CN117690024A - An integrated remote sensing identification method for rice fields with multiple planting patterns - Google Patents
An integrated remote sensing identification method for rice fields with multiple planting patterns Download PDFInfo
- Publication number
- CN117690024A CN117690024A CN202311737107.XA CN202311737107A CN117690024A CN 117690024 A CN117690024 A CN 117690024A CN 202311737107 A CN202311737107 A CN 202311737107A CN 117690024 A CN117690024 A CN 117690024A
- Authority
- CN
- China
- Prior art keywords
- rice
- remote sensing
- data
- image data
- backscattering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000007164 Oryza sativa Nutrition 0.000 title claims abstract description 219
- 235000009566 rice Nutrition 0.000 title claims abstract description 219
- 238000000034 method Methods 0.000 title claims abstract description 25
- 240000007594 Oryza sativa Species 0.000 title 1
- 241000209094 Oryza Species 0.000 claims abstract description 218
- 238000007637 random forest analysis Methods 0.000 claims abstract description 11
- 238000012549 training Methods 0.000 claims abstract description 8
- 238000009331 sowing Methods 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 9
- 238000007781 pre-processing Methods 0.000 claims description 8
- 238000003306 harvesting Methods 0.000 claims description 7
- 238000003860 storage Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000009313 farming Methods 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 238000003066 decision tree Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 abstract description 6
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000003384 imaging method Methods 0.000 abstract description 2
- 230000004069 differentiation Effects 0.000 abstract 1
- 235000013305 food Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000009355 double cropping Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/188—Vegetation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/36—Applying a local operator, i.e. means to operate on image points situated in the vicinity of a given point; Non-linear local filtering operations, e.g. median filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/50—Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/58—Extraction of image or video features relating to hyperspectral data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/17—Terrestrial scenes taken from planes or by drones
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/194—Terrestrial scenes using hyperspectral data, i.e. more or other wavelengths than RGB
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Remote Sensing (AREA)
- Evolutionary Computation (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Nonlinear Science (AREA)
- Computing Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
- Image Processing (AREA)
Abstract
本发明涉及一种针对多种植模式水稻田的一体化遥感识别方法,包括:获取研究区高程和坡度影像数据和全年时间序列的地物后向散射强度数据;采集水稻和非水稻类别的样本点作为训练样本;获取水稻物候数据;基于全年时间序列的地物后向散射强度数据进行计算并提取特征;获取组合的多波段特征影像数据;基于多波段特征影像数据、水稻和非水稻类别的样本点,采用随机森林分类器识别水稻。本发明的有益效果是:本发明使用SAR影像避免了天气条件对影像成像质量以及后续水稻识别监测的影响;并且,本发明通过统计特征实现了水稻和非水稻的区分,并在此基础上通过物候特征实现了多种种植模式下水稻的区分,获得了更准确、精细的水稻田遥感监测结果。
The invention relates to an integrated remote sensing identification method for rice fields with multiple planting patterns, which includes: acquiring elevation and slope image data of the study area and backscattering intensity data of ground objects in time series throughout the year; collecting samples of rice and non-rice categories points as training samples; obtain rice phenology data; calculate and extract features based on the backscattering intensity data of ground objects in the time series throughout the year; obtain combined multi-band characteristic image data; based on multi-band characteristic image data, rice and non-rice categories At the sample points, a random forest classifier is used to identify rice. The beneficial effects of the present invention are: the present invention uses SAR images to avoid the impact of weather conditions on image imaging quality and subsequent rice identification and monitoring; and, the present invention realizes the distinction between rice and non-rice through statistical characteristics, and on this basis, through Phenological characteristics realize the differentiation of rice under various planting modes and obtain more accurate and precise remote sensing monitoring results of rice fields.
Description
技术领域Technical field
本发明涉及遥感影像技术领域,更确切地说,它涉及一种针对多种植模式水稻田的一体化遥感识别方法。The present invention relates to the technical field of remote sensing images, and more specifically, to an integrated remote sensing identification method for rice fields with multiple planting patterns.
背景技术Background technique
及时准确掌握水稻时空分布情况对支持政府制定土地利用和粮食政策以及确保可持续粮食供应起着至关重要的作用。Timely and accurate knowledge of the spatial and temporal distribution of rice plays a crucial role in supporting the government in formulating land use and food policies and ensuring sustainable food supply.
光学和合成孔径雷达(SAR)图像通常用于水稻识别。然而,有效的光学遥感数据在多云多雨地区往往受到限制,而且只能反映水稻冠层的信息,限制了水稻监测的准确性。合成孔径雷达不受天气影响,可获取水稻冠层以下的反向散射信息,有利于对水稻进行长期连续监测。时间序列SAR图像具有观测水稻整个物候周期,捕捉水稻生长状态和物候变化的能力,可为水稻识别提供辨识性遥感特征。然而,现有研究大多集中于水稻种植模式单一的水稻种植区,或通常将不同的水稻种植模式(单季稻、双季稻)分开研究,较少考虑复杂种植模式下水稻田的一体化识别研究,难以反映多种种植模式下的水稻真实种植情况,致使对一个地区内水稻整体种植的空间分布认识有限。Optical and synthetic aperture radar (SAR) images are commonly used for rice identification. However, effective optical remote sensing data are often limited in cloudy and rainy areas and can only reflect rice canopy information, limiting the accuracy of rice monitoring. Synthetic aperture radar is not affected by weather and can obtain backscatter information below the rice canopy, which is beneficial to long-term continuous monitoring of rice. Time series SAR images have the ability to observe the entire phenological cycle of rice and capture rice growth status and phenological changes, and can provide discriminative remote sensing features for rice identification. However, most of the existing research focuses on rice planting areas with a single rice planting pattern, or usually studies different rice planting patterns (single-cropping rice, double-cropping rice) separately, and less considers the integrated identification research of rice fields under complex planting patterns, making it difficult to Reflecting the real rice planting situation under various planting modes, the understanding of the spatial distribution of overall rice planting in a region is limited.
发明内容Contents of the invention
本发明的目的是针对现有技术的不足,提出了一种针对多种植模式水稻田的一体化遥感识别方法。The purpose of the present invention is to propose an integrated remote sensing identification method for multi-planting model rice fields in view of the shortcomings of the existing technology.
第一方面,提供了一种针对多种植模式水稻田的一体化遥感识别方法,包括:The first aspect provides an integrated remote sensing identification method for rice fields with multiple planting patterns, including:
步骤1、收集研究区数字高程模型数据并进行预处理,得到研究区高程和坡度影像数据;Step 1. Collect digital elevation model data of the study area and perform preprocessing to obtain elevation and slope image data of the study area;
步骤2、收集全年的SAR遥感影像数据并对其进行预处理,将SAR遥感影像像素值转换为实际地物后向散射强度,得到全年时间序列的地物后向散射强度数据;Step 2. Collect the SAR remote sensing image data throughout the year and preprocess it, convert the SAR remote sensing image pixel values into actual surface object backscattering intensity, and obtain the annual time series surface object backscattering intensity data;
步骤3、采集水稻和非水稻类别的样本点作为训练样本;所述水稻包括单季早稻、单季中稻、单季晚稻和双季稻;所述非水稻包括建筑、自然植被、水体和旱作作物;Step 3. Collect sample points of rice and non-rice categories as training samples; the rice includes single-crop early rice, single-crop mid-rice, single-crop late rice, and double-crop rice; the non-rice includes buildings, natural vegetation, water bodies, and upland farming. crop;
步骤4、获取水稻物候数据,所述水稻物候数据包括水稻从播种至成熟收割的日期;Step 4. Obtain rice phenology data, which includes the dates from sowing to maturity and harvesting of rice;
步骤5、基于全年时间序列的地物后向散射强度数据进行计算并提取特征,所述特征包括统计特征数据和水稻物候参数特征数据;Step 5: Calculate and extract features based on the backscattering intensity data of ground objects in the time series throughout the year. The features include statistical feature data and rice phenological parameter feature data;
步骤6、将SAR后向散射强度数据、高程和坡度影像数据、统计特征数据和水稻物候参数特征数据进行波段叠加,得到组合的多波段特征影像数据;Step 6: Overlay the SAR backscattering intensity data, elevation and slope image data, statistical feature data and rice phenological parameter feature data to obtain combined multi-band feature image data;
步骤7、基于多波段特征影像数据、水稻和非水稻类别的样本点,采用随机森林分类器识别水稻。Step 7. Based on the multi-band characteristic image data and sample points of rice and non-rice categories, use a random forest classifier to identify rice.
作为优选,步骤1中,数字高程模型数据为分辨率不低于30米的高程影像数据。Preferably, in step 1, the digital elevation model data is elevation image data with a resolution of no less than 30 meters.
作为优选,步骤2中,所述预处理包括:Preferably, in step 2, the pretreatment includes:
步骤2.1、对SAR遥感影像数据进行辐射定标,公式为:Step 2.1. Perform radiation calibration on SAR remote sensing image data. The formula is:
其中,σ0为后向散射系数,Ai为像元i单位时间内返回到天线的反向散射,DNi为像元i的灰度值;Among them, σ 0 is the backscattering coefficient, A i is the backscatter returned to the antenna from pixel i per unit time, and DN i is the gray value of pixel i;
步骤2.2、采用均值滤波对SAR遥感影像数据进行滤波处理;均值滤波时使用的卷积核尺寸大小为3×3,中心元素值为1,周围元素值为1,卷积核为:Step 2.2: Use mean filtering to filter the SAR remote sensing image data; the convolution kernel size used in mean filtering is 3×3, the central element value is 1, the surrounding element value is 1, and the convolution kernel is:
步骤2.3、运用高程数据对SAR遥感影像数据进行多普勒地形校正;Step 2.3. Use elevation data to perform Doppler terrain correction on SAR remote sensing image data;
步骤2.4、对SAR遥感影像数据进行分贝化,将无单位反向散射强度转换为分贝,公式为:Step 2.4. Convert the SAR remote sensing image data to decibels and convert the unitless backscattering intensity into decibels. The formula is:
σ=10*log10σ0 σ=10*log 10 σ 0
其中,σ0为原始后向散射系数,σ表示分贝化后的后向散射系数,单位为dB;Among them, σ 0 is the original backscattering coefficient, and σ represents the backscattering coefficient after decibel conversion, in dB;
步骤2.5、对分贝化后的全年时间序列的地物后向散射强度数据进行SG滤波。Step 2.5: Perform SG filtering on the decibelized backscattering intensity data of ground objects throughout the year.
作为优选,步骤2.5中,计算公式为:As a preference, in step 2.5, the calculation formula is:
上式中,Yj *是第j个重建值;Ci是滑动窗口内第i个点的系数;N是滑动窗口长度,其大小等于2m+1,m为半个滑动窗口的长度,m设置为3-7。In the above formula, Y j * is the j-th reconstruction value; C i is the coefficient of the i-th point in the sliding window; N is the length of the sliding window, its size is equal to 2m+1, m is the length of half the sliding window, m Set to 3-7.
作为优选,步骤3中,单季早稻、单季中稻、单季晚稻、双季稻、建筑、自然植被、水体和旱作作物的样本点分别不低于100个。Preferably, in step 3, there should be no less than 100 sample points for single-crop early rice, single-crop mid-rice, single-crop late rice, double-crop rice, buildings, natural vegetation, water bodies and upland crops respectively.
作为优选,步骤5包括:Preferably, step 5 includes:
步骤5.1、提取统计特征,所述统计特征包括均值、中值、极差、离差平方和、标准差和变异系数;Step 5.1. Extract statistical features, which include mean, median, range, sum of squares of deviations, standard deviation and coefficient of variation;
步骤5.2、提取水稻物候特征,所述水稻物候特征包括早稻、中稻和晚稻的移栽日期TTD、成熟日期TMD、生长季长度GSL、播种至移栽期后向散射系数变化率VST和移栽至成熟期后向散射系数变化率VTM。Step 5.2. Extract the phenological characteristics of rice. The phenological characteristics of rice include the transplanting date T TD of early rice, middle rice and late rice, the maturity date T MD , the length of the growing season GSL, the change rate of backscattering coefficient from sowing to transplanting period V ST and The change rate V TM of the backscattering coefficient from transplanting to the mature stage.
作为优选,步骤5.2中,假设在早稻物候期内一个像元的时间序列后向散射系数及对应时间表示为(d1,σ1),(d2,σ2),…,(dn,σn),其中σ1,…,σn为像元的全年时间序列后向散射系数,d1,…,dn为σ1,…,σn对应的日期;As a preference, in step 5.2, assume that the time series backscattering coefficient and corresponding time of a pixel in the early rice phenological period are expressed as (d 1 ,σ 1 ), (d 2 ,σ 2 ),..., (d n , σ n ), where σ 1 ,…,σ n are the year-round time series backscattering coefficients of the pixel, and d 1 ,…,d n are the dates corresponding to σ 1 ,…,σ n ;
如果σi=min(σ1,…,σn),则移栽日期TTD为di;其中移栽日期TTD表示像元后向散射系数时序曲线的最小值对应的日期在一年中的日序;If σ i =min(σ 1 ,…,σ n ), then the transplanting date T TD is di ; where the transplanting date T TD represents the date corresponding to the minimum value of the pixel backscatter coefficient time series curve in one year date sequence;
如果σj=max(σ1,…,σn),则成熟日期TMD为dj;If σ j =max(σ 1 ,…,σ n ), then the maturity date T MD is d j ;
生长季长度GSL=dj-di;其中生长季长度GSL表示成熟日期与移栽日期的时间差。The growing season length GSL=d j -d i ; where the growing season length GSL represents the time difference between the maturity date and the transplanting date.
假设(di1,σi1)为水稻播种日期及对应的后向散射系数,(di2,σi2)为水稻移栽日期及对应的后向散射系数,则播种至移栽期后向散射系数变化率VST=(σi2-σi1)/(di2-di1);Assuming that (d i1 , σ i1 ) is the rice sowing date and the corresponding backscattering coefficient, (d i2 , σ i2 ) is the rice transplanting date and the corresponding backscattering coefficient, then the backscattering coefficient from sowing to transplanting period Change rate V ST =(σ i2 -σ i1 )/(d i2 -d i1 );
假设(di3,σi3)为水稻成熟日期及对应的后向散射系数,则移栽至成熟期后向散射系数变化率VTM=(σi3-σi3)/(di2-di2)。Assuming that (d i3 ,σ i3 ) is the maturity date of rice and the corresponding backscattering coefficient, then the change rate of backscattering coefficient from transplanting to the maturity stage V TM = (σ i3 -σ i3 )/(d i2 -d i2 ) .
作为优选,步骤7中随机森林算法中决策树数量为50-150。As a preference, the number of decision trees in the random forest algorithm in step 7 is 50-150.
第二方面,提供了针对多种植模式水稻田的一体化遥感识别系统,用于执行第一方面任一所述的针对多种植模式水稻田的一体化遥感识别方法,包括:In the second aspect, an integrated remote sensing identification system for rice fields with multiple planting patterns is provided, which is used to implement the integrated remote sensing identification method for rice fields with multiple planting patterns described in any one of the first aspects, including:
第一收集模块,用于收集研究区数字高程模型数据并进行预处理,得到研究区高程和坡度影像数据;The first collection module is used to collect digital elevation model data of the study area and perform preprocessing to obtain elevation and slope image data of the study area;
第二收集模块,用于收集全年的SAR遥感影像数据并对其进行预处理,将SAR遥感影像像素值转换为实际地物后向散射强度,得到全年时间序列的地物后向散射强度数据;The second collection module is used to collect SAR remote sensing image data throughout the year and preprocess it, convert the SAR remote sensing image pixel values into actual backscattering intensity of ground objects, and obtain the backscattering intensity of ground objects in the time series throughout the year. data;
采集模块,用于采集水稻和非水稻类别的样本点作为训练样本;所述水稻包括单季早稻、单季中稻、单季晚稻和双季稻;所述非水稻包括建筑、自然植被、水体和旱作作物;The collection module is used to collect sample points of rice and non-rice categories as training samples; the rice includes single-season early rice, single-season mid-rice, single-season late rice and double-season rice; the non-rice includes buildings, natural vegetation, water bodies and rainfed crops;
获取模块,用于获取水稻物候数据,所述水稻物候数据包括水稻从播种至成熟收割的日期;An acquisition module, used to acquire rice phenology data, the rice phenology data including the dates from sowing to maturity and harvesting of rice;
计算模块,用于全年时间序列的地物后向散射强度数据进行计算并提取特征,所述特征包括统计特征数据和水稻物候参数特征数据;The calculation module is used to calculate the backscatter intensity data of ground objects in time series throughout the year and extract features, where the features include statistical feature data and rice phenological parameter feature data;
叠加模块,用于将SAR后向散射强度数据、高程和坡度影像数据、统计特征数据和水稻物候参数特征数据进行波段叠加,得到组合的多波段特征影像数据;The overlay module is used to superimpose SAR backscattering intensity data, elevation and slope image data, statistical feature data and rice phenological parameter feature data to obtain combined multi-band feature image data;
识别模块,用于基于多波段特征影像数据、水稻和非水稻类别的样本点,采用随机森林分类器识别水稻。The identification module is used to identify rice using a random forest classifier based on multi-band characteristic image data, sample points of rice and non-rice categories.
第三方面,提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的可执行程序,其中,在所述可执行程序运行时控制所述计算机可读存储介质所在设备执行第一方面任一所述的针对多种植模式水稻田的一体化遥感识别方法。In a third aspect, a computer-readable storage medium is provided. The computer-readable storage medium includes a stored executable program, wherein when the executable program is running, the device where the computer-readable storage medium is located is controlled to execute the first step. On the one hand, any one of the above described integrated remote sensing identification methods for rice fields with multiple planting patterns.
本发明的有益效果是:本发明通过使用SAR影像避免了天气条件对影像成像质量以及后续水稻识别监测的影响;并且,本发明通过统计特征实现了水稻和非水稻的区分,并在此基础上通过物候特征实现了多种种植模式下单季早稻、单季中稻、单季晚稻和双季稻的区分,获得了更准确、精细的水稻田遥感监测结果。The beneficial effects of the present invention are: by using SAR images, the present invention avoids the impact of weather conditions on image imaging quality and subsequent rice identification and monitoring; and, the present invention realizes the distinction between rice and non-rice through statistical characteristics, and on this basis Through phenological characteristics, the distinction between single-crop early rice, single-crop mid-season rice, single-crop late rice and double-crop rice under various planting modes was achieved, and more accurate and precise remote sensing monitoring results of rice fields were obtained.
附图说明Description of the drawings
图1为一种针对多种植模式水稻田的一体化遥感识别方法的技术流程图;Figure 1 is a technical flow chart of an integrated remote sensing identification method for rice fields with multiple planting patterns;
图2为本发明实施例中水稻和非水稻类型统计特征的对比图;Figure 2 is a comparison chart of the statistical characteristics of rice and non-rice types in the embodiment of the present invention;
图3为本发明实施例中水稻和非水稻的物候特征参数直方图;Figure 3 is a histogram of phenological characteristic parameters of rice and non-rice in the embodiment of the present invention;
图4为本发明实施例中单季早稻、单季中稻、单季晚稻和双季稻的识别结果图。Figure 4 is a diagram showing the identification results of single-crop early rice, single-crop mid-rice, single-crop late rice and double-crop rice in the embodiment of the present invention.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步描述。下述实施例的说明只是用于帮助理解本发明。应当指出,对于本技术领域的普通人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干修饰,这些改进和修饰也落入本发明权利要求的保护范围内。The present invention will be further described below in conjunction with examples. The following description of the examples is provided only to assist understanding of the present invention. It should be pointed out that for those skilled in the art, several modifications can be made to the present invention without departing from the principle of the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.
实施例1:Example 1:
本申请实施例1提供了一种针对多种植模式水稻田的一体化遥感识别方法,如图1所示,包括:Embodiment 1 of the present application provides an integrated remote sensing identification method for rice fields with multiple planting patterns, as shown in Figure 1, including:
步骤1、收集研究区数字高程模型数据并进行预处理,得到研究区高程和坡度影像数据;Step 1. Collect digital elevation model data of the study area and perform preprocessing to obtain elevation and slope image data of the study area;
步骤2、收集全年的SAR遥感影像数据并对其进行预处理,将SAR遥感影像像素值转换为实际地物后向散射强度,得到全年时间序列的地物后向散射强度数据;Step 2. Collect the SAR remote sensing image data throughout the year and preprocess it, convert the SAR remote sensing image pixel values into actual surface object backscattering intensity, and obtain the annual time series surface object backscattering intensity data;
步骤3、采集水稻和非水稻类别的样本点作为训练样本;所述水稻包括单季早稻、单季中稻、单季晚稻和双季稻;所述非水稻包括建筑、自然植被、水体和旱作作物;Step 3. Collect sample points of rice and non-rice categories as training samples; the rice includes single-crop early rice, single-crop mid-rice, single-crop late rice, and double-crop rice; the non-rice includes buildings, natural vegetation, water bodies, and upland farming. crop;
步骤4、获取水稻物候数据,所述水稻物候数据包括水稻从播种至成熟收割的日期;Step 4. Obtain rice phenology data, which includes the dates from sowing to maturity and harvesting of rice;
步骤5、基于全年时间序列的地物后向散射强度数据进行计算并提取特征,所述特征包括统计特征数据和水稻物候参数特征数据;Step 5: Calculate and extract features based on the backscattering intensity data of ground objects in the time series throughout the year. The features include statistical feature data and rice phenological parameter feature data;
步骤6、将SAR后向散射强度数据、高程和坡度影像数据、统计特征数据和水稻物候参数特征数据进行波段叠加,得到组合的多波段特征影像数据;Step 6: Overlay the SAR backscattering intensity data, elevation and slope image data, statistical feature data and rice phenological parameter feature data to obtain combined multi-band feature image data;
步骤7、基于多波段特征影像数据、水稻和非水稻类别的样本点,采用随机森林分类器识别水稻。Step 7. Based on the multi-band characteristic image data and sample points of rice and non-rice categories, use a random forest classifier to identify rice.
实施例2:Example 2:
在实施例1的基础上,本申请实施例2提供了实施例1中一种针对多种植模式水稻田的一体化遥感识别方法在现实中的应用:浙江省宁波市是典型水稻多种种植模式区域,该地区种植有单季早稻、单季中稻、单季晚稻和双季稻,水稻种植模式多样、种植结构复杂;将一种针对多种植模式水稻田的一体化遥感识别方法应用于浙江省宁波市;使用Sentinel-1影像进行单季早稻、单季中稻、单季晚稻和双季稻种植情况的监测。如图1所示,本实施例的方法包括以下步骤:On the basis of Example 1, Example 2 of the present application provides the practical application of an integrated remote sensing identification method for rice fields with multiple planting patterns in Example 1: Ningbo City, Zhejiang Province is a typical rice field with multiple planting patterns. Area, single-season early rice, single-season mid-season rice, single-season late rice and double-season rice are planted in this area, with diverse rice planting patterns and complex planting structures; an integrated remote sensing identification method for multi-planting pattern rice fields is applied to Zhejiang Province Ningbo City; Use Sentinel-1 images to monitor the planting conditions of single-crop early rice, single-crop mid-season rice, single-crop late rice and double-crop rice. As shown in Figure 1, the method of this embodiment includes the following steps:
步骤1、收集研究区数字高程模型数据并进行预处理,得到研究区高程和坡度影像数据。Step 1. Collect digital elevation model data of the study area and perform preprocessing to obtain elevation and slope image data of the study area.
步骤1中,数字高程模型数据为分辨率不低于30米的高程影像数据。此外,可以采用最近邻法将高程数据重采样至10米分辨率。In step 1, the digital elevation model data is elevation image data with a resolution of no less than 30 meters. In addition, the nearest neighbor method can be used to resample the elevation data to 10 meter resolution.
步骤2、收集全年的SAR遥感影像数据并对其进行预处理,将SAR遥感影像像素值转换为实际地物后向散射强度,得到全年时间序列的地物后向散射强度数据。Step 2: Collect SAR remote sensing image data throughout the year and preprocess it, convert the SAR remote sensing image pixel values into actual surface object backscatter intensity, and obtain the annual time series surface object backscattering intensity data.
步骤2包括:Step 2 includes:
步骤2.1、对SAR遥感影像数据进行辐射定标:Step 2.1. Perform radiation calibration on SAR remote sensing image data:
上式中,σ0为后向散射系数,Ai为像元i单位时间内返回到天线的反向散射,DNi为像元i的灰度值;In the above formula, σ 0 is the backscattering coefficient, A i is the backscatter returned to the antenna from pixel i per unit time, and DN i is the gray value of pixel i;
步骤2.2、采用均值滤波对SAR遥感影像数据进行滤波处理,均值滤波时使用的卷积核尺寸大小为3×3,中心元素值为1,周围元素值为1,卷积核为:Step 2.2: Use mean filtering to filter the SAR remote sensing image data. The convolution kernel size used in mean filtering is 3×3, the central element value is 1, the surrounding element value is 1, and the convolution kernel is:
步骤2.3、运用高程数据对SAR遥感影像数据进行多普勒地形校正;Step 2.3. Use elevation data to perform Doppler terrain correction on SAR remote sensing image data;
步骤2.4、对SAR遥感影像数据进行分贝化,将无单位(线性)反向散射强度转换为分贝(dB):Step 2.4. Convert the SAR remote sensing image data to decibels and convert the unitless (linear) backscattering intensity into decibels (dB):
σ=10*log10σ0 σ=10*log 10 σ 0
上式中,σ0为原始后向散射系数,σ表示分贝化后的后向散射系数,单位为dB。In the above formula, σ 0 is the original backscattering coefficient, and σ represents the backscattering coefficient after decibel conversion, in dB.
步骤2.5、对分贝化后的全年时间序列后向散射系数数据进行Savitzky-Golay滤波:Step 2.5: Perform Savitzky-Golay filtering on the decibelized annual time series backscattering coefficient data:
上式中,Yj *是第j个重建值;Ci是滑动窗口内第i个点的系数;N是滑动窗口长度,其大小等于2m+1,m为半个滑动窗口的长度,m设置为5。In the above formula, Y j * is the j-th reconstruction value; C i is the coefficient of the i-th point in the sliding window; N is the length of the sliding window, its size is equal to 2m+1, m is the length of half the sliding window, m Set to 5.
步骤3、采集水稻和非水稻类别的样本点作为训练样本;所述水稻包括单季早稻、单季中稻、单季晚稻和双季稻;所述非水稻包括建筑、自然植被、水体和旱作作物。Step 3. Collect sample points of rice and non-rice categories as training samples; the rice includes single-crop early rice, single-crop mid-rice, single-crop late rice, and double-crop rice; the non-rice includes buildings, natural vegetation, water bodies, and upland farming. crop.
具体的,依据实地调查数据、无人机影像和高分辨率谷歌地球影像选择水稻和非水稻样本点,其中单季早稻、单季中稻、单季晚稻、双季稻、建筑、自然植被、水体和旱作作物的样本点分别不低于100个。Specifically, rice and non-rice sample points were selected based on field survey data, drone images and high-resolution Google Earth images, including single-crop early rice, single-crop mid-rice, single-crop late rice, double-crop rice, buildings, natural vegetation, water bodies The number of sample points for agricultural and dry crops shall not be less than 100 respectively.
步骤4、获取水稻物候数据,所述水稻物候数据包括水稻从播种至成熟收割的日期。Step 4: Obtain rice phenology data, which includes the dates from sowing to maturity and harvesting of rice.
示例地,通过实地田间观测获取水稻物候数据。As an example, rice phenology data are obtained through field observations.
步骤5、基于全年时间序列的地物后向散射强度数据进行计算并提取特征,所述特征包括统计特征数据和水稻物候参数特征数据。Step 5: Calculate and extract features based on the backscattering intensity data of ground objects in the time series throughout the year. The features include statistical feature data and rice phenological parameter feature data.
步骤5包括:Step 5 includes:
步骤5.1、如图2所示,提取统计特征,所述统计特征包括均值、中值、极差、离差平方和、标准差和变异系数;具体公式如下:Step 5.1. As shown in Figure 2, extract statistical features. The statistical features include mean, median, range, sum of squares of deviations, standard deviation and coefficient of variation; the specific formula is as follows:
均值: Mean:
中值:median=σ(n+1)/2,n为奇数;median=σn/2,n为偶数Median value: median=σ (n+1)/2 , n is an odd number; median=σ n/2 , n is an even number
极差:range=σmax-σmin Range: range=σ max -σ min
离差平方和: Sum of squared deviations:
标准差: Standard deviation:
变异系数: Coefficient of variation:
式中,σ为后向散射系数,n为影像数量。In the formula, σ is the backscattering coefficient, and n is the number of images.
步骤5.2、如图3所示,提取水稻物候特征,所述水稻物候特征包括早稻、中稻和晚稻的移栽日期TTD、成熟日期TMD、生长季长度GSL、播种至移栽期后向散射系数变化率VST和移栽至成熟期后向散射系数变化率VTM。Step 5.2, as shown in Figure 3, extract rice phenological characteristics, which include transplanting date TTD , maturity date TMD , growing season length GSL, and backscatter from sowing to transplanting period of early rice, middle rice, and late rice. The coefficient change rate V ST and the backscattering coefficient change rate V TM after transplanting to the maturity stage.
步骤5.2中,假设在早稻物候期内一个像元的时间序列后向散射系数及对应时间表示为(d1,σ1),(d2,σ2),…,(dn,σn),其中σ1,…,σn为像元的全年时间序列后向散射系数,d1,…,dn为σ1,…,σn对应的日期;In step 5.2, it is assumed that the time series backscattering coefficient and corresponding time of a pixel during the early rice phenological period are expressed as (d 1 ,σ 1 ), (d 2 ,σ 2 ),…, (d n ,σ n ) , where σ 1 ,…,σ n is the backscattering coefficient of the pixel’s time series throughout the year, and d 1 ,…,d n is the date corresponding to σ 1 ,…,σ n ;
如果σi=min(σ1,…,σn),则移栽日期TTD为di;其中移栽日期TTD表示像元后向散射系数时序曲线的最小值对应的日期在一年中的日序;If σ i =min(σ 1 ,…,σ n ), then the transplanting date T TD is di ; where the transplanting date T TD represents the date corresponding to the minimum value of the pixel backscatter coefficient time series curve in one year date sequence;
如果σj=max(σ1,…,σn),则成熟日期TMD为dj;If σ j =max(σ 1 ,…,σ n ), then the maturity date T MD is d j ;
生长季长度GSL=dj-di;其中生长季长度GSL表示成熟日期与移栽日期的时间差。The growing season length GSL=d j -d i ; where the growing season length GSL represents the time difference between the maturity date and the transplanting date.
假设(di1,σi1)为水稻播种日期及对应的后向散射系数,(di2,σi2)为水稻移栽日期及对应的后向散射系数,则播种至移栽期后向散射系数变化率VST=(σi2-σi1)/(di2-di1);Assuming that (d i1 , σ i1 ) is the rice sowing date and the corresponding backscattering coefficient, (d i2 , σ i2 ) is the rice transplanting date and the corresponding backscattering coefficient, then the backscattering coefficient from sowing to transplanting period Change rate V ST =(σ i2 -σ i1 )/(d i2 -d i1 );
假设(di3,σi3)为水稻成熟日期及对应的后向散射系数,则移栽至成熟期后向散射系数变化率VTM=(σi3-σi3)/(di2-di2)。Assuming that (d i3 ,σ i3 ) is the maturity date of rice and the corresponding backscattering coefficient, then the change rate of backscattering coefficient from transplanting to the maturity stage V TM = (σ i3 -σ i3 )/(d i2 -d i2 ) .
步骤6、将SAR后向散射强度数据、高程和坡度影像数据、统计特征数据和水稻物候参数特征数据进行波段叠加,得到组合的多波段特征影像数据。Step 6: Overlay the SAR backscattering intensity data, elevation and slope image data, statistical feature data and rice phenological parameter feature data to obtain combined multi-band feature image data.
步骤7、如图4所示,基于多波段特征影像数据、水稻(单季早稻、单季中稻、单季晚稻和双季稻)和非水稻(建筑、自然植被、水体、旱作作物)类别的样本点,采用随机森林分类器识别水稻。Step 7. As shown in Figure 4, based on multi-band characteristic image data, rice (single-crop early rice, single-crop mid-rice, single-crop late rice and double-crop rice) and non-rice (buildings, natural vegetation, water bodies, upland crops) categories At the sample points, a random forest classifier is used to identify rice.
具体的,步骤7中随机森林算法中决策树数量为50-150,最优为100。Specifically, the number of decision trees in the random forest algorithm in step 7 is 50-150, and the optimal number is 100.
需要说明的,本实施例中与实施例1相同或相似的部分可相互参考,在本申请中不再赘述。It should be noted that the same or similar parts in this embodiment as those in Embodiment 1 may be referred to each other and will not be described again in this application.
实施例3:Example 3:
在实施例1、2的基础上,本申请实施例3提供了针对多种植模式水稻田的一体化遥感识别系统,包括:On the basis of Embodiments 1 and 2, Embodiment 3 of the present application provides an integrated remote sensing identification system for rice fields with multiple planting patterns, including:
第一收集模块,用于收集研究区数字高程模型数据并进行预处理,得到研究区高程和坡度影像数据;The first collection module is used to collect digital elevation model data of the study area and perform preprocessing to obtain elevation and slope image data of the study area;
第二收集模块,用于收集全年的SAR遥感影像数据并对其进行预处理,将SAR遥感影像像素值转换为实际地物后向散射强度,得到全年时间序列的地物后向散射强度数据;The second collection module is used to collect SAR remote sensing image data throughout the year and preprocess it, convert the SAR remote sensing image pixel values into actual backscattering intensity of ground objects, and obtain the backscattering intensity of ground objects in the time series throughout the year. data;
采集模块,用于采集水稻和非水稻类别的样本点作为训练样本;所述水稻包括单季早稻、单季中稻、单季晚稻和双季稻;所述非水稻包括建筑、自然植被、水体和旱作作物;The collection module is used to collect sample points of rice and non-rice categories as training samples; the rice includes single-season early rice, single-season mid-rice, single-season late rice and double-season rice; the non-rice includes buildings, natural vegetation, water bodies and rainfed crops;
获取模块,用于获取水稻物候数据,所述水稻物候数据包括水稻从播种至成熟收割的日期;An acquisition module, used to acquire rice phenology data, the rice phenology data including the dates from sowing to maturity and harvesting of rice;
计算模块,用于基于全年时间序列的地物后向散射强度数据进行计算并提取特征,所述特征包括统计特征数据和水稻物候参数特征数据;A calculation module, used to calculate and extract features based on the backscattering intensity data of ground objects in time series throughout the year, where the features include statistical feature data and rice phenological parameter feature data;
叠加模块,用于将SAR后向散射强度数据、高程和坡度影像数据、统计特征数据和水稻物候参数特征数据进行波段叠加,得到组合的多波段特征影像数据;The overlay module is used to superimpose SAR backscattering intensity data, elevation and slope image data, statistical feature data and rice phenological parameter feature data to obtain combined multi-band feature image data;
识别模块,用于基于多波段特征影像数据、水稻和非水稻类别的样本点,采用随机森林分类器识别水稻。The identification module is used to identify rice using a random forest classifier based on multi-band characteristic image data, sample points of rice and non-rice categories.
具体的,本实施例所提供的系统为实施例1提供的方法对应的系统,因此,在本实施例中与实施例1相同或相似的部分,可相互参考,在本申请中不再赘述。Specifically, the system provided in this embodiment is a system corresponding to the method provided in Embodiment 1. Therefore, the same or similar parts in this embodiment as those in Embodiment 1 can be referred to each other and will not be described again in this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311737107.XA CN117690024B (en) | 2023-12-18 | 2023-12-18 | An integrated remote sensing identification method for rice fields with multiple planting patterns |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311737107.XA CN117690024B (en) | 2023-12-18 | 2023-12-18 | An integrated remote sensing identification method for rice fields with multiple planting patterns |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117690024A true CN117690024A (en) | 2024-03-12 |
CN117690024B CN117690024B (en) | 2024-06-14 |
Family
ID=90128130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311737107.XA Active CN117690024B (en) | 2023-12-18 | 2023-12-18 | An integrated remote sensing identification method for rice fields with multiple planting patterns |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117690024B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117975293A (en) * | 2024-03-28 | 2024-05-03 | 四川汉盛源科技有限公司 | Extraction method for rice planting area in multiple cloud and fog areas |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011080944A1 (en) * | 2009-12-28 | 2011-07-07 | 株式会社パスコ | Rice crop status tracking system, rice crop status tracking method, rice crop status tracking program |
CN106529451A (en) * | 2016-10-28 | 2017-03-22 | 山东省农业可持续发展研究所 | Winter wheat-summer corn planting mode remote sensing identification method |
CN111142106A (en) * | 2020-02-26 | 2020-05-12 | 北京师范大学 | Automatic rice identification method based on synthetic aperture radar time sequence data |
CN113009485A (en) * | 2021-03-10 | 2021-06-22 | 安徽皖南烟叶有限责任公司 | Remote sensing tobacco field identification method based on improved vegetation index |
WO2021258359A1 (en) * | 2020-06-24 | 2021-12-30 | 深圳市大疆创新科技有限公司 | Method and apparatus for determining crop planting information, and computer storage medium |
CN114387516A (en) * | 2022-01-07 | 2022-04-22 | 宁波大学 | Single-season rice SAR (synthetic aperture radar) identification method for small and medium-sized fields in complex terrain environment |
CN115223059A (en) * | 2022-08-31 | 2022-10-21 | 自然资源部第三航测遥感院 | Multi-cloud-fog-area crop planting mode extraction method based on multi-element remote sensing image |
CN115861844A (en) * | 2022-12-27 | 2023-03-28 | 中科禾信遥感科技(苏州)有限公司 | Rice early-stage remote sensing identification method based on planting probability |
WO2023109652A1 (en) * | 2021-12-14 | 2023-06-22 | 深圳先进技术研究院 | Rice planting extraction and multiple-cropping index monitoring method and system, and terminal and storage medium |
-
2023
- 2023-12-18 CN CN202311737107.XA patent/CN117690024B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011080944A1 (en) * | 2009-12-28 | 2011-07-07 | 株式会社パスコ | Rice crop status tracking system, rice crop status tracking method, rice crop status tracking program |
CN106529451A (en) * | 2016-10-28 | 2017-03-22 | 山东省农业可持续发展研究所 | Winter wheat-summer corn planting mode remote sensing identification method |
CN111142106A (en) * | 2020-02-26 | 2020-05-12 | 北京师范大学 | Automatic rice identification method based on synthetic aperture radar time sequence data |
WO2021258359A1 (en) * | 2020-06-24 | 2021-12-30 | 深圳市大疆创新科技有限公司 | Method and apparatus for determining crop planting information, and computer storage medium |
CN113009485A (en) * | 2021-03-10 | 2021-06-22 | 安徽皖南烟叶有限责任公司 | Remote sensing tobacco field identification method based on improved vegetation index |
WO2023109652A1 (en) * | 2021-12-14 | 2023-06-22 | 深圳先进技术研究院 | Rice planting extraction and multiple-cropping index monitoring method and system, and terminal and storage medium |
CN114387516A (en) * | 2022-01-07 | 2022-04-22 | 宁波大学 | Single-season rice SAR (synthetic aperture radar) identification method for small and medium-sized fields in complex terrain environment |
CN115223059A (en) * | 2022-08-31 | 2022-10-21 | 自然资源部第三航测遥感院 | Multi-cloud-fog-area crop planting mode extraction method based on multi-element remote sensing image |
CN115861844A (en) * | 2022-12-27 | 2023-03-28 | 中科禾信遥感科技(苏州)有限公司 | Rice early-stage remote sensing identification method based on planting probability |
Non-Patent Citations (1)
Title |
---|
黄翀;许照鑫;张晨晨;李贺;刘庆生;杨振坤;刘高焕;: "基于Sentinel-1数据时序特征的热带地区水稻种植结构提取方法", 农业工程学报, no. 09, 8 May 2020 (2020-05-08) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117975293A (en) * | 2024-03-28 | 2024-05-03 | 四川汉盛源科技有限公司 | Extraction method for rice planting area in multiple cloud and fog areas |
CN117975293B (en) * | 2024-03-28 | 2024-06-04 | 四川汉盛源科技有限公司 | Extraction method for rice planting area in multiple cloud and fog areas |
Also Published As
Publication number | Publication date |
---|---|
CN117690024B (en) | 2024-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112418188B (en) | Crop growth whole-course digital evaluation method based on unmanned aerial vehicle vision | |
CN106372592B (en) | A calculation method of winter wheat planting area based on winter wheat area index | |
Ashapure et al. | A novel framework to detect conventional tillage and no-tillage cropping system effect on cotton growth and development using multi-temporal UAS data | |
Wang et al. | Characterizing L-band scattering of paddy rice in southeast China with radiative transfer model and multitemporal ALOS/PALSAR imagery | |
CN109829234A (en) | A kind of across scale Dynamic High-accuracy crop condition monitoring and yield estimation method based on high-definition remote sensing data and crop modeling | |
Sharifi | Estimation of biophysical parameters in wheat crops in Golestan province using ultra-high resolution images | |
CN110222475A (en) | A method of based on unmanned plane multispectral remote sensing inverting winter wheat plant moisture content | |
CN103345707A (en) | Crop maturation stage remote sensing prediction method based on multi-source remote sensing data | |
CN114387516B (en) | Single-season rice SAR (synthetic aperture radar) identification method for small and medium-sized fields in complex terrain environment | |
CN117218531B (en) | Sea-land ecological staggered zone mangrove plant overground carbon reserve estimation method | |
Camargo et al. | Impact of water deficit on light interception, radiation use efficiency and leaf area index in a potato crop (Solanum tuberosum L.) | |
CN109784300A (en) | A kind of crops science survey production method and system | |
CN109816542A (en) | A kind of crop production reduction Claims Resolution method and system | |
Li et al. | Mapping rice cropping systems using Landsat-derived renormalized index of normalized difference vegetation index (RNDVI) in the Poyang Lake Region, China | |
CN107330801A (en) | The computational methods and device of a kind of winter wheat planting proportion | |
CN111275567A (en) | SENP cotton yield estimation method based on unmanned aerial vehicle image and estimation model construction method | |
CN117690024A (en) | An integrated remote sensing identification method for rice fields with multiple planting patterns | |
Hama et al. | Examination of appropriate observation time and correction of vegetation index for drone-based crop monitoring | |
CN115759526A (en) | Crop harvest index inversion method based on convolutional neural network and crop model | |
CN114663778A (en) | Method and device for improving crop yield | |
CN117876870A (en) | A method and system for estimating crop yield based on multi-source remote sensing data | |
Nasirzadehdizaji et al. | Application of sentinel-1 multi-temporal data for crop monitoring and mapping | |
Cui et al. | Optimal spatial resolution of remote-sensing imagery for monitoring cantaloupe greenhouses | |
Meng et al. | Predicting optimal soybean harvesting dates with satellite data | |
Zheng et al. | Using high spatial and temporal resolution data blended from SPOT-5 and MODIS to map biomass of summer maize |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |