CN117725397A - A method for extracting partial discharge characteristics of switch cabinets - Google Patents
A method for extracting partial discharge characteristics of switch cabinets Download PDFInfo
- Publication number
- CN117725397A CN117725397A CN202311686411.6A CN202311686411A CN117725397A CN 117725397 A CN117725397 A CN 117725397A CN 202311686411 A CN202311686411 A CN 202311686411A CN 117725397 A CN117725397 A CN 117725397A
- Authority
- CN
- China
- Prior art keywords
- partial discharge
- characteristic
- cat
- signal
- switch cabinet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 241000879809 Felis margarita Species 0.000 claims abstract description 61
- 238000004458 analytical method Methods 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 25
- 230000008569 process Effects 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 20
- 238000010168 coupling process Methods 0.000 claims abstract description 18
- 239000000284 extract Substances 0.000 claims abstract description 7
- 238000001914 filtration Methods 0.000 claims abstract description 4
- 238000010276 construction Methods 0.000 claims abstract 2
- 238000000605 extraction Methods 0.000 claims description 28
- 230000035945 sensitivity Effects 0.000 claims description 21
- 241000282326 Felis catus Species 0.000 claims description 19
- 230000006870 function Effects 0.000 claims description 19
- 230000008878 coupling Effects 0.000 claims description 13
- 238000005859 coupling reaction Methods 0.000 claims description 13
- 238000013507 mapping Methods 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 238000013459 approach Methods 0.000 claims description 5
- 230000000739 chaotic effect Effects 0.000 claims description 4
- 238000012549 training Methods 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000012804 iterative process Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 238000011161 development Methods 0.000 claims description 2
- ZINJLDJMHCUBIP-UHFFFAOYSA-N ethametsulfuron-methyl Chemical compound CCOC1=NC(NC)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)C(=O)OC)=N1 ZINJLDJMHCUBIP-UHFFFAOYSA-N 0.000 claims 3
- 102100029469 WD repeat and HMG-box DNA-binding protein 1 Human genes 0.000 claims 1
- 101710097421 WD repeat and HMG-box DNA-binding protein 1 Proteins 0.000 claims 1
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 241001465754 Metazoa Species 0.000 abstract description 3
- 239000004576 sand Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种开关柜的局部放电特征提取方法,收集开关柜产生的电信号并进行滤波处理,然后对开关柜局部放电耦合过程进行参数分析,根据开关柜运行过程中参数约束条件构建参数识别模型,将特征参数与特征常量作为局部放电信号提取的关键,通过对特征常量的获取,通过对各类特征参数的识别完成对模糊信息分析模型的构建,引入沙猫算法对处理后的信息关键信息与特征进一步的提取;对提取完的局部放电信号特征信号用部放电特征函数表示,并进行耦合处理,实现对开关柜的放电特性检测。本发明将局部放电信号视为一种“沙猫”(一种动物)的行走路径,通过模拟沙猫的行走路径来提取局部放电信号的特征,评估开关柜的运行状态。
The invention discloses a method for extracting partial discharge characteristics of a switch cabinet. It collects electrical signals generated by the switch cabinet and performs filtering processing. Then it performs parameter analysis on the partial discharge coupling process of the switch cabinet, and constructs parameters according to parameter constraints during the operation of the switch cabinet. Identification model takes characteristic parameters and characteristic constants as the key to extracting partial discharge signals. By acquiring characteristic constants and identifying various characteristic parameters, the construction of fuzzy information analysis model is completed. The sand cat algorithm is introduced to process the processed information. The key information and features are further extracted; the extracted partial discharge signal characteristic signal is represented by the partial discharge characteristic function, and coupled processing is performed to realize the discharge characteristic detection of the switch cabinet. The present invention regards the partial discharge signal as the walking path of a "sand cat" (an animal), extracts the characteristics of the partial discharge signal by simulating the walking path of the sand cat, and evaluates the operating status of the switch cabinet.
Description
技术领域Technical field
本发明涉及信号特征提取技术领域,具体涉及一种开关柜的局部放电特征提取方法。The invention relates to the technical field of signal feature extraction, and in particular to a partial discharge feature extraction method for switch cabinets.
背景技术Background technique
开关柜局部放电信号特征提取是电力设备状态监测中的重要技术之一。随着电力设备的复杂性和运行环境的多样化,传统的监测方法已经难以满足现代电力系统的需求。因此,开发新型的局放监测技术和信号特征提取方法具有重要意义。Feature extraction of switchgear partial discharge signals is one of the important technologies in power equipment condition monitoring. With the complexity of power equipment and the diversification of operating environments, traditional monitoring methods have been unable to meet the needs of modern power systems. Therefore, it is of great significance to develop new partial discharge monitoring technology and signal feature extraction methods.
开关柜局部放电信号特征提取是指从局部放电信号中提取出能够反映设备状态的特征信息,如放电强度、放电频率、放电持续时间等。这些特征信息可以为设备的状态评估和故障诊断提供有力支持。开关柜局部放电信号特征提取的方法和技术有很多种。其中,时域分析方法是最常用的一种。该方法通过对局部放电信号进行时域波形分析,提取出放电信号的峰值、均值、方差等特征值。此外,频域分析方法也是一种常用的技术,它通过将局部放电信号转换为频域信号,提取出其中的频率成分和能量分布等特征。除了时域和频域分析方法,还有很多其他的局部放电信号特征提取方法,如小波变换、短时傅里叶变换、经验模态分解等。这些方法各有优劣,适用于不同的应用场景和设备类型。总之,开关柜局部放电信号特征提取是电力设备状态监测的关键技术之一。通过选择合适的特征提取方法和处理技术,可以有效地提取出反映设备状态的特征信息,为电力设备的状态评估和故障诊断提供有力支持。Feature extraction of switch cabinet partial discharge signals refers to extracting characteristic information from partial discharge signals that can reflect the status of the equipment, such as discharge intensity, discharge frequency, discharge duration, etc. This characteristic information can provide strong support for equipment status assessment and fault diagnosis. There are many methods and technologies for feature extraction of partial discharge signals in switchgear. Among them, the time domain analysis method is the most commonly used one. This method analyzes the time domain waveform of the partial discharge signal and extracts the peak value, mean value, variance and other characteristic values of the discharge signal. In addition, the frequency domain analysis method is also a commonly used technology. It converts the partial discharge signal into a frequency domain signal and extracts its frequency components, energy distribution and other characteristics. In addition to time domain and frequency domain analysis methods, there are many other partial discharge signal feature extraction methods, such as wavelet transform, short-time Fourier transform, empirical mode decomposition, etc. Each of these methods has advantages and disadvantages and is suitable for different application scenarios and device types. In short, feature extraction of switchgear partial discharge signals is one of the key technologies for power equipment condition monitoring. By selecting appropriate feature extraction methods and processing technologies, feature information that reflects the status of the equipment can be effectively extracted, providing strong support for status assessment and fault diagnosis of power equipment.
现有开关柜局部放电信号特征提取方法容易收到障碍物干扰,收敛速度不足,不能很好的适应不同的路径规划问题。Existing switch cabinet partial discharge signal feature extraction methods are prone to interference from obstacles, have insufficient convergence speed, and cannot adapt well to different path planning problems.
发明内容Contents of the invention
针对现有技术的不足,本发明提出了一种开关柜的局部放电特征提取方法。In view of the shortcomings of the existing technology, the present invention proposes a partial discharge feature extraction method for switch cabinets.
本发明是这样来实现的。一种开关柜的局部放电特征提取方法,包括以下步骤:The present invention is implemented in this way. A partial discharge feature extraction method for switch cabinets, including the following steps:
步骤1:收集开关柜产生的电信号并进行滤波处理,然后对开关柜局部放电耦合过程进行参数分析,根据开关柜运行过程中参数约束条件构建参数识别模型,将特征参数与特征常量作为局部放电信号提取的关键,通过对特征常量的获取,实现对参数信号的有效获取,完成对局部放电信号的提取后,对其进行处理,处理时,对提取的特征信息进行约束,得到一个局部放电特征信息;Step 1: Collect the electrical signals generated by the switch cabinet and perform filtering processing, then perform parameter analysis on the partial discharge coupling process of the switch cabinet, build a parameter identification model based on the parameter constraints during the operation of the switch cabinet, and use the characteristic parameters and characteristic constants as partial discharge The key to signal extraction is to achieve effective acquisition of parameter signals through the acquisition of characteristic constants. After completing the extraction of the partial discharge signal, process it. During processing, the extracted feature information is constrained to obtain a partial discharge feature. information;
步骤2:为了获得更加稳定的信号特征常量,通过对各类特征参数的识别完成对模糊信息分析模型的构建,引入沙猫算法对处理后的信息关键信息与特征进一步的提取,其提取过程分为初始化种群,搜索猎物,二次搜索以及攻击猎物四个过程;Step 2: In order to obtain more stable signal characteristic constants, the fuzzy information analysis model is constructed through the identification of various characteristic parameters, and the sand cat algorithm is introduced to further extract key information and features of the processed information. The extraction process is divided into There are four processes for initializing the population, searching for prey, secondary search and attacking prey;
步骤3:对提取完的局部放电信号特征信号用部放电特征函数表示,并进行耦合处理,生成一个相对完整的可用于描述放电信号特性的参数分量,调整参数分量,实现对开关柜的放电特性检测。Step 3: Represent the extracted partial discharge signal characteristic signal with the partial discharge characteristic function and perform coupling processing to generate a relatively complete parameter component that can be used to describe the characteristics of the discharge signal. Adjust the parameter component to achieve the discharge characteristics of the switch cabinet. detection.
进一步优选,所述参数约束条件表示为:Further preferably, the parameter constraints are expressed as:
式(1)中:A表示开关柜运行参数约束条件;e表示控制参数,通常情况下,e的取值为一个常数值;i表示开关柜在运行中的局部放电信号在传输中产的谐波;δ表示为设备电气信号容量;t表示为局部产生电信号的频率。In formula (1): A represents the operating parameter constraints of the switch cabinet; e represents the control parameter. Normally, the value of e is a constant value; i represents the harmonics generated during the transmission of the partial discharge signal of the switch cabinet during operation. ; δ represents the electrical signal capacity of the equipment; t represents the frequency of locally generated electrical signals.
进一步优选,所述将特征参数与特征常量作为局部放电信号提取的关键,通过对特征常量的获取,实现对参数信号的有效获取;获取过程如下:It is further preferred that the characteristic parameters and characteristic constants are used as the key to extract the partial discharge signal, and the effective acquisition of the parameter signal is achieved by acquiring the characteristic constants; the acquisition process is as follows:
式(2)中:G表示电信号特征;F表示电信号扰动补偿;S表示信号波动幅度,将S的取值控制在+1~-1之间。In formula (2): G represents the electrical signal characteristics; F represents the electrical signal disturbance compensation; S represents the signal fluctuation amplitude, and the value of S is controlled between +1 and -1.
进一步优选,所述对提取的特征信息进行约束,得到一个局部放电特征信息,将控制端放电表示为:Further preferably, the extracted feature information is constrained to obtain a partial discharge feature information, and the control terminal discharge is expressed as:
式(3)中:H表示控制端放电信号;ε表示参数可靠性;ρ表示信号模糊特征常量。将具有相同性能的参数特征进行融合,构建一个全新的信号,输出此信号,完成对信号的处理。In formula (3): H represents the control terminal discharge signal; ε represents parameter reliability; ρ represents the signal fuzzy characteristic constant. Fuse parameter features with the same performance to construct a new signal, output this signal, and complete the signal processing.
进一步优选,步骤2的具体过程为:Further preferably, the specific process of step 2 is:
步骤2.1:初始化沙猫种群,Step 2.1: Initialize the sand cat population,
Xi=LB+Si×(UB-LB) (5)X i =LB+S i ×(UB-LB) (5)
式中:Xi∈(0.9,1.08),对S序列取初始值S1=rand[0,1],Si为第i只沙猫对应的映射系数,为通过混沌映射产生具有一定随机性的三个系数值,Si+1为第i+1只沙猫对应的映射系数,Xi为第i个沙猫的初始位置,UB和LB分别为变量的上下边界; In the formula : In order to generate three coefficient values with a certain degree of randomness through chaotic mapping, S i+1 is the mapping coefficient corresponding to the i+1 sand cat, X i is the initial position of the i sand cat, UB and LB are variables respectively. the upper and lower boundaries;
步骤2.2:沙猫的猎物搜索机制依赖于低频噪声发射;每只沙猫的解表达为Xi=[xi1,xi2,…,xid];xid为第i只沙猫的第d个维度SCSO算法模拟沙猫在低频探测方面的听觉能力,沙猫可以感知低于2kHz的低频,假设沙猫的一般灵敏范围从0到2kHz,为提高迭代初期的搜索速度和迭代后期的搜索精度,将一般灵敏范围/>随着迭代过程的进行从2非线性地降低为0,以逐渐靠近猎物而不会丢失或跳过;Step 2.2: The prey search mechanism of sand cats relies on low - frequency noise emission; the solution for each sand cat is expressed as The two-dimensional SCSO algorithm simulates the hearing ability of sand cats in low-frequency detection. Sand cats can perceive low frequencies below 2 kHz, assuming the general sensitivity range of sand cats. From 0 to 2kHz, in order to improve the search speed in the early iteration and the search accuracy in the later iteration, the general sensitivity range/> Non-linearly decreases from 2 to 0 as the iterative process proceeds to gradually get closer to the prey without losing or skipping;
步骤2.3:为了搜索猎物,假设沙猫的敏感范围为2kHz到0;sM为模拟沙猫听觉特征参数;Step 2.3: In order to search for prey, assume that the sensitivity range of the sand cat is 2kHz to 0; s M is the simulated sand cat hearing characteristic parameter;
式(6)中:t为当前迭代次数,T为最大迭代次数;In formula (6): t is the current number of iterations, and T is the maximum number of iterations;
步骤2.4:控制探索与开发阶段过渡的最终参数和主要参数是R,由于这种自适应策略:Step 2.4: The final and main parameter that controls the transition between the exploration and development phases is R, due to this adaptive strategy:
式(7)中:rand(0,1)为(0,1)之间的随机数,R是区间中的一个随机值;搜索空间在定义的边界之间随机初始化,在搜索步骤中,每个当前搜索代理的位置更新都是基于一个随机位置;搜索代理就在搜索空间中探索新的空间;In formula (7): rand(0,1) is a random number between (0,1), R is the interval A random value in; the search space is randomly initialized between defined boundaries. During the search step, the position update of each current search agent is based on a random position; the search agent explores new spaces in the search space;
步骤2.5:为避免陷入局部最优,每只沙猫的灵敏度范围是不同的,定义为:Step 2.5: In order to avoid falling into the local optimum, the sensitivity range of each sand cat is different, defined as:
式(8)中:为每只猫的灵敏度范围;此外,/>用于探索或利用阶段的操作,而/>用于导引参数R以实现在这些阶段间转移控制;In formula (8): is the sensitivity range for each cat; in addition,/> for exploration or exploitation phase operations, while/> Used to guide parameter R to transfer control between these stages;
步骤2.6:当||R||>1时,沙猫执行搜索任务,根据最优解位置Posbc(t)和当前位置Posc(t)及其灵敏度范围更新自己的位置;使得沙猫能够找到其他可能的最佳位置:Step 2.6: When ||R||>1, Sand Cat performs the search task, based on the optimal solution position Pos bc (t) and the current position Pos c (t) and its sensitivity range Updates its position; enables the sand cat to find other possible best positions:
式(9)中:Pos(t+1)为沙猫更新后的位置;In formula (9): Pos(t+1) is the updated position of the sand cat;
步骤2.7:沙猫在搜索猎物时,在更新位置信息后,对适应度值最差的个体进行二次搜索:Step 2.7: When the sand cat searches for prey, after updating the location information, it conducts a second search for the individual with the worst fitness value:
x=r×cos(θ) y=r×sin(θ) z=r×θ r=u×eθv (10)x=r×cos(θ) y=r×sin(θ) z=r×θ r=u×e θv (10)
Pos(t+1)=Posbc(t)×x×y×z+Posc(t) (11)Pos(t+1)=Pos bc (t)×x×y×z+Pos c (t) (11)
式中:x,y,z为三维空间坐标的三个搜索方向,Pos(t+1)为沙猫更新后的位置,r是螺旋的半径,θ是[0,2π]范围内的随机角度;u和v是螺旋形状的相关常数,用来控制螺旋半径;In the formula: x, y, z are the three search directions of the three-dimensional space coordinates, Pos(t+1) is the updated position of the sand cat, r is the radius of the spiral, and θ is a random angle in the range of [0, 2π] ;u and v are constants related to the spiral shape, used to control the spiral radius;
步骤2.8:当|R|≤1时,沙猫进行攻击猎物:Step 2.8: When |R|≤1, the sand cat attacks the prey:
Posrnd(t)=|rand(0,1)·Posbc(t)-Posc(t)| (12)Pos rnd (t)=|rand(0,1)·Pos bc (t)-Pos c (t)| (12)
式(12)中:Posrnd(t)为利用最优解位置Posbc(t)和当前位置Posc(t)生产的随机位置。In formula (12): Pos rnd (t) is a random position generated by using the optimal solution position Pos bc (t) and the current position Pos c (t).
进一步优选,假设沙猫的灵敏度范围是一个圆,利用轮盘赌法给每只沙猫随机选择一个角度θ,To further optimize, assume that the sensitivity range of sand cats is a circle, and use the roulette method to randomly select an angle θ for each sand cat,
其中,随机位置能够保证沙猫向猎物靠近,随机角度有助于算法跳出局部最优。Among them, the random position can ensure that the sand cat approaches its prey, and the random angle helps the algorithm jump out of the local optimum.
进一步优选,步骤3的具体过程为:Further preferably, the specific process of step 3 is:
步骤3.1:构建针对开关柜局部放电的信息分析模型,并使用训练数据集对模型进行训练和优化;最后,将优化后的信息分析模型应用于实际局放数据的信息分析中,实现信息分析模型的实时监测和预测功能;所述信息分析模型中放电层表示为y,对应y的取值为1~0,输出局部放电特征函数,将函数表示为Z,对Z的描述下述计算公式表示:Step 3.1: Construct an information analysis model for switch cabinet partial discharge, and use the training data set to train and optimize the model; finally, apply the optimized information analysis model to the information analysis of actual partial discharge data to implement the information analysis model Real-time monitoring and prediction function; in the information analysis model, the discharge layer is represented as y, and the corresponding value of y is 1 to 0. The partial discharge characteristic function is output, and the function is represented as Z. The description of Z is represented by the following calculation formula :
式(14)中:Z表示检测特征输出函数;ωy表示输出量;In formula (14): Z represents the detection feature output function; ω y represents the output quantity;
步骤3.2:对局部放电特征函数输出结果进行耦合处理,处理过程如下式(15):Step 3.2: Perform coupling processing on the output results of the partial discharge characteristic function. The processing process is as follows (15):
式(15)中:表示输出信号的耦合处理结果;Q表示模糊分量;Q表示检测轴;对检测结果进行输出,输出耦合结果,使其融合后生成一个相对完整的可用于描述放电信号特性的参数分量,调整参数分量,实现对开关柜的放电特性检测。In formula (15): Represents the coupling processing result of the output signal; Q represents the fuzzy component; Q represents the detection axis; the detection results are output, and the coupling results are output, so that after fusion, a relatively complete parameter component can be used to describe the characteristics of the discharge signal, and the parameter components are adjusted , to realize the detection of discharge characteristics of the switch cabinet.
沙猫算法是一种可以用于检测和分析开关柜局部放电信号的方法。其核心思想是将局部放电信号视为一种“沙猫”(一种动物)的行走路径,通过模拟沙猫的行走路径来提取放电信号的特征。具体来说,该算法将局部放电信号视为一种随机过程,并使用沙猫的行走路径来模拟这种随机过程。通过分析沙猫的行走路径,可以提取出放电信号的多种特征,如放电强度、放电频率、放电持续时间等。这些特征可以用于识别和分类不同类型的局部放电信号,并评估开关柜的运行状态。The sand cat algorithm is a method that can be used to detect and analyze partial discharge signals in switchgear. The core idea is to regard the partial discharge signal as the walking path of a "sand cat" (an animal), and extract the characteristics of the discharge signal by simulating the walking path of the sand cat. Specifically, the algorithm treats the partial discharge signal as a random process and uses the walking path of the sand cat to simulate this random process. By analyzing the sand cat's walking path, various characteristics of the discharge signal can be extracted, such as discharge intensity, discharge frequency, discharge duration, etc. These features can be used to identify and classify different types of partial discharge signals and evaluate the operating status of the switchgear.
本发明具有鲁棒性强、收敛速度快、适应性强等优点,在解决路径规划问题时,沙猫算法通过模拟动物行为,具有较强的鲁棒性。即使在环境变化较大或存在障碍物的情况下,该算法仍能找到较优的路径。沙猫算法通过不断地更新路径的候选解,以逐步优化目标函数的值。这种迭代的方式可以使算法在较短的时间内收敛到最优解。沙猫算法可以根据不同的环境和任务需求进行调整和优化。通过调整算法中的参数和限制条件,可以使算法更好地适应不同的路径规划问题。The invention has the advantages of strong robustness, fast convergence speed, strong adaptability, etc. When solving path planning problems, the sand cat algorithm has strong robustness by simulating animal behavior. Even when the environment changes greatly or there are obstacles, the algorithm can still find a better path. The sandcat algorithm gradually optimizes the value of the objective function by continuously updating the candidate solutions of the path. This iterative approach allows the algorithm to converge to the optimal solution in a shorter time. The Sandcat algorithm can be adjusted and optimized according to different environments and task requirements. By adjusting the parameters and constraints in the algorithm, the algorithm can be better adapted to different path planning problems.
附图说明Description of the drawings
图1为本发明的开关柜的局部放电特征提取方法流程图;Figure 1 is a flow chart of the partial discharge feature extraction method of the switch cabinet of the present invention;
图2为沙猫算法特征提取流程图。Figure 2 is the sandcat algorithm feature extraction flow chart.
具体实施方式Detailed ways
下面结合附图进一步详细阐明本发明。The present invention will be explained in further detail below with reference to the accompanying drawings.
参照图1,一种开关柜的局部放电特征提取方法,包括以下步骤:Referring to Figure 1, a partial discharge feature extraction method for switch cabinets includes the following steps:
步骤1:收集开关柜产生的电信号,主要包括超声波、地电波等电信号,并对这些信号进行简单滤波等处理后,对开关柜局部放电耦合过程进行参数分析,根据开关柜运行过程中参数约束条件构建参数识别模型,将特征参数与特征常量作为局部放电信号提取的关键,通过对特征常量的获取,实现对参数信号的有效获取,完成对局部放电信号的提取后,对其进行处理,处理时,对提取的特征信息进行约束,得到一个局部放电特征信息;Step 1: Collect the electrical signals generated by the switch cabinet, mainly including ultrasonic waves, ground waves and other electrical signals. After simple filtering and other processing of these signals, perform parameter analysis on the partial discharge coupling process of the switch cabinet. According to the parameters during the operation of the switch cabinet Constraints build a parameter identification model, using characteristic parameters and characteristic constants as the key to extracting partial discharge signals. By obtaining characteristic constants, effective acquisition of parameter signals is achieved. After completing the extraction of partial discharge signals, they are processed. During processing, the extracted feature information is constrained to obtain a partial discharge feature information;
步骤2:为了获得更加稳定的信号特征常量,通过对各类特征参数的识别完成对模糊信息分析模型的构建,引入沙猫算法对处理后的信息关键信息与特征进一步的提取,其提取过程分为初始化种群,搜索猎物(探索),二次搜索以及攻击猎物(开发)四个过程;Step 2: In order to obtain more stable signal characteristic constants, the fuzzy information analysis model is constructed through the identification of various characteristic parameters, and the sand cat algorithm is introduced to further extract key information and features of the processed information. The extraction process is divided into In order to initialize the population, there are four processes: searching for prey (exploration), secondary search and attacking prey (exploitation);
步骤3:对提取完的局部放电信号特征信号用部放电特征函数表示,并进行耦合处理,生成一个相对完整的可用于描述放电信号特性的参数分量,调整参数分量,实现对开关柜的放电特性检测。Step 3: Represent the extracted partial discharge signal characteristic signal with the partial discharge characteristic function and perform coupling processing to generate a relatively complete parameter component that can be used to describe the characteristics of the discharge signal. Adjust the parameter component to achieve the discharge characteristics of the switch cabinet. detection.
本发明步骤1的具体过程为:The specific process of step 1 of the present invention is:
步骤1.1:根据负荷波动,对开关柜局部放电耦合过程进行参数分析,根据开关柜运行过程中参数约束条件,构建参数识别模型,在此种条件下,参数约束条件表示为下述计算公式(1):Step 1.1: Based on the load fluctuation, perform parameter analysis on the partial discharge coupling process of the switch cabinet, and construct a parameter identification model based on the parameter constraints during the operation of the switch cabinet. Under such conditions, the parameter constraints are expressed as the following calculation formula (1 ):
式(1)中:A表示开关柜运行参数约束条件;e表示控制参数,通常情况下,e的取值为一个常数值;i表示开关柜在运行中的局部放电信号在传输中产的谐波;δ表示为设备电气信号容量;t表示为局部产生电信号的频率。In formula (1): A represents the operating parameter constraints of the switch cabinet; e represents the control parameter. Normally, the value of e is a constant value; i represents the harmonics generated during the transmission of the partial discharge signal of the switch cabinet during operation. ; δ represents the electrical signal capacity of the equipment; t represents the frequency of locally generated electrical signals.
步骤1.2:再此约束条件下,将特征参数与特征常量作为局部放电信号提取的关键,通过对特征常量的获取,实现对参数信号的有效获取。此获取过程如下计算公式(2)所示:Step 1.2: Under these constraints, the characteristic parameters and characteristic constants are regarded as the key to partial discharge signal extraction. By obtaining the characteristic constants, the parameter signal can be effectively obtained. This acquisition process is shown in the following calculation formula (2):
式(2)中:G表示电信号特征;F表示电信号扰动补偿;S表示信号波动幅度,将S的取值控制在+1~-1之间。In formula (2): G represents the electrical signal characteristics; F represents the electrical signal disturbance compensation; S represents the signal fluctuation amplitude, and the value of S is controlled between +1 and -1.
步骤1.3:完成对特征参数的有效获取,对其进行处理,处理时,对提取的特征信息进行约束,此时可以得到一个局部放电特性信息,将控制端放电表示为下述计算公式(3):Step 1.3: Complete the effective acquisition of the characteristic parameters and process them. During processing, the extracted characteristic information is constrained. At this time, a partial discharge characteristic information can be obtained, and the control terminal discharge is expressed as the following calculation formula (3) :
式(3)中:H表示控制端放电信号;ε表示参数可靠性;ρ表示信号模糊特征常量。将具有相同性能的参数特征进行融合,构建一个全新的信号,输出此信号,完成对信号的处理。In formula (3): H represents the control terminal discharge signal; ε represents parameter reliability; ρ represents the signal fuzzy characteristic constant. Fuse parameter features with the same performance to construct a new signal, output this signal, and complete the signal processing.
本发明步骤2的具体过程为:The specific process of step 2 of the present invention is:
步骤2.1:在SCSO算法中,种群被称为沙猫群,每一个沙猫显示问题变量的值。在开关柜局部放电检测中,种群即为经步骤1处理过后的输出的全新的信号,每个沙猫即为采集到得到每一个信号。该算法是一种基于种群的方法,初始种群位置均匀分布于搜索空间,有助于增强算法全局搜索能力,提高搜索效率。标准沙猫群优化算法随机初始化种群,存在降低种群多样性的风险,而混沌映射生成的混沌序列,具有遍历性、非线性和不可预测性等特征,常用于替代随机序列初始化种群。映射具有参数简单,分布均匀等优点,初始化沙猫种群,Step 2.1: In the SCSO algorithm, the population is called a sand cat group, and each sand cat displays the value of the problem variable. In the switchgear partial discharge detection, the population is the brand-new signal output after processing in step 1, and each sand cat collects and obtains each signal. This algorithm is a population-based method, and the initial population positions are evenly distributed in the search space, which helps to enhance the global search capability of the algorithm and improve search efficiency. The standard sand cat swarm optimization algorithm randomly initializes the population, which risks reducing the diversity of the population. The chaotic sequence generated by chaos mapping has the characteristics of ergodicity, nonlinearity and unpredictability, and is often used to initialize the population instead of random sequence. Mapping has the advantages of simple parameters and uniform distribution. Initialize the sand cat population.
Xi=LB+Si×(UB-LB) (5)X i =LB+S i ×(UB-LB) (5)
式中:Xi∈(0.9,1.08),对S序列取初始值S1=rand[0,1],Si为第i只沙猫对应的映射系数,为通过混沌映射产生具有一定随机性的三个系数值,用来初始化沙猫群体在搜索空间中的位置,使其具有随机性,更有利于全局搜索。Si+1为第i+1只沙猫对应的映射系数,Xi为第i个沙猫的初始位置,UB和LB分别为变量的上下边界。 In the formula : In order to generate three coefficient values with a certain degree of randomness through chaotic mapping, they are used to initialize the position of the sand cat group in the search space, making it random and more conducive to global search. S i+1 is the mapping coefficient corresponding to the i+1 sand cat, Xi is the initial position of the i sand cat, UB and LB are the upper and lower boundaries of the variable respectively.
步骤2.2:沙猫的猎物搜索机制依赖于低频噪声发射。每只沙猫的解表达为Xi=[xi1,xi2,…,xid]。xid为第i只沙猫的第d个维度SCSO算法模拟沙猫在低频探测方面的听觉能力,沙猫可以感知低于2kHz的低频,假设沙猫的一般灵敏范围从0到2kHz,为提高迭代初期的搜索速度和迭代后期的搜索精度,将一般灵敏范围/>随着迭代过程的进行从2非线性地降低为0,以逐渐靠近猎物而不会丢失或跳过。Step 2.2: The sand cat's prey search mechanism relies on low-frequency noise emissions. The solution expression of each sand cat is X i =[x i1 ,x i2 ,…,x id ]. x id is the d-th dimension of the i-th sand cat. The SCSO algorithm simulates the hearing ability of sand cats in low-frequency detection. Sand cats can perceive low frequencies below 2 kHz. Assuming the general sensitivity range of sand cats From 0 to 2kHz, in order to improve the search speed in the early iteration and the search accuracy in the later iteration, the general sensitivity range/> Non-linearly decreases from 2 to 0 as the iterative process proceeds to gradually get closer to the prey without losing or skipping.
步骤2.3:为了搜索猎物,假设沙猫的敏感范围为2kHz到0。sM为模拟沙猫听觉特征参数,它的值的灵感来自沙猫的听觉特征,假设其值为2。Step 2.3: To search for prey, assume that the sand cat's sensitivity range is 2kHz to 0kHz. s M is a simulated sand cat auditory characteristic parameter. Its value is inspired by the auditory characteristics of sand cats. It is assumed that its value is 2.
式(6)中:t为当前迭代次数,T为最大迭代次数,sM=2。In formula (6): t is the current number of iterations, T is the maximum number of iterations, s M =2.
步骤2.4:控制探索与开发阶段过渡的最终参数和主要参数是R,由于这种自适应策略,两个阶段的转换和可能性将更加平衡。Step 2.4: The final and main parameter that controls the transition between the exploration and exploitation phases is R. Due to this adaptive strategy, the transitions and possibilities of the two phases will be more balanced.
式(7)中:rand(0,1)为(0,1)之间的随机数,R是区间中的一个随机值。搜索空间在定义的边界之间随机初始化,在搜索步骤中,每个当前搜索代理的位置更新都是基于一个随机位置。这样,搜索代理就能够在搜索空间中探索新的空间。In formula (7): rand(0,1) is a random number between (0,1), R is the interval a random value in . The search space is randomly initialized between defined boundaries, and during the search step, each current search agent's position update is based on a random position. In this way, the search agent is able to explore new spaces in the search space.
步骤2.5:为避免陷入局部最优,每只沙猫的灵敏度范围是不同的,定义为:Step 2.5: In order to avoid falling into the local optimum, the sensitivity range of each sand cat is different, defined as:
式(8)中:为每只猫的灵敏度范围。此外,/>用于探索或利用阶段的操作,而/>用于导引参数R以实现在这些阶段间转移控制。In formula (8): Sensitivity range for each cat. In addition,/> for exploration or exploitation phase operations, while/> Used to guide parameter R to transfer control between these stages.
步骤2.6:当|R|>1时,沙猫执行搜索任务,根据最优解位置Posbc(t)和当前位置Posc(t)及其灵敏度范围更新自己的位置。使得沙猫能够找到其他可能的最佳位置。Step 2.6: When |R|>1, Sand Cat performs the search task, based on the optimal solution position Pos bc (t) and the current position Pos c (t) and its sensitivity range Update your location. Allowing the sand cat to find the best possible location elsewhere.
式(9)中:Pos(t+1)为沙猫更新后的位置。该公式为算法在搜索区域找到新的局部最优提供了另一个机会。因此,获得的位置位于当前位置和猎物位置之间。此外,这是通过随机性实现的,而不是通过精确的方法。这样,算法中的搜索代理就有利于提高随机性。这使得算法操作成本低,复杂度高效。In formula (9): Pos(t+1) is the updated position of the sand cat. This formulation provides another opportunity for the algorithm to find new local optima in the search area. Therefore, the obtained position is between the current position and the prey position. Furthermore, this is achieved through randomness rather than precise methods. In this way, the search agent in the algorithm is beneficial to improve randomness. This makes the algorithm cost-effective to operate and efficient in terms of complexity.
步骤2.7:沙猫在搜索猎物时,可能无法有效收敛到最优解,因此在更新位置信息后,对适应度值最差的个体进行二次搜索,使沙猫群优化算法的搜索性能得到提高。Step 2.7: When searching for prey, sand cats may not be able to effectively converge to the optimal solution. Therefore, after updating the location information, a second search is performed on the individual with the worst fitness value to improve the search performance of the sand cat group optimization algorithm. .
x=r×cos(θ) y=r×sin(θ) z=r×θ r=u×eθv (10)x=r×cos(θ) y=r×sin(θ) z=r×θ r=u×e θv (10)
Pos(t+1)=Posbc(t)×x×y×z+Posc(t) (11)Pos(t+1)=Pos bc (t)×x×y×z+Pos c (t) (11)
式(10)和式(11)中:x,y,z为三维空间坐标的三个搜索方向,Pos(t+1)为沙猫更新后的位置,r是螺旋的半径,θ是[0,2π]范围内的随机角度。u和v是螺旋形状的相关常数,用来控制螺旋半径,此处常取1;e是自然对数的底数。In equations (10) and (11): x, y, z are the three search directions of the three-dimensional space coordinates, Pos(t+1) is the updated position of the sand cat, r is the radius of the spiral, and θ is [0 ,2π] at random angles within the range. u and v are constants related to the spiral shape and are used to control the spiral radius, which is often taken as 1; e is the base of the natural logarithm.
步骤2.8:当|R|≤1时,沙猫进行攻击猎物。Step 2.8: When |R|≤1, the sand cat attacks the prey.
Posrnd(t)=|rand(0,1)·Posbc(t)-Posc(t)| (12)Pos rnd (t)=|rand(0,1)·Pos bc (t)-Pos c (t)| (12)
式(12)中:Posrnd(t)为利用最优解位置Posbc(t)和当前位置Posc(t)生产的随机位置。In formula (12): Pos rnd (t) is a random position generated by using the optimal solution position Pos bc (t) and the current position Pos c (t).
进一步优选,假设沙猫的灵敏度范围是一个圆,利用轮盘赌法给每只沙猫随机选择一个角度θ,To further optimize, assume that the sensitivity range of sand cats is a circle, and use the roulette method to randomly select an angle θ for each sand cat,
其中,随机位置能够保证沙猫向猎物靠近,随机角度有助于算法跳出局部最优。Among them, the random position can ensure that the sand cat approaches its prey, and the random angle helps the algorithm jump out of the local optimum.
进一步优选,步骤3的具体过程为Further preferably, the specific process of step 3 is as follows
步骤3.1:构建针对开关柜局部放电的信息分析模型,并使用训练数据集对模型进行训练和优化。最后,将优化后的信息分析模型应用于实际局放数据的信息分析中,实现信息分析模型的实时监测和预测等功能。该信息分析模型中放电层表示为y,对应y的取值为1~0,输出局部放电特征函数,将函数表示为Z,对Z的描述可用下述计算公式表示:Step 3.1: Construct an information analysis model for switchgear partial discharge, and use the training data set to train and optimize the model. Finally, the optimized information analysis model is applied to the information analysis of actual partial discharge data to achieve real-time monitoring and prediction functions of the information analysis model. In this information analysis model, the discharge layer is represented as y, and the corresponding value of y is 1 to 0. The partial discharge characteristic function is output, and the function is represented as Z. The description of Z can be expressed by the following calculation formula:
式(14)中:Z表示检测特征输出函数;ωy表示输出量。In formula (14): Z represents the detection feature output function; ω y represents the output quantity.
步骤3.2:对局部放电特征函数输出结果进行耦合处理,处理过程如下式(15):Step 3.2: Perform coupling processing on the output results of the partial discharge characteristic function. The processing process is as follows (15):
式(15)中:表示输出信号的耦合处理结果;Q表示模糊分量;Q表示检测轴。按照上述计算公式,对检测结果进行输出,输出耦合结果,使其融合后生成一个相对完整的可用于描述放电信号特性的参数分量,调整参数分量,实现对开关柜的放电特性检测。In formula (15): Represents the coupling processing result of the output signal; Q represents the fuzzy component; Q represents the detection axis. According to the above calculation formula, the detection results are output, and the coupling results are output, so that after fusion, a relatively complete parameter component that can be used to describe the characteristics of the discharge signal is generated. The parameter components are adjusted to realize the detection of the discharge characteristics of the switch cabinet.
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。Those of ordinary skill in the art can understand that the above are only preferred examples of the invention and are not intended to limit the invention. Although the invention has been described in detail with reference to the foregoing examples, those skilled in the art can still The technical solutions recorded in the foregoing examples are modified, or some of the technical features are equivalently replaced. All modifications, equivalent substitutions, etc. that are within the spirit and principle of the invention shall be included in the protection scope of the invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311686411.6A CN117725397A (en) | 2023-12-11 | 2023-12-11 | A method for extracting partial discharge characteristics of switch cabinets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311686411.6A CN117725397A (en) | 2023-12-11 | 2023-12-11 | A method for extracting partial discharge characteristics of switch cabinets |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117725397A true CN117725397A (en) | 2024-03-19 |
Family
ID=90206359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311686411.6A Pending CN117725397A (en) | 2023-12-11 | 2023-12-11 | A method for extracting partial discharge characteristics of switch cabinets |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117725397A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118094823A (en) * | 2024-04-23 | 2024-05-28 | 北京邮电大学 | A mechanical component parameter optimization method, device and computer product |
-
2023
- 2023-12-11 CN CN202311686411.6A patent/CN117725397A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118094823A (en) * | 2024-04-23 | 2024-05-28 | 北京邮电大学 | A mechanical component parameter optimization method, device and computer product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6922945B2 (en) | Information processing method | |
Ho et al. | A particle swarm optimization-based method for multiobjective design optimizations | |
CN118444086B (en) | Fault positioning method and system based on line carrier | |
CN113435247B (en) | A communication interference intelligent identification method, system and terminal | |
CN104569747A (en) | System and method for checking insulativity of power-off cable | |
CN113406579B (en) | A method for generating camouflage interference waveforms based on deep reinforcement learning | |
CN117725397A (en) | A method for extracting partial discharge characteristics of switch cabinets | |
Ajibade et al. | A hybrid chaotic particle swarm optimization with differential evolution for feature selection | |
Yuan et al. | Fault diagnosis of analog circuits based on IH-PSO optimized support vector machine | |
Ekenna et al. | Adaptive neighbor connection for PRMs: A natural fit for heterogeneous environments and parallelism | |
CN116167002A (en) | Industrial control network anomaly detection method based on optimized random forest | |
CN113902086A (en) | An Optimal Variational Mode Decomposition Method Fusing Compound Chaos Maps and Drosophila Optimization | |
CN113657589A (en) | Method, system, device and storage medium for solving optimization problems | |
CN117031194B (en) | Ultrasonic hidden danger detection method and system for power distribution network | |
CN117648574A (en) | Radar individual identification countermeasure sample generation method based on generated countermeasure network | |
Xie et al. | Denoising of partial discharge signal using rapid sparse decomposition | |
CN109901030B (en) | A method, system and application for monitoring inter-turn insulation state of a reactor | |
Jiang et al. | Modulation recognition of underwater acoustic communication signals based on neural architecture search | |
Zheng et al. | Partial Discharge Fault Diagnosis of Switchgear Based on APSO-BP Algorithm | |
CN118981997B (en) | Impedance self-adaptive matching method of radio frequency power supply | |
Singh et al. | Feature weighting for improved classification of anuran calls | |
CN118534424B (en) | A radar active interference suppression algorithm parameter optimization method, system and device | |
Zhao et al. | Assembly Quality Inspection of Combine Harvester Based on Whale Algorithm Optimization LSSVM | |
Zhang et al. | Parameters Optimization of SVM Based on Improved FOA and Its Application in Fault Diagnosis. | |
Kinneer | Search-based Plan Reuse in Self-* Systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |