtac aggcactggt ggaaaccacc tcaaagggtg acaggaatcc gtcggaagtc 15720
cgcctgctgg ttcagataca acgtaacggt ggctgggtga cggaaaaaga catcaccatt 15780
aagggcaaaa ccacctcgca gtatctggcc tcggtggtga tgggtaacct gccgccgcgc 15840
ccgtttaata tccggatgcg caggatgacg ccggacagca ccacagacca gctgcagaac 15900
aaaacgctct ggtcgtcata cactgaaatc atcgatgtga aacagtgcta cccgaacacg 15960
gcactggtcg gcgtgcaggt ggactcggag cagttcggca gccagcaggt gagccgtaat 16020
tatcatctgc gcgggcgtat tctgcaggtg ccgtcgaact ataacccgca gacgcggcaa 16080
tacagcggta tctgggacgg aacgtttaaa ccggcataca gcaacaacat ggcctggtgt 16140
ctgtgggata tgctgaccca tccgcgctac ggcatgggga aacgtcttgg tgcggcggat 16200
gtggataaat gggcgctgta tgtcatcggc cagtactgcg accagtcagt gccggacggc 16260
tttggcggca cggagccgcg catcacctgt aatgcgtacc tgaccacaca gcgtaaggcg 16320
tgggatgtgc tcagcgattt ctgctcggcg atgcgctgta tgccggtatg gaacgggcag 16380
acgctgacgt tcgtgcagga ccgaccgtcg gataagacgt ggacctataa ccgcagtaat 16440
gtggtgatgc cggatgatgg cgcgccgttc cgctacagct tcagcgccct gaaggaccgc 16500
cataatgccg ttgaggtgaa ctggattgac ccgaacaacg gctgggagac ggcgacagag 16560
cttgttgaag atacgcaggc cattgcccgt tacggtcgta atgttacgaa gatggatgcc 16620
tttggctgta ccagccgggg gcaggcacac cgcgccgggc tgtggctgat taaaacagaa 16680
ctgctggaaa cgcagaccgt ggatttcagc gtcggcgcag aagggcttcg ccatgtaccg 16740
ggcgatgtta ttgaaatctg cgatgatgac tatgccggta tcagcaccgg tggtcgtgtg 16800
ctggcggtga acagccagac ccggacgctg acgctcgacc gtgaaatcac gctgccatcc 16860
tccggtaccg cgctgataag cctggttgac ggaagtggca atccggtcag cgtggaggtt 16920
cagtccgtca ccgacggcgt gaaggtaaaa gtgagccgtg ttcctgacgg tgttgctgaa 16980
tacagcgtat gggagctgaa gctgccgacg ctgcgccagc gactgttccg ctgcgtgagt 17040
atccgtgaga acgacgacgg cacgtatgcc atcaccgccg tgcagcatgt gccggaaaaa 17100
gaggccatcg tggataacgg ggcgcacttt gacggcgaac agagtggcac ggtgaatggt 17160
gtcacgccgc cagcggtgca gcacctgacc gcagaagtca ctgcagacag cggggaatat 17220
caggtgctgg cgcgatggga cacaccgaag gtggtgaagg gcgtgagttt cctgctccgt 17280
ctgaccgtaa cagcggacga cggcagtgag cggctggtca gcacggcccg gacgacggaa 17340
accacatacc gcttcacgca actggcgctg gggaactaca ggctgacagt ccgggcggta 17400
aatgcgtggg ggcagcaggg cgatccggcg tcggtatcgt tccggattgc cgcaccggca 17460
gcaccgtcga ggattgagct gacgccgggc tattttcaga taaccgccac gccgcatctt 17520
gccgtttatg acccgacggt acagtttgag ttctggttct cggaaaagca gattgcggat 17580
atcagacagg ttgaaaccag cacgcgttat cttggtacgg cgctgtactg gatagccgcc 17640
agtatcaata tcaaaccggg ccatgattat tacttttata tccgcagtgt gaacaccgtt 17700
ggcaaatcgg cattcgtgga ggccgtcggt cgggcgagcg atgatgcgga aggttacctg 17760
gattttttca aaggcaagat aaccgaatcc catctcggca aggagctgct ggaaaaagtc 17820
gagctgacgg aggataacgc cagcagactg gaggagtttt cgaaagagtg gaaggatgcc 17880
agtgataagt ggaatgccat gtgggctgtc aaaattgagc agaccaaaga cggcaaacat 17940
tatgtcgcgg gtattggcct cagcatggag gacacggagg aaggcaaact gagccagttt 18000
ctggttgccg ccaatcgtat cgcatttatt gacccggcaa acgggaatga aacgccgatg 18060
tttgtggcgc agggcaacca gatattcatg aacgacgtgt tcctgaagcg cctgacggcc 18120
cccaccatta ccagcggcgg caatcctccg gccttttccc tgacaccgga cggaaagctg 18180
accgctaaaa atgcggatat cagtggcagt gtgaatgcga actccgggac gctcagtaat 18240
gtgacgatag ctgaaaactg tacgataaac ggtacgctga gggcggaaaa aatcgtcggg 18300
gacattgtaa aggcggcgag cgcggctttt ccgcgccagc gtgaaagcag tgtggactgg 18360
ccgtcaggta cccgtactgt caccgtgacc gatgaccatc cttttgatcg ccagatagtg 18420
gtgcttccgc tgacgtttcg cggaagtaag cgtactgtca gcggcaggac aacgtattcg 18480
atgtgttatc tgaaagtact gatgaacggt gcggtgattt atgatggcgc ggcgaacgag 18540
gcggtacagg tgttctcccg tattgttgac atgccagcgg gtcggggaaa cgtgatcctg 18600
acgttcacgc ttacgtccac acggcattcg gcagatattc cgccgtatac gtttgccagc 18660
gatgtgcagg ttatggtgat taagaaacag gcgctgggca tcagcgtggt ctgagtgtgt 18720
tacagaggtt cgtccgggaa cgggcgtttt attataaaac agtgagaggt gaacgatgcg 18780
taatgtgtgt attgccgttg ctgtctttgc cgcacttgcg gtgacagtca ctccggcccg 18840
tgcggaaggt ggacatggta cgtttacggt gggctatttt caagtgaaac cgggtacatt 18900
gccgtcgttg tcgggcgggg ataccggtgt gagtcatctg aaagggatta acgtgaagta 18960
ccgttatgag ctgacggaca gtgtgggggt gatggcttcc ctggggttcg ccgcgtcgaa 19020
aaagagcagc acagtgatga ccggggagga tacgtttcac tatgagagcc tgcgtggacg 19080
ttatgtgagc gtgatggccg gaccggtttt acaaatcagt aagcaggtca gtgcgtacgc 19140
catggccgga gtggctcaca gtcggtggtc cggcagtaca atggattacc gtaagacgga 19200
aatcactccc gggtatatga aagagacgac cactgccagg gacgaaagtg caatgcggca 19260
tacctcagtg gcgtggagtg caggtataca gattaatccg gcagcgtccg tcgttgttga 19320
tattgcttat gaaggctccg gcagtggcga ctggcgtact gacggattca tcgttggggt 19380
cggttataaa ttctgattag ccaggtaaca cagtgttatg acagcccgcc ggaaccggtg 19440
ggcttttttg tggggtgaat atggcagtaa agatttcagg agtcctgaaa gacggcacag 19500
gaaaaccggt acagaactgc accattcagc tgaaagccag acgtaacagc accacggtgg 19560
tggtgaacac ggtgggctca gagaatccgg atgaagccgg gcgttacagc atggatgtgg 19620
agtacggtca gtacagtgtc atcctgcagg ttgacggttt tccaccatcg cacgccggga 19680
ccatcaccgt gtatgaagat tcacaaccgg ggacgctgaa tgattttctc tgtgccatga 19740
cggaggatga tgcccggccg gaggtgctgc gtcgtcttga actgatggtg gaagaggtgg 19800
cgcgtaacgc gtccgtggtg gcacagagta cggcagacgc gaagaaatca gccggcgatg 19860
ccagtgcatc agctgctcag gtcgcggccc ttgtgactga tgcaactgac tcagcacgcg 19920
ccgccagcac gtccgccgga caggctgcat cgtcagctca ggaagcgtcc tccggcgcag 19980
aagcggcatc agcaaaggcc actgaagcgg aaaaaagtgc cgcagccgca gagtcctcaa 20040
aaaacgcggc ggccaccagt gccggtgcgg cgaaaacgtc agaaacgaat gctgcagcgt 20100
cacaacaatc agccgccacg tctgcctcca ccgcggccac gaaagcgtca gaggccgcca 20160
cttcagcacg agatgcggtg gcctcaaaag aggcagcaaa atcatcagaa acgaacgcat 20220
catcaagtgc cggtcgtgca gcttcctcgg caacggcggc agaaaattct gccagggcgg 20280
caaaaacgtc cgagacgaat gccaggtcat ctgaaacagc agcggaacgg agcgcctctg 20340
ccgcggcaga cgcaaaaaca gcggcggcgg ggagtgcgtc aacggcatcc acgaaggcga 20400
cagaggctgc gggaagtgcg gtatcagcat cgcagagcaa aagtgcggca gaagcggcgg 20460
caatacgtgc aaaaaattcg gcaaaacgtg cagaagatat agcttcagct gtcgcgcttg 20520
aggatgcgga cacaacgaga aaggggatag tgcagctcag cagtgcaacc aacagcacgt 20580
ctgaaacgct tgctgcaacg ccaaaggcgg ttaaggtggt aatggatgaa acgaacagaa 20640
aagcccactg gacagtccgg cactgaccgg aacgccaaca gcaccaaccg cgctcagggg 20700
aacaaacaat acccagattg cgaacaccgc ttttgtactg gccgcgattg cagatgttat 20760
cgacgcgtca cctgacgcac tgaatacgct gaatgaactg gccgcagcgc tcgggaatga 20820
tccagatttt gctaccacca tgactaacgc gcttgcgggt aaacaaccga agaatgcgac 20880
actgacggcg ctggcagggc tttccacggc gaaaaataaa ttaccgtatt ttgcggaaaa 20940
tgatgccgcc agcctgactg aactgactca ggttggcagg gatattctgg caaaaaattc 21000
cgttgcagat gttcttgaat accttggggc cggtgagaat tcggcctttc cggcaggtgc 21060
gccgatcccg tggccatcag atatcgttcc gtctggctac gtcctgatgc aggggcaggc 21120
gtttgacaaa tcagcctacc caaaacttgc tgtcgcgtat ccatcgggtg tgcttcctga 21180
tatgcgaggc tggacaatca aggggaaacc cgccagcggt cgtgctgtat tgtctcagga 21240
acaggatgga attaagtcgc acacccacag tgccagtgca tccggtacgg atttggggac 21300
gaaaaccaca tcgtcgtttg attacgggac gaaaacaaca ggcagtttcg attacggcac 21360
caaatcgacg aataacacgg gggctcatgc tcacagtctg agcggttcaa caggggccgc 21420
gggtgctcat gcccacacaa gtggtttaag gatgaacagt tctggctgga gtcagtatgg 21480
aacagcaacc attacaggaa gtttatccac agttaaagga accagcacac agggtattgc 21540
ttatttatcg aaaacggaca gtcagggcag ccacagtcac tcattgtccg gtacagccgt 21600
gagtgccggt gcacatgcgc atacagttgg tattggtgcg caccagcatc cggttgttat 21660
cggtgctcat gcccattctt tcagtattgg ttcacacgga cacaccatca ccgttaacgc 21720
tgcgggtaac gcggaaaaca ccgtcaaaaa cattgcattt aactatattg tgaggcttgc 21780
ataatggcat tcagaatgag tgaacaacca cggaccataa aaatttataa tctgctggcc 21840
ggaactaatg aatttattgg tgaaggtgac gcatatattc cgcctcatac cggtctgcct 21900
gcaaacagta ccgatattgc accgccagat attccggctg gctttgtggc tgttttcaac 21960
agtgatgagg catcgtggca tctcgttgaa gaccatcggg gtaaaaccgt ctatgacgtg 22020
gcttccggcg acgcgttatt tatttctgaa ctcggtccgt taccggaaaa ttttacctgg 22080
ttatcgccgg gaggggaata tcagaagtgg aacggcacag cctgggtgaa ggatacggaa 22140
gcagaaaaac tgttccggat ccgggaggcg gaagaaacaa aaaaaagcct gatgcaggta 22200
gccagtgagc atattgcgcc gcttcaggat gctgcagatc tggaaattgc aacgaaggaa 22260
gaaacctcgt tgctggaagc ctggaagaag tatcgggtgt tgctgaaccg tgttgataca 22320
tcaactgcac ctgatattga gtggcctgct gtccctgtta tggagtaa 22368
<210> 8
<211> 20330
<212> DNA
<213> bacteriophage lambda
<400> 8
tcaaggtccc taaattaata cgactcacta tagggagata ggggccttta cgattattac 60
tttaagattt aactctaaga ggaatcttta ttatgttaac acctattaac caattactta 120
agaaccctaa cgatattcca gatgtacctc gtgcaaccgc tgagtatcta caggttcgat 180
tcaactatgc gtacctcgaa gcgtctggtc atataggact tatgcgtgct aatggttgta 240
gtgaggccca catcttgggt ttcattcagg gcctacagta tgcctctaac gtcattgacg 300
agattgagtt acgcaaggaa caactaagag atgatgggga ggattgacac tatgtgtttc 360
tcaccgaaaa ttaaaactcc gaagatggat accaatcaga ttcgagccgt tgagccagcg 420
cctctgaccc aagaagtgtc aagcgtggag ttcggtgggt cttctgatga gacggatacc 480
gagggcaccg aagtgtctgg acgcaaaggc ctcaaggtcg aacgtgatga ttccgtagcg 540
aagtctaaag ccagcggcaa tggctccgct cgtatgaaat cttccatccg taagtccgca 600
tttggaggta agaagtgatg tctgagttca catgtgtgga ggctaagagt cgcttccgtg 660
caatccggtg gactgtggaa caccttgggt tgcctaaagg attcgaagga cactttgtgg 720
gctacagcct ctacgtagac gaagtgatgg acatgtctgg ttgccgtgaa gagtacattc 780
tggactctac cggaaaacat gtagcgtact tcgcgtggtg cgtaagctgt gacattcacc 840
acaaaggaga cattctggat gtaacgtccg ttgtcattaa tcctgaggca gactctaagg 900
gcttacagcg attcctagcg aaacgcttta agtaccttgc ggaactccac gattgcgatt 960
gggtgtctcg ttgtaagcat gaaggcgaga caatgcgtgt atactttaag gaggtataag 1020
ttatgggtaa gaaagttaag aaggccgtga agaaagtcac caagtccgtt aagaaagtcg 1080
ttaaggaagg ggctcgtccg gttaaacagg ttgctggcgg tctagctggt ctggctggtg 1140
gtactggtga agcacagatg gtggaagtac cacaagctgc cgcacagatt gttgacgtac 1200
ctgagaaaga ggtttccact gaggacgaag cacagacaga aagcggacgc aagaaagctc 1260
gtgctggcgg taagaaatcc ttgagtgtag cccgtagctc cggtggcggt atcaacattt 1320
aatcaggagg ttatcgtgga agactgcatt gaatggaccg gaggtgtcaa ctctaagggt 1380
tatggtcgta agtgggttaa tggtaaactt gtgactccac ataggcacat ctatgaggag 1440
acatatggtc cagttccaac aggaattgtg gtgatgcata tctgcgataa ccctaggtgc 1500
tataacataa agcaccttac gcttggaact ccaaaggata attccgagga catggttacc 1560
aaaggtagac aggctaaagg agaggaacta agcaagaaac ttacagagtc agacgttctc 1620
gctatacgct cttcaacctt aagccaccgc tccttaggag aactgtatgg agtcagtcaa 1680
tcaaccataa cgcgaatact acagcgtaag acatggagac acatttaatg gctgagaaac 1740
gaacaggact tgcggaggat ggcgcaaagt ctgtctatga gcgtttaaag aacgaccgtg 1800
ctccctatga gacacgcgct cagaattgcg ctcaatatac catcccatca ttgttcccta 1860
aggactccga taacgcctct acagattatc aaactccgtg gcaagccgtg ggcgctcgtg 1920
gtctgaacaa tctagcctct aagctcatgc tggctctatt ccctatgcag acttggatgc 1980
gacttactat atctgaatat gaagcaaagc agttactgag cgaccccgat ggactcgcta 2040
aggtcgatga gggcctctcg atggtagagc gtatcatcat gaactacatt gagtctaaca 2100
gttaccgcgt gactctcttt gaggctctca aacagttagt cgtagctggt aacgtcctgc 2160
tgtacctacc ggaaccggaa gggtcaaact ataatcccat gaagctgtac cgattgtctt 2220
cttatgtggt ccaacgagac gcattcggca acgttctgca aatggtgact cgtgaccaga 2280
tagcttttgg tgctctccct gaggacatcc gtaaggctgt agaaggtcaa ggtggtgaga 2340
agaaagctga tgagacaatc gacgtgtaca ctcacatcta tctggatgag gactcaggtg 2400
aatacctccg atacgaagag gtcgagggta tggaagtcca aggctccgat gggacttatc 2460
ctaaagaggc ttgcccatac atcccgattc ggatggtcag actagatggt gaatcctacg 2520
gtcgttcgta cattgaggaa tacttaggtg acttacggtc ccttgaaaat ctccaagagg 2580
ctatcgtcaa gatgtccatg attagctcta aggttatcgg cttagtgaat cctgctggta 2640
tcacccagcc acgccgactg accaaagctc agactggtga cttcgttact ggtcgtccag 2700
aagacatctc gttcctccaa ctggagaagc aagcagactt tactgtagct aaagccgtaa 2760
gtgacgctat cgaggctcgc ctttcgtttg cctttatgtt gaactctgcg gttcagcgta 2820
caggtgaacg tgtgaccgcc gaagagattc ggtatgtagc ttctgaactt gaagatactt 2880
taggtggtgt ctactctatc ctttctcaag aattacaatt gcctctggta cgagtgctct 2940
tgaagcaact acaagccacg caacagattc ctgagttacc taaggaagcc gtagagccaa 3000
ccattagtac aggtctggaa gcaattggtc gaggacaaga ccttgataag ctggagcggt 3060
gtgtcactgc gtgggctgca ctggcaccta tgcgggacga ccctgatatt aaccttgcga 3120
tgattaagtt acgtattgcc aacgctatcg gtattgacac ttctggtatt ctactcaccg 3180
aagaacagaa gcaacagaag atggcccaac agtctatgca aatgggtatg gataatggtg 3240
ctgctgcgct ggctcaaggt atggctgcac aagctacagc ttcacctgag gctatggctg 3300
ctgccgctga ttccgtaggt ttacagccgg gaatttaata cgactcacta tagggagacc 3360
tcatctttga aatgagcgat gacaagaggt tggagtcctc ggtcttcctg tagttcaact 3420
ttaaggagac aataataatg gctgaatcta atgcagacgt atatgcatct tttggcgtga 3480
actccgctgt gatgtctggt ggttccgttg aggaacatga gcagaacatg ctggctcttg 3540
atgttgctgc ccgtgatggc gatgatgcaa tcgagttagc gtcagacgaa gtggaaacag 3600
aacgtgacct gtatgacaac tctgacccgt tcggtcaaga ggatgacgaa ggccgcattc 3660
aggttcgtat cggtgatggc tctgagccga ccgatgtgga cactggagaa gaaggcgttg 3720
agggcaccga aggttccgaa gagtttaccc cactgggcga gactccagaa gaactggtag 3780
ctgcctctga gcaacttggt gagcacgaag agggcttcca agagatgatt aacattgctg 3840
ctgagcgtgg catgagtgtc gagaccattg aggctatcca gcgtgagtac gaggagaacg 3900
aagagttgtc cgccgagtcc tacgctaagc tggctgaaat tggctacacg aaggctttca 3960
ttgactcgta tatccgtggt caagaagctc tggtggagca gtacgtaaac agtgtcattg 4020
agtacgctgg tggtcgtgaa cgttttgatg cactgtataa ccaccttgag acgcacaacc 4080
ctgaggctgc acagtcgctg gataatgcgt tgaccaatcg tgacttagcg accgttaagg 4140
ctatcatcaa cttggctggt gagtctcgcg ctaaggcgtt cggtcgtaag ccaactcgta 4200
gtgtgactaa tcgtgctatt ccggctaaac ctcaggctac caagcgtgaa ggctttgcgg 4260
accgtagcga gatgattaaa gctatgagtg accctcggta tcgcacagat gccaactatc 4320
gtcgtcaagt cgaacagaaa gtaatcgatt cgaacttctg atagacttcg aaattaatac 4380
gactcactat agggagacca caacggtttc cctctagaaa taattttgtt taactttaag 4440
aaggagatat acatatggct agcatgactg gtggacagca aatgggtact aaccaaggta 4500
aaggtgtagt tgctgctgga gataaactgg cgttgttctt gaaggtattt ggcggtgaag 4560
tcctgactgc gttcgctcgt acctccgtga ccacttctcg ccacatggta cgttccatct 4620
ccagcggtaa atccgctcag ttccctgttc tgggtcgcac tcaggcagcg tatctggctc 4680
cgggcgagaa cctcgacgat aaacgtaagg acatcaaaca caccgagaag gtaatcacca 4740
ttgacggtct cctgacggct gacgttctga tttatgatat tgaggacgcg atgaaccact 4800
acgacgttcg ctctgagtat acctctcagt tgggtgaatc tctggcgatg gctgcggatg 4860
gtgcggttct ggctgagatt gccggtctgt gtaacgtgga aagcaaatat aatgagaaca 4920
tcgagggctt aggtactgct accgtaattg agaccactca gaacaaggcc gcacttaccg 4980
accaagttgc gctgggtaag gagattattg cggctctgac taaggctcgt gcggctctga 5040
ccaagaacta tgttccggct gctgaccgtg tgttctactg tgacccagat agctactctg 5100
cgattctggc agcactgatg ccgaacgcag caaactacgc tgctctgatt gaccctgaga 5160
agggttctat ccgcaacgtt atgggctttg aggttgtaga agttccgcac ctcaccgctg 5220
gtggtgctgg taccgctcgt gagggcacta ctggtcagaa gcacgtcttc cctgccaata 5280
aaggtgaggg taatgtcaag gttgctaagg acaacgttat cggcctgttc atgcaccgct 5340
ctgcggtagg tactgttaag ctgcgtgact tggctctgga gcgcgctcgc cgtgctaact 5400
tccaagcgga ccagattatc gctaagtacg caatgggcca cggtggtctt cgcccagaag 5460
ctgctggtgc agtggttttc aaagtggagt aatgctgggg gtggcctcaa cggtcgctgc 5520
tagtcccgaa gaggcgagtg ttacttcaac agaagaaacc ttaacgccag cacaggaggc 5580
cgcacgcacc cgcgctgcta acaaagcccg aaaggaagct gagttggctg ctgccaccgc 5640
tgagcaataa ctagcataac cccttggggc ctctaaacgg gtcttgaggg gttttttgct 5700
gaaaggagga actatatgcg ctcatacgat atgaacgttg agactgccgc tgagttatca 5760
gctgtgaacg acattctggc gtctatcggt gaacctccgg tatcaacgct ggaaggtgac 5820
gctaacgcag atgcagcgaa cgctcggcgt attctcaaca agattaaccg acagattcaa 5880
tctcgtggat ggacgttcaa cattgaggaa ggcataacgc tactacctga tgtttactcc 5940
aacctgattg tatacagtga cgactattta tccctaatgt ctacttccgg tcaatccatc 6000
tacgttaacc gaggtggcta tgtgtatgac cgaacgagtc aatcagaccg ctttgactct 6060
ggtattactg tgaacattat tcgtctccgc gactacgatg agatgcctga gtgcttccgt 6120
tactggattg tcaccaaggc ttcccgtcag ttcaacaacc gattctttgg ggcaccggaa 6180
gtagagggtg tactccaaga agaggaagat gaggctagac gtctctgcat ggagtatgag 6240
atggactacg gtgggtacaa tatgctggat ggagatgcgt tcacttctgg tctactgact 6300
cgctaacatt aataaataag gaggctctaa tggcactcat tagccaatca atcaagaact 6360
tgaagggtgg tatcagccaa cagcctgaca tccttcgtta tccagaccaa gggtcacgcc 6420
aagttaacgg ttggtcttcg gagaccgagg gcctccaaaa gcgtccacct cttgttttct 6480
taaatacact tggagacaac ggtgcgttag gtcaagctcc gtacatccac ctgattaacc 6540
gagatgagca cgaacagtat tacgctgtgt tcactggtag cggaatccga gtgttcgacc 6600
tttctggtaa cgagaagcaa gttaggtatc ctaacggttc caactacatc aagaccgcta 6660
atccacgtaa cgacctgcga atggttactg tagcagacta tacgttcatc gttaaccgta 6720
acgttgttgc acagaagaac acaaagtctg tcaacttacc gaattacaac cctaatcaag 6780
acggattgat taacgttcgt ggtggtcagt atggtaggga actaattgta cacattaacg 6840
gtaaagacgt tgcgaagtat aagataccag atggtagtca acctgaacac gtaaacaata 6900
cggatgccca atggttagct gaagagttag ccaagcagat gcgcactaac ttgtctgatt 6960
ggactgtaaa tgtagggcaa gggttcatcc atgtgaccgc acctagtggt caacagattg 7020
actccttcac gactaaagat ggctacgcag accagttgat taaccctgtg acccactacg 7080
ctcagtcgtt ctctaagctg ccacctaatg ctcctaacgg ctacatggtg aaaatcgtag 7140
gggacgcctc taagtctgcc gaccagtatt acgttcggta tgacgctgag cggaaagttt 7200
ggactgagac tttaggttgg aacactgagg accaagttct atgggaaacc atgccacacg 7260
ctcttgtgcg agccgctgac ggtaatttcg acttcaagtg gcttgagtgg tctcctaagt 7320
cttgtggtga cgttgacacc aacccttggc cttcttttgt tggttcaagt attaacgatg 7380
tgttcttctt ccgtaaccgc ttaggattcc ttagtgggga gaacatcata ttgagtcgta 7440
cagccaaata cttcaacttc taccctgcgt ccattgcgaa ccttagtgat gacgacccta 7500
tagacgtagc tgtgagtacc aaccgaatag caatccttaa gtacgccgtt ccgttctcag 7560
aagagttact catctggtcc gatgaagcac aattcgtcct gactgcctcg ggtactctca 7620
catctaagtc ggttgagttg aacctaacga cccagtttga cgtacaggac cgagcgagac 7680
cttttgggat tgggcgtaat gtctactttg ctagtccgag gtccagcttc acgtccatcc 7740
acaggtacta cgctgtgcag gatgtcagtt ccgttaagaa tgctgaggac attacatcac 7800
acgttcctaa ctacatccct aatggtgtgt tcagtatttg cggaagtggt acggaaaact 7860
tctgttcggt actatctcac ggggacccta gtaaaatctt catgtacaaa ttcctgtacc 7920
tgaacgaaga gttaaggcaa cagtcgtggt ctcattggga ctttggggaa aacgtacagg 7980
ttctagcttg tcagagtatc agctcagata tgtatgtgat tcttcgcaat gagttcaata 8040
cgttcctagc tagaatctct ttcactaaga acgccattga cttacaggga gaaccctatc 8100
gtgcctttat ggacatgaag attcgataca cgattcctag tggaacatac aacgatgaca 8160
cattcactac ctctattcat attccaacaa tttatggtgc aaacttcggg aggggcaaaa 8220
tcactgtatt ggagcctgat ggtaagataa ccgtgtttga gcaacctacg gctgggtgga 8280
atagcgaccc ttggctgaga ctcagcggta acttggaggg acgcatggtg tacattgggt 8340
tcaacattaa cttcgtatat gagttctcta agttcctcat caagcagact gccgacgacg 8400
ggtctacctc cacggaagac attgggcgct tacagttacg ccgagcgtgg gttaactacg 8460
agaactctgg tacgtttgac atttatgttg agaaccaatc gtctaactgg aagtacacaa 8520
tggctggtgc ccgattaggc tctaacactc tgagggctgg gagactgaac ttagggaccg 8580
gacaatatcg attccctgtg gttggtaacg ccaagttcaa cactgtatac atcttgtcag 8640
atgagactac ccctctgaac atcattgggt gtggctggga aggtaactac ttacggagaa 8700
gttccggtat ttaattaaat attctccctg tggtggctcg aaattaatac gactcactat 8760
agggagaaca atacgactac gggagggttt tcttatgatg actataagac ctactaaaag 8820
tacagacttt gaggtattca ctccggctca ccatgacatt cttgaagcta aggctgctgg 8880
tattgagccg agtttccctg atgcttccga gtgtgtcacg ttgagcctct atgggttccc 8940
tctagctatc ggtggtaact gcggggacca gtgctggttc gttacgagcg accaagtgtg 9000
gcgacttagt ggaaaggcta agcgaaagtt ccgtaagtta atcatggagt atcgcgataa 9060
gatgcttgag aagtatgata ctctttggaa ttacgtatgg gtaggcaata cgtcccacat 9120
tcgtttcctc aagactatcg gtgcggtatt ccatgaagag tacacacgag atggtcaatt 9180
tcagttattt acaatcacga aaggaggata accatatgtg ttgggcagcc gcaataccta 9240
tcgctatatc tggcgctcag gctatcagtg gtcagaacgc tcaggccaaa atgattgccg 9300
ctcagaccgc tgctggtcgt cgtcaagcta tggaaatcat gaggcagacg aacatccaga 9360
atgctgacct atcgttgcaa gctcgaagta aacttgagga agcgtccgcc gagttgacct 9420
cacagaacat gcagaaggtc caagctattg ggtctatccg agcggctatc ggagagagta 9480
tgcttgaagg ttcctcaatg gaccgcatta agcgagtcac agaaggacag ttcattcggg 9540
aagccaatat ggtaactgag aactatcgcc gtgactacca agcaatcttc gcacagcaac 9600
ttggtggtac tcaaagtgct gcaagtcaga ttgacgaaat ctataagagc gaacagaaac 9660
agaagagtaa gctacagatg gttctggacc cactggctat catggggtct tccgctgcga 9720
gtgcttacgc atccggtgcg ttcgactcta agtccacaac taaggcacct attgttgccg 9780
ctaaaggaac caagacgggg aggtaatgag ctatgagtaa aattgaatct gcccttcaag 9840
cggcacaacc gggactctct cggttacgtg gtggtgctgg aggtatgggc tatcgtgcag 9900
caaccactca ggccgaacag ccaaggtcaa gcctattgga caccattggt cggttcgcta 9960
aggctggtgc cgatatgtat accgctaagg aacaacgagc acgagaccta gctgatgaac 10020
gctctaacga gattatccgt aagctgaccc ctgagcaacg tcgagaagct ctcaacaacg 10080
ggacccttct gtatcaggat gacccatacg ctatggaagc actccgagtc aagactggtc 10140
gtaacgctgc gtatcttgtg gacgatgacg ttatgcagaa gataaaagag ggtgtcttcc 10200
gtactcgcga agagatggaa gagtatcgcc atagtcgcct tcaagagggc gctaaggtat 10260
acgctgagca gttcggcatc gaccctgagg acgttgatta tcagcgtggt ttcaacgggg 10320
acattaccga gcgtaacatc tcgctgtatg gtgcgcatga taacttcttg agccagcaag 10380
ctcagaaggg cgctatcatg aacagccgag tggaactcaa cggtgtcctt caagaccctg 10440
atatgctgcg tcgtccagac tctgctgact tctttgagaa gtatatcgac aacggtctgg 10500
ttactggcgc aatcccatct gatgctcaag ccacacagct tataagccaa gcgttcagtg 10560
acgcttctag ccgtgctggt ggtgctgact tcctgatgcg agtcggtgac aagaaggtaa 10620
cacttaacgg agccactacg acttaccgag agttgattgg tgaggaacag tggaacgctc 10680
tcatggtcac agcacaacgt tctcagtttg agactgacgc gaagctgaac gagcagtatc 10740
gcttgaagat taactctgcg ctgaaccaag aggacccaag gacagcttgg gagatgcttc 10800
aaggtatcaa ggctgaacta gataaggtcc aacctgatga gcagatgaca ccacaacgtg 10860
agtggctaat ctccgcacag gaacaagttc agaatcagat gaacgcatgg acgaaagctc 10920
aggccaaggc tctggacgat tccatgaagt caatgaacaa acttgacgta atcgacaagc 10980
aattccagaa gcgaatcaac ggtgagtggg tctcaacgga ttttaaggat atgccagtca 11040
acgagaacac tggtgagttc aagcatagcg atatggttaa ctacgccaat aagaagctcg 11100
ctgagattga cagtatggac attccagacg gtgccaagga tgctatgaag ttgaagtacc 11160
ttcaagcgga ctctaaggac ggagcattcc gtacagccat cggaaccatg gtcactgacg 11220
ctggtcaaga gtggtctgcc gctgtgatta acggtaagtt accagaacga accccagcta 11280
tggatgctct gcgcagaatc cgcaatgctg accctcagtt gattgctgcg ctatacccag 11340
accaagctga gctattcctg acgatggaca tgatggacaa gcagggtatt gaccctcagg 11400
ttattcttga tgccgaccga ctgactgtta agcggtccaa agagcaacgc tttgaggatg 11460
ataaagcatt cgagtctgca ctgaatgcat ctaaggctcc tgagattgcc cgtatgccag 11520
cgtcactgcg cgaatctgca cgtaagattt atgactccgt taagtatcgc tcggggaacg 11580
aaagcatggc tatggagcag atgaccaagt tccttaagga atctacctac acgttcactg 11640
gtgatgatgt tgacggtgat accgttggtg tgattcctaa gaatatgatg caggttaact 11700
ctgacccgaa atcatgggag caaggtcggg atattctgga ggaagcacgt aagggaatca 11760
ttgcgagcaa cccttggata accaataagc aactgaccat gtattctcaa ggtgactcca 11820
tttaccttat ggacaccaca ggtcaagtca gagtccgata cgacaaagag ttactctcga 11880
aggtctggag tgagaaccag aagaaactcg aagagaaagc tcgtgagaag gctctggctg 11940
atgtgaacaa gcgagcacct atagttgccg ctacgaaggc ccgtgaagct gctgctaaac 12000
gagtccgaga gaaacgtaaa cagactccta agttcatcta cggacgtaag gagtaactaa 12060
aggctacata aggaggccct aaatggataa gtacgataag aacgtaccaa gtgattatga 12120
tggtctgttc caaaaggctg ctgatgccaa cggggtctct tatgaccttt tacgtaaagt 12180
cgcttggaca gaatcacgat ttgtgcctac agcaaaatct aagactggac cattaggcat 12240
gatgcaattt accaaggcaa ccgctaaggc cctcggtctg cgagttaccg atggtccaga 12300
cgacgaccga ctgaaccctg agttagctat taatgctgcc gctaagcaac ttgcaggtct 12360
ggtagggaag tttgatggcg atgaactcaa agctgccctt gcgtacaacc aaggcgaggg 12420
acgcttgggt aatccacaac ttgaggcgta ctctaaggga gacttcgcat caatctctga 12480
ggagggacgt aactacatgc gtaaccttct ggatgttgct aagtcaccta tggctggaca 12540
gttggaaact tttggtggca taaccccaaa gggtaaaggc attccggctg aggtaggatt 12600
ggctggaatt ggtcacaagc agaaagtaac acaggaactt cctgagtcca caagttttga 12660
cgttaagggt atcgaacagg aggctacggc gaaaccattc gccaaggact tttgggagac 12720
ccacggagaa acacttgacg agtacaacag tcgttcaacc ttcttcggat tcaaaaatgc 12780
tgccgaagct gaactctcca actcagtcgc tgggatggct ttccgtgctg gtcgtctcga 12840
taatggtttt gatgtgttta aagacaccat tacgccgact cgctggaact ctcacatctg 12900
gactccagag gagttagaga agattcgaac agaggttaag aaccctgcgt acatcaacgt 12960
tgtaactggt ggttcccctg agaacctcga tgacctcatt aaattggcta acgagaactt 13020
tgagaatgac tcccgcgctg ccgaggctgg cctaggtgcc aaactgagtg ctggtattat 13080
tggtgctggt gtggacccgc ttagctatgt tcctatggtc ggtgtcactg gtaagggctt 13140
taagttaatc aataaggctc ttgtagttgg tgccgaaagt gctgctctga acgttgcatc 13200
cgaaggtctc cgtacctccg tagctggtgg tgacgcagac tatgcgggtg ctgccttagg 13260
tggctttgtg tttggcgcag gcatgtctgc aatcagtgac gctgtagctg ctggactgaa 13320
acgcagtaaa ccagaagctg agttcgacaa tgagttcatc ggtcctatga tgcgattgga 13380
agcccgtgag acagcacgaa acgccaactc tgcggacctc tctcggatga acactgagaa 13440
catgaagttt gaaggtgaac ataatggtgt cccttatgag gacttaccaa cagagagagg 13500
tgccgtggtg ttacatgatg gctccgttct aagtgcaagc aacccaatca accctaagac 13560
tctaaaagag ttctccgagg ttgaccctga gaaggctgcg cgaggaatca aactggctgg 13620
gttcaccgag attggcttga agaccttggg gtctgacgat gctgacatcc gtagagtggc 13680
tatcgacctc gttcgctctc ctactggtat gcagtctggt gcctcaggta agttcggtgc 13740
aacagcttct gacatccatg agagacttca tggtactgac cagcgtactt ataatgactt 13800
gtacaaagca atgtctgacg ctatgaaaga ccctgagttc tctactggcg gcgctaagat 13860
gtcccgtgaa gaaactcgat acactatcta ccgtagagcg gcactagcta ttgagcgtcc 13920
agaactacag aaggcactca ctccgtctga gagaatcgtt atggacatca ttaagcgtca 13980
ctttgacacc aagcgtgaac ttatggaaaa cccagcaata ttcggtaaca caaaggctgt 14040
gagtatcttc cctgagagtc gccacaaagg tacttacgtt cctcacgtat atgaccgtca 14100
tgccaaggcg ctgatgattc aacgctacgg tgccgaaggt ttgcaggaag ggattgcccg 14160
ctcatggatg aacagctacg tctccagacc tgaggtcaag gccagagtcg atgagatgct 14220
taaggaatta cacggggtga aggaagtaac accagagatg gtagagaagt acgctatgga 14280
taaggcttat ggtatctccc actcagacca gttcaccaac agttccataa tagaagagaa 14340
cattgagggc ttagtaggta tcgagaataa ctcattcctt gaggcacgta acttgtttga 14400
ttcggaccta tccatcacta tgccagacgg acagcaattc tcagtgaatg acctaaggga 14460
cttcgatatg ttccgcatca tgccagcgta tgaccgccgt gtcaatggtg acatcgccat 14520
catggggtct actggtaaaa ccactaagga acttaaggat gagattttgg ctctcaaagc 14580
gaaagctgag ggagacggta agaagactgg cgaggtacat gctttaatgg ataccgttaa 14640
gattcttact ggtcgtgcta gacgcaatca ggacactgtg tgggaaacct cactgcgtgc 14700
catcaatgac ctagggttct tcgctaagaa cgcctacatg ggtgctcaga acattacgga 14760
gattgctggg atgattgtca ctggtaacgt tcgtgctcta gggcatggta tcccaattct 14820
gcgtgataca ctctacaagt ctaaaccagt ttcagctaag gaactcaagg aactccatgc 14880
gtctctgttc gggaaggagg tggaccagtt gattcggcct aaacgtgctg acattgtgca 14940
gcgcctaagg gaagcaactg ataccggacc tgccgtggcg aacatcgtag ggaccttgaa 15000
gtattcaaca caggaactgg ctgctcgctc tccgtggact aagctactga acggaaccac 15060
taactacctt ctggatgctg cgcgtcaagg tatgcttggg gatgttatta gtgccaccct 15120
aacaggtaag actacccgct gggagaaaga aggcttcctt cgtggtgcct ccgtaactcc 15180
tgagcagatg gctggcatca agtctctcat caaggaacat atggtacgcg gtgaggacgg 15240
gaagtttacc gttaaggaca agcaagcgtt ctctatggac ccacgggcta tggacttatg 15300
gagactggct gacaaggtag ctgatgaggc aatgctgcgt ccacataagg tgtccttaca 15360
ggattcccat gcgttcggag cactaggtaa gatggttatg cagtttaagt ctttcactat 15420
caagtccctt aactctaagt tcctgcgaac cttctatgat ggatacaaga acaaccgagc 15480
gattgacgct gcgctgagca tcatcacctc tatgggtctc gctggtggtt tctatgctat 15540
ggctgcacac gtcaaagcat acgctctgcc taaggagaaa cgtaaggagt acttggagcg 15600
tgcactggac ccaaccatga ttgcccacgc tgcgttatct cgtagttctc aattgggtgc 15660
tcctttggct atggttgacc tagttggtgg tgttttaggg ttcgagtcct ccaagatggc 15720
tcgctctacg attctaccta aggacaccgt gaaggaacgt gacccaaaca aaccgtacac 15780
ctctagagag gtaatgggcg ctatgggttc aaaccttctg gaacagatgc cttcggctgg 15840
ctttgtggct aacgtagggg ctaccttaat gaatgctgct ggcgtggtca actcacctaa 15900
taaagcaacc gagcaggact tcatgactgg tcttatgaac tccacaaaag agttagtacc 15960
gaacgaccca ttgactcaac agcttgtgtt gaagatttat gaggcgaacg gtgttaactt 16020
gagggagcgt aggaaataat acgactcact atagggagag gcgaaataat cttctccctg 16080
tagtctctta gatttacttt aaggaggtca aatggctaac gtaattaaaa ccgttttgac 16140
ttaccagtta gatggctcca atcgtgattt taatatcccg tttgagtatc tagcccgtaa 16200
gttcgtagtg gtaactctta ttggtgtaga ccgaaaggtc cttacgatta atacagacta 16260
tcgctttgct acacgtacta ctatctctct gacaaaggct tggggtccag ccgatggcta 16320
cacgaccatc gagttacgtc gagtaacctc cactaccgac cgattggttg actttacgga 16380
tggttcaatc ctccgcgcgt atgaccttaa cgtcgctcag attcaaacga tgcacgtagc 16440
ggaagaggcc cgtgacctca ctacggatac tatcggtgtc aataacgatg gtcacttgga 16500
tgctcgtggt cgtcgaattg tgaacctagc gaacgccgtg gatgaccgcg atgctgttcc 16560
gtttggtcaa ctaaagacca tgaaccagaa ctcatggcaa gcacgtaatg aagccttaca 16620
gttccgtaat gaggctgaga ctttcagaaa ccaagcggag ggctttaaga acgagtccag 16680
taccaacgct acgaacacaa agcagtggcg cgatgagacc aagggtttcc gagacgaagc 16740
caagcggttc aagaatacgg ctggtcaata cgctacatct gctgggaact ctgcttccgc 16800
tgcgcatcaa tctgaggtaa acgctgagaa ctctgccaca gcatccgcta actctgctca 16860
tttggcagaa cagcaagcag accgtgcgga acgtgaggca gacaagctgg aaaattacaa 16920
tggattggct ggtgcaattg ataaggtaga tggaaccaat gtgtactgga aaggaaatat 16980
tcacgctaac gggcgccttt acatgaccac aaacggtttt gactgtggcc agtatcaaca 17040
gttctttggt ggtgtcacta atcgttactc tgtcatggag tggggagatg agaacggatg 17100
gctgatgtat gttcaacgta gagagtggac aacagcgata ggcggtaaca tccagttagt 17160
agtaaacgga cagatcatca cccaaggtgg agccatgacc ggtcagctaa aattgcagaa 17220
tgggcatgtt cttcaattag agtccgcatc cgacaaggcg cactatattc tatctaaaga 17280
tggtaacagg aataactggt acattggtag agggtcagat aacaacaatg actgtacctt 17340
ccactcctat gtacatggta cgaccttaac actcaagcag gactatgcag tagttaacaa 17400
acacttccac gtaggtcagg ccgttgtggc cactgatggt aatattcaag gtactaagtg 17460
gggaggtaaa tggctggatg cttacctacg tgacagcttc gttgcgaagt ccaaggcgtg 17520
gactcaggtg tggtctggta gtgctggcgg tggggtaagt gtgactgttt cacaggatct 17580
ccgcttccgc aatatctgga ttaagtgtgc caacaactct tggaacttct tccgtactgg 17640
ccccgatgga atctacttca tagcctctga tggtggatgg ttacgattcc aaatacactc 17700
caacggtctc ggattcaaga atattgcaga cagtcgttca gtacctaatg caatcatggt 17760
ggagaacgag taattggtaa atcacaagga aagacgtgta gtccacggat ggactctcaa 17820
ggaggtacaa gtatgtatgg aaaaggataa gagccttatt acattcttag agatgttgga 17880
cactgcgatg gctcagcgta tgcttgcgga cctttcggac catgagcgtc gctctccgca 17940
actctataat gctattaaca aactgttaga ccgccacaag ttccagattg gtaagttgca 18000
gccggatgtt cacatcttag gtggccttgc tggtgctctt gaagagtaca aagagaaagt 18060
cggtgataac ggtcttacgg atgatgatat ttacacatta cagtgatata ctcaaggcag 18120
atagtggtct ttatggatgt cattgtctat acgagatgct cctacgtgaa atctgaaagt 18180
taacgggagg cattgaaatc aagtaaggag gcaatgtgtc tactcaatcc aatcgtaatg 18240
cgctcgtagt ggcgcaactg aaaggagact tcgtggcgtt cctattcgtc ttatggaagg 18300
cgctaaacct accggtgccc actaagtgtc agattgacat ggctaaggtg ctggcgaatg 18360
gagacaacaa gaagttcatc ttacaggctt tccgtggtat cggtaagtcg ttcatcacat 18420
gtgcgttcgt tgtgtggtcc ttatggagag accctcagtt gaagatactt atcgtatcag 18480
cctctaagga gcgtgcagac gctaactcca tctttattaa gaacatcatt gacctgctgc 18540
cattcctatc tgagttaaag ccaagacccg gacagcgtga ctcggtaatc agctttgatg 18600
taggcccagc caatcctgac cactctccta gtgtgaaatc agtaggtatc actggtcagt 18660
taactggtag ccgtgctgac attatcattg cggatgacgt tgagattccg tctaacagcg 18720
caactatggg tgcccgtgag aagctatgga ctctggttca ggagttcgct gcgttactta 18780
aaccgctgcc ttcctctcgc gttatctacc ttggtacacc tcagacagag atgactctct 18840
ataaggaact tgaggataac cgtgggtaca caaccattat ctggcctgct ctgtacccaa 18900
ggacacgtga agagaacctc tattactcac agcgtcttgc tcctatgtta cgcgctgagt 18960
acgatgagaa ccctgaggca cttgctggga ctccaacaga cccagtgcgc tttgaccgtg 19020
atgacctgcg cgagcgtgag ttggaatacg gtaaggctgg ctttacgcta cagttcatgc 19080
ttaaccctaa ccttagtgat gccgagaagt acccgctgag gcttcgtgac gctatcgtag 19140
cggccttaga cttagagaag gccccaatgc attaccagtg gcttccgaac cgtcagaaca 19200
tcattgagga ccttcctaac gttggcctta agggtgatga cctgcatacg taccacgatt 19260
gttccaacaa ctcaggtcag taccaacaga agattctggt cattgaccct agtggtcgcg 19320
gtaaggacga aacaggttac gctgtgctgt acacactgaa cggttacatc taccttatgg 19380
aagctggagg tttccgtgat ggctactccg ataagaccct tgagttactc gctaagaagg 19440
caaagcaatg gggagtccag acggttgtct acgagagtaa cttcggtgac ggtatgttcg 19500
gtaaggtatt cagtcctatc cttcttaaac accacaactg tgcgatggaa gagattcgtg 19560
cccgtggtat gaaagagatg cgtatttgcg atacccttga gccagtcatg cagactcacc 19620
gccttgtaat tcgtgatgag gtcattaggg ccgactacca gtccgctcgt gacgtagacg 19680
gtaagcatga cgttaagtac tcgttgttct accagatgac ccgtatcact cgtgagaaag 19740
gcgctctggc tcatgatgac cgattggatg cccttgcgtt aggcattgag tatctccgtg 19800
agtccatgca gttggattcc gttaaagtag aaggcgaggt tttagcagat tttttagaag 19860
agcatatgat gcgcccaacc gtagcagcaa cccacattat cgaaatgagc gttggtggtg 19920
tggacgttta tagtgaagat gacgaaggct atggcaccag ctttatcgaa tggtaaggac 19980
caacataaag ggaggagact catgttccgc ttattgttga acctactgcg gcatagagtc 20040
acctaccgat ttcttgtggt actttgtgct gcccttgggt acgcatctct tactggagac 20100
ctcagttcac tggagtctgt cgtttgctct atactcactt gtagcgatta gggtcttcct 20160
gaccgactga tggctcaccg agggattcag cggtatgatt gcatcacacc acttcatccc 20220
tatagagtca agtcctaagg tatacccata aagagcctct aatggtctat cctaaggtct 20280
atacctaaag ataggccatc ctatcagtgt cacctaaaga gggtcttaga 20330
<210> 9
<211> 3555
<212> DNA
<213> artificial sequence
<220>
<223> payload pJ23115-GFP T7 cos 2.0
<400> 9
cctttaggga aatatgctaa gttttcaccg taacacgcca catcttgact atatatgtgt 60
agaaactgcc ggaaatcgtc gtggtattct gaccagagcg atgaaaacgt ttcagtttgc 120
tcatggaaaa cggtgtaaca agggtgaaca ctatcccata tcaccagctc accgtctttc 180
attgccatac gaaactccgg atgtgcattc atcaggcggg caagaatgtg aataaaggcc 240
ggataaaact tgtgcttatt tttctttacg gtttttaaaa aggccgtaat atccagctga 300
acggtttggt tataggtgca ctgagcaact gactggaatg cctcaaaatg ttctttacga 360
tgccattgac ttatatcaac tgtagtatat ccagtgattt ttttctccat tttagcttcc 420
ttagcttgcg aaatctcgat aactcaaaaa atagtagtga tcttatttca ttatggtgaa 480
agttgtctta cgtgcaacat tttcgcaaaa agttggcgct tgatttcagt gcaatttatc 540
tcttcaaatg tagcacttta tagctagctc agcccttggt acaatgctag cgttttcatt 600
aaagaggaga aaggaagcca tgagtaaagg tgaggaatta tttactggtg ttgttccgat 660
cttagttgaa ctggacggcg atgttaacgg tcataaattc agtgttcgtg gtgaaggtga 720
aggtgatgca accaacggta agctgaccct gaaattcatc tgcactactg gaaaattacc 780
agtaccgtgg cctactctgg tgactaccct gacctatggt gttcagtgtt tttctcgtta 840
ccctgaccac atgaagcaac atgatttctt caaatctgca atgccggaag gttatgtaca 900
ggagcgcacc atttctttca aagacgatgg cacgtataaa acccgtgcag aggttaaatt 960
tgaaggtgac actctggtga atcgtattga actgaaaggc attgatttca aagaggacgg 1020
caatatttta ggccacaaac tggaatataa cttcaactcc cataacgttt acatcaccgc 1080
agacaaacaa aagaacggta tcaaagctaa cttcaaaatt cgccataacg ttgaagacgg 1140
tagcgtacag ctggcggatc attaccaaca gaacactccg attggagatg ctcctgtttt 1200
actgccggat aaccactacc tgtccaccca gtctaaactg tcgaaggatc cgaacgaaaa 1260
gcgcgaccac atggtgttat tagagttcgt taccgctagt ggtatcacgc acggtatgga 1320
tgaactctac aaataagtca gtttcacctg ttttacgtta aaacccgctt cggcgggttt 1380
ttacttttgg gtttagccga acgccatagt acatgtaggt cgagggtgaa gtacttgctg 1440
acttccttga ggaacacatg atgcgtccta cggttgctgc tacgcatatc attgagatgt 1500
ctgtgggagg agttgatgtg tactctgagg acgatgaggg ttacggtacg tctttcattg 1560
agtggtgatt tatgcattag gactgcatag ggatgcacta tagaccacgg atggtcagtt 1620
ctttaagtta ctgaaaagac acgataaatt aatacgactc actataggga gaggagggac 1680
gaaaggttac tatatagata ctgaatgaat acttatagag tgcataaagt atgcataatg 1740
gtgtacctag agtgacctct aagaatggtg attatattgt attagtatca ccttaactta 1800
aggcgggatc gtcaccctca gcagcgaaag acagctgtcg gtcagagcgt cattgcgaag 1860
ctgagtgtga tcgatgccat cagcgaaggg cccaaactcc gagcgattaa gcgtttgctg 1920
gctgtcacgc ctgcctgttg cttgcttgga cttgcgatgt acgtgctcag ctgtctttcg 1980
ctgctgaggg tgacgatccc gcgagggcct atggagttcc tatagggtcc tttaaaatat 2040
accataaaaa tctgagtgac tatctcacag tgtacggacc taaagttccc ccataggggg 2100
tacctaaagc ccagccaatc acctaaagtc aaccttcggt tgaccttgag ggttccctaa 2160
gggttgggga tgacccttgg gtttgtcttt gggtgttacc ttgagtgtct ctctgtgtcc 2220
ctatctgtta cagtctccta aagtatcctc ctaaagtcac ctcctaacgt agaaatattt 2280
tatctgatta ataagatgat cttcttgaga tcgttttggt ctgcgcgtaa tctcttgctc 2340
tgaaaacgaa aaaaccgcct tgcagggcgg tttttcgaag gttctctgag ctaccaactc 2400
tttgaaccga ggtaactggc ttggaggagc gcagtcgcca aaacttgtcc tttcagttta 2460
gccttatccg gcgcatgact tcaagactaa ctcctctaaa tcaattacca gtggctgctg 2520
ccagtggtgc ttttgcatgt ctttccgggt tggactcaag acgatagtta ccggataagg 2580
cgcagcggtc ggactgaacg gggggttcgt gcatacagtc cagcttggag cgaactgcct 2640
acccggaact gagtgtcagg cgtggaatga gacaaactcg gccgtaacag aggaatgaca 2700
ccggcaaacc gaaaggcagg aacaggagag cgcacgaggg agccgccagg gggaaacgcc 2760
tggtatcttt atagtcctgt caggtttcgc caccactgat ttgagcgtca gatttcgtga 2820
tgcttgtcag gggggcggag cctatggaaa aacggctttg ccgcgaccct ctcacttccc 2880
tgttaagtat cttcctggca tcttccagga aatctccgcc ccgttcgtaa gccatttccg 2940
ctcgccacag tcgaacgacc gagcgtagcg agtcagtgag cgaggaagcg gaatatatcc 3000
tgtatcacat attctgctga cgcaccgatg cagccttttt tctcctgcca catgaagcac 3060
ttcacttaca ccctcatcag tgccaacata gtaagccagt atacactccg ctagcgcaga 3120
tgtccggcgg tgcttttgcc gttacgcact actttagtca gttccgcagt accgtcagta 3180
gctgaacagg agggacagtg ttgatatcgg gtagcaccag aagtctatag catgtgcata 3240
cctttggtcg aaaaaaaaag cccgcactgt caggtgcggg cttttttcag tgtttccttg 3300
ccggattacg ccccgccctg ccactcatcg cagtattgtt gtaattcatt aagcattctg 3360
ccgacatgga agccatcaca aacggcatga tgaacttgga tcgccagtgg cattaacacc 3420
ttgtcgcctt gcgtataata ttttcccata gtgaaaacgg gggcgaagaa gttgtccata 3480
tttgctacgt ttaaatcaaa actggtgaaa ctcacccagg gattggcact gacgaaaaac 3540
atattttcga taaac 3555
<210> 10
<211> 6594
<212> DNA
<213> artificial sequence
<220>
<223> p1884 plasmid
<400> 10
tcagatcctt ccgtatttag ccagtatgtt ctctagtgtg gttcgttgtt tttgcgtgag 60
ccatgagaac gaaccattga gatcatactt actttgcatg tcactcaaaa attttgcctc 120
aaaactggtg agctgaattt ttgcagttaa agcatcgtgt agtgtttttc ttagtccgtt 180
acgtaggtag gaatctgatg taatggttgt tggtattttg tcaccattca tttttatctg 240
gttgttctca agttcggtta cgagatccat ttgtctatct agttcaactt ggaaaatcaa 300
cgtatcagtc gggcggcctc gcttatcaac caccaatttc atattgctgt aagtgtttaa 360
atctttactt attggtttca aaacccattg gttaagcctt ttaaactcat ggtagttatt 420
ttcaagcatt aacatgaact taaattcatc aaggctaatc tctatatttg ccttgtgagt 480
tttcttttgt gttagttctt ttaataacca ctcataaatc ctcatagagt atttgttttc 540
aaaagactta acatgttcca gattatattt tatgaatttt tttaactgga aaagataagg 600
caatatctct tcactaaaaa ctaattctaa tttttcgctt gagaacttgg catagtttgt 660
ccactggaaa atctcaaagc ctttaaccaa aggattcctg atttccacag ttctcgtcat 720
cagctctctg gttgctttag ctaatacacc ataagcattt tccctactga tgttcatcat 780
ctgagcgtat tggttataag tgaacgatac cgtccgttct ttccttgtag ggttttcaat 840
cgtggggttg agtagtgcca cacagcataa aattagcttg gtttcatgct ccgttaagtc 900
atagcgacta atcgctagtt catttgcttt gaaaacaact aattcagaca tacatctcaa 960
ttggtctagg tgattttaat cactatacca attgagatgg gctagtcaat gataattact 1020
agtccttttc ctttgagttg tgggtatctg taaattctgc tagacctttg ctggaaaact 1080
tgtaaattct gctagaccct ctgtaaattc cgctagacct ttgtgtgttt tttttgttta 1140
tattcaagtg gttataattt atagaataaa gaaagaataa aaaaagataa aaagaataga 1200
tcccagccct gtgtataact cactacttta gtcagttccg cagtattaca aaaggatgtc 1260
gcaaacgctg tttgctcctc tacaaaacag accttaaaac cctaaaggct taagtagcac 1320
cctcgcaagc tcggttgcgg ccgcaatcgg gcaaatcgct gaatattcct tttgtctccg 1380
accatcaggc acctgagtcg ctgtcttttt cgtgacattc agttcgctgc gctcacggct 1440
ctggcagtga atgggggtaa atggcactac aggcgccttt tatggattca tgcaaggaaa 1500
ctacccataa tacaagaaaa gcccgtcacg ggcttctcag ggcgttttat ggcgggtctg 1560
ctatgtggtg ctatctgact ttttgctgtt cagcagttcc tgccctctga ttttccagtc 1620
tgaccacttc ggattatccc gtgacaggtc attcagactg gctaatgcac ccagtaaggc 1680
agcggtatca tcaacggggt ctgacgctca gtggaacgaa aactcacgtt aagggatttt 1740
ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaattaaa aatgaagttt 1800
taaatcaatc taaagtatat atgagtaaac ttggtctgac agttacgttt ccacaaccaa 1860
ttaaccaatt ctgatttaga aaaactcatc gagcatcaaa tgaaactgca atttattcat 1920
atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag gagaaaactc 1980
accgaggcag ttccatagga tggcaagatc ctggtatcgg tctgcgattc cgactcgtcc 2040
aacatcaata caacctatta atttcccctc gtcaaaaata aggttatcaa gtgagaaatc 2100
accatgagtg acgactgaat ccggtgagaa tggcaaaagc ttatgcattt ctttccagac 2160
ttgttcaaca ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa ccaaaccgtt 2220
attcattcgt gattgcgcct gagcgagacg aaatacgcga tcgctgttaa aaggacaatt 2280
acaaacagga atcgaatgca accggcgcag gaacactgcc agcgcatcaa caatattttc 2340
acctgaatca ggatattctt ctaatacctg gaatgctgtt ttcccgggga tcgcagtggt 2400
gagtaaccat gcatcatcag gagtacggat aaaatgcttg atggtcggaa gaggcataaa 2460
ttccgtcagc cagtttagtc tgaccatctc atctgtaaca tcattggcaa cgctaccttt 2520
gccatgtttc agaaacaact ctggcgcatc gggcttccca tacaatcgat agattgtcgc 2580
acctgattgc ccgacattat cgcgagccca tttataccca tataaatcag catccatgtt 2640
ggaatttaat cgcggcctcg agcaagacgt ttcccgttga atatggctca taacacccct 2700
tgtattactg tttatgtaag cagacagttt tattgttcat gatgatatat ttttatcttg 2760
tgcaatgtaa catcagagat tttgagacac aacgtggctt tccctgcagg atttcggagg 2820
cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg agctgatacc 2880
gctcgccgca gccgaacgcc gactagtgga ttttacggct agctcagtcc taggtacaat 2940
gctagcgaat tcattaaaga ggagaaaggt acccatggca cgtaccccga gccgtagcag 3000
cattggtagc ctgcgtagtc cgcataccca taaagcaatt ctgaccagca ccattgaaat 3060
cctgaaagaa tgtggttata gcggtctgag cattgaaagc gttgcacgtc gtgccggtgc 3120
aagcaaaccg accatttatc gttggtggac caataaagca gcactgattg ccgaagtgta 3180
tgaaaatgaa agcgaacagg tgcgtaaatt tccggatctg ggtagcttta aagccgatct 3240
ggattttctg ctgcgtaatc tgtggaaagt ttggcgtgaa accatttgtg gtgaagcatt 3300
tcgttgtgtt attgcagaag cacagctgga ccctgcaacc ctgacccagc tgaaagatca 3360
gtttatggaa cgtcgtcgtg agatgccgaa aaaactggtt gaaaatgcca ttagcaatgg 3420
tgaactgccg aaagatacca atcgtgaact gctgctggat atgatttttg gtttttgttg 3480
gtatcgcctg ctgaccgaac agctgaccgt tgaacaggat attgaagaat ttaccttcct 3540
gctaattaat ggtgtttgtc cgggtacaca gcgttaacta gggcccatac ccccaattat 3600
tgaaggccgc taacgcggcc tttttttgtt tctggtctgc ccgacgtacg gtgaatctga 3660
ttcgttacca attgacatga tacgaaacgt accgtatcgt taaggtattt actaactgga 3720
agaggcacta aatgaacacg attaacatcg ctaagaacga cttctctgac atcgaactgg 3780
ctgctatccc gttcaacact ctggctgacc attacggtga gcgtttagct cgcgaacagt 3840
tggcccttga gcatgagtct tacgagatgg gtgaagcacg cttccgcaag atgtttgagc 3900
gtcaacttaa agctggtgag gttgcggata acgctgccgc caagcctctc atcactaccc 3960
tactccctaa gatgattgca cgcatcaacg actggtttga ggaagtgaaa gctaagcgcg 4020
gcaagcgccc gacagccttc cagttcctgc aagaaatcaa gccggaagcc gtagcgtaca 4080
tcaccattaa gaccactctg gcttgcctaa ccagtgctga caatacaacc gttcaggctg 4140
tagcaagcgc aatcggtcgg gccattgagg acgaggctcg cttcggtcgt atccgtgacc 4200
ttgaagctaa gcacttcaag aaaaacgttg aggaacaact caacaagcgc gtagggcacg 4260
tctacaagaa agcatttatg caagttgtcg aggctgacat gctctctaag ggtctactcg 4320
gtggcgaggc gtggtcttcg tggcataagg aagactctat tcatgtagga gtacgctgca 4380
tcgagatgct cattgagtca accggaatgg ttagcttaca ccgccaaaat gctggcgtag 4440
taggtcaaga ctctgagact atcgaactcg cacctgaata cgctgaggct atcgcaaccc 4500
gtgcaggtgc gctggctggc atctctccga tgttccaacc ttgcgtagtt cctcctaagc 4560
cgtggactgg cattactggt ggtggctatt gggctaacgg tcgtcgtcct ctggcgctgg 4620
tgcgtactca cagtaagaaa gcactgatgc gctacgaaga cgtttacatg cctgaggtgt 4680
acaaagcgat taacattgcg caaaacaccg catggaaaat caacaagaaa gtcctagcgg 4740
tcgccaacgt aatcaccaag tggaagcatt gtccggtcga ggacatccct gcgattgagc 4800
gtgaagaact cccgatgaaa ccggaagaca tcgacatgaa tcctgaggct ctcaccgcgt 4860
ggaaacgtgc tgccgctgct gtgtaccgca aggacaaggc tcgcaagtct cgccgtatca 4920
gccttgagtt catgcttgag caagccaata agtttgctaa ccataaggcc atctggttcc 4980
cttacaacat ggactggcgc ggtcgtgttt acgctgtgtc aatgttcaac ccgcaaggta 5040
acgatatgac caaaggactg cttacgctgg cgaaaggtaa accaatcggt aaggaaggtt 5100
actactggct gaaaatccac ggtgcaaact gtgcgggtgt cgataaggtt ccgttccctg 5160
agcgcatcaa gttcattgag gaaaaccacg agaacatcat ggcttgcgct aagtctccac 5220
tggagaacac ttggtgggct gagcaagatt ctccgttctg cttccttgcg ttctgctttg 5280
agtacgctgg ggtacagcac cacggcctga gctataactg ctcccttccg ctggcgtttg 5340
acgggtcttg ctctggcatc cagcacttct ccgcgatgct ccgagatgag gtaggtggtc 5400
gcgcggttaa cttgcttcct agtgaaaccg ttcaggacat ctacgggatt gttgctaaga 5460
aagtcaacga gattctacaa gcagacgcaa tcaatgggac cgataacgaa gtagttaccg 5520
tgaccgatga gaacactggt gaaatctctg agaaagtcaa gctgggcact aaggcactgg 5580
ctggtcaatg gctggcttac ggtgttactc gcagtgtgac taagcgttca gtcatgacgc 5640
tggcttacgg gtccaaagag ttcggcttcc gtcaacaagt gctggaagat accattcagc 5700
cagctattga ttccggcaag ggtctgatgt tcactcagcc gaatcaggct gctggataca 5760
tggctaagct gatttgggaa tctgtgagcg tgacggtggt agctgcggtt gaagcaatga 5820
actggcttaa gtctgctgct aagctgctgg ctgctgaggt caaagataag aagactggag 5880
agattcttcg caagcgttgc gctgtgcatt gggtaactcc tgatggtttc cctgtgtggc 5940
aggaatacaa gaagcctatt cagacgcgct tgaacctgat gttcctcggt cagttccgct 6000
tacagcctac cattaacacc aacaaagata gcgagattga tgcacacaaa caggagtctg 6060
gtatcgctcc taactttgta cacagccaag acggtagcca ccttcgtaag actgtagtgt 6120
gggcacacga gaagtacgga atcgaatctt ttgcactgat tcacgactcc ttcggtacca 6180
ttccggctga cgctgcgaac ctgttcaaag cagtgcgcga aactatggtt gacacatatg 6240
agtcttgtga tgtactggct gatttctacg accagttcgc tgaccagttg cacgagtctc 6300
aattggacaa aatgccagca cttccggcta aaggtaactt gaacctccgt gacatcttag 6360
agtcggactt cgcgttcgcg gcggctaacg acgagaacta cgctgcggca gtgtaataat 6420
gacgcatcct cacgataata tccgggtagg acgaacaata aggccgcaaa tcgcggcctt 6480
ttttattgat aacaaaagga cagttttccc tttgatatgt aacggtgaac agttgttcta 6540
cttttgtttg ttagtcttga tgcttcactg atagatacaa gagccataag aacc 6594
<210> 11
<211> 6594
<212> DNA
<213> artificial sequence
<220>
<223> p1885 plasmid
<400> 11
tcagatcctt ccgtatttag ccagtatgtt ctctagtgtg gttcgttgtt tttgcgtgag 60
ccatgagaac gaaccattga gatcatactt actttgcatg tcactcaaaa attttgcctc 120
aaaactggtg agctgaattt ttgcagttaa agcatcgtgt agtgtttttc ttagtccgtt 180
acgtaggtag gaatctgatg taatggttgt tggtattttg tcaccattca tttttatctg 240
gttgttctca agttcggtta cgagatccat ttgtctatct agttcaactt ggaaaatcaa 300
cgtatcagtc gggcggcctc gcttatcaac caccaatttc atattgctgt aagtgtttaa 360
atctttactt attggtttca aaacccattg gttaagcctt ttaaactcat ggtagttatt 420
ttcaagcatt aacatgaact taaattcatc aaggctaatc tctatatttg ccttgtgagt 480
tttcttttgt gttagttctt ttaataacca ctcataaatc ctcatagagt atttgttttc 540
aaaagactta acatgttcca gattatattt tatgaatttt tttaactgga aaagataagg 600
caatatctct tcactaaaaa ctaattctaa tttttcgctt gagaacttgg catagtttgt 660
ccactggaaa atctcaaagc ctttaaccaa aggattcctg atttccacag ttctcgtcat 720
cagctctctg gttgctttag ctaatacacc ataagcattt tccctactga tgttcatcat 780
ctgagcgtat tggttataag tgaacgatac cgtccgttct ttccttgtag ggttttcaat 840
cgtggggttg agtagtgcca cacagcataa aattagcttg gtttcatgct ccgttaagtc 900
atagcgacta atcgctagtt catttgcttt gaaaacaact aattcagaca tacatctcaa 960
ttggtctagg tgattttaat cactatacca attgagatgg gctagtcaat gataattact 1020
agtccttttc ctttgagttg tgggtatctg taaattctgc tagacctttg ctggaaaact 1080
tgtaaattct gctagaccct ctgtaaattc cgctagacct ttgtgtgttt tttttgttta 1140
tattcaagtg gttataattt atagaataaa gaaagaataa aaaaagataa aaagaataga 1200
tcccagccct gtgtataact cactacttta gtcagttccg cagtattaca aaaggatgtc 1260
gcaaacgctg tttgctcctc tacaaaacag accttaaaac cctaaaggct taagtagcac 1320
cctcgcaagc tcggttgcgg ccgcaatcgg gcaaatcgct gaatattcct tttgtctccg 1380
accatcaggc acctgagtcg ctgtcttttt cgtgacattc agttcgctgc gctcacggct 1440
ctggcagtga atgggggtaa atggcactac aggcgccttt tatggattca tgcaaggaaa 1500
ctacccataa tacaagaaaa gcccgtcacg ggcttctcag ggcgttttat ggcgggtctg 1560
ctatgtggtg ctatctgact ttttgctgtt cagcagttcc tgccctctga ttttccagtc 1620
tgaccacttc ggattatccc gtgacaggtc attcagactg gctaatgcac ccagtaaggc 1680
agcggtatca tcaacggggt ctgacgctca gtggaacgaa aactcacgtt aagggatttt 1740
ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaattaaa aatgaagttt 1800
taaatcaatc taaagtatat atgagtaaac ttggtctgac agttacgttt ccacaaccaa 1860
ttaaccaatt ctgatttaga aaaactcatc gagcatcaaa tgaaactgca atttattcat 1920
atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag gagaaaactc 1980
accgaggcag ttccatagga tggcaagatc ctggtatcgg tctgcgattc cgactcgtcc 2040
aacatcaata caacctatta atttcccctc gtcaaaaata aggttatcaa gtgagaaatc 2100
accatgagtg acgactgaat ccggtgagaa tggcaaaagc ttatgcattt ctttccagac 2160
ttgttcaaca ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa ccaaaccgtt 2220
attcattcgt gattgcgcct gagcgagacg aaatacgcga tcgctgttaa aaggacaatt 2280
acaaacagga atcgaatgca accggcgcag gaacactgcc agcgcatcaa caatattttc 2340
acctgaatca ggatattctt ctaatacctg gaatgctgtt ttcccgggga tcgcagtggt 2400
gagtaaccat gcatcatcag gagtacggat aaaatgcttg atggtcggaa gaggcataaa 2460
ttccgtcagc cagtttagtc tgaccatctc atctgtaaca tcattggcaa cgctaccttt 2520
gccatgtttc agaaacaact ctggcgcatc gggcttccca tacaatcgat agattgtcgc 2580
acctgattgc ccgacattat cgcgagccca tttataccca tataaatcag catccatgtt 2640
ggaatttaat cgcggcctcg agcaagacgt ttcccgttga atatggctca taacacccct 2700
tgtattactg tttatgtaag cagacagttt tattgttcat gatgatatat ttttatcttg 2760
tgcaatgtaa catcagagat tttgagacac aacgtggctt tccctgcagg atttcggagg 2820
cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg agctgatacc 2880
gctcgccgca gccgaacgcc gactagtgga ttttacggct agctcagtcc taggtacaat 2940
gctagcgaat tcattaaaga ggagaaaggt acccatggca cgtaccccga gccgtagcag 3000
cattggtagc ctgcgtagtc cgcataccca taaagcaatt ctgaccagca ccattgaaat 3060
cctgaaagaa tgtggttata gcggtctgag cattgaaagc gttgcacgtc gtgccggtgc 3120
aagcaaaccg accatttatc gttggtggac caataaagca gcactgattg ccgaagtgta 3180
tgaaaatgaa agcgaacagg tgcgtaaatt tccggatctg ggtagcttta aagccgatct 3240
ggattttctg ctgcgtaatc tgtggaaagt ttggcgtgaa accatttgtg gtgaagcatt 3300
tcgttgtgtt attgcagaag cacagctgga ccctgcaacc ctgacccagc tgaaagatca 3360
gtttatggaa cgtcgtcgtg agatgccgaa aaaactggtt gaaaatgcca ttagcaatgg 3420
tgaactgccg aaagatacca atcgtgaact gctgctggat atgatttttg gtttttgttg 3480
gtatcgcctg ctgaccgaac agctgaccgt tgaacaggat attgaagaat ttaccttcct 3540
gctaattaat ggtgtttgtc cgggtacaca gcgttaacta gggcccatac ccccaattat 3600
tgaaggccgc taacgcggcc tttttttgtt tctggtctgc ccgacgtacg gtgaatctga 3660
ttcgttacca attgacatga tacgaaacgt accgtatcgt taaggtattt actaactgga 3720
agaggcacta aatgaacacg attaacatcg ctaagaacga cttctctgac atcgaactgg 3780
ctgctatccc gttcaacact ctggctgacc attacggtga gcgtttagct cgcgaacagt 3840
tggcccttga gcatgagtct tacgagatgg gtgaagcacg cttccgcaag atgtttgagc 3900
gtcaacttaa agctggtgag gttgcggata acgctgccgc caagcctctc atcactaccc 3960
tactccctaa gatgattgca cgcatcaacg actggtttga ggaagtgaaa gctaagcgcg 4020
gcaagcgccc gacagccttc cagttcctgc aagaaatcaa gccggaagcc gtagcgtaca 4080
tcaccattaa gaccactctg gcttgcctaa ccagtgctga caatacaacc gttcaggctg 4140
tagcaagcgc aatcggtcgg gccattgagg acgaggctcg cttcggtcgt atccgtgacc 4200
ttgaagctaa gcacttcaag aaaaacgttg aggaacaact caacaagcgc gtagggcacg 4260
tctacaagaa agcatttatg caagttgtcg aggctgacat gctctctaag ggtctactcg 4320
gtggcgaggc gtggtcttcg tggcataagg aagactctat tcatgtagga gtacgctgca 4380
tcgagatgct cattgagtca accggaatgg ttagcttaca ccgccaaaat gctggcgtag 4440
taggtcaaga ctctgagact atcgaactcg cacctgaata cgctgaggct atcgcaaccc 4500
gtgcaggtgc gctggctggc atctctccga tgttccaacc ttgcgtagtt cctcctaagc 4560
cgtggactgg cattactggt ggtggctatt gggctaacgg tcgtcgtcct ctggcgctgg 4620
tgcgtactca cagtaagaaa gcactgatgc gctacgaaga cgtttacatg cctgaggtgt 4680
acaaagcgat taacattgcg caaaacaccg catggaaaat caacaagaaa gtcctagcgg 4740
tcgccaacgt aatcaccaag tggaagcatt gtccggtcga ggacatccct gcgattgagc 4800
gtgaagaact cccgatgaaa ccggaagaca tcgacatgaa tcctgaggct ctcaccgcgt 4860
ggaaacgtgc tgccgctgct gtgtaccgca aggacaaggc tcgcaagtct cgccgtatca 4920
gccttgagtt catgcttgag caagccaata agtttgctaa ccataaggcc atctggttcc 4980
cttacaacat ggactggcgc ggtcgtgttt acgctgtgtc aatgttcaac ccgcaaggta 5040
acgatatgac caaaggactg cttacgctgg cgaaaggtaa accaatcggt aaggaaggtt 5100
actactggct gaaaatccac ggtgcaaact gtgcgggtgt cgataaggtt ccgttccctg 5160
agcgcatcaa gttcattgag gaaaaccacg agaacatcat ggcttgcgct aagtctccac 5220
tggagaacac ttggtgggct gagcaagatt ctccgttctg cttccttgcg ttctgctttg 5280
agtacgctgg ggtacagcac cacggcctga gctataactg ctcccttccg ctggcgtttg 5340
acgggtcttg ctctggcatc cagcacttct ccgcgatgct ccgagatgag gtaggtggtc 5400
gcgcggttaa cttgcttcct agtgaaaccg ttcaggacat ctacgggatt gttgctaaga 5460
aagtcaacga gattctacaa gcagacgcaa tcaatgggac cgataacgaa gtagttaccg 5520
tgaccgatga gaacactggt gaaatctctg agaaagtcaa gctgggcact aaggcactgg 5580
ctggtcaatg gctggcttac ggtgttactc gcagtgtgac taagcgttca gtcatgacgc 5640
tggcttacgg gtccaaagag ttcggcttcc gtcaacaagt gctggaagat accattcagc 5700
cagctattga ttccggcaag ggtctgatgt tcactcagcc gaatcaggct gctggataca 5760
tggctaagct gatttgggaa tctgtgagcg tgacggtggt agctgcggtt gaagcaatga 5820
actggcttaa gtctgctgct aagctgctgg ctgctgaggt caaagataag aagactggag 5880
agattcttcg caagcgttgc gctgtgcatt gggtaactcc tgatggtttc cctgtgtggc 5940
aggaatacaa gaagcctatt cagacgcgct tgaacctgat gttcctcggt cagttccgct 6000
tacagcctac cattaacacc aacaaagata gcgagattga tgcacacaaa caggagtctg 6060
gtatcgctcc taactttgta cacagccaag acggtagcca ccttcgtaag actgtagtgt 6120
gggcacacga gaagtacgga atcgaatctt ttgcactgat tcacgactcc ttcggtacca 6180
ttccggctga cgctgcgaac ctgttcaaag cagtgcgcga aactatggtt gacacatatg 6240
agtcttgtga tgtactggct gatttctacg accagttcgc tgaccagttg cacgagtctc 6300
aattggacaa aatgccagca cttccggcta aaggtaactt gaacctccgt gacatcttag 6360
agtcggactt cgcgttcgcg gcagcgaacg acgaaaacta tgccctggta gcctaataat 6420
gacgcatcct cacgataata tccgggtagg acgaacaata aggccgcaaa tcgcggcctt 6480
ttttattgat aacaaaagga cagttttccc tttgatatgt aacggtgaac agttgttcta 6540
cttttgtttg ttagtcttga tgcttcactg atagatacaa gagccataag aacc 6594
<210> 12
<211> 2682
<212> DNA
<213> artificial sequence
<220>
<223> T7 RNA polymerase version AAV
<400> 12
atgaacacga ttaacatcgc taagaacgac ttctctgaca tcgaactggc tgctatcccg 60
ttcaacactc tggctgacca ttacggtgag cgtttagctc gcgaacagtt ggcccttgag 120
catgagtctt acgagatggg tgaagcacgc ttccgcaaga tgtttgagcg tcaacttaaa 180
gctggtgagg ttgcggataa cgctgccgcc aagcctctca tcactaccct actccctaag 240
atgattgcac gcatcaacga ctggtttgag gaagtgaaag ctaagcgcgg caagcgcccg 300
acagccttcc agttcctgca agaaatcaag ccggaagccg tagcgtacat caccattaag 360
accactctgg cttgcctaac cagtgctgac aatacaaccg ttcaggctgt agcaagcgca 420
atcggtcggg ccattgagga cgaggctcgc ttcggtcgta tccgtgacct tgaagctaag 480
cacttcaaga aaaacgttga ggaacaactc aacaagcgcg tagggcacgt ctacaagaaa 540
gcatttatgc aagttgtcga ggctgacatg ctctctaagg gtctactcgg tggcgaggcg 600
tggtcttcgt ggcataagga agactctatt catgtaggag tacgctgcat cgagatgctc 660
attgagtcaa ccggaatggt tagcttacac cgccaaaatg ctggcgtagt aggtcaagac 720
tctgagacta tcgaactcgc acctgaatac gctgaggcta tcgcaacccg tgcaggtgcg 780
ctggctggca tctctccgat gttccaacct tgcgtagttc ctcctaagcc gtggactggc 840
attactggtg gtggctattg ggctaacggt cgtcgtcctc tggcgctggt gcgtactcac 900
agtaagaaag cactgatgcg ctacgaagac gtttacatgc ctgaggtgta caaagcgatt 960
aacattgcgc aaaacaccgc atggaaaatc aacaagaaag tcctagcggt cgccaacgta 1020
atcaccaagt ggaagcattg tccggtcgag gacatccctg cgattgagcg tgaagaactc 1080
ccgatgaaac cggaagacat cgacatgaat cctgaggctc tcaccgcgtg gaaacgtgct 1140
gccgctgctg tgtaccgcaa ggacaaggct cgcaagtctc gccgtatcag ccttgagttc 1200
atgcttgagc aagccaataa gtttgctaac cataaggcca tctggttccc ttacaacatg 1260
gactggcgcg gtcgtgttta cgctgtgtca atgttcaacc cgcaaggtaa cgatatgacc 1320
aaaggactgc ttacgctggc gaaaggtaaa ccaatcggta aggaaggtta ctactggctg 1380
aaaatccacg gtgcaaactg tgcgggtgtc gataaggttc cgttccctga gcgcatcaag 1440
ttcattgagg aaaaccacga gaacatcatg gcttgcgcta agtctccact ggagaacact 1500
tggtgggctg agcaagattc tccgttctgc ttccttgcgt tctgctttga gtacgctggg 1560
gtacagcacc acggcctgag ctataactgc tcccttccgc tggcgtttga cgggtcttgc 1620
tctggcatcc agcacttctc cgcgatgctc cgagatgagg taggtggtcg cgcggttaac 1680
ttgcttccta gtgaaaccgt tcaggacatc tacgggattg ttgctaagaa agtcaacgag 1740
attctacaag cagacgcaat caatgggacc gataacgaag tagttaccgt gaccgatgag 1800
aacactggtg aaatctctga gaaagtcaag ctgggcacta aggcactggc tggtcaatgg 1860
ctggcttacg gtgttactcg cagtgtgact aagcgttcag tcatgacgct ggcttacggg 1920
tccaaagagt tcggcttccg tcaacaagtg ctggaagata ccattcagcc agctattgat 1980
tccggcaagg gtctgatgtt cactcagccg aatcaggctg ctggatacat ggctaagctg 2040
atttgggaat ctgtgagcgt gacggtggta gctgcggttg aagcaatgaa ctggcttaag 2100
tctgctgcta agctgctggc tgctgaggtc aaagataaga agactggaga gattcttcgc 2160
aagcgttgcg ctgtgcattg ggtaactcct gatggtttcc ctgtgtggca ggaatacaag 2220
aagcctattc agacgcgctt gaacctgatg ttcctcggtc agttccgctt acagcctacc 2280
attaacacca acaaagatag cgagattgat gcacacaaac aggagtctgg tatcgctcct 2340
aactttgtac acagccaaga cggtagccac cttcgtaaga ctgtagtgtg ggcacacgag 2400
aagtacggaa tcgaatcttt tgcactgatt cacgactcct tcggtaccat tccggctgac 2460
gctgcgaacc tgttcaaagc agtgcgcgaa actatggttg acacatatga gtcttgtgat 2520
gtactggctg atttctacga ccagttcgct gaccagttgc acgagtctca attggacaaa 2580
atgccagcac ttccggctaa aggtaacttg aacctccgtg acatcttaga gtcggacttc 2640
gcgttcgcgg cggctaacga cgagaactac gctgcggcag tg 2682
<210> 13
<211> 894
<212> PRT
<213> artificial sequence
<220>
<223> T7 RNA polymerase version AAV
<400> 13
Met Asn Thr Ile Asn Ile Ala Lys Asn Asp Phe Ser Asp Ile Glu Leu
1 5 10 15
Ala Ala Ile Pro Phe Asn Thr Leu Ala Asp His Tyr Gly Glu Arg Leu
20 25 30
Ala Arg Glu Gln Leu Ala Leu Glu His Glu Ser Tyr Glu Met Gly Glu
35 40 45
Ala Arg Phe Arg Lys Met Phe Glu Arg Gln Leu Lys Ala Gly Glu Val
50 55 60
Ala Asp Asn Ala Ala Ala Lys Pro Leu Ile Thr Thr Leu Leu Pro Lys
65 70 75 80
Met Ile Ala Arg Ile Asn Asp Trp Phe Glu Glu Val Lys Ala Lys Arg
85 90 95
Gly Lys Arg Pro Thr Ala Phe Gln Phe Leu Gln Glu Ile Lys Pro Glu
100 105 110
Ala Val Ala Tyr Ile Thr Ile Lys Thr Thr Leu Ala Cys Leu Thr Ser
115 120 125
Ala Asp Asn Thr Thr Val Gln Ala Val Ala Ser Ala Ile Gly Arg Ala
130 135 140
Ile Glu Asp Glu Ala Arg Phe Gly Arg Ile Arg Asp Leu Glu Ala Lys
145 150 155 160
His Phe Lys Lys Asn Val Glu Glu Gln Leu Asn Lys Arg Val Gly His
165 170 175
Val Tyr Lys Lys Ala Phe Met Gln Val Val Glu Ala Asp Met Leu Ser
180 185 190
Lys Gly Leu Leu Gly Gly Glu Ala Trp Ser Ser Trp His Lys Glu Asp
195 200 205
Ser Ile His Val Gly Val Arg Cys Ile Glu Met Leu Ile Glu Ser Thr
210 215 220
Gly Met Val Ser Leu His Arg Gln Asn Ala Gly Val Val Gly Gln Asp
225 230 235 240
Ser Glu Thr Ile Glu Leu Ala Pro Glu Tyr Ala Glu Ala Ile Ala Thr
245 250 255
Arg Ala Gly Ala Leu Ala Gly Ile Ser Pro Met Phe Gln Pro Cys Val
260 265 270
Val Pro Pro Lys Pro Trp Thr Gly Ile Thr Gly Gly Gly Tyr Trp Ala
275 280 285
Asn Gly Arg Arg Pro Leu Ala Leu Val Arg Thr His Ser Lys Lys Ala
290 295 300
Leu Met Arg Tyr Glu Asp Val Tyr Met Pro Glu Val Tyr Lys Ala Ile
305 310 315 320
Asn Ile Ala Gln Asn Thr Ala Trp Lys Ile Asn Lys Lys Val Leu Ala
325 330 335
Val Ala Asn Val Ile Thr Lys Trp Lys His Cys Pro Val Glu Asp Ile
340 345 350
Pro Ala Ile Glu Arg Glu Glu Leu Pro Met Lys Pro Glu Asp Ile Asp
355 360 365
Met Asn Pro Glu Ala Leu Thr Ala Trp Lys Arg Ala Ala Ala Ala Val
370 375 380
Tyr Arg Lys Asp Lys Ala Arg Lys Ser Arg Arg Ile Ser Leu Glu Phe
385 390 395 400
Met Leu Glu Gln Ala Asn Lys Phe Ala Asn His Lys Ala Ile Trp Phe
405 410 415
Pro Tyr Asn Met Asp Trp Arg Gly Arg Val Tyr Ala Val Ser Met Phe
420 425 430
Asn Pro Gln Gly Asn Asp Met Thr Lys Gly Leu Leu Thr Leu Ala Lys
435 440 445
Gly Lys Pro Ile Gly Lys Glu Gly Tyr Tyr Trp Leu Lys Ile His Gly
450 455 460
Ala Asn Cys Ala Gly Val Asp Lys Val Pro Phe Pro Glu Arg Ile Lys
465 470 475 480
Phe Ile Glu Glu Asn His Glu Asn Ile Met Ala Cys Ala Lys Ser Pro
485 490 495
Leu Glu Asn Thr Trp Trp Ala Glu Gln Asp Ser Pro Phe Cys Phe Leu
500 505 510
Ala Phe Cys Phe Glu Tyr Ala Gly Val Gln His His Gly Leu Ser Tyr
515 520 525
Asn Cys Ser Leu Pro Leu Ala Phe Asp Gly Ser Cys Ser Gly Ile Gln
530 535 540
His Phe Ser Ala Met Leu Arg Asp Glu Val Gly Gly Arg Ala Val Asn
545 550 555 560
Leu Leu Pro Ser Glu Thr Val Gln Asp Ile Tyr Gly Ile Val Ala Lys
565 570 575
Lys Val Asn Glu Ile Leu Gln Ala Asp Ala Ile Asn Gly Thr Asp Asn
580 585 590
Glu Val Val Thr Val Thr Asp Glu Asn Thr Gly Glu Ile Ser Glu Lys
595 600 605
Val Lys Leu Gly Thr Lys Ala Leu Ala Gly Gln Trp Leu Ala Tyr Gly
610 615 620
Val Thr Arg Ser Val Thr Lys Arg Ser Val Met Thr Leu Ala Tyr Gly
625 630 635 640
Ser Lys Glu Phe Gly Phe Arg Gln Gln Val Leu Glu Asp Thr Ile Gln
645 650 655
Pro Ala Ile Asp Ser Gly Lys Gly Leu Met Phe Thr Gln Pro Asn Gln
660 665 670
Ala Ala Gly Tyr Met Ala Lys Leu Ile Trp Glu Ser Val Ser Val Thr
675 680 685
Val Val Ala Ala Val Glu Ala Met Asn Trp Leu Lys Ser Ala Ala Lys
690 695 700
Leu Leu Ala Ala Glu Val Lys Asp Lys Lys Thr Gly Glu Ile Leu Arg
705 710 715 720
Lys Arg Cys Ala Val His Trp Val Thr Pro Asp Gly Phe Pro Val Trp
725 730 735
Gln Glu Tyr Lys Lys Pro Ile Gln Thr Arg Leu Asn Leu Met Phe Leu
740 745 750
Gly Gln Phe Arg Leu Gln Pro Thr Ile Asn Thr Asn Lys Asp Ser Glu
755 760 765
Ile Asp Ala His Lys Gln Glu Ser Gly Ile Ala Pro Asn Phe Val His
770 775 780
Ser Gln Asp Gly Ser His Leu Arg Lys Thr Val Val Trp Ala His Glu
785 790 795 800
Lys Tyr Gly Ile Glu Ser Phe Ala Leu Ile His Asp Ser Phe Gly Thr
805 810 815
Ile Pro Ala Asp Ala Ala Asn Leu Phe Lys Ala Val Arg Glu Thr Met
820 825 830
Val Asp Thr Tyr Glu Ser Cys Asp Val Leu Ala Asp Phe Tyr Asp Gln
835 840 845
Phe Ala Asp Gln Leu His Glu Ser Gln Leu Asp Lys Met Pro Ala Leu
850 855 860
Pro Ala Lys Gly Asn Leu Asn Leu Arg Asp Ile Leu Glu Ser Asp Phe
865 870 875 880
Ala Phe Ala Ala Ala Asn Asp Glu Asn Tyr Ala Ala Ala Val
885 890
<210> 14
<211> 2682
<212> DNA
<213> artificial sequence
<220>
<223> T7 RNA polymerase version LVA
<400> 14
atgaacacga ttaacatcgc taagaacgac ttctctgaca tcgaactggc tgctatcccg 60
ttcaacactc tggctgacca ttacggtgag cgtttagctc gcgaacagtt ggcccttgag 120
catgagtctt acgagatggg tgaagcacgc ttccgcaaga tgtttgagcg tcaacttaaa 180
gctggtgagg ttgcggataa cgctgccgcc aagcctctca tcactaccct actccctaag 240
atgattgcac gcatcaacga ctggtttgag gaagtgaaag ctaagcgcgg caagcgcccg 300
acagccttcc agttcctgca agaaatcaag ccggaagccg tagcgtacat caccattaag 360
accactctgg cttgcctaac cagtgctgac aatacaaccg ttcaggctgt agcaagcgca 420
atcggtcggg ccattgagga cgaggctcgc ttcggtcgta tccgtgacct tgaagctaag 480
cacttcaaga aaaacgttga ggaacaactc aacaagcgcg tagggcacgt ctacaagaaa 540
gcatttatgc aagttgtcga ggctgacatg ctctctaagg gtctactcgg tggcgaggcg 600
tggtcttcgt ggcataagga agactctatt catgtaggag tacgctgcat cgagatgctc 660
attgagtcaa ccggaatggt tagcttacac cgccaaaatg ctggcgtagt aggtcaagac 720
tctgagacta tcgaactcgc acctgaatac gctgaggcta tcgcaacccg tgcaggtgcg 780
ctggctggca tctctccgat gttccaacct tgcgtagttc ctcctaagcc gtggactggc 840
attactggtg gtggctattg ggctaacggt cgtcgtcctc tggcgctggt gcgtactcac 900
agtaagaaag cactgatgcg ctacgaagac gtttacatgc ctgaggtgta caaagcgatt 960
aacattgcgc aaaacaccgc atggaaaatc aacaagaaag tcctagcggt cgccaacgta 1020
atcaccaagt ggaagcattg tccggtcgag gacatccctg cgattgagcg tgaagaactc 1080
ccgatgaaac cggaagacat cgacatgaat cctgaggctc tcaccgcgtg gaaacgtgct 1140
gccgctgctg tgtaccgcaa ggacaaggct cgcaagtctc gccgtatcag ccttgagttc 1200
atgcttgagc aagccaataa gtttgctaac cataaggcca tctggttccc ttacaacatg 1260
gactggcgcg gtcgtgttta cgctgtgtca atgttcaacc cgcaaggtaa cgatatgacc 1320
aaaggactgc ttacgctggc gaaaggtaaa ccaatcggta aggaaggtta ctactggctg 1380
aaaatccacg gtgcaaactg tgcgggtgtc gataaggttc cgttccctga gcgcatcaag 1440
ttcattgagg aaaaccacga gaacatcatg gcttgcgcta agtctccact ggagaacact 1500
tggtgggctg agcaagattc tccgttctgc ttccttgcgt tctgctttga gtacgctggg 1560
gtacagcacc acggcctgag ctataactgc tcccttccgc tggcgtttga cgggtcttgc 1620
tctggcatcc agcacttctc cgcgatgctc cgagatgagg taggtggtcg cgcggttaac 1680
ttgcttccta gtgaaaccgt tcaggacatc tacgggattg ttgctaagaa agtcaacgag 1740
attctacaag cagacgcaat caatgggacc gataacgaag tagttaccgt gaccgatgag 1800
aacactggtg aaatctctga gaaagtcaag ctgggcacta aggcactggc tggtcaatgg 1860
ctggcttacg gtgttactcg cagtgtgact aagcgttcag tcatgacgct ggcttacggg 1920
tccaaagagt tcggcttccg tcaacaagtg ctggaagata ccattcagcc agctattgat 1980
tccggcaagg gtctgatgtt cactcagccg aatcaggctg ctggatacat ggctaagctg 2040
atttgggaat ctgtgagcgt gacggtggta gctgcggttg aagcaatgaa ctggcttaag 2100
tctgctgcta agctgctggc tgctgaggtc aaagataaga agactggaga gattcttcgc 2160
aagcgttgcg ctgtgcattg ggtaactcct gatggtttcc ctgtgtggca ggaatacaag 2220
aagcctattc agacgcgctt gaacctgatg ttcctcggtc agttccgctt acagcctacc 2280
attaacacca acaaagatag cgagattgat gcacacaaac aggagtctgg tatcgctcct 2340
aactttgtac acagccaaga cggtagccac cttcgtaaga ctgtagtgtg ggcacacgag 2400
aagtacggaa tcgaatcttt tgcactgatt cacgactcct tcggtaccat tccggctgac 2460
gctgcgaacc tgttcaaagc agtgcgcgaa actatggttg acacatatga gtcttgtgat 2520
gtactggctg atttctacga ccagttcgct gaccagttgc acgagtctca attggacaaa 2580
atgccagcac ttccggctaa aggtaacttg aacctccgtg acatcttaga gtcggacttc 2640
gcgttcgcgg cagcgaacga cgaaaactat gccctggtag cc 2682
<210> 15
<211> 894
<212> PRT
<213> artificial sequence
<220>
<223> T7 RNA polymerase version LVA
<400> 15
Met Asn Thr Ile Asn Ile Ala Lys Asn Asp Phe Ser Asp Ile Glu Leu
1 5 10 15
Ala Ala Ile Pro Phe Asn Thr Leu Ala Asp His Tyr Gly Glu Arg Leu
20 25 30
Ala Arg Glu Gln Leu Ala Leu Glu His Glu Ser Tyr Glu Met Gly Glu
35 40 45
Ala Arg Phe Arg Lys Met Phe Glu Arg Gln Leu Lys Ala Gly Glu Val
50 55 60
Ala Asp Asn Ala Ala Ala Lys Pro Leu Ile Thr Thr Leu Leu Pro Lys
65 70 75 80
Met Ile Ala Arg Ile Asn Asp Trp Phe Glu Glu Val Lys Ala Lys Arg
85 90 95
Gly Lys Arg Pro Thr Ala Phe Gln Phe Leu Gln Glu Ile Lys Pro Glu
100 105 110
Ala Val Ala Tyr Ile Thr Ile Lys Thr Thr Leu Ala Cys Leu Thr Ser
115 120 125
Ala Asp Asn Thr Thr Val Gln Ala Val Ala Ser Ala Ile Gly Arg Ala
130 135 140
Ile Glu Asp Glu Ala Arg Phe Gly Arg Ile Arg Asp Leu Glu Ala Lys
145 150 155 160
His Phe Lys Lys Asn Val Glu Glu Gln Leu Asn Lys Arg Val Gly His
165 170 175
Val Tyr Lys Lys Ala Phe Met Gln Val Val Glu Ala Asp Met Leu Ser
180 185 190
Lys Gly Leu Leu Gly Gly Glu Ala Trp Ser Ser Trp His Lys Glu Asp
195 200 205
Ser Ile His Val Gly Val Arg Cys Ile Glu Met Leu Ile Glu Ser Thr
210 215 220
Gly Met Val Ser Leu His Arg Gln Asn Ala Gly Val Val Gly Gln Asp
225 230 235 240
Ser Glu Thr Ile Glu Leu Ala Pro Glu Tyr Ala Glu Ala Ile Ala Thr
245 250 255
Arg Ala Gly Ala Leu Ala Gly Ile Ser Pro Met Phe Gln Pro Cys Val
260 265 270
Val Pro Pro Lys Pro Trp Thr Gly Ile Thr Gly Gly Gly Tyr Trp Ala
275 280 285
Asn Gly Arg Arg Pro Leu Ala Leu Val Arg Thr His Ser Lys Lys Ala
290 295 300
Leu Met Arg Tyr Glu Asp Val Tyr Met Pro Glu Val Tyr Lys Ala Ile
305 310 315 320
Asn Ile Ala Gln Asn Thr Ala Trp Lys Ile Asn Lys Lys Val Leu Ala
325 330 335
Val Ala Asn Val Ile Thr Lys Trp Lys His Cys Pro Val Glu Asp Ile
340 345 350
Pro Ala Ile Glu Arg Glu Glu Leu Pro Met Lys Pro Glu Asp Ile Asp
355 360 365
Met Asn Pro Glu Ala Leu Thr Ala Trp Lys Arg Ala Ala Ala Ala Val
370 375 380
Tyr Arg Lys Asp Lys Ala Arg Lys Ser Arg Arg Ile Ser Leu Glu Phe
385 390 395 400
Met Leu Glu Gln Ala Asn Lys Phe Ala Asn His Lys Ala Ile Trp Phe
405 410 415
Pro Tyr Asn Met Asp Trp Arg Gly Arg Val Tyr Ala Val Ser Met Phe
420 425 430
Asn Pro Gln Gly Asn Asp Met Thr Lys Gly Leu Leu Thr Leu Ala Lys
435 440 445
Gly Lys Pro Ile Gly Lys Glu Gly Tyr Tyr Trp Leu Lys Ile His Gly
450 455 460
Ala Asn Cys Ala Gly Val Asp Lys Val Pro Phe Pro Glu Arg Ile Lys
465 470 475 480
Phe Ile Glu Glu Asn His Glu Asn Ile Met Ala Cys Ala Lys Ser Pro
485 490 495
Leu Glu Asn Thr Trp Trp Ala Glu Gln Asp Ser Pro Phe Cys Phe Leu
500 505 510
Ala Phe Cys Phe Glu Tyr Ala Gly Val Gln His His Gly Leu Ser Tyr
515 520 525
Asn Cys Ser Leu Pro Leu Ala Phe Asp Gly Ser Cys Ser Gly Ile Gln
530 535 540
His Phe Ser Ala Met Leu Arg Asp Glu Val Gly Gly Arg Ala Val Asn
545 550 555 560
Leu Leu Pro Ser Glu Thr Val Gln Asp Ile Tyr Gly Ile Val Ala Lys
565 570 575
Lys Val Asn Glu Ile Leu Gln Ala Asp Ala Ile Asn Gly Thr Asp Asn
580 585 590
Glu Val Val Thr Val Thr Asp Glu Asn Thr Gly Glu Ile Ser Glu Lys
595 600 605
Val Lys Leu Gly Thr Lys Ala Leu Ala Gly Gln Trp Leu Ala Tyr Gly
610 615 620
Val Thr Arg Ser Val Thr Lys Arg Ser Val Met Thr Leu Ala Tyr Gly
625 630 635 640
Ser Lys Glu Phe Gly Phe Arg Gln Gln Val Leu Glu Asp Thr Ile Gln
645 650 655
Pro Ala Ile Asp Ser Gly Lys Gly Leu Met Phe Thr Gln Pro Asn Gln
660 665 670
Ala Ala Gly Tyr Met Ala Lys Leu Ile Trp Glu Ser Val Ser Val Thr
675 680 685
Val Val Ala Ala Val Glu Ala Met Asn Trp Leu Lys Ser Ala Ala Lys
690 695 700
Leu Leu Ala Ala Glu Val Lys Asp Lys Lys Thr Gly Glu Ile Leu Arg
705 710 715 720
Lys Arg Cys Ala Val His Trp Val Thr Pro Asp Gly Phe Pro Val Trp
725 730 735
Gln Glu Tyr Lys Lys Pro Ile Gln Thr Arg Leu Asn Leu Met Phe Leu
740 745 750
Gly Gln Phe Arg Leu Gln Pro Thr Ile Asn Thr Asn Lys Asp Ser Glu
755 760 765
Ile Asp Ala His Lys Gln Glu Ser Gly Ile Ala Pro Asn Phe Val His
770 775 780
Ser Gln Asp Gly Ser His Leu Arg Lys Thr Val Val Trp Ala His Glu
785 790 795 800
Lys Tyr Gly Ile Glu Ser Phe Ala Leu Ile His Asp Ser Phe Gly Thr
805 810 815
Ile Pro Ala Asp Ala Ala Asn Leu Phe Lys Ala Val Arg Glu Thr Met
820 825 830
Val Asp Thr Tyr Glu Ser Cys Asp Val Leu Ala Asp Phe Tyr Asp Gln
835 840 845
Phe Ala Asp Gln Leu His Glu Ser Gln Leu Asp Lys Met Pro Ala Leu
850 855 860
Pro Ala Lys Gly Asn Leu Asn Leu Arg Asp Ile Leu Glu Ser Asp Phe
865 870 875 880
Ala Phe Ala Ala Ala Asn Asp Glu Asn Tyr Ala Leu Val Ala
885 890
<210> 16
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223> AD1334 primers
<400> 16
ggacctccca ccattccaag 20
<210> 17
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223> AD1335 primer
<400> 17
acggcgatgt tcaggttctt 20
<210> 18
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223> AD1336 primer
<400> 18
ggcgaaagaa gacctggtca 20
<210> 19
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223> AD1337 primers
<400> 19
tagccggcga aatggatgtt 20
<210> 20
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223> AD1322 primer
<400> 20
catcagaccg cattcgcttg 20
<210> 21
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223> AD1323 primer
<400> 21
ggacgaagat gtggaagcca 20
<210> 22
<211> 32767
<212> DNA
<213> BW4 phage
<400> 22
agcgatatct ccccgggttt ttccacaggg tgtccgccca gggcgtcgct gtcgagctca 60
cagcgcacgc tgaacgcccg ccagcactcg aggcgatccg aacagcctcg ctccgagtgc 120
gtcgggcctg tgtggatcgc tcatgagttt cgtaacaagc ccctagccac agcccgattc 180
agatagaata ggagcatgga agggcagtgc ggatggtgcg gtcgggcatt cgatcgtgcc 240
cggacgggtc gcccgcgacg cttctgctcg gcccgctgtc gggtcgccgc gtcccggtgt 300
gcgatcccgc tggccatgag gtcccgcact gcgtgggtcc gctgcgacgg caagcgcccc 360
atcaccctgg ctggcgctcc ggcctcatcc acggacccgg gcacatggtc tggctggtcg 420
caggtgcgac gcgccacggc cggcgatggc ttcgggacca tgctcggtga cgggctgggg 480
tgctgggatc tcgaccactt cgacgatcag ggcgcccggg ccttcatcga ccggatcgat 540
aagccgatca tcttcgccga gcggtcggtg tcggggcatg gcttccacat cttcgtccgg 600
actgacgagg cccccggacg ccgcaccgga aacatcgagt tctactcacg ccatcggttc 660
atcagggtca caggagacca gttcgtctga agaagggggt gcgccatggc tgcacaggtc 720
agggccgtgg accccgatga gcgcccaccc gcccgcaagc gggccaagac catcacccag 780
gccgcgaagt ccggcactga ggttgaactg ttggaggcac tgcaggctcg cgtggcccgc 840
gccgtgcagg accgtgacac tccgccgcgc gatctggcag cgctgacgaa gcggctgatg 900
gacatcaccc gggagctcga ggcggcccgg gtcaaggatc aggaggcggg atctgatggt 960
gccgtcaccg cagacgaaac atggcgaccg caagctctct gaggtcgcca agcacctgat 1020
ccttcctgaa gggatcgtct cgacgggctg gccggccgtg cgtgaccggt gtggcgagtg 1080
gggtgtggtc ttcgaccgtt ggcaggacgg catgggccgg gtgatcctgt cgaagcgcgg 1140
cagcggcctg ttcgccgctg gtgtgggcgg ggtcggcatg tcgatcccgc gccagaccgg 1200
caagaccttc accgtcggca tgatcatcct cgggctgtgc tcgctgagcg aggagctcac 1260
ggtgctgtgg acctcccacc attccaagac gaccaccaag actttcgagt cgctgcgggg 1320
catggcccag cgtaagaagg tcgccccgtt gatccgtcag gtccgaacag gaaacggtga 1380
ccagcagatc attttcagca acggttcgag gatctacttc ggtgcccggg aacagggctt 1440
cgggcgtggc ttcgacgacg tggacatcga gatctttgac gaggcgcaga tcctgtccga 1500
gcaggccctc tccgacatgg ttcccgcggc gaatgtgagc accaatccgc tgatcatctt 1560
catgggcacc ccgccgcgtc cctcggaccc gtcggaggcg ttcgcgaacc gccgcgccga 1620
agctctggcg ggcgacgccc cggacgccgc ctggatcgaa ttcggagcgg acgagcacgc 1680
cgacccgacc agccgcgccc aatggcgtaa ggcaaaccca tcctttcctc accgcacgtc 1740
ggagacctcc attctgcgga tgaagaagat gctcgggccc gagtccttca aacgcgaggg 1800
cttgggcatc tgggatgaga cggcatcggt ccgcgcgatc ccagccgaag ggtggcgcgt 1860
cctgaccgtc aaggaaccac ccgccgacgc gatccagtcc ttcggcatca agttcgccat 1920
cgacgggagt gcggtcgccc tggcagccgc cctgaaaccc aaggacgggc cgatctatgt 1980
cgaaggaatc gagcagcgct cggcatccga cggcatcgaa tggctcgccg actacctgac 2040
gcccctgtgg cgcaacacgg cccagatcgt catcgatggc aagtccggcg ccggtgccct 2100
ggttgatgcg ctgcgccgtg gtggcgtggc tgcgaaggtg atcctcaccc cgagcgtcgc 2160
cgacgtgatc accgcccaca gcctgactct ggaggccatc aagaccggtg gactgtcgca 2220
cctggctgac ccggagctgg atcggcaggt ccgcatcgcc acgaagcgaa agatcggggc 2280
cgccgggggc ttcggctggc aggcccccga aggcgacacc gtcgccctcc tcgacgccat 2340
cacgcttgcc cactgggcgg ccctcaccac gaagcgacat cccggcagga aggcggtggc 2400
actggcatga gcctcctcgt caacccctat gcgtcgccgt ccttcttctc gtccccgtcc 2460
gtggtcggac tcggagcaga cgagcaggag ctcctggacg agctggtggc cctgtgggca 2520
cgcaagaagc cccgcaacgt gctgcgcggc ctgtaccttg acggcaagca gcagatcaag 2580
aacctgaaca tcgccgtgcc cgacgagatc gccgacagtc tccagatcgt ggtcggctgg 2640
cccgagaagg ccgtcttcgg gctatcgaac ctgtgcatgt gggatggcgt cgtcactccc 2700
acaggcgacg agaatccctt cgggcttgac gatctcctgt cggccaaccg cttcgacgtc 2760
gagatcaatg aaacgatcac ctcggccatg gcgaactccg tggccttcct gaccgtatcg 2820
gcgggcaacg tgtccatagg tgagccgccg gtggtgatca tgccgttctc cgccgaatgg 2880
gcctcagccc tgtgggaccg gcgcacccgc tcaatcaagg cgggactgac catcggcgac 2940
atcgactacc tgggccgccc caccagcctc tcgctcttca cccgcaccgc caccatcacc 3000
tgcgtggggt cccggctggg atggatgatc gaagatcgcg ccgagcacgg gctgaaccgc 3060
gtcccgatgg agccggtccc gttccgccca acccttgacc gccccttcgg gcgctcgcgg 3120
atctcgcgcc aggtgatgac catcgtggac cgcgccatgc gcgcggccct gcgcatggac 3180
atctcctcag agctgttcac cgcacccggc ctgctcctca acggaatcac cccggagcag 3240
tgggcagaga tccagaagtg gacatggaag ctcggcacgg tgcgcggcct gactcgcgac 3300
gaggatggcg agaccgcatc ggtcgagacg atcccccagc agtcgatgga accgttcatc 3360
gcgcagctgc gcgagctggc cgaggaattc gcctcagcca catccatgcc gctgtctgca 3420
ttgggggtcg tccaagacaa cccctcctcg gctgacgcca tctacgcggc gaaagaagac 3480
ctggtcatcg aggccaccaa cgccaaccgg atcaccggct acgcgctatc ccgggtcttc 3540
caagacgcgg tgatgatgcg cgacggcctg accgagatgc ccgacgagct cggcggggtc 3600
gccgccaagt ggcgcaaccc ggcgatgccg tcgatcgtgt cccagtccga cgcgatggtc 3660
aagcagattt cggcgatccc cgggctggcc gctaccgacg tcgccttcga acagctcggc 3720
tattcggcgg ctgacatcgt gcggattcgt acccagatgc gccgagccca ggctgcggac 3780
ggcctgactt cgttgctggc caaaccagcc acgtcgtcaa cgcctggcgc ggagccctct 3840
cagtccgcaa gtccgacgga gccagctgca agcactccgc tgccggacct cgaaggggcc 3900
cctggtgacc gatcgtgatg acctgaacca tttccacgag gccaatgacg cgatccagcg 3960
gcgcgcaatc aacgacctga acaagttttg ggcgcggctt gccaagtcag acccgaaagc 4020
cgttcgcgca gccatggact tattcgtccc ccagctcatc gcctcctacg gagagttggc 4080
cgccgaagcc gctgcccgtt ggtatgagga actacggccc gccgacaaga agaacttcca 4140
ggccgaactc gcggaccctg tgtccgacga catcatcgag gcagatgtgg ctgaggccct 4200
ggggaccagc ggcgcctggg acaccgaggc ggtgcgaggg agcctggccg atgcgatcag 4260
gcgtcagatc ttctacatgg cgcgggcgac tgtcgcacgc aacatcgctc acgacccgaa 4320
gcgtccaagg tttgcacgag ttcctcgggg cgcggtcacg tgcgcgttct gcaccatgct 4380
cgcctccagg gggtgggtgt actacaccgc gaagactgcc gggatcacac gaccctggca 4440
tcgcaagtgc gactgccaga tcgtgcctga gtggaaacgc ggcaacatcc atttcgccgg 4500
ctacgaccct gacaagatgt tcgagcagta tgccgaatcg gtcgatgcgg tggggtcgag 4560
cttcgacacg aaggcaatcc tcgccgacat gcgccgacgc catcccgaag cgctgaccga 4620
cggggtcgtc aacatgagtg aaggacaggg tccggtgacc agtgattaga cagtcggtga 4680
acggatgact acgccgtcgg cgctgcgccg ccgcctggaa tggctactgg agaaccgtga 4740
acggcttctc aggagccatg gcgagtcgga ctttgccgag atgctggatg gcgcccgtca 4800
cgagcttgat gaggcccgcg agcaggcagg cctggccgcg cagtcaaacc caatctgtag 4860
caagccccgt tccaccttcg ggtgggcggg gctttgtcat gcccgcatcc gggcatccaa 4920
ttccgtccca ccgcgagggt ggggcgtcga cctggtggcg cgatgccgcc gaactaatcc 4980
ctggaagggg aaactgctat gcacaagaag ctcatgccgt gggtccgtct catcgaggcg 5040
gtcgagactc ctgctggagc cgcccccacg cccgcgatcg atccgaagga tccggcagcc 5100
aatcccacca ctgagccgaa gccggccgac gcgacgtcgg agaagcctct cggcgaggcg 5160
ggcaaggttg cgttggatcg cgagcgcgag gctcgccgca gcgccgacaa gcgcgccagt 5220
gagttggagg cccgtgtgca ccagctcgag gacgcgggca agaccgaggc ccagaagcag 5280
gccgacgaac tcaagcgcac ccagtccgag ctggagacgc tgaggggcga gaaggcacgg 5340
ctggaggtgg cgtccgcgac gggcgtcccg gtcgatctgc tcgctggccc cggcgacgat 5400
ctggatgcct acgcgcaggc cctgaacgcc tggcgcgaca agcagtccga aaagccagcc 5460
gcccctgcgg tggacacccc ttccccttcg ccgtccgggg tgaccggaca gcccgtgcag 5520
ccgaaccgga cggtcgatga actcatcgcg gccgccgaga agaacggcga tctggcaacc 5580
gcgaagcaac tcaaattgat gaagctcgac gcactgcgtc ggacgtcctg atcagaaagg 5640
caccactatg ccgggcatta ccggacaggg caccacctac aaccttccga actatgtggg 5700
ggagcttttt gcggcatctc ccgaagacac cccgctgctg tcggcgatcg ggggactgac 5760
cggcggcgag tcggtcggcg cccgccagtt cgaatggcag ggctacgacc tgcgcgacgc 5820
cgacggttcg cgccagcgcc tcgagggagc caacgccccc gacggtgagg agcgcacccg 5880
ctactccgcc tccaatgtgg tcgagatcca ccaggagtcg gtggaggtgt cctacaccaa 5940
gcaggccgcg aaccgtgagc gggctaccaa cggtgccgcc acggtccagc tggcgggctc 6000
cgtgctgccg gccgatgagc tcacctggca gatcgaccag cagctcaagc aggtcgcccg 6060
cgatgtcgag aagtccttca tcgcgggcac ctaccagctg cccaccgaca acgccaagcc 6120
gcgccgcacg cgtggcctgc tggaggcgac caccacgaac gtggccgcct cgacccacac 6180
cgcaaaggaa ctcaccgtgg aggagatcct cgacctgttc cagaaggtgt gggagaacgg 6240
cggcatccag gaagccgaga cccgcaccgt cattgtcggt gccgccctga agcggaccct 6300
gacgcgcctg ttcatcaccg acgtcaagta ccaggaagaa tcccgcaacg ttggcggtgt 6360
gaacctgcag accttcgaaa ccgacttcgg caaggcgaac atcatgctcg accgcttcat 6420
gccgagcgac accctcgtgg tcgcgtcgct ggaggacctg aagccggcct tcctcgacat 6480
ccccggcaag ggccacttct tcgccgagcc gctcgccaag accggtgcag ccgacaaggt 6540
gcagatttac ggcgaggtcg ggctgcagta cgggaaccag cgcaagcacg gaaagctcac 6600
tgtcgcaccc gcaacccccg ccaagtaatc acggatcggt ttgaggttgc ctgatgaaag 6660
tcacctcgac catcccgaac ctgactgttc tcgacctgga catccagttc gttgacggtc 6720
aggccgatgt ggacccgcat ctcgccgaga ggctgcgtcg cctcgagcct ctcggcgtgc 6780
gggtccccac agccagccgc aagccgccca cgcggtcgcg gcgtaagcag ggggtcagcc 6840
atggtcgcac ctgatccgga actgccgttc gccaccgtct ccgatatgga gagccggtgg 6900
cgttctttgt ctaaggacga gcacacgcgg gccgaggccc ttctggacga tgcgagcggg 6960
ttgatcgttg atacctgccc gcgctgggaa caggcctcac cggccaccct gcggcgtgtg 7020
acgtgctctg tcgtgcgccg ggcgatggcc gcagacgatg aggacatcgg cgcaacctcg 7080
ctcatggaca cgacgggccc cttcaccact cagcgcgcct actcatcacc ggccggggat 7140
ctcttcttga ccaaggccga gaaggccgcg ctcggcgggg tcaccggcgc attcgagacg 7200
agccttctgg ggctgacatg aagcgctcat ggccgacacc cgtggaacgt ctccgcgagg 7260
gtccgcccga gattgaccgt gacggtgatc cgattgccgg ctccggagtg atcaccaagg 7320
atcctctccc tgatgccctg ttcgcgccgg gcggctcgca gatcctcgtc gcccccggcg 7380
tggcggcagt cgtggacgaa cccaccctct actggcgcgg atcagaagtg atcgatgtgg 7440
tggccaccga caaggtccgg atagccggcc gagtctggac ccctgaagga aatcctgcgc 7500
gatggccgaa gggcgtcgtg ctcaagctca aggcccagga ggcaaagaat cgtggctaat 7560
ttccgtttcg aacccaatac gaaggcgttc accgagtggg cgcagcgcga ctgcgacgcg 7620
cacctgatcg ccggcatcac ggcctcgatg ggggccaagg cgggcgaggg tttctcgacg 7680
atggtctcca acaatggcga ccgcacccgc ggttatctcg cgacggcctc cacgaagggc 7740
cgtatgcggc aggcgcaggg gcatgtcatc gagcgggtca tcggatcgag cggcgtgtga 7800
aaccgcccga cctccacacg ctcgtcgccc accatctggc tgagctcctc gacgtgccgg 7860
tcgtctccac ccgccccgag ggagagacgg cgccgtccaa gttcgttcgg atcatctcga 7920
ccggcggagc gggccgctat ggccgggtct tccagggcat ccagctgacg atcggctcct 7980
acgcgggatc ggcggcgacc gcccgtgatc tcgcgatgca ggtggacgag gccatgaatg 8040
ggctgccggt ctcgccgttg ccggtctcca aggtcaccgg caacaccccg tcggacgacc 8100
ccgatcccga cactcagcag gcccgccaca cggccaccta ccaactcacc acccttatct 8160
cttaggagtc attcatggct gtcaattccg tcaacgtgca cgtcttcggg tccgatgacg 8220
acgtgctcta cctgggcccg tcaggtctga atctgggcaa catttcgctg gaaaccgcga 8280
tcccgaagga gatgatcgac accggctggc tcactgatga cggtgtgacc ctcggcatga 8340
aggactctgt caaggccatc cagggccacc agggccacgc gaatgtgctt cagttcatgg 8400
actcgtcgga taccaccctc gaggcgaccc tcatggagtc tcagctgcag accttcctgt 8460
ggaacctcga cgcggacgct gaggacatcg acggggtcac caagatcacc gcggccagct 8520
cccgcaaggt cctcaacctg tgcgcgatct gggacacctt cgacacccag cacagcggca 8580
tccattggcg ctacgtcttc ccctcgctca ccctgggcga gcgcgatgac atccccttca 8640
aggtgggcga agccagcgct tacaagtatt cgctgggtgt gctggagaag ttcttcgtct 8700
tcaccaacgc ggcagcgatg aaggccggtg gagcatccgc caagacggtg accggtgtga 8760
agatcaccac caccgacggt gcgaccgtgg gcctcccgtc gtcgctgaag gtgggggaga 8820
aggtgtccct cgccgccgag atctcctaca gcgacgggac gaaggcggtc aagcagacca 8880
atgccgtggg cctcacctgg acgtcctcgg acaaggccaa ggccaccatc gatggcggcg 8940
tggtcaccgg agtctcggca ggcaaggccg acatcaccgc ctcgatcgac ggcaagactt 9000
ccgaagcgct gtcgctgacc atcaacaccg ccgcctgacc aaccctcaaa ccctccgccc 9060
cggtcgtcct ctcgcgccgg ggcggagcct tgccacaccc gcgagaggtc aacttttctg 9120
cgagaggaaa ccatcatggc cgaggccaag aagatcagcg ccgccgagaa ggcgcgccgc 9180
gagacccagt ccgcgaagga caccggcacg atcaccgaca ccaccgtgca gatcggcgat 9240
atcgagttga ccgtgcccgc cgccgtcttc gaagacgact gggaattcca ggaggcgatc 9300
ctgatggcca acgatcccga tgccaccgac gaggatcggg ccagggcaag catgacgctg 9360
ttccgtcgtc tggtcggaaa ccgccaccgc gaagtgcttg accagctgcg cgacgagtcg 9420
gggcgtgtgc cggtgtctaa ggtcaccgag accgtcaaga aggtcatgga cgcggtcaac 9480
ccaaactgat gagcctcttc cagctcctcg ccacacattg ggaggagctg gagggggact 9540
tccaagaggc ctaccgcgtc gacctgcggg acttgtggcg tggtcggctg agcccggcgc 9600
gctgctgggt gctgctgaca caactgccac ccgggtctcg gctctggcgg atgctcggcg 9660
gccccatggc gtggggcatg gtcgagcgcg ccgtccgtga agagggctgg cgactcgcct 9720
cccagaacgc tggtaaggaa ctgcctcggc cggagccgcc tgcgccggga tggcgcgaca 9780
agcaggacga cctgcgacgc cgcgaagagc gccgtcttgc ccgcttcatg caacgccacg 9840
cagaacgcaa caactgaaca gtgcaccgtc ccgggaggtt tccatggctc tagatctcgg 9900
taccgcctgg gtgcaggtgt ctccgtcctt caggggcttc gcctccacgg tgaacaaaga 9960
ggtcggttcg gcagtgggcg gggccttcaa gtctgcggcc aaggtcggca ccaccgcgat 10020
cgccacgatc ggtgcggccg tcggtgggct ggcgctcaag ggcggcatcg accgcgccct 10080
gtcgatcgag caggcgcagg ccaagctgaa gggcctgggc cacgacgcag ggtcgatcac 10140
cgagatcatg aacgacgccc tcgcctcggt gaagggcacc gccttcggtc tgggcgatgc 10200
cgcgacggtt gccgcgtcga tgtcggctgc cggcgtcaag tcgggcgagc agatgaccgg 10260
tgtgctgaag acggttgccg acaccgccca gatttcgggg cgctcgctca ccgatatcgg 10320
tgcgatcttc gggtcggtgg cggcccgcgg caagctgcag ggcgacgaca tgctgcagct 10380
catgagctcc ggcgtgccgg tgctccaatt cctttccgac cagctcggcg tcaccaccgc 10440
cgacgtgtcg gacatggtgt ccaaggggca gatcgacttc gccactttct ccgccgccat 10500
gcagaagggt cttggtggtg cggcactggc tggcggcgaa accttcaccg gtgccatggc 10560
caacgtccgc gccgccctgt cccggctggg tgaggctgcc gccaagcctg ccctggacgg 10620
gctgcgcaat gtcttcaacg cgctgatccc ggcgattgat gccgccacaa atgcgctcaa 10680
gcccatcgcc agcgccctgg cgaaccgaat ttcgcaagca gcagaggcgg cttccgcctc 10740
gatcgggcgc ctcaccggct ccctcacgag catcacgaat ctcaatacag ggatgctcgg 10800
cgcggccttc tcatcgatgc tgccgatcat cggagcactg tcggggcagc ttggctcctt 10860
gcttggcggg atcccggtcg tcgggcaggc cttcgcaggg atcactgggc cggtgggatt 10920
ggctgccggc gtgctggtcg agatcgtggc ggcttcatcg tcgctgcgtc aggccctggg 10980
cacgctggtc ggggtcgtcg ggtctcagtt gtccggtgtg atgacgggca tcgtcgcggt 11040
gtttgccggc ttcaggtccg tgcttggtgc cgtcggtgac gttctggccc cgttcgtgga 11100
ccgtgcggcg gacgccgcca atgtggtcct gcccttgctg gggggtgcgc tgtcggctgc 11160
cggtggcatc ctgcagtctt ttgcgggttt catcgagcgc aaccatgtgg cgctctccat 11220
tcttgcgggt gcggtggttg cggccgcgac gagttggaag atctataccg gcgcgcaaga 11280
tcttgcgcgg ctggcaacga cgaagctcgg gctcgcgaca acggtcctga agggcaagct 11340
gtcatcgatg ggggcggcgt tcaagacgaa tccgttcggt gtcatcctca tggcgatctc 11400
ggcgctggtg ggggcgttct cgattgccta ccagtcctct gagacgttcc gcaacggtgt 11460
gcaggggatt ctcggctcgc tggcgccggt gttttcctcc ctgatgggga cgctgtcggg 11520
gctattccag caggtcgcgg gcgctgtcgg gccggtgctg tcgtcgatcg tctcgacgct 11580
ggcgtcggtg ttctcggcga tcggtcccgt cctgtcgcag ctggccggca ccatcggatc 11640
tgtcttctcg gcgatcggtc ccgtcctggc gtcggtcttc gggtcgatcg ggtcggttct 11700
ggcgagtgtc ttctccgggg tgatgagtgt cgtggcgccg atgctcaccg cgttgcagcc 11760
gctgttcacg cagctgtcgg cttcggcggg gcagatcggt gcggcgttcg gtcctgttgg 11820
tcaggcgctg tcgtcgtcct tccagcaggt cggtgccgcg ctggcgccgc tgctgccgat 11880
gcttggtcag cagttcgggg cgatcctgtc tcagctggct gcggccctgg ctccggtcat 11940
gggtcagttg ctggctgcgg ctgctcaggt gttgccgacg ttggcgcagg ccttcgggca 12000
ggtcgccggg gtgctgatcg ggtcgctggg tcaggctctg acccagatcg ctccgctgat 12060
aggccagctg gtgggggtgc tgatcgggtc gctgggtcag gctctgacgc agattgcccc 12120
gctggtgggc accctggtcg gggtggtcgc gcagctgttc gcccagctgg cccctttggt 12180
gggtcagctg ctggtgcagc ttgttccggt tgtcgcggga atccttgtgg cgatcgtgcc 12240
gatcgtcggg atgctgatta gtcagctcgt tccggtgatc gtcacgctgc tccaggtgat 12300
caccccgatt atcaccatgc taatcagcgc gctggtgccg gtgatccagg tcgtgaccca 12360
gctggtgctg gcgatcatcc aggcggtgat cccgttgatc tcggcgatcc tgccggcgat 12420
ctcggcactc atctcggcgc tgctgccggt gatcgtcatg atcatccagg tggtggcgca 12480
ggtgctgcag tggctggcgc cgctgatctc caccctgatc acggcactga ttccggtgat 12540
caccacgatc atccaggtgg tcatcacggt cgtgtcgaca atttggtcgg tggtcggggc 12600
ggtcattggc tggttccagt ccacggttgt gcccatcatc ggcaccgttg ttggtgcgat 12660
cgcgaacgct ttcggttggg tgcgcgaccg tatttccgat gcctggaact ggattaagga 12720
ccgcattgtc gccccggttg tcgagtggtt ccagtccacg gtggtgccga agttcgaggc 12780
ggtgcgcgac tccgtggtgc gggccttcga gacgctgaag gatggcgttg gtcgcgcctg 12840
ggatgcgttg aaggatctcg caaagaagcc ggtcgaattc gtcgtgaaca cggtggctgc 12900
cgggttggtg cgggcctaca actgggtggc gacgaagttc ggtgccgacg aggtcaagga 12960
gcctcatgtc gagttcgcca acggcgggtt cgcgggacgt gaggccggct tcgcgtcgtc 13020
gccgatcctg tgggccgagg ccggcccgga agcctatatc ccgttggatc cggccaagcg 13080
gacacgctcg ctggggatct gggccaagac cgggcagatg ctcggcgctc tacccatggc 13140
tgacggcggg atcatcggga acatcattgg cgggatcggc aacgccgctg cggcgatcgg 13200
caatttcatc aagtcaccga tcgagtggct catgggccgg gtccgggacc tgatcgatga 13260
tgtgggcagc tcaccgttcg cccagatcgc cgcgaagatc cccggcaaga tcgccgacga 13320
tatcggcgcc tgggtcaagg aacacatggc ctccatattc ggcggcggcg gttccggatc 13380
ggaagcgttc gacggctggt ggaacgcggc tgtcgccatc aatcctgata tggccccctt 13440
caagcagatc gccgccacgg tcgcccagaa cgaatccgga ttcaacccga acgtcatgaa 13500
caactgggat tcgaacgctg cggcgggcac gccgtcgggt gggctgatgc agttcatcca 13560
gcccaccttc gaggcctaca agtggcccgg attcgacaat tggatgggtg cggtcgatca 13620
gatcctcgcc tggtggaagt acgtgaatgc ccgctatggc gggccgttca atattcccgg 13680
aattgcctcg ctggcgggtg gcggcggata tgtcggctac gccggaggca ccctgaacgc 13740
ggctgccggc acggcatggg tgggggagaa cggccccgag ctggtcgatt tcggtggcgg 13800
cgagtcggtc tacaaccgct cccagattga cggtctggag gatcggatcg ctgaccggac 13860
gatttcccgg ctgcagcagc tgagggtggc gctgatcgtg gacggacatc agatgggtca 13920
ggtcatcgac ggccgcatct ccatggctgg cgctgctgca cacggatcga ggtggtgaca 13980
tggcgatcat tgcgacgcgc cgcgactggc ctgaggctcc gcaacgcttc cagtccgccg 14040
atgggcggct ggtggcggag ctggaccctg accggtgcgg agtgcgactg cgcggcaccg 14100
acctggaggc gtggagcgtc accctcaccc gtgatggcga ggtgatccac accggcgacc 14160
ccatggtcac accgggagga acaggaatcg cctacgacct gtctgcaccg ttggatgctg 14220
atgtcgtcta cgaggcgcac gcgggtgggg cggtgctcac gcaggtggcc gtccacaccg 14280
gcggcttgcc tttcgagtgg gggatggtga ccccgctggc cgaccccgac aagggcctga 14340
tgctacggac cgtcgccgac acccccacgc tgggcaggtc ggcacgccag aagctgtctg 14400
cggtgccctc atcgaggctg caggcaggtg gctgggacgt ccccaccgac gcggcacagg 14460
gatggacgtg gctcgcggga ttccccgacg cctccaaagc gctcgccgag cgcgacgcga 14520
tcatggaggc cctatcgctg gggccggtct acttccggcc cgaaacctcg atcggcttcc 14580
cgcccatgtg ggcactgccc ggcgacgtgt cagcgaccaa gcagggcgac gcctggacgg 14640
tgtcgtgcac gctgacgccg atcaccgctc ccgcgaccgc cgacctgccc gcctgggcgc 14700
ccggcaacag ctatgcgcgt gtggcggcca cccgggggag cctcgccgag ctcgcccgca 14760
catccaagac attcctcgag ctagtggggt tctgatgatt gaagtatcca agcgatgggc 14820
ctcctcagta ggggccggtg cacgctggtc ggtgatggtc tcctggtcct ccgacggagg 14880
ccagacctgg catgacgtgg tgcccaccgc ctgctcggtg gacgagtcta ccggccagca 14940
ggtgcggtgg aagctgtcct gcaccctgcg caaggccgac gccgagggcc tgaccgtctt 15000
cggttgcagg gcgcgcgtct tcgtgtcgat gcatcacacc gacagctggg aggagacgat 15060
ccagctcggc gaattccgca ttgacaccac ctctgacacc accctcgccg ggccgtccgg 15120
tgcgcaggtc gcggcagttc aggtgagcgg ttcgagctgg gagcagcagc tgatggactc 15180
gcggctggtt gagccgcgtg aggtgtcggg tgccgcgatc gatgtgctcg gcggcctgat 15240
ccgggaggtg ctccctgacg cagagatcgt cttcgacggc gggatcgatc cgggccgcaa 15300
cattccggcg acggtggtgg agcgtgaccg gtgggccttc attgacggct cgaattcgtc 15360
ggagacgtcg gtggcgcgga tgctcggcgc ccaggtctcg accgacgcac ggggcgtgtg 15420
gcatgtggcc ccgcctccgg tgctggacgg gacggcggcg tggacgatcg aggccggcaa 15480
gggcggtgcg ctcctgtcgg cggtggccag cgaggaccgc tccacgatcc gtaacgccgt 15540
catcgcgcgc ggcgagtcaa ccgataagag cgtgccggtg ttgggtccgg tgaccgtggc 15600
tgatcacaat gcgtggtcac caaccaacgt ggacactccg gtctccaggg gcggcttcgg 15660
cacagtcccg atcttctaca cttcgagcct tttcaccgac acgacgcagg tggaggcggc 15720
agcgaaggcg atgctgcagc cgcgcctggg cgtcaaacgc accctggacc tgacaacgct 15780
cttcgaccct gccaaacgcg ccggggatgt gggtgtggtg cagaccactg atggtccggt 15840
caccgtcgtg ctcgaatcag tgtcgtgcga cctggtggcg gcgtcgatga cctgccagac 15900
gcgcggcacg accggcaccg agctgatcac gaccgaaacc acgacaacca ctggggagaa 15960
gatctcatga gtgcaccaga cattgccctg caaggactga tcggggaaga caccgagcag 16020
gtggcgcttg cccaggtgct cggcgtgggc gtcgacgggc ggtcggtgcg tgtccagcgc 16080
ggcactctca cccacgaggt ccgccggctc gatagctaca agccttcagc gggagaccgg 16140
gcgctgctgt tacggctatc tggcggcgaa tgggtgctga tcggcgccct cgcctgacct 16200
tgacgaccta acctctgaca acctgaaaag gagccctcca tggcaaccgt ctatggccct 16260
gacaaattca ccgtcccgac tggtccggac gcaccggacg tgccggcgac gatcatcacg 16320
ctgctggact cgatgcgtcc ctcgctgatc gggcatgcgt cttcgatcgc tgaccgcacc 16380
gcgaaatatg ggcgggcatc cgcgtcgagc attcaggcgc cgaagggcac agtggtggtg 16440
tctgccgagc tgaacgcaat ttgggtgaaa acatcggaca cgctggatga gtgggcgacg 16500
atcattcagc actcggatga ggtggcgacc gtgtcggtgg tgtccaccca gtccgaccag 16560
gtgaccacgg tccagaagtt cacgattccc gagtcgggca tctatgcgct gtatgcatcg 16620
atgaatgacc agaacggctt ggatgtcgat gggtcgatcc gtgagataca tgttctggtg 16680
aacgggacct ggaagttcgg tgggatcttc ccggcgagca agttctggct ctggtcgggt 16740
tcgcggacga cctttctcaa taagggcgac acctatcaga tcgactttat gcaacgctca 16800
ggcggggaga ggtccctgaa ggtaacgctg tcttatcaaa ggattttgta atggcgacgt 16860
gggattacgg gtatgcgccg gctgatgtgg tgaccgatgc ggccggggat gtgctggccg 16920
gcatcgaact gcgggtgtgg gacgccgagg tggcagggaa agccgtcgcc gtccagcagg 16980
accgtggcga cggatggaaa cccgcgtcaa gagtcctcac cgacgacgtg ggccgctacc 17040
gatttcgtgc cgaagcgggc cccacggtgt gggtggagga cgtgtcaggg cggcgctggc 17100
ggatggatgc ctggcagacg ctcggcacga tgatcgactc cgcacagagc gccaccgccg 17160
cggccgagtc ggccaactca atcgcccacg aagccatgtc agtcgcccaa caagcccaga 17220
cgtcggcgaa ggccgccgcc gactccgccg ccgccgtgca gggggttgcc ccgtccgacg 17280
cgaatgtgtc gccgatcatc accggcgggg cgaagactgc tgaggcggtg cggaaggcgg 17340
cgctggctgc tttcccgacg accgggccga cgatcttcac gcacttcttg acgcgcgacg 17400
aggccctgca tgtggcgatc tccaccgacg gtgtgacggt ggaggacacc ggcctgcggt 17460
ggaagccgaa gaacgacacc accctggggg agtgcttcgt gcgcgaccca tcggtgtgtt 17520
tctggaaggg tgcctattgg gtcgccttca cccggcccac gaagggcggg ggtgacgctt 17580
tcgggacgac caagtcgttc ggactgatga agaccacgga ctggcggacc ttccaggagc 17640
tcccgccggt cgtgatgccg agtcaatttc agcagacgtg ggcgccgcag tggttcatcg 17700
gctccgacgg ggtgccgcat atctttgtgg ccctcggcac caccaccacg cccaacgcgt 17760
acttcaccca gtatgagctg cggccgctcg atgacgcgat gacgtcctgg tcggacccgg 17820
tggtcatgtc tggactgcca gcgaattgca tcgatgtcgc ggtgatcgag gacgccggta 17880
ccttccacgc ctttccgtcc aaccagaaga cgtcaacggt cgagcagtgg acgtcaaccg 17940
ggctcaccgg cccctacacg aagctggcgg ccagcgactt tcccggtgcc ggtgtcgaag 18000
gaccccagcc agtgccgctg aagacgggcg gctggcggat ctacgtcgac aattacgcgg 18060
agaccgactc gatctatttc gccgagagca cggacttgct gcattggtcg gcgctcaggc 18120
cggtcaccct gccgatgcgt cacgtcggcg cggtcgcggt ggactccttc ggtgcgctac 18180
gcacccgcga gctgtggcag ccgaacatcc cgggcatgag ggggatgggg gcacccttct 18240
ggggcgtacc cttcgccgcg gggaacgtgc tgaaggaatt cgcgcagatc gtgtccatgc 18300
gcaccgacgg cggcggcgaa atcgatctgg caaaggcggc cacgctgggc ttcaccggca 18360
tcgattacat ctcggcgacg gctgtcgcga acgtcgagat tctgcagatc gagcccgaca 18420
ttcgcgctgt cgacagcatg atccacggcg tcgccctgcg aggaccgagt acgccgcaga 18480
tcgatacaga cgtgaaggtc gcctggcggg tgctcggctg gggcgatccg agcacgccat 18540
gagcagggac gctgacgtga ccaagcaggg atccttgcct cggcgggtct gggacatgct 18600
ggcagagccg aagtcggtga cggtcctcat gacgattgcc tacgcggcgc tcgtcgcgct 18660
cggcttctgg gcgatcgacg acgcctccac gatgggggtc cgcgacatga tgggcggcct 18720
gctcatcgct ggtggcgtgt gcgggctgat cggatgcccg tggggccagt ggtggatcga 18780
gcgcgccggt ctggtggcga tcggtgccgc tttcgcggta cacctgtctt tcgtcgtggc 18840
gatctccccg cccgacggac cgtgggaagt ggcctcggcg ctggggctgc tgcttctcgt 18900
ggcgacacgc tggatcagga tcaggacgct gccagccgac ccgacgctgc ctcggcccgg 18960
gcctccagag gcgggggatg aatgaatgac ttccagacct ggatcacagt gctgggcggc 19020
gccggattcc ttggcgcgct cgtcacgctc atcaaggggc tggttgggtg gcgcaccggc 19080
aagtccggcc gcaaaatgag ggccgcccac gacgccatcg actcgctgaa tctggcgggc 19140
ttgtgggctg aagcctactg gcacgctcgc ggctattgcc gcagccacca tgaatggacc 19200
agcgattacg ccgacggcta tccaccccca cccgacgaca ccaacacccc tgactgagcc 19260
ccgccttgtg cggggctttc tcattcctca aagacttgga gacattcatg gactggacca 19320
atctgaacgc tgacgtgacg aagctgatgg gcgtgcactt cacccccgga cgtgaaggca 19380
ggacgatcga caagatcgtg atccaccaca acggcggcaa cctgagcatc gaccagatct 19440
ggaatgtgtg gcagacccgt gaagcctccg cgcattatca ggtggaggcg ggtggccgta 19500
tcggccagct cgtcaacgat ttggacaccg cgtggcatgc cggcgactgg gacgccaacc 19560
tgacctcgat cggcatcgag catgccgacg actcgaccga cccgtggcat gtgtctgatg 19620
ctgccgtcga tgccggcgcg cacctggtgg ctgcactgtg tcgcggctac aaccttggcc 19680
ggccggagtg gatgcgcaac gtcttcccgc actctcagtt cacgtccacg tcgtgcccgg 19740
cgtcgctggc ccgggaccag ctcggcgact acatggggcg cgcacaagcc tacttcgatg 19800
gcgcgccggt ggctgcggtc catcagtcgg tccctgcccc cgccccagcg cccagccgtc 19860
atgtggacct gcccgcgtgg aatctccccg agggcaactt ctacggcctc gtcagcggcg 19920
gaaacgactc ccacggcggc ttctatcccg ccgagcgtcc cgctgtgagg gccatccagc 19980
tgtggctcat ccgtcacggc tacgccggcg cggtgcctga cagttgggcg gacggcatct 20040
acgagcagcc gaccgccgac gccgtgaccg ctttccagca cgccgagcgc cccaacagca 20100
cggaccggtg gggcgaggtc tgggccgacg acctggccac catggccgcc aacaactgac 20160
aaggagctga tgccaagtga tctggactct cgcattctgg aagggcgcag gcgagcgcgc 20220
catcaaaacc gccgcgcaga ccgccgtcgg cctcatgggt acctcgacgc tcatcgaaca 20280
ggtgccgtgg actgtcgtcg cctccggcac cgccatggct gtggtgctgt cgctgatcac 20340
ctcgatcggc aacgccgact tcaccgccgg cgtccccact accgccaagg ggctcgaggc 20400
gacgaccgtg ggcaagacgg acaccacgcc cgtcacgcca ccggcgcgcg tcgccgaaga 20460
ggtcccagcc ggcttcgtcc cggacacggc cccggatccc gtgccgaccg tctgacctga 20520
gggggtgacg gcgaccctgc gccggatagc cactcaagca acctgagcga cacaagaccg 20580
cccactctga ccttcgcggg tcggagtggg cggccttttt gcgtctcagg ggcgcagatg 20640
atgactcgtc gtctttaatt ctagcagtac gcgttcagcg tcgccagacc atgactttct 20700
cggctgcctg gagcggcgca ccttcggggc ctttgaggta gggggcgatg tagatgagct 20760
tgcgcagtcc atgcttgggg ccgtgcgcct ggtgggtcca gtgcccgcgg accatgaacc 20820
gcacggtgag cttgtgcccg gttccgtcgt cgcggtcggt gaccacggtg cgcacgggac 20880
gcagatcgac cagggtgacg tgacggtcgg ggcgtggcgt gcggggcctg tgctcggtgc 20940
ccggggcctt gccggtgcgg gagtcgatcg tgcgccgctc ggcgacggtg ggggtgtcca 21000
tgagcacgct catcgccatc agcagcgacg cggacatgcg ggcctcgggg ctcagcgtgg 21060
catccagatc ggattcgggg cggatgagaa tcgacaggat ctcgacaagg ggaccgtcca 21120
cgtcagcgaa gccgggcgga tagtcgccca gccgccccag cagctggatc atggtgcccc 21180
caccgggagc gggaagccag gcgatggccc acacgggagg attcccctgc caggtgcggc 21240
cgccgggcag gtcgaaggtg cgcggcttgg gccccggcag gggtttggcg aagcaggcca 21300
gtccggtcgg ggtgatcagc tggctcgggc tccactcggg cacgtccagg gcagcatcca 21360
gagcgagcgc cgccatctcg ccactcaccc agaacagcga cgcattaccg agccgctcgg 21420
cactccaccc gaagccggac atcggcagtg ccttgtcgcc catggcttca gccaccgcat 21480
cagggtgggt ggcggccagt tgctccaggc gctcgtcgag gtggcgggag tcccgcacaa 21540
agcggcgacg cagcccgggc actccgcggg gtgtccacgt ccagctctcc ggggctgcca 21600
tgtcaggcga cgactcgaat gcccaggctc cgccacgcct cggcggtgtg gtcgagcccc 21660
agatcccacc actgggtcag cgcgtgttcc atggcgatcg tggcgcaggc cgacagctgc 21720
gaggccttgt cgcgagccga cagcaggtcg gcgctgtcgg tgccgtcggg cgtgaagtcc 21780
tgcagggcga tagtgatgtc tccgccggga agctgggaga ccgtgtcggc ggtcatgcct 21840
gcctgggtgg cgtcggcgat gatgcccagc tcgaccagcg tccagccggt gcgggccagg 21900
tcgatgcgct gggcctcgcg ccacaggtcc atctcggtgc gggtgcgtgc cgacaggctc 21960
gggggtgcgg ccacatcggc tccgcgtcgg gccatccatg cggccatgtc gtcggtgggc 22020
cgccaggtga ttgtgctggc catgaagatc ctcctcggag tggaaagtgg aaaggggagg 22080
ggccggagcc cctcccctga tggttgatgt ggtcagcgga tccaggtgaa gggctggtcg 22140
ccgatgatcg agcggaccgc gaggtcgtag ggggcctcgt cctcgctgga ctcgacatcg 22200
accgcgtcga gctcgacacc gtcgcgggtg atggtgatgg tgtcggtcgt ggtggcccga 22260
ccgtcgatca ccgtcggagt gttgatgctg gtgaactctg cggtgatgcc gaccagctcg 22320
tggtcggcga ccgcttccca gaaggcgtcc tcgtcggctt cgatggagaa gtgcacgctg 22380
gaggcgatcg tcgcaccctc ggaggtctcc tcgctgtgga gcgtgaccag ctcgtcggcg 22440
atggcgtcga ggtcatactc ggcgcgggcg tcggcgactg cacctccggc ctcgatggca 22500
tcgatgatag aggcgatggc ctcgccgcgg gtggagaagg tagtgtcggt agaatcggtc 22560
atgatcctgt ccctttcagg gtcttggcct catcggggtg cttcccggtg gggcctcttg 22620
ctttgtcctt gtgacaccca ctgtcgtcac agtgttggaa catgtcaagc cagtgggcca 22680
cctttcttta aagagatttc agcgggcgac cgcgccgcct cggacacctg ggcccagtag 22740
ccctggaggg cgcactgaat caattggttg tcaattggtt gtcaaacctg acccgtcgac 22800
ggggagtgag gaggtggtac cggctgatct acgcctgaaa cagatggagc gggcgacggg 22860
aatcgaaccc gcgtgtctag cttgggaaac gggcatcgtg ctagtctggg gaccgccgaa 22920
atgacgattt caggcgtaaa ccggcctccg gtgtcttacc ctgatagctg ggtgatagca 22980
ccgaattggt tgtcagattg gttgtcagat cgccccagga ggatggtcgc attgtcacgc 23040
gcaagctacg gggacggcac ccagccgacc cggcgttccg acgggcgctg ggcagcatcg 23100
gcctatgacg gctggcaggc gaacgggaac cgccggcgcc gatgggtgta cggccgcacc 23160
caggccgaat gcaagcggaa gctgcgcgac ctgaagcggg agatctggtc agacacccag 23220
cagatgaatg tgaaccccag ggagaccgtc aagagctgga cggcatcatg gctggacgac 23280
taccgatcga ttgccagacc aacaaccttc gccaccgacg agtccatggt gcgcaactgg 23340
atcgtcccag ccatcggtgc ccggcgcctg tccgaactga cagcgcgcga cgcctcgaag 23400
ctgcaacggg tctgccgaga cgggggactg tcggcgacaa cgtctcacta tgccgggctg 23460
ctcctgcggc gcatcctgaa ggctgcccgc gcgaacggct accgcatccc cgactccgtc 23520
atgctggccc ggatcccggg catcggcgca tccaacaggt ccgccctgag cgccatccag 23580
gcggccaacc tgctctcgac ggcaaacgca cgcgacacct ggccggagcc gcccagcctt 23640
cccgacctgc cctacggggc catctcgaag ctcgcaccag cagaagcgca gaagcgtgaa 23700
caactcaaga tggagcggtt ggaatggact gccgcccaaa acacggaccc ctccaggtgg 23760
gctgccgcac tcatgcaggg acttcggtca ggagaggctc gaggcctcac gtgggatcgt 23820
gtcgatctcg ataaggggac gatcaccatt gatcgtcaac tccagcgcat caagcccgac 23880
gcggcgcttc caccgggata caaggtcacc cggctggaag gcagccactg cctcgtggca 23940
ccgaaatctc gatcagggat ccgccgcgtc ccgatcgtcc cctggatggg ccaggctctc 24000
acccgctggc gcgacataca gggcgacagc cccttcgggc tcgtgtggcc gctgcccacc 24060
ggggcgccgc ccacgcgggt ccatgacctg cgggcatggc gtggactcca gcgcgtcgcc 24120
ggggtccaca aggaggatgg aaacctctac gtcctccacg aagcacgaca ctccaccgtg 24180
tcgctgctgc ttgctgccgg ggtcccggaa tcagtggtca tcgcgatcgt cgggcatgca 24240
agcttcgcgg cgaccgagca ctacgcccac accgacctcg aagcagcacg cgccgccctc 24300
atgaaggtgc aggaccgcct cgggctggag ctcgagagct gagcatgcaa agagccgccc 24360
accggaccaa tcgcggtctg gtgggcggct cttttgcgcc ttagagcacg tccgtcacca 24420
cgcctggaag ttgctgacga cgggtgcctg gtcggtgccg gtcacgtcgc agtgaaccgt 24480
gtatttggcg gagccgacgt cggcgccgat gttgacgttc cacagatcgt cggtcttatt 24540
gagggcggcg accgaatcga cggttgagtg gaccttgatc ttaagcgatg ggtattgctt 24600
gcccaaggca tccctcgcat aggtgccaca gccagaggtt gcgccggtca tggtgagtcc 24660
agtggtcgtt gcctcgacgg gtgtgggcgt ggcggacgca gtgggcgtct tcgtggccgt 24720
cggcgtcttc gccgctttcg gagtcttgga ggctgatgat gacgatcctg atgtctgggg 24780
atcgcacgcg gtcagcgcgc cggcgaggca gagtgacgca agcagggcga tggggacgag 24840
cgccttgcgg cgcatggtgt gggtcattcg ggttccttgg ttggttggtt cacatgctgt 24900
ccacagcaac ctagccgcgg aacctgcccg cctgggggtg atgagggcaa gtggcaagaa 24960
ttacatcgat gggattctcg ccaccccctg aagagcgtgg gtggcgaggt ctacattcgt 25020
acgcatgtac gaaacatgga agcctctcgg acacggctcg atctctggtg gatcggcccg 25080
cacaatggag tgcactgaag tagcggagtg ggcagagcgt cgtgcgcgtg ggtggggctc 25140
agcgctggta tcgcgcctgc gcggcgtcca tgaagacgcc gggttcaaag tcgagcacgc 25200
gagcaagctc aaagaggagt gcgacaggga gatcccgctt gccctgctcg atcctgatga 25260
tggtggattc gctgactcca gcgagtcgag cggtctcgac ctgggttaag cccttggcgg 25320
ctcgctcggc tcgaagctgg gcggcgatcg cggcgcgaat tgcatcacgc ttgctggcct 25380
ggttctggtc catgctgtca gcatagccgc cacattggac agttttccgg tccgattggg 25440
atgctcggca cttgcatctg gccatatggc atggcaagct gtccatatgg ccagttcaga 25500
catcaacctg gaggctgcgg acatgatctc cgccgccatc gagcgaagcg acaccagtcg 25560
ggctgaagtc gccacgctga cgggaatccc gttgaccact ctgcgtcgga agctcatggg 25620
ccgatcgccc gtcaacatcg aggacatctt cctgatcgcc ggcgcgctcg ggataccgcc 25680
tgtgagtatc acgcccgacg ttctcacgag tgaagccgcc gcctagcccc caaacagaag 25740
aagcccccgc ctgctgtcac agacgggagc caaccaaagg agtttccaat gagcattcta 25800
cccttcgact accacggtca ggaagtccgg ttcatcaccg atgagtccgg cgagcctcag 25860
gtcgtcgcgt cagatctcgc gaaggccctc aactatcgga acgcacccga catgatgcgt 25920
tccatcgacc tagaggaaag gggtacgcgt ccggtgcgta cccctggcgg tgagcaggag 25980
atgctcacgc tgaccgaggc cggcatgtac caagccatcc tgcaacgcca gacaggccgg 26040
atggtcgacg tcgcccaacg agccgctgtg aagcgattcc agcattgggt tacccacgag 26100
gtgattccct cgatccgcaa gcgcggcatg tatgccactc cggatgcagt cgaggcgatg 26160
ctggccgatc cggacgttat gatccggacg ctcaccgagc tgaaggccca gcgggccagg 26220
gtggcccagc tgcagcccaa ggccgactac gttgacgcct tcgtggccga cgaggatctg 26280
cggctcctgc gcaatgtggc caagtcgatc ggagtgcagg agggcgccat tcgcgacgcc 26340
ttgctcgcac acgagtggat ctacgcggag gagtcctcgc gctggtcgaa ctctcagggc 26400
tgcaaggtca tcgagcaccg ctattcaccg cgctctgaca aggcccgata ctttcgcccg 26460
gtcccgaatc accaggcacc ccgatttaag ggcgaggtaa tgcacaccct gaaggtcact 26520
ccggcagggg ctgaggcgat ctccaagatg gcaaagcgct ggggcctcgt cgtccaggag 26580
gtggcggcat gacctcgact ctcaccggca acatcatcgc cctgctgatc gtggccggcg 26640
tgatcgtcct cgcgatgggg gtgcgccgtg aaggtcgatg acttcgacga tgtgcgcccc 26700
ctgacgcaga aggacgtcgc cgagctactc cacgcaagcg tcggttacgt gcgctcctgc 26760
cgcctggcga cgaagccgaa aggccgggtc ttcccgatgc ccggctggaa gaccgacgga 26820
aagcgctatc tgcttcccgc ttggcggttc cgcgagtggg tcgaaagctt gcccgatgcc 26880
tagcccgcgc cgcttcctaa tcctgatcgc cctgggtgcc gccgccgtcg gtttcgcgcc 26940
ctcctcaatt caatttctct tcatggccgc gcttgtgctc ggcctcacca tcacatgcct 27000
caaggagtcc aaccatgcct gacacacagc cccgtcgtgc gcgtcgtcgc acgctgtccg 27060
agatcctcgc ccccgcgccg gcgccccgca gagcggaggc aacggcatga ggccaccagc 27120
cgttgaaacc cctgatgtga aggcgccggc cacgcctgct ggttcccggc tcttcaaggc 27180
tgtccgtcct gacggcttcg acttccacag cgggactgtc cggtggctcc ctgctgatgg 27240
cgcaccgatc ccggagggcg ggtggcttgt cgagcatccg catcctggtg aggttggcag 27300
ctgggatgca gctttttatc tgtcggcgtc gtcggtggag acggactgca caggtttcca 27360
gtggcctgct ctcctcctgt ccgtggagcc cgtaggtgcc atgtggaccc ctcgccccga 27420
caaatttcct cgcaagcggg ccgcgcacgc gtggcgcgtc atagaagagc tccccgcatg 27480
gcggcttttc ggtccccagg ggcggacggt cctggacatc atcgagcaaa ccgctcatct 27540
gaccaaacgc cagatcgcgg ccctgaacag ggctctggac gccgcacggg acaccgtttg 27600
ggacgttgct tggaacgccg cgtggcacgc cgctcgggtc gctgctcggg tcgctgctcg 27660
gggcgctgct cggggcgctg ctcggtacgc cgcttgggac gctgctcggg gcgctgcttg 27720
gtacgccact tgggtcgctg ctcggggcgc tgctctcgga tggctcgtca aggacctgat 27780
ctccgtcgag gacttccgca ccctgacggg cccgtgggag caggtcatgg gtccgatcga 27840
ggtggcggca tgaaccgcac ctatttcaag gccgttaggg cggacggcac tgacttctac 27900
accggcaagg tccgctggct gcccgatgat ggcgcaccga tccctgccgg gggttgggtc 27960
gttgagcatc cgacgagcga acgcgtgggg gacgacgccc gcacctatct ctcggtttcg 28020
acggtggaaa ccgactgcgc cgggatgggc tggccgtgcc gtctcctgcg ggtcgtcccc 28080
gacggcagac aggtgagcat ccctgaaccc gtggggctgc ccagcacgag ggcctcgatc 28140
aggtggcgcg tcatcgaaga gctccccgca tggcaggcgc ttggacccca ggggcgcgag 28200
attgaggcgc tgctcggaca ggttgagagt ctcacggagg accagaccct cgaaatgtct 28260
gccgctcggg gcttcgctcg gggcttcgct cgggacgtcg cgcggttcgc cgctctggtc 28320
gcctctcggg gcggtgctct gaacgctgcc cagggcggtg ctttgggcac tgctctgaac 28380
gctgttcggg acgctgttct cggatggctc gtcaaagatt ttatctctga tgaggaattc 28440
cgcaccctcg tgggcccgtg ggagcaggtc atgggtcggg tgatcgcatg atgccgatca 28500
ccaagccgtg cgcggttaag gacatgccgg agggcgagta tcactcggat ccctgcgtcg 28560
agccgtccct gtcgtccacg atggcgaaaa ccattgtttc gggtgaggct ggcccggccc 28620
gtctgcgaga gatcatgtct cacgggcagg aacataaggc cgtcttcgat ttcggcagcg 28680
ccgcgcacga gaaggtgctg ggacgcggcg ccggtgtcga ggtgctggat ttccctgcct 28740
ggaccacgaa ggcttcgcgt gaggcgcgtc aggccgtgtg ggatgccggc ggaactcccg 28800
tgctggcgaa ggattccgcc caggtggatg cgatggctga ggcgatcctg tccaatcctg 28860
tggcaggtga gctgttcacg cgcggggctg gttctcctga attgtcgatg ttcaccattg 28920
acgaggagac gggacgctgg cagcggggac ggctcgactt cctggcggac cgcaagacca 28980
tcgtcgactt caagacatct ggacagtccg tcgagctgcc cgactggatc aagcacagct 29040
ggcagttcgg ctaccacatc caagccgccg cctatatgga ccaggcgatc tcgctggatc 29100
tggtcgatga ggacgccatc ttcctgcatg tcgtgcagga gacgaagccg cccttcttgc 29160
tcgcgatcta tcaggtttca gctgaccagc tggccgaggg caggcgtcag atgcgtcgtg 29220
ccctggacct gtgggaccgc tgcctgaccc tcgacgaatg gcccgcgatc cctgcggtga 29280
tccaactatc caagctgccc gattgggtgc acaccactga tgacgaaaag gactcctgac 29340
atgaccgaaa ccacacctag caccgacatt gaaaccaccg cccccacccc gtcggggtcg 29400
atcgcggcgg tcggctccga gacggcaggc ctgacgcttc agcagaagct cgactatgcc 29460
tctgccctgg ccgactccga gctcctgccc gccgcctaca agggcaagcc cgcgaatgtg 29520
ttggtggcga tggagtacgg cggcgagctg ggcatcggca cgctcgtcgc ggtgaaccag 29580
atcacggtga tcaacggcgg cgtctccatg gaggcgaagc tcatgatgac gctcgcccgc 29640
cgagccgggc acatcgtgcg cctgtccggc gacgacaagc aggccacctg catcatcatc 29700
cgcgccgacg atcccgggca cgaatcggtc gtcacttggg acgaggccaa ggcgaagacc 29760
gccggactgt ggggcaaggg ccactggcag aagaacccgg gcttgatgtt gaagtaccgg 29820
gcggcctcgg agaacatccg gctcacctgc cctgaggtgc tggcggggat tgtctacaca 29880
cccgaagagc tcgatgagcg caccgagcgt gcaggccggt ccacgatgcg tgtccatcag 29940
gtcgtggccg agccggagaa gaccgctgcc tacttcatga aggccctcca cctgaacggc 30000
ggccagttca aggagtttgc ccagcgcgtg ctgggacatc cgttgaagag ctgggaatcg 30060
ctggccaagg cagacaagca gcgtgtcctg ggcgctctcg ccagctggga gaacagcggg 30120
gccgatccca ccactggcga ggtcctcgac gccgagccgg tcgagggcgg tgcggcatga 30180
gcaccttgcc tgcggatgct gccgagaggt ggcagcagtg ggatggcctg gcccgcacga 30240
tcctcgccct tcatctcggc ctgactgatc ttgagatggt cgagctggtg ggcgggctca 30300
tcggtgccgg ctggcatcag gatgggccgg tggagtcatg agctggcccg aggagcacca 30360
cgacgtgtgg gcgggtgtcg aggacgccat ccctgagtgg gtgagcgaca aggtggcctg 30420
ctcggtgcgg tcggatgccg attggaatgc cgacgaggac agccgcaagg ccgtggcggc 30480
ggtgaggatc tgcgagcggt gcgccttaac cgagcagtgc ctggattggg cgctggccca 30540
ccacgaggcc ggcatctggg gtgggctcac cgcctccgac cgcgagcgca tcgagcgtgg 30600
cgcgccggtg cggcgggtcc gcgagattcg tcggcgtcgc acggcggtta ggcaggtgca 30660
ggagtcatga gcgcaccact gaccaaggcc cagaaggtcg cggcggtcgt cgagcagctg 30720
ttgcgtggcg gcgccgacac cagcacgctc ctggaggcga cgggggccga ccggcccgga 30780
cgattgcggg acacccttcg ccgcgctggc cgtgacgacc tcgccgcccg gatcatcacc 30840
accgaccggg cagcccagcg cagacgggaa gtcatcgagg cggtcgagaa gctggtctgg 30900
gtggacaggg ccgacgagat cgccgccgaa ctcggctaca gctcgcgcta cggcctgcaa 30960
cagtccttgc gcggctgggg gcgtcgggac cttgccgatc agatcgtgct gacccgcgag 31020
acgcaccgcg acagggtcat cgctgacgtg gaatggatcg ccggtacacg gggccccgag 31080
gatgtcgccc gggcgaccgg ataccgcaac gcggcggcgc tgcaggccgc cctgaccggg 31140
tggggccgca aggacctcgc cgaccggatc gtcggagcat cacgcaacga cacgggccgc 31200
ttccgcttca catggagggc cgcatgagcg ccaaccgctc ccgccgcgcc acgtacaacc 31260
acacggggat cttcgtccat ctgcgcgaag ccgccgagcc gtccgaacag ccaccctccg 31320
accagacatg cccagccctg catgtcatcg ccggactgac accctgggcc gaccaccagc 31380
cccgccacgc cctcggcgtc gacgggcgat gccggcactg ccacaccacc atcaaaggaa 31440
acccatgatc ttcaaagaca ccacgatcgg gccgctcgaa acacggttca cctggtcgat 31500
gaggtgcgac cgctgcggga cgccgctcga ctggctcgtc gccgcttcgt gcaagaccga 31560
gcgtagtgag gtaatcgccg tcaagttcct gagggagcgt gcccgcgatg gcgggggcct 31620
cagagagtgg ggggagctgg acctttgccc ttcatgcttc tcggtgatgg acgcatgatt 31680
accaccacac aactcggaga agcagaccgg tggggccgtg gcctccaagt ccgctcgatc 31740
ctgtgcaacg gctgcggcat agctctggcg accgacatcg gccttcgtgg agacgccacc 31800
gccctccaag tgcaatccga cctgcacgcc cgagcacgca ccgccggctg gacacacccc 31860
gcctggcgcg tcgacctctg cccgcaatgc accaccacaa ccaaaggagc atgaccatga 31920
aggccaccca gtacgccaaa tcgaccgacc ctgaagtcat cgccaccatc gaagagaacg 31980
agctgtcacg acgggcatgg atcgacgaca ccaaggcgtg gttcggcaag acgatccgga 32040
caggaatccc gggcgccaaa ttgttcctct tttccacccg gaccgctatc aggctgttgg 32100
ggatcgtgac gtcggacgag aagaagcctg ccgggtggaa gttctgctgg cgttcacgct 32160
ctcggttcga gccacgaaag aacaatccct tgcgcgccac atgggacgca cgccggtggc 32220
aagcagcgtc gatcccaggt ctgcccgtgg ttctcacgtc ctccgtgtcg ggagagttac 32280
agagctggtt gaggatgtat ccctgcccct tcatctctag tggtgccgca tggctggacc 32340
tggagcacat gcctgaccct gacagtccgc acttcggacc gcagtggact gaagtccgtg 32400
catcgcaggc aatggcagcc aaggaagcat tgaaggacgc gtcatgagca ctccgggatc 32460
actgcgcgcc gcgctcgacc agctggacga gatcggcatc gccgaccatg tgcagtcctt 32520
ggaatgggat cgggccggcg cccgcaccac agcctggctc gagacctgcg gcgacttcgc 32580
tgcggcctgc cagtggggcg atgccgcggg cgaatgggtc acgtgggaca tcaccgacgt 32640
ggccgaggcg gacgtcagcc cccggctgcg cgtcaagcac atgcacctgc gagccaggcc 32700
ctgtgctgat gcgcccgcga aggcggtggc ggcatgagca aggcccttga cccactggat 32760
caccttc 32767
<210> 23
<211> 29768
<212> DNA
<213> PAC7 phage
<400> 23
tcgtacggct tagtgaaata cctccctttt gttgttttat cgttttgtcg actttttgtt 60
tggtggtgtg tgtggtgcag cctgagcttc ctgatagtcg tgattggtgt ggggagacgc 120
gtcggtggtg gtgtgtgtgg ggcgaggatc cgcgtgccgg gtttgtgtct gatgaggagt 180
ggttgtttct catggatgct gcggtgattc atgatgtggt gtggcgtgag ggtcgcgcgg 240
atttggtggc ttcgttgcgt gctcatgtga aggcttttat gggtatgttg gataggtatt 300
cggttgatgt ggcgtctggt ggccgtggtg ggggttctgc ggtagcgatg attgaccggt 360
ataggaagcg taggggggct tgagtaggtg tctggtgttg ttgggtctca ggttcctcgt 420
caccgggtgg ctgtggcgta ttcggtgtct gctggcgggg atgctgggga gcttggtagg 480
gcttatgggt tgacgcctga tccgtggcag cagcaggtgt tggatgattg gcttgctgtg 540
ggtggtaatg gcaggcttgc ttcgggtgtg tgtggggtgt ttgttccgcg gcagaatggc 600
aagaatgcta ttttggagat tgtggagttg tttaaggcga ctattcaggg tcgccgtatt 660
ttgcatacgg ctcacgagtt gaagtcggct cgtaaggcgt ttatgcggtt gcggtcgttt 720
tttgagaatg agcggcagtt tcctgacttg tatcgtatgg tgaagtcgat tcgtgcgacg 780
aatggccagg aggctattgt gttgcatcat ccggattgtg ccacgtttga gaagaagtgt 840
ggttgtccgg gttggggttc ggttgagttt gtggctcgta gccggggttc tgctcgcggg 900
tttacggttg atgatttggt gtgtgatgag gctcaggagt tgtcggatga gcagttggag 960
gctttgcttc ctaccgtgag cgctgccccg tctggtgatc ctcagcagat ttttttgggt 1020
acgccgccgg ggccgttggc tgacgggtct gtggtgttgc gtcttcgcgg gcaggctttg 1080
tcgggtggta aacggtttgc gtggacggag ttttcgattc ctgacgagtc tgatccggat 1140
gatgtgtcgc ggcagtggcg gaagttggcg ggtgacacta atccggcgtt ggggcgccgc 1200
ctgaatttcg ggacagtctc ggatgagcat gagtcgatgt ctgctgccgg gtttgctcgg 1260
gagcggcttg gctggtggga tcgtggccag tctgcttcgt ctgtgattcc ggcggataag 1320
tgggttcagt cggctgtggt tgaggcggct ctggttggcg ggaaggtttt tggtgtctcg 1380
ttttctcgct cgggggatcg tgtcgcgttg gctggtgctg gtaaaacgga ttctggtgtg 1440
catgttgagg ttattgatgg cctgtctggg acgattgttg atggtgtggg ccagctggct 1500
gattggttgg cgttgcgttg gggtgacact gaaaaggtta tggttgcagg gtctggtgcg 1560
gtgttgttgc agaaggcttt gacggatcgt ggtgttccgg gtcgtggcgt gattgtggct 1620
gatactgggg tgtatgtgga ggcgtgtcaa gccttcctgg agggtgtcag gtctgggagc 1680
gtgtctcatc ctcgtgccga ttcgaggcgt gacatgttgg atattgctgt gaggtcggct 1740
gtgcagaaga agaagggttc tgcgtggggt tggggttcct cgtttaagga tggttctgag 1800
gttcctttgg aggctgtgtc tttggcgtat cttggtgcga agatggcgaa agcgaagcgg 1860
cgtgaacggt ctggtaggaa gcgggtgtct gtggtatgaa ctcggatgag ttggctctga 1920
ttgagggcat gtacgatcgt attcaagggt tgtcttcgtg gcattgccgt attgagggct 1980
actatgaggg ctctaatcgg gtgcgtgatt tgggggttgc tattccttcg gagttgcagc 2040
gggtgcagac ggtggtgtca tggcctggga ttgcggtgga tgctttggag gagcgtctgg 2100
attggcttgg ctggactaat ggtgacggct acggtttgga tggtgtgtat gctgcgaatc 2160
ggcttgctac ggcgtcgtgt gatgttcacc ttgatgcact gatttttggg ttgtcgtttg 2220
tggcgatcat tccccaagag gatgggtcgg tgttggttcg tcctcagtcg ccgaagaatt 2280
gtactggccg gttttctgcc gatgggtctt gtttggatgc tggccttgtg gtgcagcaga 2340
cgtgtgatcc tgaggttgtt gaggcggagt tgttgcttcc tgatgtgatt gttcaggtgg 2400
agcggcgggg ttcgcgtgag tgggttgaga cgggccgtat cgagaatgtg ttgggtgcgg 2460
ttccgttggt gcctgttgtg aatcgtcgcc gtacttctag gattgatggc cgttcggaga 2520
ttacgaggtc tattagggct tacacggatg aggctgttcg cacactgttg gggcagtctg 2580
tgaatcgtga tttttatgcg tatcctcagc gttgggtgac tggcgtgagc gcggatgagt 2640
tttcgcagcc gggttgggtt ctgtcgatgg cttctgtgtg ggctgtggat aaggatgatg 2700
atggtgacac tccgaatgtg gggtcgtttc ctgtgaattc tcctacaccg tattctgatc 2760
agatgcgttt gttggcgcag ttgactgcgg gtgaggcggc tgttccggaa cgctatttcg 2820
ggtttatcac ttctaacccg ccttctgggg aggctttggc tgcggaggag tctcggcttg 2880
tgaagcgtgc tgaacgcagg cagacgtcgt ttggtcaggg ctggctgtcg gttggtttcc 2940
tggctgcccg ggcgttggat tcgagtgttg atgaggccgc gttttttggt gatgttggtt 3000
tgcgttggcg tgatgcgtcg acgccgactc gggcggctac ggctgatgct gtgacgaagc 3060
ttgtgggtgc tggtattttg cctgctgatt ctcggacggt gttggagatg ttgggtttgg 3120
atgatgtgca ggttgaggct gtgatgcgtc atcgtgccga gtcttcggat ccgttggcgg 3180
cactggctgg ggctatttcc cgtcaaacta acgaggtttg ataggcgatg gcttcgggtg 3240
ctgtgtcgag gcttgctgcg actgagtatc agcgtgaggc tgtcaggttt gctgggaagt 3300
atgcgggcta ttatgccgag ttgggtcgtt tgtggcgtgc cggcaggatg agtgacacgc 3360
agtatgtgcg tttgtgtgtg gagttggagc gtgccggcca tgacggttca gcagctatgg 3420
cgggcaaatt cgtttcagat tttcgccggt tgaatggtgt cgatcctggt ttgatcgtgt 3480
atgacgagtt tgatgctgcg gcggctttgg ctaggtcgtt ttcgactatg aagattatga 3540
atagtgaccc ggatagggcg aatgatacga ttgatgcgat ggctgcgggt gttaatcggg 3600
ctgttatgaa tgctggtcgt gacacggttg agtggtcggc gggtgcgcag ggtaggtcgt 3660
ggcgtcgggt gactgatggt gatccgtgtg ctttttgtgc catgttggct acgaggtcgg 3720
attatacgac taaagagcgg gcgcttacta ctggtcatac gcggcgtcat aagcgtgccg 3780
gtaggcgtcc gtttggttcg aagtatcatg atcattgtgg ttgtacggtg gttgaggttg 3840
ttggtccttg ggaaccgaat agggctgatg ccgagtatca gaggacgtat gagaaggctc 3900
gtgagtgggt tgatgatcat gggttgcagc agtcgtctgg caatattttg aaggctatgc 3960
gtactgttgg tggcatgaga taatttgatg tggtttccgg ttgtgtgccg ccggttatcg 4020
gtgcacaggg ttgtctcccg cacgggggtc aacaatgttg tgttgttttc cgcaaggagt 4080
gtagggttag gctatggccg atcagagtat tgaggaacag aatgttgaca atgatgttgt 4140
ggagtccgga aaggataacg gcattgttga tacagtaaaa gacgatggcg ggcaggaggt 4200
agccgacaat cagttgaaga atgaaggcga gggtaaatcg ccggggactg attggaaggc 4260
ggaggcccgt aagtgggagt ctcgtgctaa aagtaatttc gccgagttgg agaagcttcg 4320
tacatcgagt gacgattctg gatctactat tgatgagctt cgccgcaaga atgaggaact 4380
cgaagaccgg attaacgggt ttgttcttga gggtgtgaag cgcgaggtgg ctgccgagtg 4440
tggcctgtcg ggtgatgcga tcgcttttct tcacggtagc gataaggagt cgcttgccga 4500
gtctgctaag gctttgaagg gtttgatcga ccatagtagt ggtggtggcg cgggtgtgcg 4560
ccgtcttgcg gggagtgccc ccgttgatga tgttaaacga cgtgagggtg tcgcgtttgt 4620
ggatgctctt gtcaataatt ctaggagatg atttatcatg gctgacgatt ttctttctgc 4680
agggaagctt gagcttcctg gttctatgat tggtgcggtt cgtgaccgtg ctatcgattc 4740
tggtgttctt gctaaactgt caccggagca gccgactatt ttcgggcctg ttaagggcgc 4800
cgtttttagt ggtgttccgc gcgctaagat tgttggcgag ggcgatgtta agccttccgc 4860
tagcgttgat gtttctgcgt ttactgcgca gcctatcaag gttgtgactc agcagcgtgt 4920
ctcggacgag tttatgtggg ctgacgccga ttaccgtctg ggtgtgcttc aggatctgat 4980
ttccccggcc ctgggtgctt ctattggtcg cgccgttgat cttattgctt tccatggtat 5040
tgatcctgct acgggtaagc ctgctgcggc tgtcaaggtg tcgctggata agacgaataa 5100
gacggttgat gccaccgatt ccgctacggc tgatcttgtt aaggctgttg gtctgattgc 5160
tggtgctggt ttgcaggttc ctaacggtgt tgctttggat ccggcgttct cgtttgctct 5220
gtcaactgag gtgtatccga agggttcgcc gcttgccggt cagccaatgt atcctgccgc 5280
cgggttcgcc ggcctggata attggcgcgg cctaaatgtt ggttcttctt cgactgtttc 5340
tggtgccccg gagatgtcgc ctgcttctgg tgttaaggct attgttggtg atttctctcg 5400
tgtccattgg gggttccagc gtaacttccc gattgagctg atcgagtatg gtgacccgga 5460
tcagacgggg cgtgacttga agggccataa tgaggttatg gttcgtgccg aggctgtgct 5520
gtatgttgcg attgagtcgc ttgattcgtt tgctgtcgtg aaggagaagg ctgccccgaa 5580
gcctaatccg ccggccggta actgattcat ttgttgcgat aatgtttatg ctgtgtgcag 5640
ggggtggtgt tgatgggtat cattttgaag cctgaggata ttgagccttt cgccgatatt 5700
cctagagaga agcttgaggc gatgattgcc gatgtggagg ctgtggctgt cagtgtcgcc 5760
ccctgtatcg ctaaaccgga tttcaaatat agggatgccg ctaaggctat tctgcgtagg 5820
gctttgttgc gctggaatga tactggcgtg tcgggtcagg tgcagtatga gtctgcgggc 5880
ccgtttgctc agactacacg gtcgaatact cctacgaatt tgttgtggcc ttctgagatt 5940
gccgcgttga agaagttgtg tgagggtgat agtggggctg gtaaggcgtt cactattaca 6000
ccgaccatga ggagtagtgt gaatcattct gaggtgtgtt ccacggtgtg gggtgagggt 6060
tgctcgtgcg ggtcgaatat taacggctat gctggcccgt tgtgggagat atgatatgac 6120
cggttttcct tacggtgaaa cggttgtgat gcttcagccg actgttcgtg tcgatgatct 6180
tggtgacaag gtggaggatt ggtctaagcc tgtcgagact gtgtaccata acgtggccat 6240
ctatgcttcc gtttcgcagg aggatgaggc cgcggggcgt gactcggatt atgagcattg 6300
gacactgctg ttcaagcagc ctgtcaaggc tgctggttat cggtgtcgtt ggcgtattcg 6360
gggtgttgtg tgggaggctg acgggtctcc tatggtgtgg catcatccga tgtctggctg 6420
ggatgctggt acgcaggtta atgtgaagcg taagaagggc tgatgggttg tggcacgtga 6480
tgttgatgtg aagctgaact tgccgggtat tcgtgaggtg ttgaagtctt ctggggtgca 6540
gggcatgttg gctgagcgtg gtgagcgtgt caagcgtgcg gcctcggcga atgtgggcgg 6600
taacgcttac gatagggccc agtatcgtgc cgggttgtcg tctgaggtgc aggttcaccg 6660
tgttgaggct gtggcgcgta ttggcaccac ctataagggt ggtaaaagga ttgaggctaa 6720
gcatggcacg ttggcgaggt cgattggggc tgcgtcgtga tcgtttacgg tgatcctcga 6780
atatgggcta aacgtgtgtt ggcggatgat ggttggctgt ctgatgtacc gtgcacgggt 6840
actgtgccgg atacatttga gggtgatctg atttggttgg cgttggatgg tggcccggag 6900
ttgcatgttc gtgagcgtgt ttttttgcgt gtgaatgtgt tttcggatac gccggatcgt 6960
gctatgtctt tggctcgccg ggttgaggct gtgctggctg atggtgtgga tggtgatccg 7020
gtggtgtttt gcaggcgttc gactgggcct gatttgctgg tggatggtgc acgttttgat 7080
gtgtattcgc tttttgagct gatatgtagg cctgcggagt ctgaataagc ttattgtttt 7140
tgttttaatg taattgtttg atatttaatg ggggttgtga tggctgctac acgtaaagcg 7200
tctaatgttc gttcagcggt tactggcgac gtttatattg gtgacgcgca cgcgggtgat 7260
tctattaagg gtgtggaggc ggttccttcc gggcttacag ctttggggta tctgtctgat 7320
gacgggttta agattaagcc tgagcgtaaa acggatgatt tgaaggcttg gcagaatgcg 7380
gatgttgttc gcactgtggc tacggagtcg tctatcgaga tttctttcca gctgattgag 7440
tcgaagaagg aggttatcga actgttttgg cagtcgaagg ttactgccgg atctgattcg 7500
ggttcgttcg atatttctcc tggtgccaca acaggtgttc acgccctgtt gatggatatt 7560
gttgatggcg atcaggttat tcgctactat ttccctgagg ttgagctcat tgatcgtgac 7620
gagattaagg gcaagaatgg cgaagtgtac gggtatggtg tgacgttgaa ggcgtatcct 7680
gcccagatta ataagactgg taatgcggtg tcgggtcggg ggtggatgac ggctttaaaa 7740
gctgatactc ctccgactcc tccgccggcc ccggttcctc cgaagcctca gccggatccg 7800
aatccgccgt ccggtaactg atacacgatt ttaggggatt gttaatagat gagtgacact 7860
ggtttcacgt tgaagattgg tgatcgtagc tgggtgttgg cggatgcgga ggagacggct 7920
caggctgttc ctgcccgcgt tttccgtcgt gccgccagga ttgcccagtc gggggagtct 7980
gcggatttcg cccaggttga ggtgatgttt tctatgttgg aggctgccgc cccagctgac 8040
gcggtggagg ccctggaggg gcttcctatg gttcgtgtgg cggaggtttt ccgtgagtgg 8100
atggaataca agcctgacgg taagggtgcc tcgctggggg aatagtttgg ctccacggcc 8160
tgattgatga ttatcgtggg gccatcgaat acgatttccg caccaagttt ggtgtttctg 8220
tttatagtgt tggtggcccg cagatgtgtt ggggtgaggc tgtccggctg gctggcgtgt 8280
tgtgtaccga tacgtctagc cagttggcgg cccaccttaa tggttggcag cgcccgtttg 8340
agtggtgcga gtgggctgtg ttggacatgt tggatcatta caggtctgct aatagtgagg 8400
ggcagccgga gcctgtggcg aggccgactg atgagcgtcg ggcaaggttt acgtctgggc 8460
aggtggacga tattttggcg cgtgttcgtg ccggtggcgg ggtgtctcgc gagattgata 8520
ttatggggtg aatagtgtat gtctggtgag attgcttccg catatgtgtc gttgtatacg 8580
aagatgcctg gccttaaaag tgatgttggt aaacagttgt cgggtgttat gcctgctgag 8640
gggcagcgtt cgggtagcct gtttgctaaa ggcatgaagt tggcgcttgg tggtgcggcg 8700
atgatgggtg ccatcaatgt tgctaagaag ggcctcaagt ctatctatga tgtgactatt 8760
ggtggcggta ttgctcgcgc tatggctatt gatgaggctc aggctaaact gactggtttg 8820
ggtcacacgt cttctgatac gtcttcgatt atgaattcgg ctattgaggc tgtgactggt 8880
acgtcgtatg cgttggggga tgcggcgtct acggcggcgg cgttgtctgc ttcgggtgtg 8940
aagtctggcg gtcagatgac ggatgtgttg aagactgtcg cggatgtgtc ttatatttcg 9000
ggtaagtcgt ttcaggatac gggcgctatt tttacgtctg tgatggctcg cggtaagttg 9060
cagggcgatg acatgttgca gcttacgatg gctggtgttc ctgtgctgtc tttgcttgcc 9120
aggcagacgg gtaaaacctc ggctgaggtt tcgcagatgg tgtcgaaggg gcagattgat 9180
tttgccacgt ttgcggctgc gatgaagctt ggcatgggtg gtgctgcgca ggcgtctggt 9240
aagacgtttg agggcgctat gaagaatgtt aagggcgctt tgggctattt gggtgctacg 9300
gctatggcgc cgtttcttaa cggcctgcgg cagatttttg ttgcgttgaa tccggttatt 9360
aagtctatca cggattctgt gaagccgatg tttgctgccg tcgatgctgg tatccagcgg 9420
atgatgccgt ctattttggc gtggattaac cgtatgccgg ctatgatcac gagaatgaat 9480
gcacagatgc gcgccaaggt ggagcagttg aagggcattt ttgcgagaat gcatttgcct 9540
gttcctaaag tgaatttggg tgccatgttt gctggcggca ccgcagtgtt tggtattgtt 9600
gctgcgggtg tggggaagct tgttgcaggg tttgctccgt tggcggttgc gttgaagaat 9660
ctgttgccgt cgtttggtgc tttgaggggt gccgccgggg ggcttggtgg cgtgtttcgc 9720
gccctgggtg gccctgtcgg gattgtgatc ggcttgtttg cggcaatgtt tgccacgaac 9780
gcccagttcc gtgccgctgt tatgcagctg gtggctgtgg ttggtcaggc gttgggccag 9840
attatggcag ctgtgcagcc gctgtttggt ttggttgctg gcgtggttgc caggttggcg 9900
ccggtgttcg gccagattat cggtatggtt gctggtttgg ctgcccggct ggtgcctgtt 9960
attggtatgc ttattgcccg gctggttcct gttatcaccc agattattgg tatggtaacc 10020
caggttgctg ccatgttgtt gcctatgctg atgccggtta ttcaggctgt tgttgctgtg 10080
atacggcagg ttattggtgt cattatgcag ttgatacctg ttttgatgcc ggttgtgcag 10140
cagattttgg gtgctgtcat gtctgttttg ccgccgattg ttggtttgat acggtcgctg 10200
ataccggtga tcatgtcgat tatgcgtgtg gtggtgcagg ttgttggtgc tgtgctacag 10260
gtggtggccc gtattattcc ggttgttatg ccgatttatg tttcggtgat tggattcatt 10320
gccaagattt atgctgcggt tatcgttttt gaggctaagg ttattggcgc tattcttcgt 10380
actattacgt ggattgtgaa tcattcagtg tctggcgtga ggtctatggg cacggccatc 10440
cagaatggct ggaatcatat taaatcgttt acgtctgcgt ttattaacgg ttttaagtcg 10500
atcatttctg gcggcgtgaa cgcggttgtg gggtttttta cgcggcttgg tttgtcggtt 10560
gcttcccatg tgaggtccgg ttttaacgct gcgaggggtg ctgtttcttc cgccatgaat 10620
gctattcgga gtgttgtgtc ttcggtggcg tctgctgttg gcgggttttt cagttcgatg 10680
gcgtctcgtg ttcggaatgg tgctgtgcgc gggtttaatg gtgcccggag tgcggcttct 10740
tctgctatgc atgctatggg gtccgctgtg tctagtggtg tgcatggtgt gctgggtttt 10800
ttccggaatt tgcctgacaa tattcggcgt gcgcttggta atatggggtc cctgttggtg 10860
tcggctggcc gtgatgtggt gtccggttta ggtaatggta tcaagaatgc tttgagtggc 10920
ctgttggata cggtgcgtaa tatgggttct caggttgcta atgcggcgaa gtcggtgttg 10980
ggtattcatt ccccgtctcg ggtgtttcgt gacgaggttg gccggcaggt tgttgccggt 11040
ttggctgagg gtattactgg taatgctggt ttggcgttgg atgcgatgtc gggtgtggct 11100
gggaggctgc ctgatgcggt tgatgcccgg tttggtgtgc gatcgtctgt gggttcgttt 11160
accccgtatg gcaggtatca gcgcatgaat gataagagtg ttgtggtgaa tgtgaatggg 11220
cctacttatg gggatcctgc cgagtttgcg aagcggattg agcggcagca gcgtgacgct 11280
ttgaacgcgt tggcttacgt gtgattttgg gggtgtggtg catgtttatt cctgacccgt 11340
ctgatcgttc tggtttgact gtgacttggt ctatgttgcc gttgattggt aatgatccgg 11400
agcgtgtgct tcatttgacg gattatacgg ggtcgtctcc gataatgttg ttgaatgatt 11460
cgttgcgcgg tttgggtgtt cctgaggtgg agcatttttc tcaaactcat gttggggtgc 11520
atggctcgga gtggcgcggg tttaatgtga agcctcgcga ggtgacgcta ccggtgttgg 11580
tgtcgggtgt tggcccggat ccggtgggcg gttttcgtga cggttttttg aaggcgtatg 11640
acgagttgtg gtctgctttt cctcctggcg aggtggggga gttgtctgtg aagactcctg 11700
ccggtcgtga gcgtgtgttg aagtgccggt ttgattcggt ggatgacacg tttacggtgg 11760
atccggtgaa caggggttat gcgcgttatc tgttgcattt gacggcttat gacccgtttt 11820
ggtatgggga tgagcagaag tttcgtttca gtaacgctaa gttgcaggat tggttgggtg 11880
gcggccctgt cgacggtaag ggtaccgcgt ttccggtggt gttgacgcct ggtgttggtt 11940
cgggttggga taatctgtct aataagggtg atgtgcctgc gtggcctgtg attcgtgttg 12000
aggggccgtt gtcgtcgtgg tctgtgcaga ttgatggttt gcgtgtgtcc tcggattggc 12060
cggtggagga gtatgattgg atcactattg atacggatcc tcgtaagcag tctgcgttgt 12120
tggacgggtt tgaggatgtg atggatcgtt tgaaggagtg ggagtttgcg cctatcccgc 12180
ctggcggttc tcggagtgtg aatattgaga tggttggttt gggtgccatt gttgtgtcgg 12240
tgcagtacag gtttttgagg gcttggtgaa tagttgatgg ctggttttgt tccgcatgta 12300
acattgttta caccggatta tcgccgtgtg gcgcctatca atttttttga gtcgttgaag 12360
ttgtcgttga agtggaatgg tttgtccact ttggagttgg tggtgtctgg tgatcattct 12420
aggcttgacg ggttgactag gccgggtgcg cggcttgtgg ttgattatgg tggtggccag 12480
attttttctg ggcctgtgcg tcgggtgcat ggtgtgggtc cgtggcgttc ttcgcgtgtg 12540
actatcacgt gtgaggatga tattcgtctg ttgtggcgta tgttgatgtg gcctgtgaat 12600
tatcgtcctg gtatggttgg tatggagtgg cgtgcggatc gggattatgc ccattattcg 12660
ggtgcggcgg agtcggtggc taagcgggtg ttgggggata atgcttggcg ttttccgtct 12720
ggtttgttta tgaacgatga tgagagtcgt ggccgctata ttaaggattt tcaggtgcgg 12780
tttcacgtgt ttgccgataa gttgttgccg gtgttgtcgt gggctcggat gactgtcacg 12840
gtgaaccagt ttgagaatgc gaagtttgat cagcgtggtt tggtgtttga ttgtgtgcct 12900
gctgtgaccc ggaaacatgt gttgactgcc gagtcgggtt cgattgtgtc gtgggagtat 12960
gtgcgtgacg ccccgaaggc gacatctgtg gtggttggtg gccgtggcga gggtaaggat 13020
cggctgtttt gtgaggatgt tgattcggcg gccgaggatg attggtttga tcgtgtcgag 13080
gtgtttaagg atgcccgtaa cacggattcc gagaaggtgt ctctcttcga tgaggctgag 13140
cgggtgttgt ccgagtcggg ggctacgtcg gggtttaaga ttgagttggc tgagtcggat 13200
gtgttgcggt ttggtcccgg caatctgatg cctggggatt tgatctatgt ggatgtgggt 13260
tctgggccta ttgcggagat tgtgcggcag attgatgtgg agtgtgtatc gcctggtgat 13320
ggttggacga aggtgactcc ggttgcgggg gattatgagg ataatccgtc ggccctgttg 13380
gctcgccgtg tggctggttt ggctgcgggt gtgcgggatt tgcaaaagtt ttagtaagtg 13440
attggggttt gttgtgggta ttgtgtgtaa agggtttgat ggtgtgttga ccgagtatga 13500
ttgggctcaa atgtctggtc tgatgggtaa tatgccgtct gtgaaggggc ctgacgattt 13560
tcgtgtcggc acgacgattc agggttctac ggtgttgtgt gagatcctgc cggggcaggc 13620
ttgggctcac ggggtgatgt gcacgtcgaa tagtgttgag acggtgacgg gtcagcttcc 13680
gggcccgggt gagactcgat acgactatgt ggtgttgtct cgggattggc aggagaatac 13740
ggccaagttg gagattgttc ccggtgggcg tgcggagcgt gccagggatg tgttgagggc 13800
tgagcctggc gtgtttcatc agcagctact ggcgactttg gtgttgtcgt ctaacgggtt 13860
gcagcagcag ttggataggc gtgctgtggc ggctagggtt gcgtttgggg agtctgctgc 13920
gtgtgatcct acccctgtgg agggtgaccg tgtgatggtt ccttcggggg ctgtgtgggc 13980
taaccatgcc ggcgagtgga tgttgttgtc tcccaggatt gagacgggtt cgaagtcgat 14040
catgtttggt ggttctgctg tgtatgctta cacgatcccg tttgagcgcc agttcagtag 14100
tccgcctgtt gtggtggcgt ctatggctac ggcggctggg ggcacggcac agattgatgt 14160
gaaagcctac aatgtgactg cccaaaattt tagtttggcg tttattacga atgatggttc 14220
gaagccgaat ggtgtgcctg cggtggcgaa ttggattgct gtcggcgtgt gactgcacgg 14280
gtgttgtggc ggatggtgtg atgttggggg gctgtggtgt cgtggtttac tcctgcactg 14340
gtggcctcta tttgtaccgc gttggccacg gttttgggtt ctgttcaggc tgtcacatcc 14400
cggtctagga agcgtttacg caggctgtcg gctcaggtgg atgcgatgga agagtatacg 14460
tggggtgtgc ggcgcgaggt gcgaaggttt aacgccgggc ttcctgatga tgtggagccg 14520
atgcatcttc ctgatttgcc cgagtttttg aaagatactg ttgatggtgg aggtgagtag 14580
ggttgaggga gttggaggag gagaagcggc agcgccgcaa ttttgagaag gcttcactgg 14640
tgttgttgtt tttgtcgctt gtgttgttgg cggtggttgc tgcgggtgct ttgcgtttcg 14700
gggctgtatc ctctgagcgg gattcggagc aggcgagggc ccagtcgaat ggtacggctg 14760
ccaggggttt ggctgcccgt gtgaagcagg cgtgtgcttc gggtggggtg gagtctgtgc 14820
gtcttcaccg ttctggtttg tgtgtggatg ctgtgcgtgt tgagcagcgt gttcagggtg 14880
tgccgggtcc tgccggtgag cgcggcccgc aaggcccttc aggtcctgcc ggccgggatg 14940
gtgttaatgg ttcggctggg ctggttggcc ctgttggtcc gcaaggttct ccgggtttga 15000
atggtgtgaa aggtcctgac ggcttgcctg gcgctaacgg ttcggatggc cgtgatggtg 15060
ttccaggtcg tgcaggtgct gacggtgtga acggcgttga cggcgctgat ggtcgggatg 15120
gttctgccgg tgagcgcggc ccgcaaggcc cttcaggtcc tgccggcccg caaggtgcac 15180
agggtgaacg gggtgagcgt ggtcccgccg gtgcgaatgg atcggatggc catgatggta 15240
aggatgggcg ctcggtggtg tctgtgtact gttccggggg ccgcctggtt gtgaaatata 15300
gtgacggtgt ggcttccacg atatcgggtt cggcggcctg ccagggtgtg aaaccgtcgc 15360
ctctagtgac tatatcatcc cacaaataga aaggagtggc tgtgatggtg gtgtttggtg 15420
gtggtgtgtt gtgagatata ttcctgcggc gcatcattct gccggctcga atagtccggt 15480
gaatagggtt gtgattcatg cgacgtgccc ggatgtgggg tttccgtccg cctcgcgtaa 15540
aggacgggct gtgtccacgg caaactattt cgcttcccca tcgtctggtg gttcggcgca 15600
ttatgtgtgt gatattgggg agacggtgca atgcttgtcg gagtctacga ttgggtggca 15660
tgccccgccg aatccgcata gtttgggtat agagatttgc gcggatgggg gttcgcacgc 15720
ctcgttccgg gtgccggggc atgcttacac tcgtgagcag tggctggatc ctcgcgtgtg 15780
gcctgcggtt gagcgtgccg ccatcctgtg tagacgtttg tgtgacaagc atggtgttcc 15840
gaaaaggaaa ctgtctgtgg ccgatttgaa ggccggtaaa cggggtgttt gcgggcatgt 15900
ggatgttacg gatgcgtggc atcagtcgga tcatgacgat ccggggccgt ggtttccgtg 15960
ggacaaattt atggctgtgg ttaatggcca cggcggcggt tcaagtagtg aggagttgag 16020
tatggctgat gtacaagcgt tacataatca gattaaacag ttgtcggcac aggtggccca 16080
gtcggtgaat aagctgcatc acgatgttgg tgtggttcag gttcagaatg gtgatttggg 16140
taaacgtgtt gatgccttgt cgtgggtgaa gaatcctgtg acggggaagc tgtggcgcac 16200
taaggatgct ttgtggagtg tctggtatta cgtgttggag tgtcgtagcc gtcttgacag 16260
gctcgagtct gctgtcaacg atttgaaaaa gtgatggtgg tttgttgtgg gtaaacagtt 16320
ttggttaggt ttgctggagc gtgccctgaa aacttttgtt caaacgtttg ttgccgtgtt 16380
gggggttact gcgggtgtca cctatactgc ggagtcgttt cgtggtttgc cgtgggaatc 16440
cgcgctgatc acggcaacgg ttgctgctgt cctgtcggtt gctacctcgt ttggtagccc 16500
gtcgtttgtg gccggcaagc ccggcaagca gccccaggtg gatgcgggtt tggttccacc 16560
ggatgatggg ggcttggttg agccgcatat ggtggatgtg tcggatcctg gcatgatcga 16620
gccgacggat gatgcggatc ttgccggcta tgagcctcgg cgtgcagccg agtcggaggt 16680
tggcacggta gagtctactg ttgcataatt gaatatagat gtgtgcccca gcggtgctgc 16740
cacgattgtg tggtggcggc tgctggggca ctatttttgt atatgcggtg tggctatgat 16800
tcgttgctgt cgatggtgtc ttcgagcatc tgatacaggt ggaggcaggt agagatagtt 16860
tcgctggcct gatcgagaac gttccggccg ataacgtttt tgtggttgtc gcggtggcgg 16920
atgatagccc acatgatctc gtcggctgcc gcctgtaata gtttggcctg gtatgcgatt 16980
ccggcgagcc agtctagtgc ttcctggctt gtataggggc tctggtcctc gctgttgccg 17040
cgggtgttgc tgttgtttgt ggggtgtcct gcactgtcgc atagccacag gatttcgctg 17100
cactcgtcta gcgtgtcttg gtcgatagcg agatcgtcga ggctgacatt gttgacggta 17160
aggttcacgt tgtcgaggga gatgggtaca ccgtactggt tttcgacact gtcaacaatg 17220
ttttccagct gttgcatgtt ggtgggctgt tgttggacga tacggtgtat cgctgtgttg 17280
agggtggtgt aggtgatgtt gtgtgtgttg tccatggttt ttatgccatt ccttcgttat 17340
cgtctggcat gtagtatgtg ctgtttgcgt actcggttaa cgtcatcagt gtttggtctg 17400
cccactgttt cacggtttgc cgggtgactc cgagtcgttg ggcggctgtg gcgtaggttt 17460
gatcataccc gtatacttcc cggaatgctg ccaacctagc taggtgtttc ctctgtttgg 17520
atggttcaca ggtgagggtg tagtcgtcga tggctagctg tagatcgatc atggagacga 17580
tgttgttgcc gtggtgttgt ggcgcggttg gtgggggtgg cattcctggc tccacggagg 17640
gtttccaggg gccgccgttc cagatccatt gggcagcttg gatgatgtcg gcggtggtgt 17700
aggttcggtt cactggtcac cccctgaaca ggtcgttggt gttgttggtg tcgaatcgtc 17760
cgacgcagtg gcagtagtcg tacatgagtt taataatgtg ttggtggtct cccaaatagg 17820
tgtttccgct gatgctgtat gtggctgtgc cgtctttcgc gatggtgtat ttggcggtga 17880
tggtttcggg gttttcggtg tcggtgatga ttgctgtggt ggtggcgcct actgtttgga 17940
gtatggtggt ttgggttccg tcgtcgatgg tggttttaac catggtgtgt gttttccctt 18000
ttgttagttg cttgtttggt tgtcggctag atgaataata tcgggtaaag gtttcggctg 18060
gtctaggtgt tgtatggttt tgttggctag ccgtttggct accctgtaac acattttggt 18120
gtagtgtttg ttgtctaggt tgtggtattg ttcccgcacc gcaatatata gcagggagtc 18180
ttggtacagg tcgtctgcac tgattgcggg gtagtgtgcg gctgttttgg tgcatgcccg 18240
gttgagtgtg cgaagatgat ggtctgtggc ccacacccac gatgcggtgg tggccaggtc 18300
ggcttttgtt ggtcgtctgc tcatggcact atttcatctc gctatctgat agttgtttgg 18360
tgttttgttg tggatagtgt agcacactag tcctgggtgg ccggtggtgc ctgtgcggtg 18420
acggaaccat gtggattcgc cttccatgga tgggcattgg atgaaggtgc gttgtccttg 18480
ctcggagatt tctaggtggt gccggtgccc ggccatgaga atattagata cggtgccgtt 18540
gtggaattct tggccgcgcc accaatcata gtgtttaccg gtgcgccatt ggtgcccgtg 18600
ggcgtgcagt atccgtgtgc ctgccacatc aacggtggtg gtcatttcgt ctcggctggg 18660
gaagtggaag tgtaggttgg ggtattggtt attgagctgg taggcttctg cgatggcccg 18720
gcagcagtcc acgtcgaatg agtcatcgta ggtggtgact cctttaccga agcgcacggc 18780
ttcaccatgg ttgccgggga tggatgtgat ggtcacattt ttgcagtggt cgaattggtg 18840
gatgagttgc atcatggcca tgcgggtgag cctgatttgt tcggtgaggg gtgtttgtgt 18900
tcgccaggcg ttgttgcctc cttgtgacac gtatccttcg atcatgtcgc cgaggaaggc 18960
gatgtggact cgttcgggtt tgcctgcttg ttgccagcag tgttttgcga ctatgaggga 19020
gtgtaggtag ttgtcggcga agtgtgctgt ttctccgccg gggatgcctt tgccgatttg 19080
gaagtctcct gccccgatga cgaaggctgc ggtgctgtag tcggtgtggg tgtcttgttc 19140
gggttttggg ggtgtccatt cggctagttt atcgacgagt tcgtctaccg ggtaggggtt 19200
tgttgcgggt tggtggtcga tgattttttg tatggatcgg cctgtttctc cgttggggag 19260
tgtccattcg gagatgcgtg tgcggcgcac ggtgccgttg gctagattgt cgtcgatggt 19320
gtcgatggcg ttgtcgtggt tggctagctg tgtgagtagc cggtcaatat tgtctatcac 19380
tgggtatcct cctcttgcgg ggtggtgctg gcttgtttgc ggcgatagtc tttaataacg 19440
gtggcggaga tggggtatcc tgcctgggtg agctgttttg ctagccatga ggcggggata 19500
gacctgtcgg cgagcacgtc ggcggctttg ttgccgtagc gttgaataag ggtttcagtt 19560
ttggttgcca tgatgtccta tcggttgtgt ggtgggctgc catcctgtgc ggcagtcgcc 19620
gtcgtgtcct ggtttgcgtg tgcaccacga tacggttccg tctgtgtggt tgagtgtttt 19680
accgcacatg acgtttcgga gatgctccgg cagctggtca tcctggttgc tggtttgtgt 19740
gtcgaagagt gttttctggt tggtgaaatg ttctgacacg gtgccgttat gcacgggtag 19800
tatccatgtt ttccattgtt gttgtagcct ggtgttccag tggaattgtt tggcggcgtt 19860
ttcggcctgt tttaaggttt tgtggtagcc gactagtatg cgttgatgct gctggtctgg 19920
agggtttggg cctcgccagt attgtgccgc cacggcgtag cggttgctgt ctgtgaaggc 19980
gtcccagcag tattcgataa tgtgttgcaa catactgtct ggcaggctgt cagggttgat 20040
gttgatgttt tgggtgataa tgtcacggat ggcttgccgg tttttggtgg tgggtttgaa 20100
cgagatgctc acgatagtac cggctggtcg tcttgcatga actggttgaa ggtgttgttc 20160
ccggcgtgtt gggcttgtgt tatttgttgg tcggtccagt ctgggtgttg ctgtttcaga 20220
tagtgccagt ggcacgcatt gtaggtttcg tcttgtagcc gtgtgagatg gttttcggtg 20280
atgatttgtt tccacatggc ccatgacacg tcgagccggt cgaggatttc gagggctggg 20340
atgttgaatt ggttcaggaa gaggatttcg tgggtgtagt agtttttctc gtaggcgtcc 20400
catccgcttc ggtgcctgtt gggctggttt ttggggtagg cttcccggca tactttgtgt 20460
aaacgcttgg ccatgtcgtc gggtagttta atgtcggggt tggcgcggat catggatcgc 20520
atcccatcat aggtggtgcc ccaggtgtgc atgatgtagg tggggtcttc tccgtcggcc 20580
catttttctg cacagatggc gaggcggata cgcctcctgg cagcttggct ggtgttgcgc 20640
cggttgggga ttgggcacgt gtcgagggga tccatgatgt tttagtgtac ctttctggtt 20700
tcgtgttgtt gacaggtttt actgtagcac agtgtctagt gcgtgtgtca accctgtttt 20760
tccggcttga aggtaggtgt ctgtgacatc ccctagggtg aggggcacgt gcacagcttg 20820
ggggagtgcc gcctggaggg tttgggccat ctggtcgcct gcggggtctg ggtctgacca 20880
gatgtagatg tggtcgtagc cttcaaaaaa tttggtccaa aaaatttgcc acgaggttgc 20940
gccgggtagg gcgacggccg accatccgca ttgttcgagg atcatggagt cgaattcgcc 21000
ttcgcaaatg tgcatttcgg ctgccgggtt ggccatggcg gccatgttgt agatggagcc 21060
tgtgtctcct gccggggtta ggtatttggg gtggttgtgg gttttgcagt cgtgcgggag 21120
tgagcagcgg aaacgcattt ttcttatttc ggctgggccg ccccaaacgg ggtacatgta 21180
tgggatggtg atgcactggt tgtagttttc gtggcctggg atggggtcat tgtcgatgta 21240
tccaaggtgg tggtagcggg ctgtttcttc gctgatgcct cttgctgaga gcaggtcgag 21300
tatgttttcg aggtgggttt cgtagcgggc tgaggctttc tggattcggc ggcgttccgc 21360
aatgttgtat gggcgtatgc tgtcgtacat ttgggttttc ttcttctaat cgttgttgta 21420
gcttggcgag tccgcctccg acaccgcatg tgtggcagta ccagacgccc ttgtcgaggt 21480
tgatgctcat ggagggctgg tggtcgtcgt ggaacgggca gagtatgtgt tgctcgttcc 21540
tggacggatt gtaccgtatc tgataatggt cgaggaggcg gcaggtgtca gaggtgtggg 21600
aggagctcgt tgagggttga taccacatag gcttcactcc atggcttgtt gcgctgtttc 21660
atcactacga gtccgatggt ggaattgttt tgtttgtttc ggtgtgtttc gtagttgcgt 21720
gcctcccggc tggcttgttt cacgaattgg gctaggtgtg gttgcccggc tttcgcctcg 21780
ataatgtagg ttttatggcc ggttgtgagg atgaggtcgc cttcgtcttc gcggccgttg 21840
aggtggaggc gttcgatatt gtgtccggtg tcgcgtagct ggtggaggag tcttgtttcc 21900
cattcggctc cggcccgccg gttgcgtgcc tgctgtgtgg ccatagtttt ttagagtcct 21960
ttgtgtgttg tggtcatgtt ccagggctgt ttttcggcga gtggcccgaa gaatgtgtat 22020
tcggggtatg ctctgagtcg ttcgtatcgg gtgccgtcgg ggctggattt gcctgtgcgc 22080
tgtttgagta cggcgatgcg tgcctctgcc ggtatcgata gcccgttgcc gttatcctcg 22140
ccaccataca atgagactcc gaggatgagt tgtggttttt cggagaggcc gtttttgatt 22200
tctcgccgtg ctggcgggtg ttcgatgtcg gttccggttt tgtcggttgc gtggtgtgtg 22260
acaataatgg tggagccagt atccctgccc aatgctgtga tccattgcat ggcttcttgc 22320
tgtgcctggt agtcggattc gcagtcttga atgtccatca ggttgtcgat aacaatgagt 22380
ggtgggaagg tgttccacat ttccatgtag gcttgtaact ccatggtgat gtctgtccat 22440
gtgatgggtg actggaatga gaatgtgatg tgttggccgt ggtggatgct gtctcgatag 22500
tattctggcc cgtagtcgtc gatgttttgt tgtatttgtt gggtggtgtg ttgtgtgttg 22560
agggagatga ttcgtgtgga ggcctcccag ggtgtcatgt cccctgatat gtagagggcg 22620
ggctggttga gcatcgctgt gatgaacatg gctagccctg atttttggct gccggaccgc 22680
cccgcgatca tcaccaagtc gcccttatgg atgtgcaaat cttggttatc atatagtggt 22740
gcgagttgtg gtatgcgggg tagttcggct gcggtttggg aggctctctc gaaggatcgt 22800
tgtagagaga gcatcgggac cttaatctat ctgtctgttg gttgtgtggc tggtcagatg 22860
gagtcgatat cgatatcagc atcagcagag gctgaagtgt catctagctg accattatcg 22920
cgcttgtcta cgtattcggc aaccttatcg tagatggcgt cgtccaatgt tttgagcacg 22980
accgcgttga aaccgttttt ggtgcgcacg gtggctagtt tgaaggcctg ctcctcgcca 23040
aggtatgcct ctagttcgcg gatcatggag tgtgggcggt cgttattgcc gcgggctttc 23100
tcaataatag cgttggggat ggtttctggg gtgccgttgt tgagatcgtc tagggtgtgg 23160
aagatggtga catcagcgta gatgcggtct gcgacctgtc caccgtagcc ttcagtgttg 23220
tgctggacgt cgtgcacttt gaaggcgatg gccgtggcgt cctggtttcg ggaggggttg 23280
aagaaggtgc tgttgctgtt gttgcggtag tttgcgagtc ccataactat tgtttccttt 23340
tactgttgtg tctgtttttg ttggcttata ttggtttatc gggtgaggct gtttcgctta 23400
gtgcggaaag cgtcggaaac atcactgtta ctggtgatga tcttcttgta ctgttttaga 23460
aggtctgcta gctgtgcctt gcttgttgca ttgttgattt tgttgatgac gatggtgttt 23520
tctttggatg cgattttgtt gacgtagtct ttggctgcct ggttgtatcg gtcttggagg 23580
atgattgatg cgctcgctac gagtgttgct agatcccagt ctttggacac gtcatcgttt 23640
ttgagtccgc ctagcaggtc gatgatggcc tgttttgtct gctctgctgt gtctcctcgg 23700
atgaccgccc atggtgcagc atagtctcca ccatatttga gtgtgatcgt gagtcgatca 23760
ttgtcgatct tgtctttatc tgtcatttgg tgtccttttc tttattgtct gtttctggtg 23820
gctgtacggt ggattctacc gggtatctgt acgagttttt gccgttgacg gcccagcagg 23880
cgtctcgtac ggggcatcct ttacagagtg ttgtgacgtg ggggacgaag atgccttcgc 23940
tgattccttt cattgcttga ctgtacatgg atgatacatg ccggtaggtg ttgttgtcaa 24000
ggtcgtagag ttcggtggat gtgccttgtg tcggggactt gtcgtcgttg cggctggtgg 24060
ctggcgtcca aaacatgcct ttcgtgacat ggatgtcgtg ttggttgagc atgtaccggt 24120
atgtgtgcag ctgcatactg tcggcgggta ggcgtccggt tttgaggtcg aggatgaagg 24180
tttcgccggt gtcggtgtcg gtgaaaacac ggtcgatgta gccgactatt tttgtgtcat 24240
cgtcgaggat ggtttctacc gggtattcga tgcctggttt accgtccagg attgcggtga 24300
tgtattctgg gtggttgcgc ctccatgttt tccagcggtc cacaaaggtg gggccgtaaa 24360
ccatccacca gtcgtagtct ttcttgtgtg gtccgcctga ctcgcacatg tttttgcata 24420
ttctgccgga gggtttgatt tctgtgcctt cggattcggc gagggctacc tgggtgtcga 24480
aaatgttttt gaaggatgag agtttgtctg gcagtgcagg gtattcggcg ggattgtaca 24540
ggtgtaggtc gtattgttcg gtgatgtggt gtatggcgct tccggcgatg gtggcgtacc 24600
aggtgtggtg ttgggcgtga tagccgtggg ataggcgcca tttttctccg cattcggccc 24660
actgggtgag tgaactgtag gagatgtgtc ctgggtggct gatggttttc gggtattgtg 24720
ctagaggcat tacttgtcgc ttgtgttcca tgtgttgcgg gtgtcttggc cggcgtggtg 24780
ttgctggtag gcgaggagtg cgaggcagtg ccaggctgcg tgtgctagat ggggtagccc 24840
ggattcgtgg tcgaggttgt tgccttgctg ccatgatagt agatgcctgt agagggcgtc 24900
gacactgtgg ctccacgggt atcctccggt ccagttgttg tcgccatatt tggtggcacc 24960
gtatccggct acttcgccta gggcgtgaag ggatgctggg tcgatgaggg agagcctgca 25020
gagtttcaat tcttttcggg caccgctgtt ggggtcggtg tacatgcggg tgggctcatc 25080
catggggtgt gtgctcctta agggtgggtt actggttgtt gttgtgggct agggcggcgg 25140
cgagaataat gatggcgagg gtttcggcta tcagtatggg tgttgtgatc atttggtgtc 25200
tcggggattg ttggtgagtg ttgaggcacc caggagggtg gcgagggcgc atgcggcaat 25260
aatggcgagg gctgccttgt gtggggtgcc ggttgcgtac atccatgtga tgatggcacc 25320
ttggatccag gctaggctgg tgaagaaggt ttcgtagctg tgcagctcaa tgttgttgtt 25380
gggtgtgttc atgcttgctc ctgaagaatg gtgttgatgg ttttataaat gttgtacagg 25440
tcggtttcga tagataacag ttggttgatt tggtggtcga gatcaatgtc tgggttgagt 25500
gtgttgatgc gggaggcaat atcggtggct gtgcgtagtg tgccgccggt gtggtgaata 25560
atgtgtgccg tgtcggcgag tccggtggtg acggcgtagt gggataggag aggcatagcg 25620
gggatgctcc ttggcgggtt actgttgcgg gttgatgttg aggtcggtga cgtgcggtga 25680
gttttctgtt ccggtgacga ggcagtggac ggtgacgggt agtttggatg ctcccggctg 25740
gcggacggtg gcgccgtaga cgatgctgaa tgtgtcttta ccgatggttt tgtggagttg 25800
gaggtcgatg tcggggttgc cgttccagtt gacaccttgc gctgcggcct gttgttcggc 25860
tttgtggttg caggtgtgtg ctgccgtgat catggtgagt ccggtggcgg tttcttcacc 25920
ccttgcttgg gcttgcttgt gggctttggc ctgctcggct tgtagggatc gggtggcggc 25980
tgcctgccgt gccgctttct cggctttgcg ctgttgggta gtcttggggg tccatgtggt 26040
gttggctgtg gttgcctgtg gggctggctg tgaggtgagt ggcgggttgt cgtctggtgc 26100
tggcatgaat gaggcggcgg caatgatggc ggctgtgatg cctgcgatgg tgtagccgtt 26160
tttcttgttc atgttttgtg tcccctttcc ggggtgttgt tcgttgctga catggttaat 26220
actttcagcg gctgggccca ctgtcaaggc tgcgctcagt ttgtgtgagc gtttggtgtg 26280
tggctagggg ttttgtcatg taagcgtgac atgtcactac cttgcgtcca gtatccatgg 26340
cggttgcgag ccatcccttt ggcgagcatc tcgtccacag tgaggcacct gcggcgattg 26400
gggccttcct tgaccccgtg atcgcctatg cggtgcatgt ccccggcata agtgccatta 26460
aatgtttcgt ggcagactgt gcagtgttct ggtcggtatc cgatgattgt gctatcgcac 26520
ttgtggcatg tccattgcat gattggtcct tctttcgtgt tttaagcttg tgctctgagg 26580
attagagcga ctttcagccc ttgggggtag gattatatag gtcaggtatt tctaggcgat 26640
tctaggctca ttgtgtgtgg ttggggtttt atcgggcgca tagggttagc aggtggccca 26700
cattggtgcg gctcacattc cagtagagtt gcgtggcttc cttactggtg agcggcttcc 26760
actcgtcatg gctgaacacg gtgccatcgg atgcgatgaa cgtgttgggg cgtagcttgt 26820
gaagctcggc ttccacatgc tgccggtagg cttcggcgag gctctcaaaa tccatgtggt 26880
cgcaggagag gttttcgagg cgtgtcaggt cgaaaggctc cgggcagtcg tagctggctg 26940
gagtgtagag ctgggtgaag tggtcggcga tcttctgcat ggcgggttcc tttctggtgt 27000
gtggatggtt tttatcgtgt ggatgcgaca aggatggcgt ctacgtcgat catgtcgatc 27060
atgtcgttga gttcctcggc ctcattctcg gagaggtggc gccagtcggg tggcccgtat 27120
acggcgccgt cgagggtgac agtccacagg ggccggatga gtcgtatggc ttcttcgact 27180
ttggcgtggt acatgcggcg caccatatcc agatcgatgt cgtctgaatg gtttccggtg 27240
aggctgtgga ggctgagcgg gtcgatttct gtctgcctgt agaggctggt gaatgatggt 27300
gtgatgagtg tgccatccat gagtgtgctc ctttctaggg gttgttgtgg tttctagagt 27360
gtgtgggctg tgaccccaca gtcaaggcta cgctcatttg gattgagcgt ttcatatggg 27420
tgtggcatgg aatctacacc ctcatactgt gtgagatgta tcacatcccc ctggcttggt 27480
gtgcacccct caagactact ctgccgacct ggcgtggagg gtgtagccca gaaatgccgt 27540
ttaaagcttc aggggtacgc ctaggagcgc cttacagggt gggggctagg tatttatacc 27600
cccagcatat tctgatcgat tctagacgac tcccagagcc cgatacacga tcaaccatct 27660
cgacatagac catcagcccc tatcctggtt agctaagcct caactatgtg gacagtgtgg 27720
gacactgtgg gggaagaagg acacggtaca agaaagaggg gggagcatca gccttaaagc 27780
cttaagatct tagcgcttag caccgatggt cttagcagtt agcaccgagc ccttgagggg 27840
gctcggcatc agcctcatcg ggctcagctc atcaggcaca gccctgaaaa gggtacacgc 27900
catcagggaa ggcttgagag tacgaggagc cctagcgacg agtactcgaa agcctgaggg 27960
aacaccctca gtactgatga gcctagcgta ttcggaaagg acgcaagagt aaagtgtgac 28020
agctatccgg gagtgaaacc cgttccgact aggggtttca gccttaacca ccctcaaagg 28080
ttacaagact ctaagaaaat ttaagaaact tcttaggaag aaagttgtgt tcatatcccc 28140
ctaaaaacac ccaaaatagt cctcaaaccc gcctatagag ccaaacagtc aagtttgact 28200
cgtctagacg gcgtatgata ggctggacag gtagccagct ggacgcaagg ccagaaagtg 28260
ctgacgcact tcccgacctc gcttaccatc agtctaccaa acactttaaa gcttcaaggc 28320
ttagcgctaa gcccttaaga tcttaacgct tagcaccgag cccccctcaa gggctcgaca 28380
tcagtcttaa agtcttaaac actttaagta actttaaagc ttcaaggctt agcccttaag 28440
gatctaagtt actataaaag ctttaaacac ttaaagtaac tataaagctt taagagctta 28500
acatttaagg atataaataa acattaaagc tttaaagtct taaagtaaat atataacctt 28560
aacacttaag ttaagtataa aaccttaaag gcttagcact taaggatata aacttaacat 28620
cagtgtttaa gacttaaaga gttaaagtaa ctattaagac ttaaaggctt ataagcttta 28680
atactttaag tagctataag actttaaaaa cctgaagtac ttaaagttaa ccatcagtct 28740
taaactttaa tattataagt attaaagctt ataagttata aaagttttta gaagagttaa 28800
agggttaact tctttacttc tcttctctct ttggttcttt ctctcttctc ttcttttctt 28860
catcagggga gaagaggaac ctttaaccgt caacgctgat ggacttttca ccgtgtgact 28920
cgtgtgcttc tggtcgcaag ctcccatcgc acactcccca cactctttca cccgtgcccc 28980
tttacggctt agcgtgttcg tcggaaggcg tacggcgtgt cacgcttaaa cccttaacac 29040
caggtaagac ttaaagtgca tattataagt agaagacttt aaaacctata aggtgttccc 29100
gcttagcccg tgttccttta acgctaggcg ctcagcgcta agatgtgaaa cgtgaacacc 29160
catccacccc catttttctt ccgtgtcctt ctccttttga caccgctggg gggcgatgtg 29220
atatttctca catgccaggg ggtagtggag aaaacaacca ccccggaacg tttaagacac 29280
cccctcaaac gaacaaaaca gggcctagaa tcgatcagca gggcaccggt agggtattcc 29340
tacccccaga cgattcaagg ccattacagg agcaatgaga ggctcacagg ggccatggga 29400
gattgggggg cgtgatggca cacaccaacc gcacagccag ccaagcccac cggcgctggc 29460
gggcaaggct catcacccaa gcccgacaac aaggccaaac cgaatgccca ctctgcggag 29520
tcaccatcac ctggaacacc cacgacctgc caaccagccc cgaagccgac cacatcacac 29580
ccgtcagccg gggaggactc aacaccctcg acaacgggca aatcatctgc agaacatgca 29640
acagaagcaa aggcaacaga acacaaccaa acatcaaatt ccaacaacaa accacaaaaa 29700
cattgattcc atggtgaaaa acccgccaac ccccaccggg cacaccccct gcacacccgt 29760
gcaagacc 29768
<210> 24
<211> 11979
<212> DNA
<213> artificial sequence
<220>
<223> pANS514 plasmid
<400> 24
catggttgcg ccatgcagca caggccaagc gtgaggccca agcacgagga ctcgcccgct 60
gcccactgtg cggcgtctgg atggactacg aggtcggcaa gcgacccaac tcggccgaag 120
cagaccacat cagaccgcat tcgcttggtg gttcagacga catcgacaac attcgcgtca 180
tttgtcgtcg ttgcaatcaa tcgcgcggaa acggcctgaa gcgaccaggg cgccaacgtc 240
agcgtccaat caagcgcatc gagctggccc aaccggcccg cagtggggca tttcctgccc 300
cgccggcatg aatggaaggg cagtgcggat ggtgcggtcg ggcattcgat cgtgcccgga 360
cgggtcgccc gcgacgcttc tgctcggccc gctgtcgggt cgccgcgtcc cggtgtgcga 420
tcccgctggc catgaggtcc cgcactgcgt gggtccgctg cgacggcaag cgccccatca 480
ccctggctgg cgctccggcc tcatccacgg acccgggcac atggtctggc tggtcgcagg 540
tgcgacgcgc cacggccggc gatggcttcg ggaccatgct cggtgacggg ctggggtgct 600
gggatctcga ccacttcgac gatcagggcg cccgggcctt catcgaccgg atcgataagc 660
cgatcatctt cgccgagcgg tcggtgtcgg ggcatggctt ccacatcttc gtccggactg 720
acgaggcccc cggacgccgc accggaaaca tcgagttcta ctcacgccat cggttcatca 780
gggtcacagg agaccagttc gtctgaaggt cgtgccgggt ttgtgtctga tgaggagtgg 840
ttgtttctca tggatgctgc ggtgattcat gatgtggtgt ggcgtgaggg tcgcgcggat 900
ttggtggctt cgttgcgtgc tcatgtgaag gcttttatgg gtatgttgga taggtattcg 960
gttgatgtgg cgtctggtgg ccgtggtggg ggttctgcgg tagcgatgat tgaccggtat 1020
aggaagcgta ggggggcttg agtaggtgtc tggtgttgtt gggtctcagg ttcctcgtca 1080
ccgggtggct gtggcgtatt cggtgtctgc tggcggggat gctggggagc ttggtagggc 1140
ttatgggttg acgcctgatc cgtggcagca gcaggtgttg gatgattggc ttgctgtggg 1200
tggtaatggc aggcttgctt cgggtgtgtg tggggtgttt gttccgcggc agaatggcaa 1260
gaatgctatt ttggagattg tggagttgtt taaggcgact attcagggtc gccgtatttt 1320
gcatacggct cacgagttga agtcggctcg taaggcgttt atgcggttgc ggtcgttttt 1380
tgagaatgag cggcagtttc ctgacttgta tcgtatggtg aagtcgattc gtgcgacgaa 1440
tggccaggag gctattgtgt tgcatcatcc ggattgtgcc acgtttgaga agaagtgtgg 1500
ttgtccgggt tggggttcgg ttgagtttgt ggctcgtagc cggggttctg ctcgcgggtt 1560
tacggttgat gatttggtgt gtgatgaggc tcaggagttg tcggatgagc agttggaggc 1620
tttgcttcct accgtgagcg ctgccccgtc tggtgatcct cagcagattt ttttgggtac 1680
gccgccgggg ccgttggctg acgggtctgt ggtgttgcgt cttcgcgggc aggctttgtc 1740
gggtggtaaa cggtttgcgt ggacggagtt ttcgattcct gacgagtctg atccggatga 1800
tgtgtcgcgg cagtggcgga agttggcggg tgacactaat ccggcgttgg ggcgccgcct 1860
gaatttcggg acagtctcgg atgagcatga gtcgatgtct gctgccgggt ttgctcggga 1920
gcggcttggc tggtgggatc gtggccagtc tgcttcgtct gtgattccgg cggataagtg 1980
ggttcagtcg gctgtggttg aggcggctct ggttggcggg aaggtttttg gtgtctcgtt 2040
ttctcgctcg ggggatcgtg tcgcgttggc tggtgctggt aaaacggatt ctggtgtgca 2100
tgttgaggtt attgatggcc tgtctgggac gattgttgat ggtgtgggcc agctggctga 2160
ttggttggcg ttgcgttggg gtgacactga aaaggttatg gttgcagggt ctggtgcggt 2220
gttgttgcag aaggctttga cggatcgtgg tgttccgggt cgtggcgtga ttgtggctga 2280
tactggggtg tatgtggagg cgtgtcaagc cttcctggag ggtgtcaggt ctgggagcgt 2340
gtctcatcct cgtgccgatt cgaggcgtga catgttggat attgctgtga ggtcggctgt 2400
gcagaagaag aagggttctg cgtggggttg gggttcctcg tttaaggatg gttctgaggt 2460
tcctttggag gctgtgtctt tggcgtatct tggtgcgaag atggcgaaag cgaagcggcg 2520
tgaacggtct ggtaggaagc gggtgtctgt ggtatgaact cggatgagtt ggctctgatt 2580
gagggcatgt acgatcgtat tcaagggttg tcttcgtggc attgccgtat tgagggctac 2640
tatgagggct ctaatcgggt gcgtgatttg ggggttgcta ttccttcgga gttgcagcgg 2700
gtgcagacgg tggtgtcatg gcctgggatt gcggtggatg ctttggagga gcgtctggat 2760
tggcttggct ggactaatgg tgacggctac ggtttggatg gtgtgtatgc tgcgaatcgg 2820
cttgctacgg cgtcgtgtga tgttcacctt gatgcactga tttttgggtt gtcgtttgtg 2880
gcgatcattc cccaagagga tgggtcggtg ttggttcgtc ctcagtcgcc gaagaattgt 2940
actggccggt tttctgccga tgggtcttgt ttggatgctg gccttgtggt gcagcagacg 3000
tgtgatcctg aggttgttga ggcggagttg ttgcttcctg atgtgattgt tcaggtggag 3060
cggcggggtt cgcgtgagtg ggttgagacg ggccgtatcg agaatgtgtt gggtgcggtt 3120
ccgttggtgc ctgttgtgaa tcgtcgccgt acttctagga ttgatggccg ttcggagatt 3180
acgaggtcta ttagggctta cacggatgag gctgttcgca cactgttggg gcagtctgtg 3240
aatcgtgatt tttatgcgta tcctcagcgt tgggtgactg gcgtgagcgc ggatgagttt 3300
tcgcagccgg gttgggttct gtcgatggct tctgtgtggg ctgtggataa ggatgatgat 3360
ggtgacactc cgaatgtggg gtcgtttcct gtgaattctc ctacaccgta ttctgatcag 3420
atgcgtttgt tggcgcagtt gactgcgggt gaggcggctg ttccggaacg ctatttcggg 3480
tttatcactt ctaacccgcc ttctggggag gctttggctg cggaggagtc tcggcttgtg 3540
aagcgtgctg aacgcaggca gacgtcgttt ggtcagggct ggctgtcggt tggtttcctg 3600
gctgcccggg cgttggattc gagtgttgat gaggccgcgt tttttggtga tgttggtttg 3660
cgttggcgtg atgcgtcgac gccgactcgg gcggctacgg ctgatgctgt gacgaagctt 3720
gtgggtgctg gtattttgcc tgctgattct cggacggtgt tggagatgtt gggtttggat 3780
gatgtgcagg ttgaggctgt gatgcgtcat cgtgccgagt cttcggatcc gttggcggca 3840
ctggctgggg ctatttcccg tcaaactaac gaggtttgat aggcgatggc ttcgggtgct 3900
gtgtcgaggc ttgctgcgac tgagtatcag cgtgaggctg tcaggtttgc tgggaagtat 3960
gcgggctatt atgccgagtt gggtcgtttg tggcgtgccg gcaggatgag tgacacgcag 4020
tatgtgcgtt tgtgtgtgga gttggagcgt gccggccatg acggttcagc agctatggcg 4080
ggcaaattcg tttcagattt tcgccggttg aatggtgtcg atcctggttt gatcgtgtat 4140
gacgagtttg atgctgcggc ggctttggct aggtcgtttt cgactatgaa gattatgaat 4200
agtgacccgg atagggcgaa tgatacgatt gatgcgatgg ctgcgggtgt taatcgggct 4260
gttatgaatg ctggtcgtga cacggttgag tggtcggcgg gtgcgcaggg taggtcgtgg 4320
cgtcgggtga ctgatggtga tccgtgtgct ttttgtgcca tgttggctac gaggtcggat 4380
tatacgacta aagagcgggc gcttactact ggtcatacgc ggcgtcataa gcgtgccggt 4440
aggcgtccgt ttggttcgaa gtatcatgat cattgtggtt gtacggtggt tgaggttgtt 4500
ggtccttggg aaccgaatag ggctgatgcc gagtatcaga ggacgtatga gaaggctcgt 4560
gagtgggttg atgatcatgg gttgcagcag tcgtctggca atattttgaa ggctatgcgt 4620
actgttggtg gcatgagata atttgatgtg gtttccggtt gtgtgccgcc ggttatcggt 4680
gcacagggtt gtctcccgca cgggggtcaa caatgttgtg ttgttttccg caaggagtgt 4740
agggttaggc tatggccgat cagagtattg aggaacagaa tgttgacaat gatgttgtgg 4800
agtccggaaa ggataacggc attgttgata cagtaaaaga cgatggcggg caggaggtag 4860
ccgacaatca gttgaagaat gaaggcgagg gtaaatcgcc ggggactgat tggaaggcgg 4920
aggcccgtaa gtgggagtct cgtgctaaaa gtaatttcgc cgagttggag aagcttcgta 4980
catcgagtga cgattctgga tctactattg atgagcttcg ccgcaagaat gaggaactcg 5040
aagaccggat taacgggttt gttcttgagg gtgtgaagcg cgaggtggct gccgagtgtg 5100
gcctgtcggg tgatgcgatc gcttttcttc acggtagcga taaggagtcg cttgccgagt 5160
ctgctaaggc tttgaagggt ttgatcgacc atagtagtgg tggtggcgcg ggtgtgcgcc 5220
gtcttgcggg gagtgccccc gttgatgatg ttaaacgacg tgagggtgtc gcgtttgtgg 5280
atgctcttgt caataattct aggagatgat ttatcatggc tgacgatttt ctttctgcag 5340
ggaagcttga gcttcctggt tctatgattg gtgcggttcg tgaccgtgct atcgattctg 5400
gtgttcttgc taaactgtca ccggagcagc cgactatttt cgggcctgtt aagggcgccg 5460
tttttagtgg tgttccgcgc gctaagattg ttggcgaggg cgatgttaag ccttccgcta 5520
gcgttgatgt ttctgcgttt actgcgcagc ctatcaaggt tgtgactcag cagcgtgtct 5580
cggacgagtt tatgtgggct gacgccgatt accgtctggg tgtgcttcag gatctgattt 5640
ccccggccct gggtgcttct attggtcgcg ccgttgatct tattgctttc catggtattg 5700
atcctgctac gggtaagcct gctgcggctg tcaaggtgtc gctggataag acgaataaga 5760
cggttgatgc caccgattcc gctacggctg atcttgttaa ggctgttggt ctgattgctg 5820
gtgctggttt gcaggttcct aacggtgttg ctttggatcc ggcgttctcg tttgctctgt 5880
caactgaggt gtatccgaag ggttcgccgc ttgccggtca gccaatgtat cctgccgccg 5940
ggttcgccgg cctggataat tggcgcggcc taaatgttgg ttcttcttcg actgtttctg 6000
gtgccccgga gatgtcgcct gcttctggtg ttaaggctat tgttggtgat ttctctcgtg 6060
tccattgggg gttccagcgt aacttcccga ttgagctgat cgagtatggt gacccggatc 6120
agacggggcg tgacttgaag ggccataatg aggttatggt tcgtgccgag gctgtgctgt 6180
atgttgcgat tgagtcgctt gattcgtttg ctgtcgtgaa ggagaaggct gccccgaagc 6240
ctaatccgcc ggccggtaac tgattcattt gttgcgataa tgtttatgct gtgtgcaggg 6300
ggtggtgttg atgggtatca ttttgaagcc tgaggatatt gagcctttcg ccgatattcc 6360
tagagagaag cttgaggcga tgattgccga tgtggaggct gtggctgtca gtgtcgcccc 6420
ctgtatcgct aaaccggatt tcaaatatag ggatgccgct aaggctattc tgcgtagggc 6480
tttgttgcgc tggaatgata ctggcgtgtc gggtcaggtg cagtatgagt ctgcgggccc 6540
gtttgctcag actacacggt cgaatactcc tacgaatttg ttgtggcctt ctgagattgc 6600
cgcgttgaag aagttgtgtg agggtgatag tggggctggt aaggcgttca ctattacacc 6660
gaccatgagg agtagtgtga atcattctga ggtgtgttcc acggtgtggg gtgagggttg 6720
ctcgtgcggg tcgaatatta acggctatgc tggcccgttg tgggagatat gatatgaccg 6780
gttttcctta cggtgaaacg gttgtgatgc ttcagccgac tgttcgtgtc gatgatcttg 6840
gtgacaaggt ggaggattgg tctaagcctg tcgagactgt gtaccataac gtggccatct 6900
atgcttccgt ttcgcaggag gatgaggccg cggggcgtga ctcggattat gagcattgga 6960
cactgctgtt caagcagcct gtcaaggctg ctggttatcg gtgtcgttgg cgtattcggg 7020
gtgttgtgtg ggaggctgac gggtctccta tggtgtggca tcatccgatg tctggctggg 7080
atgctggtac gcaggttaat gtgaagcgta agaagggctg atgggttgtg gcacgtgatg 7140
ttgatgtgaa gctgaacttg ccgggtattc gtgaggtgtt gaagtcttct ggggtgcagg 7200
gcatgttggc tgagcgtggt gagcgtgtca agcgtgcggc ctcggcgaat gtgggcggta 7260
acgcttacga tagggcccag tatcgtgccg ggttgtcgtc tgaggtgcag gttcaccgtg 7320
ttgaggctgt ggcgcgtatt ggcaccacct ataagggtgg taaaaggatt gaggctaagc 7380
atggcacgtt ggcgaggtcg attggggctg cgtcgtgatc gtttacggtg atcctcgaat 7440
atgggctaaa cgtgtgttgg cggatgatgg ttggctgtct gatgtaccgt gcacgggtac 7500
tgtgccggat acatttgagg gtgatctgat ttggttggcg ttggatggtg gcccggagtt 7560
gcatgttcgt gagcgtgttt ttttgcgtgt gaatgtgttt tcggatacgc cggatcgtgc 7620
tatgtctttg gctcgccggg ttgaggctgt gctggctgat ggtgtggatg gtgatccggt 7680
ggtgttttgc aggcgttcga ctgggcctga tttgctggtg gatggtgcac gttttgatgt 7740
gtattcgctt tttgagctga tatgtaggcc tgcggagtct gaataagctt attgtttttg 7800
ttttaatgta attgtttgat atttaatggg ggttgtgatg gctgctacac gtaaagcgtc 7860
taatgttcgt tcagcggtta ctggcgacgt ttatattggt gacgcgcacg cgggtgattc 7920
tattaagggt gtggaggcgg ttccttccgg gcttacagct ttggggtatc tgtctgatga 7980
cgggtttaag attaagcctg agcgtaaaac ggatgatttg aaggcttggc agaatgcgga 8040
tgttgttcgc actgtggcta cggagtcgtc tatcgagatt tctttccagc tgattgagtc 8100
gaagaaggag gttatcgaac tgttttggca gtcgaaggtt actgccggat ctgattcggg 8160
ttcgttcgat atttctcctg gtgccacaac aggtgttcac gccctgttga tggatattgt 8220
tgatggcgat caggttattc gctactattt ccctgaggtt gagctcattg atcgtgacga 8280
gattaagggc aagaatggcg aagtgtacgg gtatggtgtg acgttgaagg cgtatcctgc 8340
ccagattaat aagactggta atgcggtgtc gggtcggggg tggatgacgg ctttaaaagc 8400
tgatactcct ccgactcctc cgccggcccc ggttcctccg aagcctcagc cggatccgaa 8460
tccgccgtcc ggtaactgat acacgatttt aggggattgt taatagatga gtgacactgg 8520
tttcacgttg aagattggtg atcgtagctg ggtgttggcg gatgcggagg agacggctca 8580
ggctgttcct gcccgcgttt tccgtcgtgc cgccaggatt gcccagtcgg gggagtctgc 8640
ggatttcgcc caggttgagg tgatgttttc tatgttggag gctgccgccc cagctgacgc 8700
ggtggaggcc ctggaggggc ttcctatggt tcgtgtggcg gaggttttcc gtgagtggat 8760
ggaatacaag cctgacggta agggtgcctc gctgggggaa tagtttggct ccacggcctg 8820
attgatgatt atcgtggggc catcgaatac gatttccgca ccaagtttgg tgtttctgtt 8880
tatagtgttg gtggcccgca gatgtgttgg ggtgaggctg tccggctggc tggcgtgttg 8940
tgtaccgata cgtctagcca gttggcggcc caccttaatg gttggcagcg cccgtttgag 9000
tggtgcgagt gggctgtgtt ggacatgttg gatcattaca ggtctgctaa tagtgagggg 9060
cagccggagc ctgtggcgag gccgactgat gagcgtcggg caaggtttac gtctgggcag 9120
gtggacgata ttttggcgcg tgttcgtgcc ggtggcgggg tgtctcgcga gattgatatt 9180
atggggtgaa tagtgtatgt ctggtgagat tgcttccgca tatgtgtcgt tgtatacgaa 9240
gatgcctggc cttaaaagtg atgttggtaa acagttgtcg ggtgttatgc ctgctgaggg 9300
gcagcgttcg ggtagcctgt ttgctaaagg catgaagttg gcgcttggtg gtgcggcgat 9360
gatgggtgcc atcaatgttg ctaagaaggg cctcaagtct atctatgatg tgactattgg 9420
tggcggtatt gctcgcgcta tggctattga tgaggctcag gctaaactga ctggtttggg 9480
tcacacgtct tctgatacgt cttcgattat gaattcggct attgaggctg tgactggtac 9540
gtcgtatgcg ttgggggatg cggcgtctac ggcggcggcg ttgtctgctt cgggtgtgaa 9600
gtctggcggt cagatgacgg atgtgttgaa gactgtcgcg gatgtgtctt atatttcggg 9660
taagtcgttt caggatacgg gcgctatttt tacgtctgtg atggctcgcg gtaagttgca 9720
gggcgatgac atgttgcagc ttacgatggc tggtgttcct gtgctgtctt tgcttgccag 9780
gcagacgggt aaaacctcgg ctgaggtttc gcagatggtg tcgaaggggc agattgattt 9840
tgccacgttt gcggctgcga tgaagcttgg catgggtggt gctgcgcagg cgtctggtaa 9900
gacgtttgag ggcgctatga agaatgttaa gggcgctttg ggctatttgg gtgctacggc 9960
tatggcgccg tttcttaacg gcctgcggca gatttttgtt gcgttgaatc cggttattaa 10020
gtctatcacg gattctgtga agccgatgtt tgctgccgtc gatgctggta tccagcggat 10080
gatgccgtct attttggcgt ggattaaccg tatgccggct atgatcacga gaatgaatgc 10140
acagatgcgc gccaaggtgg agcagttgaa gggcattttt gcgagaatgc atttgcctgt 10200
tcctaaagtg aatttgggtg ccatgtttgc tggcggcacc gcagtgtttg gtattgttgc 10260
tgcgggtgtg gggaagcttg ttgcagggtt tgctccgttg gcggttgcgt tgaagaatct 10320
gttgccgtcg tttggtgctt tgaggggtgc cgccgggggg cttggtggcg tgtttcgcgc 10380
cctgggtggc cctgtcggga ttgtgatcgg cttgtttgcg gcaatgtttg ccacgaacgc 10440
ccagttccgt gccgctgtta tgcagctggt ggctgtggtt ggtcaggcgt tgggccagat 10500
tatggcagct gtgcagccgc tgtttggttt ggttgctggc gtggttgcca ggttggcgcc 10560
ggtgttcggc cagattatcg gtatggttgc tggtttggct gcccggctgg tgcctgttat 10620
tggtatgctt attgcccggc tggttcctgt tatcacccag attattggta tggtaaccca 10680
ggttgctgcc atgttgttgc ctatgctgat gccggttatt caggctgttg ttgctgtgat 10740
acggcaggtt attggtgtca ttatgcagtt gatacctgtt ttgatgccgg ttgtgcagca 10800
gattttgggt gctgtcatgt ctgttttgcc gccgattgtt ggtttgatac ggtcgctgat 10860
accggtgatc atgtcgatta tgcgtgtggt ggtgcaggtt gttggtgctg tgctacaggt 10920
ggtggcccgt attattccgg ttgttatgcc gatttatgtt tcggtgattg gattcattgc 10980
caagatttat gctgcggtta tcgtttttga ggctaaggtt attggcgcta ttcttcgtac 11040
tattacgtgg attgtgaatc attcagtgtc tggcgtgagg tctatgggca cggccatcca 11100
gaatggctgg aatcatatta aatcgtttac gtctgcgttt attaacggtt ttaagtcgat 11160
catttctggc ggcgtgaacg cggttgtggg gttttttacg cggcttggtt tgtcggttgc 11220
ttcccatgtg aggtccggtt ttaacgctgc gaggggtgct gtttcttccg ccatgaatgc 11280
tattcggagt gttgtgtctt cggtggcgtc tgctgttggc gggtttttca gttcgatggc 11340
gtctcgtgtt cggaatggtg ctgtgcgcgg gtttaatggt gcccggagtg cggcttcttc 11400
tgctatgcat gctatggggt ccgctgtgtc tagtggtgtg catggtgtgc tgggtttttt 11460
ccggaatttg cctgacaata ttcggcgtgc gcttggtaat atggggtccc tgttggtgtc 11520
ggctggccgt gatgtggtgt ccggtttagg taatggtatc aagaatgctt tgagtggcct 11580
gttggatacg gtgcgtaata tgggttctca ggttgctaat gcggcgaagt cggtgttggg 11640
tattcattcc ccgtctcggg tgtttcgtga cgaggttggc cggcaggttg ttgccggttt 11700
ggctgagggt attactggta atgctggttt ggcgttggat gcgatgtcgg gtgtggctgg 11760
gaggctgcct gatgcggttg atgcccggtt tggtgtgcga tcgtctgtgg gttcgtttac 11820
cccgtatggc aggtatcagc gcatgaatga taagagtgtt gtggtgaatg tgaatgggcc 11880
tacttatggg gatcctgccg agtttgcgaa gcggattgag cggcagcagc gtgacgcttt 11940
gaacgcgttg gcttacgtgt gattttgggg gtgtggtgc 11979
<210> 25
<211> 83
<212> DNA
<213> artificial sequence
<220>
PAC7 cos for pAN594, < 223-
<400> 25
acaaaaggga ggtatttcac taagccgtac gaggtcttgc acgggtgtgc agggggtgtg 60
cccggtgggg gttggcgggt ttt 83
<210> 26
<211> 4670
<212> DNA
<213> artificial sequence
<220>
<223> operon of gp15-gp19+gp45
<400> 26
cgacgcggcg gtctgccgac ccggcaacga ccaactcccc gacgggcgct gacaccggcc 60
cggcagcgtg catgcgtgca tttccaccct caagaaccat tgactggcga cgcgcaggtg 120
ggagaattga actgaacgct ttgaacgcgt tggcttacgt gtgattttgg gggtgtggtg 180
catgtttatt cctgacccgt ctgatcgttc tggtttgact gtgacttggt ctatgttgcc 240
gttgattggt aatgatccgg agcgtgtgct tcatttgacg gattatacgg ggtcgtctcc 300
gataatgttg ttgaatgatt cgttgcgcgg tttgggtgtt cctgaggtgg agcatttttc 360
tcaaactcat gttggggtgc atggctcgga gtggcgcggg tttaatgtga agcctcgcga 420
ggtgacgcta ccggtgttgg tgtcgggtgt tggcccggat ccggtgggcg gttttcgtga 480
cggttttttg aaggcgtatg acgagttgtg gtctgctttt cctcctggcg aggtggggga 540
gttgtctgtg aagactcctg ccggtcgtga gcgtgtgttg aagtgccggt ttgattcggt 600
ggatgacacg tttacggtgg atccggtgaa caggggttat gcgcgttatc tgttgcattt 660
gacggcttat gacccgtttt ggtatgggga tgagcagaag tttcgtttca gtaacgctaa 720
gttgcaggat tggttgggtg gcggccctgt cgacggtaag ggtaccgcgt ttccggtggt 780
gttgacgcct ggtgttggtt cgggttggga taatctgtct aataagggtg atgtgcctgc 840
gtggcctgtg attcgtgttg aggggccgtt gtcgtcgtgg tctgtgcaga ttgatggttt 900
gcgtgtgtcc tcggattggc cggtggagga gtatgattgg atcactattg atacggatcc 960
tcgtaagcag tctgcgttgt tggacgggtt tgaggatgtg atggatcgtt tgaaggagtg 1020
ggagtttgcg cctatcccgc ctggcggttc tcggagtgtg aatattgaga tggttggttt 1080
gggtgccatt gttgtgtcgg tgcagtacag gtttttgagg gcttggtgaa tagttgatgg 1140
ctggttttgt tccgcatgta acattgttta caccggatta tcgccgtgtg gcgcctatca 1200
atttttttga gtcgttgaag ttgtcgttga agtggaatgg tttgtccact ttggagttgg 1260
tggtgtctgg tgatcattct aggcttgacg ggttgactag gccgggtgcg cggcttgtgg 1320
ttgattatgg tggtggccag attttttctg ggcctgtgcg tcgggtgcat ggtgtgggtc 1380
cgtggcgttc ttcgcgtgtg actatcacgt gtgaggatga tattcgtctg ttgtggcgta 1440
tgttgatgtg gcctgtgaat tatcgtcctg gtatggttgg tatggagtgg cgtgcggatc 1500
gggattatgc ccattattcg ggtgcggcgg agtcggtggc taagcgggtg ttgggggata 1560
atgcttggcg ttttccgtct ggtttgttta tgaacgatga tgagagtcgt ggccgctata 1620
ttaaggattt tcaggtgcgg tttcacgtgt ttgccgataa gttgttgccg gtgttgtcgt 1680
gggctcggat gactgtcacg gtgaaccagt ttgagaatgc gaagtttgat cagcgtggtt 1740
tggtgtttga ttgtgtgcct gctgtgaccc ggaaacatgt gttgactgcc gagtcgggtt 1800
cgattgtgtc gtgggagtat gtgcgtgacg ccccgaaggc gacatctgtg gtggttggtg 1860
gccgtggcga gggtaaggat cggctgtttt gtgaggatgt tgattcggcg gccgaggatg 1920
attggtttga tcgtgtcgag gtgtttaagg atgcccgtaa cacggattcc gagaaggtgt 1980
ctctcttcga tgaggctgag cgggtgttgt ccgagtcggg ggctacgtcg gggtttaaga 2040
ttgagttggc tgagtcggat gtgttgcggt ttggtcccgg caatctgatg cctggggatt 2100
tgatctatgt ggatgtgggt tctgggccta ttgcggagat tgtgcggcag attgatgtgg 2160
agtgtgtatc gcctggtgat ggttggacga aggtgactcc ggttgcgggg gattatgagg 2220
ataatccgtc ggccctgttg gctcgccgtg tggctggttt ggctgcgggt gtgcgggatt 2280
tgcaaaagtt ttagtaagtg attggggttt gttgtgggta ttgtgtgtaa agggtttgat 2340
ggtgtgttga ccgagtatga ttgggctcaa atgtctggtc tgatgggtaa tatgccgtct 2400
gtgaaggggc ctgacgattt tcgtgtcggc acgacgattc agggttctac ggtgttgtgt 2460
gagatcctgc cggggcaggc ttgggctcac ggggtgatgt gcacgtcgaa tagtgttgag 2520
acggtgacgg gtcagcttcc gggcccgggt gagactcgat acgactatgt ggtgttgtct 2580
cgggattggc aggagaatac ggccaagttg gagattgttc ccggtgggcg tgcggagcgt 2640
gccagggatg tgttgagggc tgagcctggc gtgtttcatc agcagctact ggcgactttg 2700
gtgttgtcgt ctaacgggtt gcagcagcag ttggataggc gtgctgtggc ggctagggtt 2760
gcgtttgggg agtctgctgc gtgtgatcct acccctgtgg agggtgaccg tgtgatggtt 2820
ccttcggggg ctgtgtgggc taaccatgcc ggcgagtgga tgttgttgtc tcccaggatt 2880
gagacgggtt cgaagtcgat catgtttggt ggttctgctg tgtatgctta cacgatcccg 2940
tttgagcgcc agttcagtag tccgcctgtt gtggtggcgt ctatggctac ggcggctggg 3000
ggcacggcac agattgatgt gaaagcctac aatgtgactg cccaaaattt tagtttggcg 3060
tttattacga atgatggttc gaagccgaat ggtgtgcctg cggtggcgaa ttggattgct 3120
gtcggcgtgt gactgcacgg gtgttgtggc ggatggtgtg atgttggggg gctgtggtgt 3180
cgtggtttac tcctgcactg gtggcctcta tttgtaccgc gttggccacg gttttgggtt 3240
ctgttcaggc tgtcacatcc cggtctagga agcgtttacg caggctgtcg gctcaggtgg 3300
atgcgatgga agagtatacg tggggtgtgc ggcgcgaggt gcgaaggttt aacgccgggc 3360
ttcctgatga tgtggagccg atgcatcttc ctgatttgcc cgagtttttg aaagatactg 3420
ttgatggtgg aggtgagtag ggttgaggga gttggaggag gagaagcggc agcgccgcaa 3480
ttttgagaag gcttcactgg tgttgttgtt tttgtcgctt gtgttgttgg cggtggttgc 3540
tgcgggtgct ttgcgtttcg gggctgtatc ctctgagcgg gattcggagc aggcgagggc 3600
ccagtcgaat ggtacggctg ccaggggttt ggctgcccgt gtgaagcagg cgtgtgcttc 3660
gggtggggtg gagtctgtgc gtcttcaccg ttctggtttg tgtgtggatg ctgtgcgtgt 3720
tgagcagcgt gttcagggtg tgccgggtcc tgccggtgag cgcggcccgc aaggcccttc 3780
aggtcctgcc ggccgggatg gtgttaatgg ttcggctggg ctggttggcc ctgttggtcc 3840
gcaaggttct ccgggtttga atggtgtgaa aggtcctgac ggcttgcctg gcgctaacgg 3900
ttcggatggc cgtgatggtg ttccaggtcg tgcaggtgct gacggtgtga acggcgttga 3960
cggcgctgat ggtcgggatg gttctgccgg tgagcgcggc ccgcaaggcc cttcaggtcc 4020
tgccggcccg caaggtgcac agggtgaacg gggtgagcgt ggtcccgccg gtgcgaatgg 4080
atcggatggc catgatggta aggatgggcg ctcggtggtg tctgtgtact gttccggggg 4140
ccgcctggtt gtgaaatata gtgacggtgt ggcttccacg atatcgggtt cggcggcctg 4200
ccagggtgtg aaaccgtcgc ctctagtgac tatatcatcc cacaaataga ggctcacagg 4260
ggccatggga gattgggggg cgtgatggca cacaccaacc gcacagccag ccaagcccac 4320
cggcgctggc gggcaaggct catcacccaa gcccgacaac aaggccaaac cgaatgccca 4380
ctctgcggag tcaccatcac ctggaacacc cacgacctgc caaccagccc cgaagccgac 4440
cacatcacac ccgtcagccg gggaggactc aacaccctcg acaacgggca aatcatctgc 4500
agaacatgca acagaagcaa aggcaacaga acacaaccaa acatcaaatt ccaacaacaa 4560
accacaaaaa cattgattcc atggtgagga tatccacgag ctgcgttcgg ctaaacccaa 4620
aagtaaaaac ccgccgaagc gggttttaac gtaaaacagg tgaaactgac 4670
<210> 27
<211> 1910
<212> DNA
<213> artificial sequence
<220>
<223> pAN241 vector
<400> 27
caagtggccc atcgaagagg acggcaccac catctcgccg ggcaagctca aggacgtgtc 60
caggctgacg ctcacggtgc tgctgcaccc ctcgtgcgcc atcatcgtgg atccccaaga 120
ttgtccggac ggcggttgag cgcggcctga taggcgccgc agctcctgct cccgggccgc 180
cccggtcggc ggtttactcc tttcctgccg gccggggcac tcaagacaac cgggggccct 240
cgcgaaattg aggggccccg cctgattgca agggggtgcc catgaagcaa cccgggcccc 300
accaaagaat gcgggctacc ttcaaggccg acaggggctg gcgagtggca tgcccacggt 360
gcgcctggca tgccaccagc acccaccttg catggctcat ggatcaggcc agcacacaca 420
cctgtgcacc cctgctgttg tcgcccacgc cacccgacgt ggagctggca ccggcaggcg 480
acgggctgtc cgtcctgtgg cccgaggtgg acggtgacgt gcagttcacc tgcatccaca 540
ccagcaccgc cacgtgcagg caggacgcac catgagcacc agtcgcaccg gcacggccac 600
atggttgcgc catgcagcac aggccaagcg tgaggcccaa gcacgaggac tcgcccgctg 660
cccactgtgc ggcgtctgga tggactacga ggtcggcaag cgacccaact cggccgaagc 720
agaccacatc agaccgcatt cgcttggtgg ttcagacgac atcgacaaca ttcgcgtcat 780
ttgtcgtcgt tgcaatcaat cgcgcggaaa cggcctgaag cgaccagggc gccaacgtca 840
gcgtccaatc aagcgcatcg agctggccca accggcccgc agtggggcat ttcctgcccc 900
gccggcatga atggaagggc agtgcggatg gtgcggtcgg gcattcgatc gtgcccggac 960
gggtcgcccg cgacgcttct gctcggcccg ctgtcgggtc gccgcgtccc ggtgtgcgat 1020
cccgctggcc atgaggtccc gcactgcgtg ggtccgctgc gacggcaagc gccccatcac 1080
cctggctggc gctccggcct catccacgga cccgggcaca tggtctggct ggtcgcaggt 1140
gcgacgcgcc acggccggcg atggcttcgg gaccatgctc ggtgacgggc tggggtgctg 1200
ggatctcgac cacttcgacg atcagggcgc ccgggccttc atcgaccgga tcgataagcc 1260
gatcatcttc gccgagcggt cggtgtcggg gcatggcttc cacatcttcg tccggactga 1320
cgaggccccc ggacgccgca ccggaaacat cgagttctac tcacgccatc ggttcatcag 1380
ggtcacagga gaccagttcg tctgaagaag ggggtgcgcc atggctgcac aggtcagggc 1440
cgtggacccc gatgagcgcc cacccgcccg caagcgggcc aagaccatca cccaggccgc 1500
gaagtccggc actgaggttg aactgttgga ggcactgcag gctcgcgtgg cccgcgccgt 1560
gcaggaccgt gacactccgc cgcgcgatct ggcagcgctg acgaagcggc tgatggacat 1620
cacccgggag ctcgaggcgg cccgggtcaa ggatcaggag gcgggatctg atggtgccgt 1680
caccgcagac gaaacatggc gaccgcaagc tctctgaggt cgccaagcac ctgatccttc 1740
ctgaagggat cgtctcgacg ggctggccgg ccgtgcgtga ccggtgtggc gagtggggtg 1800
tggtcttcga ccgttggcag gacggcatgg gccgggtgat cctgtcgaag cgcggcagcg 1860
gcctgttcgc cgctggtgtg ggcggggtcg gcatgtcgat cccgcgccag 1910

Claims (28)

1. A producer bacterial cell for producing lytic phage particles or a lytic phage-derived delivery vehicle, said producer bacterial cell stably comprising at least one phage structural gene and at least one phage DNA packaging gene, said phage structural gene and phage DNA packaging gene being derived from a lytic bacteriophage,
wherein the expression of at least one of said phage structural genes and/or at least one of said phage DNA packaging genes in said producer bacterial cell is controlled by an induction mechanism.
2. A producer bacterial cell according to claim 1, wherein the bacterial cell further comprises a payload to be packaged into the phage particle or phage-derived delivery vehicle.
3. A producer bacterial cell according to claim 2, wherein the payload is a nucleic acid payload comprising a packaging site derived from the lytic bacteriophage.
4. A producer bacterial cell according to any one of claims 2 to 3, wherein the payload is to be delivered into the targeted bacterial cell.
5. The producer bacterial cell of claim 4, wherein the payload is stably maintained in the targeted bacterial cell.
6. The producer bacterial cell of claim 4, wherein the payload is not replicated in the targeted bacterial cell.
7. A producer bacterial cell according to any one of claims 4 to 6, wherein the payload comprises a sequence of interest.
8. The producer bacterial cell according to claim 7, wherein said sequence of interest only plays a role in said targeted bacterial cell.
9. The producer bacterial cell according to claim 8, wherein said target bacterial cell is from a species or strain different from said producer bacterial cell.
10. A producer bacterial cell according to any one of claims 1 to 9, wherein the same induction mechanism controls the expression of at least one of said phage structural genes and at least one of said phage DNA packaging genes.
11. A producer bacterial cell according to any one of claims 1 to 9, wherein the expression of at least one of said phage structural genes and the expression of at least one of said phage DNA packaging genes are controlled by different induction mechanisms.
12. A producer bacterial cell according to any one of claims 1 to 11, wherein said at least one induction mechanism controls the expression of all of said phage structural genes.
13. A producer bacterial cell according to any one of claims 1 to 12, wherein said at least one induction mechanism controls the expression of all of said phage DNA packaging genes.
14. A producer bacterial cell according to any of claims 1 to 13, wherein said induction mechanism further controls the copy number of said at least one of said phage structural genes and/or said at least one of said phage DNA packaging genes.
15. The producer bacterial cell of any of claims 2-14, wherein said at least one induction mechanism further controls the copy number of said payload in said producer bacterial cell.
16. The producer bacterial cell of any of claims 2-14, wherein another induction mechanism controls the copy number of said payload in said producer bacterial cell.
17. A producer bacterial cell according to any of claims 1 to 16, wherein said phage structural gene and phage DNA packaging gene derived from said lytic bacterial phage are comprised in at least one plasmid, chromosome and/or helper phage.
18. The producer bacterial cell according to any one of claims 1 to 17, further comprising at least one gene involved in phage regulation derived from said lytic bacteriophage.
19. A producer bacterial cell according to any of claims 1 to 18, wherein said producer bacterial cell further comprises at least one gene derived from a non-lytic bacteriophage involved in phage excision/insertion, phage DNA replication and/or phage regulation.
20. A producer bacterial cell according to claim 7, wherein said producer bacterial cell is from the same bacterial species or strain as the bacterial species or strain from which said non-lytic bacteriophage is derived and/or to which said non-lytic bacteriophage is targeted.
21. The producer bacterial cell according to any one of claims 1 to 20, wherein said producer bacterial cell is an e.
22. The producer bacterial cell according to any one of claims 1 to 20, wherein said producer bacterial cell is a propionibacterium freudenreichii bacterial cell.
23. A producer bacterial cell according to claim 22, wherein said phage structural gene and phage DNA packaging gene are derived from a dermatophyte acne bacteriophage.
24. A method for producing lytic phage particles or a lytic phage-derived delivery vehicle, comprising:
(a) Providing a producer bacterial cell according to any one of claims 1 to 23, and
(b) Inducing expression of said at least one of said phage structural genes and said at least one of said phage DNA packaging genes in said producer bacterial cell, and assembly of products expressed by said at least one phage structural gene and said at least one phage DNA packaging gene, thereby producing lytic phage particles or a lytic phage-derived delivery vehicle.
25. A hybrid helper phage system comprising:
(i) At least one phage DNA packaging gene derived from a lytic bacteriophage,
(i') at least one phage structural gene derived from said lytic bacteriophage,
(i ") optionally, at least one phage gene involved in phage regulation derived from said lytic bacteriophage, and
(ii) At least one gene derived from a non-lytic bacteriophage involved in phage excision/insertion, phage DNA replication and/or phage regulation,
Wherein the genes (i), (i') and (ii) are contained in separate nucleic acid molecules or separate nucleic acid molecules, and
wherein the hybrid helper phage system does not comprise any expressed phage structural genes derived from the non-lytic bacteriophage.
26. The hybrid helper phage system according to claim 25, wherein the genes (i), (i'), (i ") and (ii) are contained in bacterial chromosomes.
27. The hybrid helper phage system according to claim 25, wherein the genes (i), (i'), (i ") and (ii) are contained in separate plasmids.
28. The hybrid helper phage system according to claim 25, wherein the hybrid helper phage system consists of a hybrid helper phage system comprising:
(i) At least one phage DNA packaging gene derived from a lytic bacteriophage, at least one phage structural gene and optionally at least one phage gene involved in phage regulation, and
(ii) At least one gene derived from a non-lytic bacteriophage involved in phage excision/insertion, phage DNA replication and/or phage regulation,
wherein the hybrid helper phage does not comprise any phage structural genes derived from the non-lytic bacteriophage.
CN202280049285.0A 2021-05-12 2022-05-12 Production of lytic phages Pending CN117730146A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163187532P 2021-05-12 2021-05-12
US63/187532 2021-05-12
US63/187531 2021-05-12
PCT/EP2022/062987 WO2022238555A1 (en) 2021-05-12 2022-05-12 Production of lytic phages

Publications (1)

Publication Number Publication Date
CN117730146A true CN117730146A (en) 2024-03-19

Family

ID=89948426

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202280049285.0A Pending CN117730146A (en) 2021-05-12 2022-05-12 Production of lytic phages
CN202280049291.6A Pending CN117616118A (en) 2021-05-12 2022-05-12 Production of bacterial cells and use thereof in production methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202280049291.6A Pending CN117616118A (en) 2021-05-12 2022-05-12 Production of bacterial cells and use thereof in production methods

Country Status (1)

Country Link
CN (2) CN117730146A (en)

Also Published As

Publication number Publication date
CN117616118A (en) 2024-02-27

Similar Documents

Publication Publication Date Title
JP7250702B2 (en) Vectors optimized for delivery of microbial populations
KR20210107053A (en) Branched Receptor Binding Multi-subunit Protein Complex for Use in Bacterial Delivery Vehicles
KR20210100119A (en) Chimeric Receptor Binding Proteins for Use in Bacterial Delivery Vehicles
US11746352B2 (en) Microbiome modulation of a host by delivery of DNA payloads with minimized spread
KR20240021768A (en) Preparation of lytic phages
CN115605216A (en) Bacterial delivery vehicles for in vivo delivery of DNA payloads
US20110159594A1 (en) Nucleic acids, bacteria, and methods for degrading the peptidoglycan layer of a cell wall
CN117730146A (en) Production of lytic phages
US20220064223A1 (en) Branched receptor binding multi-subunit protein complexes for use in bacterial delivery vehicles
KR20230127265A (en) Regulation of the host microbiome through the delivery of DNA payloads with minimal spread
US20240102026A1 (en) Microbiome modulation of a host by delivery of dna payloads with minimized spread
CN116940677A (en) Microbiome modulation of a host by delivery of DNA payloads with minimal transmission
WO2022144381A1 (en) Microbiome modulation of a host by delivery of dna payloads with minimized spread

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination