CN117724850B - Field pre-travel path feasibility assessment method, system, equipment and medium - Google Patents

Field pre-travel path feasibility assessment method, system, equipment and medium Download PDF

Info

Publication number
CN117724850B
CN117724850B CN202410171094.2A CN202410171094A CN117724850B CN 117724850 B CN117724850 B CN 117724850B CN 202410171094 A CN202410171094 A CN 202410171094A CN 117724850 B CN117724850 B CN 117724850B
Authority
CN
China
Prior art keywords
dem
road
slice data
data
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410171094.2A
Other languages
Chinese (zh)
Other versions
CN117724850A (en
Inventor
杨岸然
张志群
刘万涛
谢婷萱
王轩
李军
黄亚哲
袁丽红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Institute Of Advanced Technology
National University of Defense Technology
Phytium Technology Co Ltd
Original Assignee
Tianjin Institute Of Advanced Technology
National University of Defense Technology
Phytium Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Institute Of Advanced Technology, National University of Defense Technology, Phytium Technology Co Ltd filed Critical Tianjin Institute Of Advanced Technology
Priority to CN202410171094.2A priority Critical patent/CN117724850B/en
Publication of CN117724850A publication Critical patent/CN117724850A/en
Application granted granted Critical
Publication of CN117724850B publication Critical patent/CN117724850B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Or Creating Images (AREA)

Abstract

本申请涉及一种野外预通行路径可行性评估方法、系统、设备及介质,根据预设道路宽度进行并行计算生成道路缓冲区;基于道路缓冲区中的道路矢量数据,获取对应的DEM切片数据;采用多线程并行技术对DEM切片数据进行投影和拼接,得到第一DEM切片数据;将道路矢量数据投影至对应的第一DEM切片数据的坐标系中,对第一DEM切片数据进行裁剪,得到第二DEM切片数据;将第二DEM切片数据转化为一维向量,根据坡度百分比公式进行计算,得到预通行路径对应的坡度信息;通过坡度信息对预通行路径进行可行性评估。本发明实现了对地理信息进行高效处理和精确分析。

The present application relates to a method, system, device and medium for assessing the feasibility of a field pre-pass path, which generates a road buffer by performing parallel calculation according to a preset road width; obtains corresponding DEM slice data based on the road vector data in the road buffer; projects and splices the DEM slice data using multi-threaded parallel technology to obtain first DEM slice data; projects the road vector data into the coordinate system of the corresponding first DEM slice data, clips the first DEM slice data to obtain second DEM slice data; converts the second DEM slice data into a one-dimensional vector, calculates according to the slope percentage formula, and obtains the slope information corresponding to the pre-pass path; and assesses the feasibility of the pre-pass path through the slope information. The present invention realizes efficient processing and accurate analysis of geographic information.

Description

野外预通行路径可行性评估方法、系统、设备及介质Field pre-travel path feasibility assessment method, system, equipment and medium

技术领域Technical Field

本申请涉及地理信息技术领域,特别是涉及一种野外预通行路径可行性评估方法、系统、设备及介质。The present application relates to the field of geographic information technology, and in particular to a method, system, device and medium for assessing the feasibility of a field pre-travel path.

背景技术Background technique

目前,道路规划、环境监测以及资源开发等领域对于野外预通行路径可行性评估的需求不断增加。然而,传统的路径评估方法往往依赖于人工勘察、地图分析和专家经验,存在主观性强、效率低下以及数据不准确等问题。这些问题限制了预通行路径评估的准确性和效率,因此需要一种更高效、精准、自动化的方法来满足当前领域的需求。At present, the demand for field pre-travel path feasibility assessment is increasing in the fields of road planning, environmental monitoring, and resource development. However, traditional path assessment methods often rely on manual surveys, map analysis, and expert experience, and have problems such as strong subjectivity, low efficiency, and inaccurate data. These problems limit the accuracy and efficiency of pre-travel path assessment, so a more efficient, accurate, and automated method is needed to meet the needs of the current field.

作为地形特征分析和可视化的基本要素,坡度反映了地表某点的倾斜程度,是路径评估、道路规划和治理措施配置首先要考虑的因素。传统的坡度计算方法多采用串行计算,即逐个计算像素单元的坡度值。然而,在处理大规模高程数据集时,这种串行计算方式会限制计算速度。此外,在需要快速响应或实时性的场景中,传统的串行计算方法无法满足要求。尤其在现代计算机硬件拥有多核心和并行计算能力的背景下,传统的串行计算方法无法充分发挥硬件潜力,从而导致计算任务变得耗时且效率低下。因此,针对大规模高程数据进行高效计算,是目前亟待解决的技术问题。As a basic element for terrain feature analysis and visualization, slope reflects the degree of inclination of a point on the surface and is the first factor to be considered in path evaluation, road planning, and configuration of governance measures. Traditional slope calculation methods mostly use serial calculations, that is, calculating the slope value of pixel units one by one. However, when processing large-scale elevation data sets, this serial calculation method limits the calculation speed. In addition, in scenarios that require fast response or real-time performance, traditional serial calculation methods cannot meet the requirements. Especially in the context of modern computer hardware with multi-core and parallel computing capabilities, traditional serial calculation methods cannot fully utilize the hardware potential, resulting in computing tasks that become time-consuming and inefficient. Therefore, efficient calculation of large-scale elevation data is a technical problem that needs to be solved urgently.

发明内容Summary of the invention

基于此,有必要针对上述技术问题,提供一种能够对地理信息进行高效处理和精确分析的野外预通行路径可行性评估方法、系统、设备及介质。Based on this, it is necessary to provide a field pre-travel path feasibility assessment method, system, equipment and medium that can efficiently process and accurately analyze geographic information to address the above technical problems.

一种野外预通行路径可行性评估方法,所述方法包括:A method for assessing the feasibility of a field pre-travel path, the method comprising:

设定预通行路径的道路宽度,根据预设道路宽度,通过并行计算生成道路缓冲区;Set the road width of the pre-passage path, and generate a road buffer zone through parallel calculation according to the preset road width;

基于所述道路缓冲区中的道路矢量数据,获取与所述道路矢量数据对应的DEM切片数据;Based on the road vector data in the road buffer, obtaining DEM slice data corresponding to the road vector data;

采用多线程并行技术对所述DEM切片数据进行投影和拼接,得到第一DEM切片数据;Projecting and splicing the DEM slice data using multi-threaded parallel technology to obtain first DEM slice data;

将所述道路矢量数据投影至对应的所述第一DEM切片数据的坐标系中,基于所述道路矢量数据对所述第一DEM切片数据进行裁剪,得到第二DEM切片数据;Projecting the road vector data into the coordinate system of the corresponding first DEM slice data, and clipping the first DEM slice data based on the road vector data to obtain second DEM slice data;

将所述第二DEM切片数据转化为一维向量,根据坡度百分比公式对所述一维向量进行计算,得到预通行路径对应的坡度信息;The second DEM slice data is converted into a one-dimensional vector, and the one-dimensional vector is calculated according to a slope percentage formula to obtain slope information corresponding to the pre-travel path;

通过所述坡度信息对预通行路径进行可行性评估。The feasibility of the pre-travel path is evaluated using the slope information.

其中一个实施例中,根据预设道路宽度,通过并行计算生成道路缓冲区,包括:In one embodiment, generating a road buffer zone through parallel calculation according to a preset road width includes:

将预通行路径分解为若干道路线段,获取各道路线段的道路矢量数据;Decomposing the pre-travel path into a number of road segments, and obtaining road vector data of each road segment;

采用并行循环指令同时对各道路矢量数据进行遍历和处理,其中,对每个道路矢量数据,根据预设道路宽度,生成道路缓冲区的几何形状;The parallel loop instructions are used to traverse and process each road vector data at the same time, wherein for each road vector data, the geometric shape of the road buffer is generated according to the preset road width;

将所有道路缓冲区的几何形状合并到一个集合中,得到道路缓冲区集合。Merge all road buffer geometries into one collection to obtain a road buffer collection.

其中一个实施例中,基于所述道路缓冲区中的道路矢量数据,获取与所述道路矢量数据对应的DEM切片数据,包括:In one embodiment, based on the road vector data in the road buffer, obtaining DEM slice data corresponding to the road vector data includes:

获取所述道路缓冲区集合中的各道路矢量数据;Acquire vector data of each road in the road buffer set;

从各所述道路矢量数据中提取几何信息,得到各道路多边形最小外接矩形的经纬度坐标范围;Extracting geometric information from each of the road vector data to obtain the latitude and longitude coordinate range of the minimum circumscribed rectangle of each road polygon;

根据各经纬度坐标范围对应的DEM切片数据的行号与条带映射关系,确定各所述道路矢量数据对应的DEM切片数据的行号与条带范围,获取与各所述道路矢量数据对应的DEM切片数据。According to the row number and strip mapping relationship of the DEM slice data corresponding to each longitude and latitude coordinate range, the row number and strip range of the DEM slice data corresponding to each road vector data are determined, and the DEM slice data corresponding to each road vector data is obtained.

其中一个实施例中,采用多线程并行技术对所述DEM切片数据进行投影和拼接,得到第一DEM切片数据,包括:In one embodiment, the DEM slice data is projected and spliced using multi-threaded parallel technology to obtain first DEM slice data, including:

采用多线程技术,为各所述DEM切片数据分别分配一个线程进行投影处理,将各所述DEM切片数据中的地理坐标系转换为投影坐标系;Using multi-threading technology, a thread is assigned to each of the DEM slice data for projection processing, and the geographic coordinate system in each of the DEM slice data is converted into a projection coordinate system;

确定转换为投影坐标系后的各所述DEM切片数据的顺序,依次对各所述DEM切片数据进行拼接,得到统一地形的第一DEM切片数据。The order of the DEM slice data after conversion into the projection coordinate system is determined, and the DEM slice data are sequentially spliced to obtain the first DEM slice data of unified terrain.

其中一个实施例中,将所述道路矢量数据投影至对应的所述第一DEM切片数据的坐标系中,基于所述道路矢量数据对所述第一DEM切片数据进行裁剪,得到第二DEM切片数据,包括:In one embodiment, projecting the road vector data into the coordinate system of the corresponding first DEM slice data, clipping the first DEM slice data based on the road vector data to obtain the second DEM slice data, includes:

将所述道路矢量数据投影至对应的所述第一DEM切片数据的投影坐标系中,然后基于所述道路矢量数据,获取各道路多边形最小外接矩形四个顶点的投影坐标;Projecting the road vector data into the projection coordinate system of the corresponding first DEM slice data, and then obtaining the projection coordinates of four vertices of the minimum circumscribed rectangle of each road polygon based on the road vector data;

将所述投影坐标覆盖范围转换为像素坐标范围,然后基于像素坐标范围对对应的所述第一DEM切片数据进行裁剪,得到第二DEM切片数据。The projection coordinate coverage range is converted into a pixel coordinate range, and then the corresponding first DEM slice data is clipped based on the pixel coordinate range to obtain second DEM slice data.

其中一个实施例中,将所述第二DEM切片数据转化为一维向量,根据坡度百分比公式对所述一维向量进行计算,得到预通行路径对应的坡度信息,包括:In one embodiment, the second DEM slice data is converted into a one-dimensional vector, and the one-dimensional vector is calculated according to a slope percentage formula to obtain the slope information corresponding to the pre-travel path, including:

将所述第二DEM切片数据划分为若干子区域,获取各子区域的中心及周围的像素点高程值;Divide the second DEM slice data into a number of sub-areas, and obtain the elevation values of the center and surrounding pixels of each sub-area;

基于设定的向量长度,对多个子区域内相对位置相同的像素点高程值进行组合,得到高程值向量;Based on the set vector length, the elevation values of the pixels at the same relative position in multiple sub-areas are combined to obtain an elevation value vector;

将高程值向量输入NEON寄存器,通过所述坡度百分比公式进行计算,得到预通行路径对应的坡度信息。The elevation value vector is input into the NEON register, and the slope information corresponding to the pre-pass path is obtained by calculating the slope percentage formula.

其中一个实施例中,通过所述坡度信息对预通行路径进行可行性评估,包括:In one embodiment, the feasibility of the pre-travel path is evaluated by using the slope information, including:

所述坡度信息包括第二DEM切片数据中各像素点坐标对应的坡度百分比;The slope information includes the slope percentage corresponding to the coordinates of each pixel point in the second DEM slice data;

判断各像素点坐标对应的坡度百分比是否大于阈值,基于判断结果对各像素点坐标对应的栅格图像像素进行标记,以生成新的栅格图像;Determine whether the slope percentage corresponding to each pixel point coordinate is greater than a threshold value, and mark the raster image pixels corresponding to each pixel point coordinate based on the determination result to generate a new raster image;

根据预设道路宽度的几何形状对所述新的栅格图像进行裁剪,得到裁剪后的栅格图像;The new raster image is clipped according to the geometric shape of the preset road width to obtain a clipped raster image;

将所述裁剪后的栅格图像转化为矢量数据,基于所述矢量数据分析预通行路径的可行性。The cropped raster image is converted into vector data, and the feasibility of the pre-travel path is analyzed based on the vector data.

一种野外预通行路径可行性评估系统,所述系统包括:A field pre-travel path feasibility assessment system, the system comprising:

缓冲区计算模块,用于设定预通行路径的道路宽度,根据预设道路宽度,通过并行计算生成道路缓冲区;A buffer zone calculation module is used to set the road width of the pre-passing path and generate a road buffer zone through parallel calculation according to the preset road width;

DEM切片数据获取模块,用于基于所述道路缓冲区中的道路矢量数据,获取与所述道路矢量数据对应的DEM切片数据;A DEM slice data acquisition module, used for acquiring DEM slice data corresponding to the road vector data based on the road vector data in the road buffer;

投影拼接模块,用于采用多线程并行技术对所述DEM切片数据进行投影和拼接,得到第一DEM切片数据;A projection and splicing module, used for projecting and splicing the DEM slice data by using multi-thread parallel technology to obtain first DEM slice data;

坐标转换与裁剪模块,用于将所述道路矢量数据投影至对应的所述第一DEM切片数据的坐标系中,基于所述道路矢量数据对所述第一DEM切片数据进行裁剪,得到第二DEM切片数据;A coordinate conversion and clipping module, used for projecting the road vector data into the coordinate system of the corresponding first DEM slice data, clipping the first DEM slice data based on the road vector data, and obtaining second DEM slice data;

坡度计算模块,用于将所述第二DEM切片数据转化为一维向量,根据坡度百分比公式对所述一维向量进行计算,得到预通行路径对应的坡度信息;A slope calculation module, used for converting the second DEM slice data into a one-dimensional vector, calculating the one-dimensional vector according to a slope percentage formula, and obtaining the slope information corresponding to the pre-travel path;

评估分析模块,用于通过所述坡度信息对预通行路径进行可行性评估。The evaluation and analysis module is used to evaluate the feasibility of the pre-travel path through the slope information.

一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一项所述方法的步骤。A computer device comprises a memory and a processor, wherein the memory stores a computer program, and the processor implements the steps of any one of the above methods when executing the computer program.

一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的方法的步骤。A computer-readable storage medium stores a computer program, which implements the steps of any of the above methods when executed by a processor.

上述野外预通行路径可行性评估方法、系统、设备及介质,通过设定预通行路径的道路宽度,根据预设道路宽度,通过并行计算生成道路缓冲区;基于道路缓冲区中的道路矢量数据,获取与道路矢量数据对应的DEM切片数据;采用多线程并行技术对DEM切片数据进行投影和拼接,得到第一DEM切片数据;将道路矢量数据投影至对应的第一DEM切片数据的坐标系中,基于道路矢量数据对第一DEM切片数据进行裁剪,得到第二DEM切片数据;将第二DEM切片数据转化为一维向量,根据坡度百分比公式对一维向量进行计算,得到预通行路径对应的坡度信息;通过坡度信息对预通行路径进行可行性评估。The above-mentioned field pre-pass path feasibility assessment method, system, equipment and medium set the road width of the pre-pass path, and generate a road buffer through parallel calculation according to the preset road width; based on the road vector data in the road buffer, obtain the DEM slice data corresponding to the road vector data; use multi-threaded parallel technology to project and splice the DEM slice data to obtain the first DEM slice data; project the road vector data to the coordinate system of the corresponding first DEM slice data, and clip the first DEM slice data based on the road vector data to obtain the second DEM slice data; convert the second DEM slice data into a one-dimensional vector, calculate the one-dimensional vector according to the slope percentage formula, and obtain the slope information corresponding to the pre-pass path; and perform feasibility assessment on the pre-pass path through the slope information.

本发明采用多线程并行技术对DEM切片数据进行投影和拼接,以提供统一的地形数据;通过将道路矢量数据投影至对应的第一DEM切片数据的坐标系中,基于道路矢量数据对第一DEM切片数据进行裁剪,以减少数据冗余;采用坡度百分比计算方法,量化地形坡度信息;将第二DEM切片数据转化为一维向量,以向量为单位高效处理坡度计算任务。本发明通过采用多线程并行技术同时处理多个任务,采用NEON技术在同一指令周期内对多个数据执行相同类型的操作,克服了现有坡度计算方法效率较低的缺陷,极大地提升了计算效率,确保对野外新规划路径的通行条件进行准确而高效地评估。The present invention adopts multi-threaded parallel technology to project and splice DEM slice data to provide unified terrain data; by projecting road vector data into the coordinate system of the corresponding first DEM slice data, the first DEM slice data is clipped based on the road vector data to reduce data redundancy; the slope percentage calculation method is adopted to quantify the terrain slope information; the second DEM slice data is converted into a one-dimensional vector, and the slope calculation task is efficiently processed in units of vectors. The present invention adopts multi-threaded parallel technology to process multiple tasks simultaneously, and adopts NEON technology to perform the same type of operation on multiple data in the same instruction cycle, thereby overcoming the defect of low efficiency of the existing slope calculation method, greatly improving the calculation efficiency, and ensuring accurate and efficient evaluation of the traffic conditions of the newly planned path in the field.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为一个实施例中野外预通行路径可行性评估方法流程示意图;FIG1 is a schematic diagram of a process flow of a method for assessing the feasibility of a field pre-travel path in one embodiment;

图2为一个实施例中DEM高程数据像素子区域示意图;Figure 2 shows DEM elevation data in one embodiment. Schematic diagram of pixel sub-regions;

图3为一个实施例中野外预通行路径可行性评估系统的结构框架示意图;FIG3 is a schematic diagram of the structural framework of a field pre-travel path feasibility assessment system in one embodiment;

图4为一个实施例中计算机设备的内部结构图。FIG. 4 is a diagram showing the internal structure of a computer device in one embodiment.

具体实施方式Detailed ways

为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application more clearly understood, the present application is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application and are not used to limit the present application.

需要说明,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数据。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体地限定。It should be noted that in the present invention, descriptions such as "first", "second", etc. are only used for descriptive purposes and cannot be understood as indicating or implying their relative importance or implicitly indicating data of the indicated technical features. Therefore, features defined as "first" or "second" may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of "plurality" is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.

发明人在实现本方案技术过程中,发现传统的路径评估方法存在主观性强、效率低下以及数据不准确等问题,基于此,发明人提出了一种野外预通行路径可行性评估方法,通过引入OpenMP多线程技术,将一个计算任务分解为多个子任务,每个子任务在不同的处理器核心上并行执行,显著提升了程序的性能和计算效率。此外,使用NEON技术对坡度百分比数据进行向量化计算,充分发挥了高性能计算能力,实现了对地理信息的高效处理和精确分析。In the process of implementing the technology of this solution, the inventor found that the traditional path assessment method has problems such as strong subjectivity, low efficiency and inaccurate data. Based on this, the inventor proposed a field pre-pass path feasibility assessment method. By introducing OpenMP multi-threading technology, a computing task is decomposed into multiple subtasks, and each subtask is executed in parallel on different processor cores, which significantly improves the performance and computing efficiency of the program. In addition, the use of NEON technology to vectorize the slope percentage data fully utilizes the high-performance computing capabilities and realizes efficient processing and accurate analysis of geographic information.

下面将结合本发明实施例图中的附图,对本发明实施方式进行详细说明。The following will describe the implementation of the present invention in detail with reference to the accompanying drawings in the embodiment diagram of the present invention.

在一个实施例中,如图1所示,提供了一种野外预通行路径可行性评估方法,包括以下步骤:In one embodiment, as shown in FIG1 , a method for assessing the feasibility of a field pre-travel path is provided, comprising the following steps:

步骤202,设定预通行路径的道路宽度,根据预设道路宽度,通过并行计算生成道路缓冲区。Step 202, setting the road width of the pre-travel path, and generating a road buffer zone through parallel calculation according to the preset road width.

可以理解,对于预通行的道路,根据需求先设定道路宽度,然后根据预设的道路宽度,在道路两侧生成一定宽度的缓冲区域,以确保在道路周围的特定宽度范围内预留出空间。It can be understood that for the roads to be opened, the road width is first set according to demand, and then a buffer area of a certain width is generated on both sides of the road according to the preset road width to ensure that space is reserved within a specific width range around the road.

具体地,为了提高计算效率,采用并行循环指令,将计算任务分解为多个并行的子任务,将线要素拆分为线段,均等的分配到各个线程中进行缓冲区计算。Specifically, in order to improve the computing efficiency, parallel loop instructions are used to decompose the computing task into multiple parallel subtasks, and the line features are split into line segments, which are evenly distributed to each thread for buffer calculation.

步骤204,基于道路缓冲区中的道路矢量数据,获取与道路矢量数据对应的DEM切片数据。Step 204: based on the road vector data in the road buffer, obtain DEM slice data corresponding to the road vector data.

可以理解,道路矢量数据通常包含多个道路矢量数据的整个数据集或图层,一般用于分析、可视化和管理地理空间信息。道路矢量数据则为地图中的具体道路元素,比如道路的几何形状、长度、宽度、方向、拓扑关系等,可以用来表示单个道路或道路段。DEM是用于表示地表高度的数字模型,而DEM切片数据则将这些高程信息分割成多个小区域或瓦片,以便更有效地处理和管理数据;每个DEM切片数据通常代表着一个特定的地理区域,如一个特定的经纬度范围或特定的地形区域。这种切片方式使得用户能够精确选择和处理所需的地理区域,而不必处理整个数据集,从而提高了数据的可操作性和效率。It can be understood that road vector data usually contains an entire data set or layer of multiple road vector data, which is generally used to analyze, visualize and manage geospatial information. Road vector data refers to specific road elements in the map, such as the geometry, length, width, direction, topological relationship, etc. of the road, which can be used to represent a single road or road segment. DEM is a digital model used to represent the height of the ground surface, and DEM slice data divides this elevation information into multiple small areas or tiles to process and manage data more efficiently; each DEM slice data usually represents a specific geographic area, such as a specific latitude and longitude range or a specific terrain area. This slicing method enables users to accurately select and process the required geographic area without having to process the entire data set, thereby improving the operability and efficiency of the data.

步骤206,采用多线程并行技术对DEM切片数据进行投影和拼接,得到第一DEM切片数据。Step 206: Project and splice the DEM slice data using multi-threaded parallel technology to obtain first DEM slice data.

可以理解,多线程并行技术是一种能够同时执行多个线程计算的技术,它通过利用计算机系统中具有多个处理单元(例如多核处理器)的特性,以同时处理多个任务或子任务。这种并行技术有助于提高程序的性能和效率。It can be understood that multithreading parallel technology is a technology that can execute multiple thread calculations at the same time. It uses the characteristics of multiple processing units (such as multi-core processors) in computer systems to process multiple tasks or subtasks at the same time. This parallel technology helps to improve the performance and efficiency of programs.

在本实施例中,采用多线程并行技术,可以将整个处理过程分解成多个子任务,每个子任务处理一个或多个DEM切片数据,然后同时运行这些子任务以提高处理速度,特别是在多核处理器或多线程环境下,可以显著提高处理大量DEM切片数据的效率。通过对DEM切片数据进行投影,以转换到相同的坐标系中,统一地形数据,以便于将DEM切片数据拼接为一个大的连续数据。In this embodiment, the multi-thread parallel technology is used to decompose the entire processing process into multiple subtasks, each of which processes one or more DEM slice data, and then these subtasks are run simultaneously to improve the processing speed, especially in a multi-core processor or multi-thread environment, the efficiency of processing a large amount of DEM slice data can be significantly improved. By projecting the DEM slice data to convert them into the same coordinate system, the terrain data is unified so that the DEM slice data can be spliced into a large continuous data.

步骤208,将道路矢量数据投影至对应的第一DEM切片数据的坐标系中,基于道路矢量数据对第一DEM切片数据进行裁剪,得到第二DEM切片数据。Step 208: Project the road vector data into the coordinate system of the corresponding first DEM slice data, and clip the first DEM slice data based on the road vector data to obtain second DEM slice data.

可以理解,为了增加数据的精确性和一致性,将道路矢量数据投影至对应的第一DEM切片数据的坐标系中,以确保道路矢量数据和DEM切片数据具有相同的空间参考。同时,基于道路矢量数据对第一DEM切片数据进行裁剪,更有助于进行准确地空间分析,以便于后续分析。It can be understood that in order to increase the accuracy and consistency of the data, the road vector data is projected into the coordinate system of the corresponding first DEM slice data to ensure that the road vector data and the DEM slice data have the same spatial reference. At the same time, clipping the first DEM slice data based on the road vector data is more conducive to accurate spatial analysis for subsequent analysis.

另一方面,对第一DEM切片数据进行裁剪,可以缩小处理范围,使得数据分析时更专注于特定区域的地形,减少数据量和处理范围,提高后续处理的效率。On the other hand, clipping the first DEM slice data can narrow the processing scope, so that data analysis can focus more on the terrain of a specific area, reduce the amount of data and the processing scope, and improve the efficiency of subsequent processing.

总之,通过投影对齐及裁剪后,能够更好的理解待分析地形的特征,提高后续数据分析的精度和效率。In short, through projection alignment and clipping, we can better understand the characteristics of the terrain to be analyzed and improve the accuracy and efficiency of subsequent data analysis.

步骤210,将第二DEM切片数据转化为一维向量,根据坡度百分比公式对一维向量进行计算,得到预通行路径对应的坡度信息。Step 210, converting the second DEM slice data into a one-dimensional vector, calculating the one-dimensional vector according to the slope percentage formula, and obtaining the slope information corresponding to the pre-travel path.

可以理解,DEM切片数据是一种二维栅格数据,其高程信息是存储在矩阵或数组中的,将其转换为一维向量可以简化坡度计算,方便对高程值进行分析和处理。并且,将DEM切片数据转化为一维向量后,更容易确定特定位置周围的像素,方便进行邻域高程分析。It can be understood that DEM slice data is a two-dimensional raster data, and its elevation information is stored in a matrix or array. Converting it into a one-dimensional vector can simplify slope calculation and facilitate the analysis and processing of elevation values. In addition, after converting DEM slice data into a one-dimensional vector, it is easier to determine the pixels around a specific location, which is convenient for neighborhood elevation analysis.

坡度百分比是用来衡量地表坡度的指标,其计算通过测量垂直高度和水平距离的比值得出。通过计算坡度百分比,可以提供有关地表的重要信息,以判断道路是否可以通行。The percentage slope is a measure of the slope of a surface, calculated by measuring the ratio of vertical height to horizontal distance. Calculating the percentage slope provides important information about the surface to determine whether a road is passable.

步骤212,通过坡度信息对预通行路径进行可行性评估。Step 212: Perform feasibility assessment on the pre-travel path based on the slope information.

可以理解,坡度信息包括了第二DEM切片数据中所有像素点坐标对应的坡度百分比,通过与设定阈值进行比较并标记的方式来判断对应像素点的地形陡峭程度,以判断道路是否适合通行。It can be understood that the slope information includes the slope percentage corresponding to the coordinates of all pixel points in the second DEM slice data. The steepness of the terrain corresponding to the pixel point is determined by comparing with the set threshold and marking it to determine whether the road is suitable for travel.

上述野外预通行路径可行性评估方法,通过设定预通行路径的道路宽度,根据预设道路宽度,通过并行计算生成道路缓冲区;基于道路缓冲区中的道路矢量数据,获取与道路矢量数据对应的DEM切片数据;采用多线程并行技术对DEM切片数据进行投影和拼接,得到第一DEM切片数据;将道路矢量数据投影至对应的第一DEM切片数据的坐标系中,基于道路矢量数据对第一DEM切片数据进行裁剪,得到第二DEM切片数据;将第二DEM切片数据转化为一维向量,根据坡度百分比公式对一维向量进行计算,得到预通行路径对应的坡度信息;通过坡度信息对预通行路径进行可行性评估。The above-mentioned field pre-pass path feasibility assessment method sets the road width of the pre-pass path, generates a road buffer through parallel calculation according to the preset road width; obtains DEM slice data corresponding to the road vector data based on the road vector data in the road buffer; projects and splices the DEM slice data using multi-threaded parallel technology to obtain first DEM slice data; projects the road vector data into the coordinate system of the corresponding first DEM slice data, and clips the first DEM slice data based on the road vector data to obtain second DEM slice data; converts the second DEM slice data into a one-dimensional vector, calculates the one-dimensional vector according to the slope percentage formula, and obtains the slope information corresponding to the pre-pass path; and conducts feasibility assessment on the pre-pass path through the slope information.

本发明采用多线程并行技术对DEM切片数据进行投影和拼接,以提供统一的地形数据;通过将道路矢量数据投影至对应的第一DEM切片数据的坐标系中,基于道路矢量数据对第一DEM切片数据进行裁剪,以减少数据冗余;采用坡度百分比计算方法,量化地形坡度信息;将第二DEM切片数据转化为一维向量,以向量为单位高效处理坡度计算任务。本发明通过采用多线程并行技术同时处理多个任务,采用NEON技术,在同一指令周期内对多个数据执行相同类型的操作,克服了现有坡度计算方法效率较低的缺陷,极大地提升了计算效率,确保对野外新规划路径的通行条件进行准确而高效地评估。The present invention adopts multi-threaded parallel technology to project and splice DEM slice data to provide unified terrain data; by projecting road vector data into the coordinate system of the corresponding first DEM slice data, the first DEM slice data is clipped based on the road vector data to reduce data redundancy; the slope percentage calculation method is adopted to quantify the terrain slope information; the second DEM slice data is converted into a one-dimensional vector, and the slope calculation task is efficiently processed in units of vectors. The present invention adopts multi-threaded parallel technology to process multiple tasks simultaneously, and adopts NEON technology to perform the same type of operation on multiple data in the same instruction cycle, thereby overcoming the defect of low efficiency of the existing slope calculation method, greatly improving the calculation efficiency, and ensuring accurate and efficient evaluation of the traffic conditions of the newly planned path in the field.

其中一个实施例中,根据预设道路宽度,通过并行计算生成道路缓冲区,包括:将预通行路径分解为若干道路线段,获取各道路线段的道路矢量数据;采用并行循环指令同时对各道路矢量数据进行遍历和处理,其中,对每个道路矢量数据,根据预设道路宽度,生成道路缓冲区的几何形状;将所有道路缓冲区的几何形状合并到一个集合中,得到道路缓冲区集合。In one of the embodiments, a road buffer is generated through parallel calculation according to a preset road width, including: decomposing a pre-travel path into a number of road segments and obtaining road vector data of each road segment; using parallel loop instructions to traverse and process each road vector data at the same time, wherein for each road vector data, a geometric shape of the road buffer is generated according to the preset road width; and merging the geometric shapes of all road buffers into a set to obtain a road buffer set.

具体地,首先将预通行路径分解为若干道路线段,获取各道路线段的道路矢量数据。利用OpenMP的并行循环指令,将计算任务分解为多个并行的子任务。在并行循环中,设置线程数为8,将线要素拆分为线段,均等的分配到各个线程中进行缓冲区计算。此外,为了确保在同一时刻只有一个线程可以访问被保护的共享资源,避免数据竞争和不一致性,创建互斥锁。值得说明的是,在并行循环中,线程数可以根据实际情况进行设计,本实施例线程数设置为8,仅是为了更清楚的展开说明,并不作为对本发明的限定。Specifically, first, the pre-pass path is decomposed into several road segments, and the road vector data of each road segment is obtained. The parallel loop instruction of OpenMP is used to decompose the computing task into multiple parallel subtasks. In the parallel loop, the number of threads is set to 8, and the line elements are split into segments, which are evenly distributed to each thread for buffer calculation. In addition, in order to ensure that only one thread can access the protected shared resources at the same time and avoid data competition and inconsistency, a mutex lock is created. It is worth noting that in the parallel loop, the number of threads can be designed according to the actual situation. The number of threads in this embodiment is set to 8 only for a clearer explanation and is not intended to be a limitation of the present invention.

然后,对于每个线程,假设线段的两端点为以及/>,且道路的缓冲区半径为w,利用以下公式计算线段的方向向量DThen, for each thread, assume that the two endpoints of the line segment are and/> , and the buffer radius of the road is w , the direction vector D of the line segment is calculated using the following formula:

;

;

根据线段的方向向量和缓冲区半径,通过对点进行垂直方向的偏移,得到新的缓冲区多边形的顶点,从而计算缓冲区。在并行循环的每个迭代中,每个子任务独立地计算出对应线段的缓冲区几何形状。这些计算结果会被存储在相应的数据结构中,以便进行后续的处理和分析。According to the direction vector of the line segment and the radius of the buffer zone, the vertex of the new buffer zone polygon is obtained by vertically offsetting the point to calculate the buffer zone. In each iteration of the parallel loop, each subtask independently calculates the buffer zone geometry of the corresponding line segment. These calculation results will be stored in the corresponding data structure for subsequent processing and analysis.

最后,将所有线的缓冲区计算结果整合为一个集合。Finally, the buffer calculation results for all lines are combined into a single set.

其中一个实施例中,基于道路缓冲区中的道路矢量数据,获取与道路矢量数据对应的DEM切片数据,包括:获取道路缓冲区集合中的各道路矢量数据;从各道路矢量数据中提取几何信息,得到各道路多边形最小外接矩形的经纬度坐标范围;根据各经纬度坐标范围对应的DEM切片数据的行号与条带映射关系,确定各道路矢量数据对应的DEM切片数据的行号与条带范围,获取与各道路矢量数据对应的DEM切片数据。In one of the embodiments, based on the road vector data in the road buffer, DEM slice data corresponding to the road vector data is obtained, including: obtaining each road vector data in the road buffer set; extracting geometric information from each road vector data to obtain the longitude and latitude coordinate range of the minimum circumscribed rectangle of each road polygon; determining the row number and stripe range of the DEM slice data corresponding to each road vector data according to the mapping relationship between the row number and stripe of the DEM slice data corresponding to each longitude and latitude coordinate range, and obtaining the DEM slice data corresponding to each road vector data.

具体地,从道路矢量数据中提取几何信息,得到道路多边形最小外接矩形的经纬度坐标范围,其中/>和/>分别表示经度最小值和纬度最小值,和/>分别表示经度最大值和纬度最大值,上述坐标范围定义了道路矢量数据在地理空间中的边界,确定了道路所在区域的地理范围。Specifically, the geometric information is extracted from the road vector data to obtain the latitude and longitude coordinate range of the minimum circumscribed rectangle of the road polygon. , where/> and/> Respectively represent the minimum longitude and latitude, and/> They represent the maximum longitude and latitude respectively. The above coordinate range defines the boundary of the road vector data in the geographic space and determines the geographic scope of the area where the road is located.

根据经纬度对DEM切片数据的行号与条带映射关系,确定道路矢量对应的DEM切片数据的行号与条带范围。According to the mapping relationship between the row number and strip of the DEM slice data based on longitude and latitude, the row number and strip range of the DEM slice data corresponding to the road vector are determined.

查询并提取在此行号范围与条带范围内的DEM切片数据,DEM切片数据通常以栅格形式存储,每个切片覆盖一个局部的地理区域。Query and extract DEM slice data within this row number range and strip range. DEM slice data is usually stored in raster form, and each slice covers a local geographic area.

其中一个实施例中,采用多线程并行技术对DEM切片数据进行投影和拼接,得到第一DEM切片数据,包括:采用多线程技术,为各DEM切片数据分别分配一个线程进行投影处理,将各DEM切片数据中的地理坐标系转换为投影坐标系;确定转换为投影坐标系后的各DEM切片数据的顺序,依次对各DEM切片数据进行拼接,得到统一地形的第一DEM切片数据。In one of the embodiments, multi-threaded parallel technology is used to project and splice DEM slice data to obtain first DEM slice data, including: using multi-threaded technology to assign a thread to each DEM slice data for projection processing, and converting the geographic coordinate system in each DEM slice data into a projection coordinate system; determining the order of each DEM slice data after conversion to the projection coordinate system, and splicing each DEM slice data in turn to obtain the first DEM slice data of unified terrain.

具体地,为每个DEM切片数据启动一个线程,采用多线程并行技术,对不同的DEM切片数据同时进行投影操作,将切片数据由地理坐标系转换为目标投影坐标系;获取各个DEM切片数据及其空间位置信息,即投影坐标系中的坐标范围,将其用于判断切片拼接的顺序;依次拼接投影后的DEM数据,确保它们在空间上紧密相连。Specifically, a thread is started for each DEM slice data, and multi-threaded parallel technology is used to simultaneously perform projection operations on different DEM slice data, and the slice data is converted from the geographic coordinate system to the target projection coordinate system; each DEM slice data and its spatial position information, that is, the coordinate range in the projection coordinate system, is obtained, and is used to determine the order of slice splicing; the projected DEM data are spliced in sequence to ensure that they are closely connected in space.

本实施例中,采用并行方式对DEM切片数据进行投影。为每个DEM切片数据分配一个线程,采用多线程并行技术,对不同的DEM切片数据同时进行投影操作,将DEM切片数据每个像素的地理坐标系转换为UTM投影坐标/>,以确保空间位置的准确映射。In this embodiment, the DEM slice data is projected in parallel. A thread is assigned to each DEM slice data, and multi-thread parallel technology is used to simultaneously project different DEM slice data. Convert to UTM projection coordinates/> , to ensure accurate mapping of spatial locations.

其中一个实施例中,将道路矢量数据投影至对应的第一DEM切片数据的坐标系中,基于道路矢量数据对第一DEM切片数据进行裁剪,得到第二DEM切片数据,包括:将道路矢量数据投影至对应的第一DEM切片数据的投影坐标系中,然后基于道路矢量数据,获取各道路多边形最小外接矩形四个顶点的投影坐标;将投影坐标覆盖范围转换为像素坐标范围,然后基于像素坐标范围对对应的第一DEM切片数据进行裁剪,得到第二DEM切片数据。In one of the embodiments, the road vector data is projected into the coordinate system of the corresponding first DEM slice data, and the first DEM slice data is clipped based on the road vector data to obtain the second DEM slice data, including: projecting the road vector data into the projection coordinate system of the corresponding first DEM slice data, and then obtaining the projection coordinates of the four vertices of the minimum circumscribed rectangle of each road polygon based on the road vector data; converting the projection coordinate coverage range into a pixel coordinate range, and then clipping the corresponding first DEM slice data based on the pixel coordinate range to obtain the second DEM slice data.

具体地,将道路矢量数据投影到与DEM切片数据相同的投影坐标系中。Specifically, the road vector data is projected into the same projection coordinate system as the DEM slice data.

从道路矢量数据中的多边形数据中提取最小外接矩形的投影坐标范围Extract the projection coordinate range of the minimum enclosing rectangle from the polygon data in the road vector data .

获取DEM切片数据的地理变换信息,包括左上角坐标、像素宽度、/>方向旋转角、左上角/>坐标、/>方向旋转角以及像素高度。Get the geographic transformation information of the DEM slice data, including the upper left corner coordinates, pixel width, /> Direction rotation angle, upper left corner /> Coordinates, /> Direction rotation angle and pixel height.

对于投影矢量数据中的每个顶点,使用地理变换信息将其投影坐标转化为像素坐标,具体采用以下公式进行转换:For each vertex in the projected vector data, use the geographic transformation information to convert its projection coordinates into pixel coordinates. The following formula is used for the conversion:

;

;

其中,和/>为投影坐标,/>和/>为像素点坐标,/>代表DEM切片数据左上角/>坐标,/>代表DEM切片数据左上角/>坐标,/>为像素宽度,/>为像素高度。in, and/> is the projection coordinate, /> and/> is the pixel coordinate, /> Represents the upper left corner of the DEM slice data/> Coordinates, /> Represents the upper left corner of the DEM slice data/> Coordinates, /> is the pixel width, /> is the pixel height.

使用转换后的像素坐标范围,在DEM切片数据中定位对应的矩形区域,然后在DEM切片数据中裁剪出包含该区域的部分。Use the converted pixel coordinate range to locate the corresponding rectangular area in the DEM slice data, and then cut out the part containing the area in the DEM slice data.

其中一个实施例中,将第二DEM切片数据转化为一维向量,根据坡度百分比公式对一维向量进行计算,得到预通行路径对应的坡度信息,包括:将第二DEM切片数据划分为若干子区域,获取各子区域的中心及周围的像素点高程值;基于设定的向量长度,对多个子区域内相对位置相同的像素点高程值进行组合,得到高程值向量;将高程值向量输入NEON寄存器,通过坡度百分比公式进行计算,得到预通行路径对应的坡度信息。In one of the embodiments, the second DEM slice data is converted into a one-dimensional vector, and the one-dimensional vector is calculated according to the slope percentage formula to obtain the slope information corresponding to the pre-pass path, including: dividing the second DEM slice data into a plurality of sub-areas, and obtaining the elevation values of the center and surrounding pixels of each sub-area; based on a set vector length, combining the elevation values of pixels with the same relative position in a plurality of sub-areas to obtain an elevation value vector; inputting the elevation value vector into a NEON register, and calculating according to the slope percentage formula to obtain the slope information corresponding to the pre-pass path.

具体地,利用NEON技术,将第二DEM切片数据的二维图像转化为一维向量,以向量为单位高效处理坡度计算任务。Specifically, the NEON technology is used to convert the two-dimensional image of the second DEM slice data into a one-dimensional vector, and the slope calculation task is efficiently processed using vectors as units.

如图2所示,从DEM切片数据中获取子区域中心像素点的高程值,以及周围8个像素点的高程值;将像素点高程值向量输入NEON寄存器,根据坡度百分比公式计算/>子区域中心像素点坡度百分比,坡度百分比公式表达式为:As shown in Figure 2, the DEM slice data is obtained The elevation value of the central pixel of the sub-region and the elevation values of the surrounding 8 pixels; input the pixel elevation value vector into the NEON register and calculate according to the slope percentage formula/> The slope percentage of the central pixel of the sub-region. The slope percentage formula is:

;

;

;

其中为坡度百分比,/>为水平方向的增量,/>为高程增量,/>为/>子区域中每个像元的高程值,/>为/>方向上像元的空间分辨率,/>为/>方向上像元的空间分辨率;in is the slope percentage, /> is the horizontal increment, /> is the elevation increment, /> For/> The elevation value of each pixel in the sub-area, /> For/> The spatial resolution of the pixel in the direction, /> For/> The spatial resolution of pixels in the direction;

可以理解,通过设定向量长度,分别定义8个像素点高程值向量,即每个向量存储了/>个连续/>子区域中/>的高程值。其中,/>为向量寄存器位数与变量类型长度的比值。以具体参数为例,若向量寄存器位数为128bit,变量类型为float32,则向量长度为4。因此,每4个/>窗口内相对位置相同的像素点高程值将被组合为一个向量。进一步具体地,定义长度为4的向量/>,用于存放连续4个/>窗口中心点左上角的像素点高程值;定义长度为4的向量/>,用于存放连续4个/>窗口中心点正上方的像素点高程值,以此类推。It can be understood that by setting the vector length , define 8 pixel elevation value vectors respectively, that is, each vector Stored /> Continuous/> In the sub-area/> The elevation value of. Among them, /> is the ratio of the number of bits in the vector register to the length of the variable type. Taking the specific parameters as an example, if the number of bits in the vector register is 128 bits and the variable type is float32, then the vector length is 4. Therefore, every 4/> The height values of pixels with the same relative position in the window will be combined into a vector. More specifically, a vector with a length of 4 is defined. , used to store 4 consecutive /> The pixel elevation value of the upper left corner of the window center; define a vector with a length of 4/> , used to store 4 consecutive /> The elevation value of the pixel directly above the center of the window, and so on.

设计NEON Intrinsics程序,实现高效并行计算多组数据的坡度百分比,具体步骤如下:将像素点高程值向量输入NEON寄存器;利用 NEON Intrinsics 指令,根据坡度百分比计算公式计算水平方向上的增量对应的向量以及垂直方向上的增量对应的向量;通过将向量/>除以向量/>并乘以100得到结果向量/>Design a NEON Intrinsics program to efficiently parallelize the slope percentage calculation of multiple sets of data. The specific steps are as follows: Input the pixel elevation value vector into the NEON register; Use the NEON Intrinsics instruction to calculate the vector corresponding to the horizontal increment according to the slope percentage calculation formula And the vector corresponding to the vertical increment ; By passing the vector /> Divide by vector/> And multiply by 100 to get the resulting vector /> .

对于组内数量不足s的冗余数据,则依次进行单独处理。比如,重复上述步骤,直至剩余像素点数量不足4,对于剩余数量不足4的冗余数据,依次进行单独处理。For redundant data whose number is less than s in a group, they are processed separately in sequence. For example, the above steps are repeated until the number of remaining pixels is less than 4, and for redundant data whose number is less than 4, they are processed separately in sequence.

最终,将利用NEON intrinsics程序并行计算后的结果与单独进行计算后的结果合并,形成最终的结果,得到预通行路径对应的坡度信息。Finally, the results of parallel calculation using the NEON intrinsics program are combined with the results of separate calculations to form the final result, and the slope information corresponding to the pre-pass path is obtained.

本实施例中,基于FT2500+处理器的单指令多数据扩展指令(Single InstructionMultiple Data,简称SIMD),利用32个128bit向量寄存器,在单条指令中同时处理多个数据元素,提高密集型数据计算的效率。In this embodiment, based on the Single Instruction Multiple Data (SIMD) extension instruction of the FT2500+ processor, 32 128-bit vector registers are used to simultaneously process multiple data elements in a single instruction, thereby improving the efficiency of intensive data calculations.

其中一个实施例中,通过坡度信息对预通行路径进行可行性评估,包括:坡度信息包括第二DEM切片数据中各像素点坐标对应的坡度百分比;判断各像素点坐标对应的坡度百分比是否大于阈值,基于判断结果对各像素点坐标对应的栅格图像像素进行标记,以生成新的栅格图像;根据预设道路宽度的几何形状对所述新的栅格图像进行裁剪,得到裁剪后的栅格图像;将裁剪后的栅格图像转化为矢量数据,基于矢量数据分析预通行路径的可行性。In one of the embodiments, the feasibility of the pre-travel path is evaluated through slope information, including: the slope information includes the slope percentage corresponding to the coordinates of each pixel point in the second DEM slice data; judging whether the slope percentage corresponding to the coordinates of each pixel point is greater than a threshold, marking the raster image pixels corresponding to the coordinates of each pixel point based on the judgment result to generate a new raster image; cropping the new raster image according to the geometric shape of a preset road width to obtain a cropped raster image; converting the cropped raster image into vector data, and analyzing the feasibility of the pre-travel path based on the vector data.

具体地,逐一获取坡度信息中各像素点对应的坡度百分比。Specifically, the slope percentage corresponding to each pixel point in the slope information is obtained one by one.

设定阈值,阈值/>约等于汽车轮胎与道路的摩擦系数/>。依次判断各像素点的坡度值是否大于预先设定的阈值/>,如果坡度百分比大于/>,表示该像素点的地形较陡峭,不适合通行,将该像素点坐标对应位置的栅格图像像素设置为0,如果坡度百分比小于或等于/>,表示该像素点的地形较平缓,适合通行,将该像素点坐标对应位置的栅格图像像素设置为1。Setting Thresholds , threshold /> Approximately equal to the friction coefficient between car tires and roads/> . Determine in turn whether the slope value of each pixel point is greater than a preset threshold value/> , if the slope percentage is greater than/> , indicating that the terrain at the pixel point is steep and not suitable for travel, the raster image pixel corresponding to the pixel point coordinate is set to 0. If the slope percentage is less than or equal to/> , indicating that the terrain at the pixel point is relatively flat and suitable for travel, and the raster image pixel corresponding to the pixel point coordinate is set to 1.

通过指定的栅格分辨率将已标记的栅格图像生成一个新的栅格图像,其中每个像素点对应一个通行标记0或1。Generates a new raster image from the marked raster image at the specified raster resolution, where each pixel corresponds to a pass mark 0 or 1.

根据预设道路宽度的几何形状剪裁栅格图像,将非道路范围内的像素值设置为-1,其他区域的像素值将保持不变,将裁剪后的栅格图像转化为矢量数据,基于矢量数据分析预通行路径的可行性。The raster image is clipped according to the geometric shape of the preset road width, the pixel value in the non-road range is set to -1, and the pixel values in other areas will remain unchanged. The clipped raster image is converted into vector data, and the feasibility of the pre-travel path is analyzed based on the vector data.

进一步具体地,对于每个像素点坐标,获取其对应的坡度百分比/>Specifically, for each pixel coordinate , get the corresponding slope percentage/> .

对于每个像素点,判断坡度值是否大于预先设定的阈值/>。如果,表示地形较陡峭,不适合通行,将该像素点坐标对应位置的栅格图像像素设置为0;如果/>,表示地形较平缓,适合通行,将该像素点坐标对应位置的栅格图像像素设置为1。For each pixel , determine whether the slope value is greater than a preset threshold value/> .if , indicating that the terrain is steep and not suitable for travel, the raster image pixel corresponding to the pixel coordinate is set to 0; if /> , indicating that the terrain is relatively flat and suitable for travel, and the raster image pixel corresponding to the pixel coordinate is set to 1.

通过指定的栅格分辨率,生成一个新的栅格图像/>,其中/>和/>表示栅格图像的行和列索引,每个栅格像素表示通行标记0或1。By specifying the grid resolution , generate a new raster image/> , where/> and/> Represents the row and column indices of a raster image, with each raster pixel representing a pass flag of 0 or 1.

根据预设道路宽度的几何形状剪裁栅格图像,将非道路范围内的像素设置为-1,其他区域的像素值将保持不变,将剪裁后的栅格数据转为矢量数据,本方法的评估准确度受DEM切片数据分辨率的影响,使用高分辨率的DEM切片数据可以提升路径可行性评估效果。Clip raster images to the geometry of a preset road width , set the pixels in the non-road range to -1, and the pixel values in other areas will remain unchanged. Convert the clipped raster data into vector data. The evaluation accuracy of this method is affected by the resolution of DEM slice data. Using high-resolution DEM slice data can improve the path feasibility evaluation effect.

可以理解,本发明在缓冲区计算及投影阶段,通过多线程并行技术对DEM切片数据进行投影操作,有效地提高了数据处理的效率和实时性,充分利用系统资源,同时也增强了系统的可扩展性。在坡度计算过程中,运用NEON向量加速模型,能够在单个指令周期内同时处理多个数据点,充分发挥了硬件性能,大幅度地增强了计算效率,为地理数据处理提供了高效可行的解决方案。这些创新策略使得本发明在处理大规模高程数据和道路坡度计算方面具备了明显的优越性,为地理信息系统的优化与应用提供了有力支持。It can be understood that in the buffer calculation and projection stage, the present invention uses multi-threaded parallel technology to perform projection operations on DEM slice data, effectively improving the efficiency and real-time performance of data processing, making full use of system resources, and also enhancing the scalability of the system. In the slope calculation process, the NEON vector acceleration model is used to simultaneously process multiple data points in a single instruction cycle, giving full play to the hardware performance, greatly enhancing the calculation efficiency, and providing an efficient and feasible solution for geographic data processing. These innovative strategies make the present invention have obvious advantages in processing large-scale elevation data and road slope calculation, and provide strong support for the optimization and application of geographic information systems.

应该理解的是,虽然图1的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that, although the various steps in the flowchart of FIG. 1 are shown in sequence according to the indication of the arrows, these steps are not necessarily executed in sequence according to the order indicated by the arrows. Unless there is a clear explanation in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least a portion of the steps in FIG. 1 may include a plurality of sub-steps or a plurality of stages, and these sub-steps or stages are not necessarily executed at the same time, but can be executed at different times, and the execution order of these sub-steps or stages is not necessarily to be carried out in sequence, but can be executed in turn or alternately with other steps or at least a portion of the sub-steps or stages of other steps.

在一个实施例中,如图3所示,提供了一种野外预通行路径可行性评估系统,包括:缓冲区计算模块402、DEM切片数据获取模块404、投影拼接模块406、坐标转换与裁剪模块408、坡度计算模块410和评估分析模块412,其中:In one embodiment, as shown in FIG3 , a field pre-travel path feasibility assessment system is provided, including: a buffer calculation module 402, a DEM slice data acquisition module 404, a projection splicing module 406, a coordinate conversion and clipping module 408, a slope calculation module 410 and an assessment analysis module 412, wherein:

缓冲区计算模块402,用于设定预通行路径的道路宽度,根据预设道路宽度,通过并行计算生成道路缓冲区。The buffer zone calculation module 402 is used to set the road width of the pre-travel path and generate a road buffer zone through parallel calculation according to the preset road width.

DEM切片数据获取模块404,用于基于所述道路缓冲区中的道路矢量数据,获取与所述道路矢量数据对应的DEM切片数据。The DEM slice data acquisition module 404 is used to acquire DEM slice data corresponding to the road vector data based on the road vector data in the road buffer.

投影拼接模块406,用于采用多线程并行技术对所述DEM切片数据进行投影和拼接,得到第一DEM切片数据。The projection and splicing module 406 is used to project and splice the DEM slice data using multi-thread parallel technology to obtain first DEM slice data.

坐标转换与裁剪模块408,用于将所述道路矢量数据投影至对应的所述第一DEM切片数据的坐标系中,基于所述道路矢量数据对所述第一DEM切片数据进行裁剪,得到第二DEM切片数据。The coordinate conversion and clipping module 408 is used to project the road vector data into the coordinate system of the corresponding first DEM slice data, and clip the first DEM slice data based on the road vector data to obtain second DEM slice data.

坡度计算模块410,用于将所述第二DEM切片数据转化为一维向量,根据坡度百分比公式对所述一维向量进行计算,得到预通行路径对应的坡度信息。The slope calculation module 410 is used to convert the second DEM slice data into a one-dimensional vector, calculate the one-dimensional vector according to the slope percentage formula, and obtain the slope information corresponding to the pre-travel path.

评估分析模块412,用于通过所述坡度信息对预通行路径进行可行性评估。The evaluation and analysis module 412 is used to evaluate the feasibility of the pre-travel path based on the slope information.

其中一个实施例中,DEM切片数据获取模块404包括:In one embodiment, the DEM slice data acquisition module 404 includes:

边界生成单元,用于从道路矢量数据中提取几何信息,得到各道路多边形最小外接矩形的经纬度坐标范围。The boundary generation unit is used to extract geometric information from the road vector data to obtain the latitude and longitude coordinate range of the minimum circumscribed rectangle of each road polygon.

DEM定位单元,用于根据各经纬度坐标范围对应的DEM切片数据的行号与条带映射关系,确定各道路矢量数据对应的DEM切片数据的行号与条带范围,获取与各道路矢量数据对应的DEM切片数据。The DEM positioning unit is used to determine the row number and strip range of the DEM slice data corresponding to each road vector data according to the row number and strip mapping relationship of the DEM slice data corresponding to each latitude and longitude coordinate range, and obtain the DEM slice data corresponding to each road vector data.

其中一个实施例中,投影拼接模块406包括:In one embodiment, the projection stitching module 406 includes:

并行投影单元,通过采用多线程技术,为各DEM切片数据分别分配一个线程进行投影处理,将各DEM切片数据中的地理坐标系转换为投影坐标系。The parallel projection unit, by adopting multi-threading technology, allocates a thread to each DEM slice data for projection processing, and converts the geographic coordinate system in each DEM slice data into a projection coordinate system.

拼接单元,用于确定转换为投影坐标系后的各DEM切片数据的顺序,依次对各DEM切片数据进行拼接,得到统一地形的第一DEM切片数据。The splicing unit is used to determine the order of each DEM slice data after conversion into the projection coordinate system, and to splice each DEM slice data in turn to obtain the first DEM slice data of unified terrain.

其中一个实施例中,坐标转换与裁剪模块408包括:In one embodiment, the coordinate conversion and clipping module 408 includes:

坐标转换单元,用于将各道路多边形最小外接矩形的投影坐标覆盖范围转换为像素坐标范围。The coordinate conversion unit is used to convert the projection coordinate coverage of the minimum circumscribed rectangle of each road polygon into a pixel coordinate range.

剪裁单元,用于根据转换后的像素坐标范围,对对应的第一DEM切片数据进行裁剪,得到第二DEM切片数据。The clipping unit is used to clip the corresponding first DEM slice data according to the converted pixel coordinate range to obtain second DEM slice data.

其中一个实施例中,坡度计算模块410包括:In one embodiment, the slope calculation module 410 includes:

定义单元,用于从第二DEM切片数据中获取各子区域的中心及周围的像素点高程值,定义坡度百分比计算公式。Define a unit for obtaining the elevation values of the center and surrounding pixels of each sub-area from the second DEM slice data and define a slope percentage calculation formula.

向量加速单元,基于设定的向量长度,对多个子区域内相对位置相同的像素点高程值进行组合,得到高程值向量,然后将高程值向量输入NEON寄存器中,同时计算多组数据的坡度百分比,得到预通行路径对应的坡度信息。The vector acceleration unit combines the elevation values of pixels with the same relative position in multiple sub-areas based on the set vector length to obtain an elevation value vector, and then inputs the elevation value vector into the NEON register. At the same time, it calculates the slope percentage of multiple groups of data to obtain the slope information corresponding to the pre-pass path.

其中一个实施例中,评估分析模块412包括:In one embodiment, the evaluation and analysis module 412 includes:

坡度分析单元,用于判断各像素点的坡度值是否大于预先设定的阈值,若大于阈值,将对应位置的像素设置为0;若小于或等于阈值,将对应位置的像素设置为1。The slope analysis unit is used to determine whether the slope value of each pixel point is greater than a preset threshold. If it is greater than the threshold, the pixel at the corresponding position is set to 0; if it is less than or equal to the threshold, the pixel at the corresponding position is set to 1.

矢量转换单元,通过使用预设道路宽度的几何形状对栅格图像进行剪裁并将其转为矢量数据。Vector conversion unit, which clips raster images and converts them into vector data by using geometric shapes of preset road widths.

关于野外预通行路径可行性评估系统的具体限定可以参见上文中对于野外预通行路径可行性评估方法的限定,在此不再赘述。上述野外预通行路径可行性评估系统中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For the specific limitations of the field pre-pass path feasibility assessment system, please refer to the limitations of the field pre-pass path feasibility assessment method above, which will not be repeated here. Each module in the above-mentioned field pre-pass path feasibility assessment system can be implemented in whole or in part through software, hardware and a combination thereof. The above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, or can be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.

在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图4所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储野外预通行路径可行性评估数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种野外预通行路径可行性评估方法。In one embodiment, a computer device is provided, which may be a server, and its internal structure diagram may be as shown in FIG4. The computer device includes a processor, a memory, a network interface, and a database connected via a system bus. The processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium and an internal memory. The non-volatile storage medium stores an operating system, a computer program, and a database. The internal memory provides an environment for the operation of the operating system and the computer program in the non-volatile storage medium. The database of the computer device is used to store field pre-pass path feasibility assessment data. The network interface of the computer device is used to communicate with an external terminal via a network connection. When the computer program is executed by the processor, a field pre-pass path feasibility assessment method is implemented.

本领域技术人员可以理解,图4中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art will understand that the structure shown in FIG. 4 is merely a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied. The specific computer device may include more or fewer components than shown in the figure, or combine certain components, or have a different arrangement of components.

在一个实施例中,提供了一种计算机设备,包括存储器和处理器,该存储器存储有计算机程序,该处理器执行计算机程序时实现以下步骤:In one embodiment, a computer device is provided, including a memory and a processor, wherein the memory stores a computer program, and when the processor executes the computer program, the following steps are implemented:

步骤202,设定预通行路径的道路宽度,根据预设道路宽度,通过并行计算生成道路缓冲区。Step 202, setting the road width of the pre-travel path, and generating a road buffer zone through parallel calculation according to the preset road width.

步骤204,基于道路缓冲区中的道路矢量数据,获取与道路矢量数据对应的DEM切片数据。Step 204: based on the road vector data in the road buffer, obtain DEM slice data corresponding to the road vector data.

步骤206,采用多线程并行技术对DEM切片数据进行投影和拼接,得到第一DEM切片数据。Step 206: Project and splice the DEM slice data using multi-threaded parallel technology to obtain first DEM slice data.

步骤208,将道路矢量数据投影至对应的第一DEM切片数据的坐标系中,基于道路矢量数据对第一DEM切片数据进行裁剪,得到第二DEM切片数据。Step 208: Project the road vector data into the coordinate system of the corresponding first DEM slice data, and clip the first DEM slice data based on the road vector data to obtain second DEM slice data.

步骤210,将第二DEM切片数据转化为一维向量,根据坡度百分比公式对一维向量进行计算,得到预通行路径对应的坡度信息。Step 210, converting the second DEM slice data into a one-dimensional vector, calculating the one-dimensional vector according to the slope percentage formula, and obtaining the slope information corresponding to the pre-travel path.

步骤212,通过坡度信息对预通行路径进行可行性评估。Step 212: Perform feasibility assessment on the pre-travel path based on the slope information.

在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:In one embodiment, a computer readable storage medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:

步骤202,设定预通行路径的道路宽度,根据预设道路宽度,通过并行计算生成道路缓冲区。Step 202, setting the road width of the pre-travel path, and generating a road buffer zone through parallel calculation according to the preset road width.

步骤204,基于道路缓冲区中的道路矢量数据,获取与道路矢量数据对应的DEM切片数据。Step 204: based on the road vector data in the road buffer, obtain DEM slice data corresponding to the road vector data.

步骤206,采用多线程并行技术对DEM切片数据进行投影和拼接,得到第一DEM切片数据。Step 206: Project and splice the DEM slice data using multi-threaded parallel technology to obtain first DEM slice data.

步骤208,将道路矢量数据投影至对应的第一DEM切片数据的坐标系中,基于道路矢量数据对第一DEM切片数据进行裁剪,得到第二DEM切片数据。Step 208: Project the road vector data into the coordinate system of the corresponding first DEM slice data, and clip the first DEM slice data based on the road vector data to obtain second DEM slice data.

步骤210,将第二DEM切片数据转化为一维向量,根据坡度百分比公式对一维向量进行计算,得到预通行路径对应的坡度信息。Step 210, converting the second DEM slice data into a one-dimensional vector, calculating the one-dimensional vector according to the slope percentage formula, and obtaining the slope information corresponding to the pre-travel path.

步骤212,通过坡度信息对预通行路径进行可行性评估。Step 212: Perform feasibility assessment on the pre-travel path based on the slope information.

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink) DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。A person of ordinary skill in the art can understand that all or part of the processes in the above-mentioned embodiment method can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage medium. When the computer program is executed, it can include the processes of the embodiments of the above-mentioned methods. Among them, any reference to memory, storage, database or other media used in the embodiments provided in this application may include non-volatile and/or volatile memory. Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM) or flash memory. Volatile memory may include random access memory (RAM) or external cache memory. As an illustration and not limitation, RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).

以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments may be arbitrarily combined. To make the description concise, not all possible combinations of the technical features in the above embodiments are described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of this specification.

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。The above-described embodiments only express several implementation methods of the present application, and the descriptions thereof are relatively specific and detailed, but they cannot be construed as limiting the scope of the present invention. It should be noted that, for a person of ordinary skill in the art, several modifications and improvements may be made without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the protection scope of the present application shall be subject to the attached claims.

Claims (9)

1. A method for evaluating feasibility of a pre-traffic path in the field, the method comprising:
setting the road width of a pre-passing path, and generating a road buffer area through parallel calculation according to the preset road width;
obtaining DEM slice data corresponding to the road vector data based on the road vector data in the road buffer area;
projecting and splicing the DEM slice data by adopting a multithreading parallel technology to obtain first DEM slice data;
Projecting the road vector data into a coordinate system of the corresponding first DEM slice data, and cutting the first DEM slice data based on the road vector data to obtain second DEM slice data;
converting the second DEM slice data into a one-dimensional vector, and calculating the one-dimensional vector according to a gradient percentage formula to obtain gradient information corresponding to a pre-passing path;
Carrying out feasibility assessment on the pre-passing path through the gradient information;
Converting the second DEM slice data into a one-dimensional vector, calculating the one-dimensional vector according to a gradient percentage formula to obtain gradient information corresponding to a pre-passing path, wherein the method comprises the following steps of:
Dividing the second DEM slice data into a plurality of subareas, and obtaining the elevation values of the central and peripheral pixel points of each subarea;
combining the elevation values of the pixel points with the same relative positions in a plurality of different subareas based on the set vector length to obtain an elevation value vector;
And inputting the elevation value vector into a NEON register, and simultaneously calculating gradient percentages of a plurality of groups of data through the gradient percentage formula to obtain gradient information corresponding to the pre-passing path.
2. The method for evaluating feasibility of a field pre-passing path according to claim 1, wherein generating a road buffer by parallel calculation according to a preset road width comprises:
decomposing the pre-passing path into a plurality of road segments to obtain road vector data of each road segment;
Traversing and processing the road vector data simultaneously by adopting a parallel circulation instruction, wherein the geometric shape of a road buffer area is generated for each road vector data according to a preset road width;
And merging the geometric shapes of all the road buffers into one set to obtain a road buffer set.
3. The method of assessing feasibility of a field pre-transit path of claim 2, wherein obtaining DEM slice data corresponding to road vector data in the road buffer based on the road vector data, comprises:
acquiring each road vector data in the road buffer area set;
Extracting geometric information from each road vector data to obtain the longitude and latitude coordinate range of the minimum circumscribed rectangle of each road polygon;
And determining the line number and the stripe range of the DEM slice data corresponding to each road vector data according to the line number and the stripe mapping relation of the DEM slice data corresponding to each longitude and latitude coordinate range, and obtaining the DEM slice data corresponding to each road vector data.
4. The method for evaluating feasibility of a field pre-transit path according to claim 3, wherein projecting and splicing the DEM slice data by using a multi-thread parallel technique to obtain first DEM slice data comprises:
Adopting a multithreading technology, respectively distributing a thread for each DEM slice data to carry out projection processing, and converting a geographic coordinate system in each DEM slice data into a projection coordinate system;
determining the sequence of the DEM slice data converted into a projection coordinate system, and sequentially splicing the DEM slice data to obtain first DEM slice data of uniform topography.
5. The method of claim 4, wherein projecting the road vector data into a coordinate system of the corresponding first DEM slice data, clipping the first DEM slice data based on the road vector data to obtain second DEM slice data, includes:
projecting the road vector data into a corresponding projection coordinate system of the first DEM slice data, and then acquiring projection coordinates of four vertexes of the minimum circumscribed rectangle of each road polygon based on the road vector data;
and converting the projection coordinate coverage into a pixel coordinate range, and then cutting the corresponding first DEM slice data based on the pixel coordinate range to obtain second DEM slice data.
6. The field pre-passage path feasibility assessment method according to any one of claims 1 to 5, characterized in that the feasibility assessment of the pre-passage path by the gradient information comprises:
The gradient information comprises gradient percentages corresponding to coordinates of each pixel point in the second DEM slice data;
judging whether the gradient percentage corresponding to each pixel point coordinate is larger than a threshold value, and marking the raster image pixel corresponding to each pixel point coordinate based on a judging result so as to generate a new raster image;
Cutting the new raster image according to the geometric shape of the preset road width to obtain a cut raster image;
And converting the cut raster image into vector data, and analyzing the feasibility of the pre-passing path based on the vector data.
7. A field pre-transit path feasibility assessment system, the system comprising:
the buffer zone calculation module is used for setting the road width of the pre-passing path and generating a road buffer zone through parallel calculation according to the preset road width;
the DEM slice data acquisition module is used for acquiring DEM slice data corresponding to the road vector data based on the road vector data in the road buffer area;
the projection splicing module is used for projecting and splicing the DEM slice data by adopting a multithreading parallel technology to obtain first DEM slice data;
the coordinate conversion and clipping module is used for projecting the road vector data into a coordinate system of the corresponding first DEM slice data, clipping the first DEM slice data based on the road vector data, and obtaining second DEM slice data;
The gradient calculation module is used for converting the second DEM slice data into a one-dimensional vector, and calculating the one-dimensional vector according to a gradient percentage formula to obtain gradient information corresponding to the pre-passing path;
the evaluation analysis module is used for carrying out feasibility evaluation on the pre-passing path through the gradient information;
Wherein, the slope calculation module includes:
The definition unit is used for acquiring the elevation values of the central and peripheral pixel points of each sub-region from the second DEM slice data and defining a gradient percentage calculation formula;
And the vector acceleration unit is used for combining elevation values of pixel points with the same relative positions in a plurality of subareas based on the set vector length to obtain an elevation value vector, inputting the elevation value vector into the NEON register, and simultaneously calculating gradient percentages of a plurality of groups of data to obtain gradient information corresponding to the pre-passing path.
8. A computer device comprising a memory and a processor, the memory storing a computer program, characterized in that the processor implements the steps of the method of any of claims 1 to 6 when the computer program is executed.
9. A computer readable storage medium, on which a computer program is stored, characterized in that the computer program, when being executed by a processor, implements the steps of the method of any of claims 1 to 6.
CN202410171094.2A 2024-02-06 2024-02-06 Field pre-travel path feasibility assessment method, system, equipment and medium Active CN117724850B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410171094.2A CN117724850B (en) 2024-02-06 2024-02-06 Field pre-travel path feasibility assessment method, system, equipment and medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410171094.2A CN117724850B (en) 2024-02-06 2024-02-06 Field pre-travel path feasibility assessment method, system, equipment and medium

Publications (2)

Publication Number Publication Date
CN117724850A CN117724850A (en) 2024-03-19
CN117724850B true CN117724850B (en) 2024-04-19

Family

ID=90200101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410171094.2A Active CN117724850B (en) 2024-02-06 2024-02-06 Field pre-travel path feasibility assessment method, system, equipment and medium

Country Status (1)

Country Link
CN (1) CN117724850B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118861507A (en) * 2024-09-24 2024-10-29 长江三峡集团实业发展(北京)有限公司 Batch extraction method, device and product of landslide parameters based on DEM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379150A (en) * 2018-09-13 2019-10-25 北京京东尚科信息技术有限公司 A kind of method and apparatus for assessing road
CN111243091A (en) * 2020-04-09 2020-06-05 速度时空信息科技股份有限公司 Massive DEM pyramid slice parallel construction method based on distributed system
CN113048981A (en) * 2021-03-22 2021-06-29 中国人民解放军国防科技大学 DEM-oriented method for road-free regional path planning algorithm
CN114116948A (en) * 2021-12-06 2022-03-01 中国人民解放军国防科技大学 Geographic vector data space buffer area analysis method, device, equipment and medium
CN114202454A (en) * 2021-11-01 2022-03-18 北京旷视科技有限公司 Graph optimization method, system, computer program product and storage medium
CN114326754A (en) * 2022-03-09 2022-04-12 中国科学院空天信息创新研究院 Complex terrain path planning method and device, electronic equipment and storage medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110322556B (en) * 2019-04-29 2022-06-03 武汉大学 A high-speed and high-precision vector grid overlay analysis method based on boundary clipping

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379150A (en) * 2018-09-13 2019-10-25 北京京东尚科信息技术有限公司 A kind of method and apparatus for assessing road
CN111243091A (en) * 2020-04-09 2020-06-05 速度时空信息科技股份有限公司 Massive DEM pyramid slice parallel construction method based on distributed system
CN113048981A (en) * 2021-03-22 2021-06-29 中国人民解放军国防科技大学 DEM-oriented method for road-free regional path planning algorithm
CN114202454A (en) * 2021-11-01 2022-03-18 北京旷视科技有限公司 Graph optimization method, system, computer program product and storage medium
CN114116948A (en) * 2021-12-06 2022-03-01 中国人民解放军国防科技大学 Geographic vector data space buffer area analysis method, device, equipment and medium
CN114326754A (en) * 2022-03-09 2022-04-12 中国科学院空天信息创新研究院 Complex terrain path planning method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
CN117724850A (en) 2024-03-19

Similar Documents

Publication Publication Date Title
Lee et al. Semantic segmentation of bridge components based on hierarchical point cloud model
CN117724850B (en) Field pre-travel path feasibility assessment method, system, equipment and medium
Heitzler et al. GPU-accelerated rendering methods to visually analyze large-scale disaster simulation data
US11423611B2 (en) Techniques for creating, organizing, integrating, and using georeferenced data structures for civil infrastructure asset management
CN110647596A (en) Map data processing method and device
CN112288842B (en) Method and device for quantitative analysis of terrain visibility area based on shadow map algorithm
CN108182717A (en) Geographic information image generation method and device
Guan et al. Process virtualization of large-scale lidar data in a cloud computing environment
Li et al. Semi-automatic crack width measurement using an OrthoBoundary algorithm
CN112767424A (en) Automatic subdivision method based on indoor three-dimensional point cloud space
CN102591622B (en) Grid data coordinate conversion parallel method based on similarity transformation model
CN112712089A (en) Obstacle detection method, obstacle detection device, computer device, and storage medium
Fang et al. A status digital twin approach for physically monitoring over-and-under excavation in large tunnels
Elkhrachy Feature extraction of laser scan data based on geometric properties
JP4915545B2 (en) Predictive evaluation method of habitats in urban green space
CN113870089A (en) Method and system for dense registration of phase-correlated SAR images based on GPU parallelization
Carabaño et al. Efficient implementation of a fast viewshed algorithm on SIMD architectures
CN117808866A (en) Construction progress calculation method for each component based on mapping point cloud and BIM model
Saupi Teri et al. GPU utilization in geoprocessing BIG Geodata: A review
Kotyra High-performance watershed delineation algorithm for GPU using CUDA and OpenMP
JP7374433B2 (en) How to generate three-dimensional shape data of a structure
Zhang et al. Spark-Enabled XDraw Viewshed Analysis
WO2023007660A1 (en) Three-dimensional point group identification device, three-dimensional point group identification method, and three-dimensional point group identification program
CN118279844A (en) Method, device, apparatus, medium and product for determining road edges
Fickenscher et al. Modeling, programming and performance analysis of automotive environment map representations on embedded GPUs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant