CN117670785A - Ghost detection method for point cloud maps - Google Patents
Ghost detection method for point cloud maps Download PDFInfo
- Publication number
- CN117670785A CN117670785A CN202211063801.3A CN202211063801A CN117670785A CN 117670785 A CN117670785 A CN 117670785A CN 202211063801 A CN202211063801 A CN 202211063801A CN 117670785 A CN117670785 A CN 117670785A
- Authority
- CN
- China
- Prior art keywords
- point cloud
- frame
- query key
- key frame
- matching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 54
- 230000004044 response Effects 0.000 claims abstract description 16
- 230000009466 transformation Effects 0.000 claims description 111
- 239000011159 matrix material Substances 0.000 claims description 55
- 238000013519 translation Methods 0.000 claims description 25
- 230000008439 repair process Effects 0.000 claims description 5
- 238000004590 computer program Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 18
- 230000015654 memory Effects 0.000 description 17
- 238000003860 storage Methods 0.000 description 13
- 238000004364 calculation method Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 238000004422 calculation algorithm Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 10
- 230000001133 acceleration Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 238000013507 mapping Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 244000062645 predators Species 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/32—Determination of transform parameters for the alignment of images, i.e. image registration using correlation-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30168—Image quality inspection
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Processing Or Creating Images (AREA)
Abstract
Description
技术领域Technical field
本申请实施例涉及电子信息技术领域,特别涉及一种点云地图的重影检测方法。Embodiments of the present application relate to the field of electronic information technology, and in particular to a ghost detection method for point cloud maps.
背景技术Background technique
目前,电子高精地图已经成为许多出行场景中不可或缺的部分,尤其在自动驾驶领域,电子高精地图是保证自动驾驶车辆正常行驶的重要前提,而点云地图的构建是电子高精地图生产流程中必不可少的环节。点云是通过雷达采集周围环境物体信息呈现出的一系列分散的、有准确角度和距离信息的点的集合,利用点云构建的地图称为点云地图。点云地图的质量决定电子高精地图的精确度,而点云地图中是否存在重影决定点云地图的质量。因此,需要对点云地图进行重影检测。At present, electronic high-precision maps have become an indispensable part of many travel scenarios, especially in the field of autonomous driving. Electronic high-precision maps are an important prerequisite for ensuring the normal driving of autonomous vehicles, and the construction of point cloud maps is an important part of electronic high-precision maps. An essential link in the production process. Point cloud is a collection of dispersed points with accurate angle and distance information that is presented through radar collection of surrounding environment object information. The map constructed using point cloud is called a point cloud map. The quality of the point cloud map determines the accuracy of the electronic high-precision map, and whether there are ghosts in the point cloud map determines the quality of the point cloud map. Therefore, ghost detection needs to be performed on point cloud maps.
发明内容Contents of the invention
本申请实施例提供了一种点云地图的重影检测方法、装置、设备及存储介质,可用于提高检测的准确性,减小场景对重影检测的限制。技术方案如下:Embodiments of the present application provide a ghost detection method, device, equipment and storage medium for point cloud maps, which can be used to improve detection accuracy and reduce scene restrictions on ghost detection. The technical solution is as follows:
一方面,本申请实施例提供了一种点云地图的重影检测方法,方法包括:On the one hand, embodiments of the present application provide a ghost detection method for point cloud maps. The method includes:
将待检测的点云地图划分多个网格,点云地图包括多帧点云轨迹,每个网格包括多帧点云轨迹中的局部点云轨迹;Divide the point cloud map to be detected into multiple grids. The point cloud map includes multi-frame point cloud trajectories, and each grid includes local point cloud trajectories in the multi-frame point cloud trajectories;
从目标网格包括的局部点云轨迹中确定查询关键帧;Determine query keyframes from local point cloud trajectories included in the target mesh;
在多帧点云轨迹中确定查询关键帧的至少一个匹配帧,匹配帧是查询关键帧所在的参考范围内的局部点云轨迹;Determine at least one matching frame of the query key frame in the multi-frame point cloud trajectory, where the matching frame is the local point cloud trajectory within the reference range where the query key frame is located;
确定查询关键帧和查询关键帧的各个匹配帧的配准结果;Determine the registration results of the query key frame and each matching frame of the query key frame;
响应于存在满足要求的配准结果,将目标网格确定为存在重影的网格。In response to the existence of a registration result that satisfies the requirements, the target grid is determined to be a grid in which ghosting exists.
在一种可能的实现方式中,从目标网格包括的局部点云轨迹中确定查询关键帧,包括:In one possible implementation, the query keyframe is determined from the local point cloud trajectory included in the target mesh, including:
确定目标网格中的道路层数;Determine the number of road layers in the target grid;
从目标网格包括的局部点云轨迹中确定参考数量个点云轨迹作为查询关键帧,参考数量基于道路层数确定。A reference number of point cloud trajectories are determined from the local point cloud trajectories included in the target grid as query key frames, and the reference number is determined based on the number of road layers.
在一种可能的实现方式中,在多帧点云轨迹中确定查询关键帧的至少一个匹配帧,包括:In a possible implementation, determining at least one matching frame of the query key frame in the multi-frame point cloud trajectory includes:
从多帧点云轨迹中筛选出参考范围内的局部点云轨迹;Filter out local point cloud trajectories within the reference range from multi-frame point cloud trajectories;
响应于参考范围内包括多个局部点云轨迹,将多个局部点云轨迹中满足时间间隔的局部点云轨迹确定为查询关键帧的匹配帧。In response to multiple local point cloud trajectories being included in the reference range, the local point cloud trajectories that satisfy the time interval among the multiple local point cloud trajectories are determined as matching frames of the query key frame.
在一种可能的实现方式中,确定查询关键帧和查询关键帧的各个匹配帧的配准结果,包括:In a possible implementation, determining the registration results of the query key frame and each matching frame of the query key frame includes:
确定查询关键帧的子图,查询关键帧的子图基于查询关键帧包括的点云轨迹得到;Determine the subgraph of the query key frame, which is obtained based on the point cloud trajectory included in the query key frame;
对于查询关键帧与任一匹配帧,确定任一匹配帧的子图,任一匹配帧的子图基于任一匹配帧包括的点云轨迹得到;For the query key frame and any matching frame, determine the sub-image of any matching frame, and the sub-image of any matching frame is obtained based on the point cloud trajectory included in any matching frame;
基于查询关键帧的子图以及任一匹配帧的子图确定多个位姿变换矩阵,任一位姿变换矩阵包括将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个;Multiple pose transformation matrices are determined based on the subgraph of the query key frame and the subgraph of any matching frame. Any pose transformation matrix includes rotation transformation parameters and translation transformation parameters that transform the query key frame into any matching frame. at least one;
将多个位姿变换矩阵中满足要求的位姿变换矩阵进行均值计算,将计算得到的结果作为查询关键帧与任一匹配帧的配准结果。Calculate the mean value of the pose transformation matrix that meets the requirements among multiple pose transformation matrices, and use the calculated result as the registration result between the query key frame and any matching frame.
在一种可能的实现方式中,确定查询关键帧的子图,包括:In a possible implementation, determining the subgraph of the query key frame includes:
将查询关键帧包括的点云轨迹以及查询关键帧的相关点云轨迹进行合并,得到查询关键帧的子图,查询关键帧的相关点云轨迹包括目标网格内与查询关键帧时间戳相邻的点云轨迹。Merge the point cloud trajectories included in the query key frame and the relevant point cloud trajectories of the query key frame to obtain a subgraph of the query key frame. The relevant point cloud trajectories of the query key frame include the timestamps adjacent to the query key frame within the target grid. point cloud trajectory.
在一种可能的实现方式中,确定任一匹配帧的子图,包括:In a possible implementation, determining the subgraph of any matching frame includes:
将任一匹配帧包括的点云轨迹与任一匹配帧的相关点云轨迹进行合并,得到任一匹配帧的子图,任一匹配帧的相关点云轨迹包括任一匹配帧所在的网格内与任一匹配帧时间戳相邻的点云轨迹。Merge the point cloud trajectory included in any matching frame with the relevant point cloud trajectory of any matching frame to obtain a sub-image of any matching frame. The relevant point cloud trajectory of any matching frame includes the grid where any matching frame is located. Point cloud trajectories adjacent to any matching frame timestamp within .
在一种可能的实现方式中,基于查询关键帧的子图以及任一匹配帧的子图确定多个位姿变换矩阵,包括:In a possible implementation, multiple pose transformation matrices are determined based on the subgraph of the query key frame and the subgraph of any matching frame, including:
确定查询关键帧的子图对应的多组局部点云数据以及任一匹配帧的子图对应的全局点云数据;Determine multiple sets of local point cloud data corresponding to the sub-image of the query key frame and the global point cloud data corresponding to the sub-image of any matching frame;
将多组局部点云数据分别与全局点云数据进行配准,得到多个位姿变换矩阵,一组局部点云数据对应一个位姿变换矩阵,任一组局部点云数据对应的位姿变换矩阵包括通过任一组局部点云数据将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个。Register multiple sets of local point cloud data with global point cloud data respectively to obtain multiple pose transformation matrices. One set of local point cloud data corresponds to one pose transformation matrix, and any set of local point cloud data corresponds to the pose transformation matrix. The matrix includes at least one of a rotation transformation parameter and a translation transformation parameter that transforms the query key frame into any matching frame through any set of local point cloud data.
在一种可能的实现方式中,确定查询关键帧的子图对应的多组局部点云数据,包括:In a possible implementation, multiple sets of local point cloud data corresponding to the subgraph of the query key frame are determined, including:
在查询关键帧的子图包括的全局点云数据中,按照不同区域筛选出满足比例要求的点云数据,将各个区域筛选出的满足比例要求的点云数据作为查询关键帧的子图对应的一组局部点云数据。In the global point cloud data included in the sub-picture of the query key frame, the point cloud data that meets the proportion requirements are filtered out according to different areas, and the point cloud data that meets the proportion requirements filtered out in each area are used as the corresponding point cloud data of the sub-picture of the query key frame. A set of local point cloud data.
在一种可能的实现方式中,确定查询关键帧和查询关键帧的各个匹配帧的配准结果之后,还包括:In a possible implementation, after determining the registration results of the query key frame and each matching frame of the query key frame, it also includes:
对于任一匹配帧,根据查询关键帧与任一匹配帧的配准结果与配准变换矩阵计算查询关键帧的位姿误差,配准变换矩阵包括通过查询关键帧的全局点云数据将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个;For any matching frame, the pose error of the query key frame is calculated based on the registration result and the registration transformation matrix of the query key frame and any matching frame. The registration transformation matrix includes converting the query key frame through the global point cloud data of the query key frame. The frame is transformed to at least one of a rotation transformation parameter and a translation transformation parameter of any matching frame;
响应于位姿误差大于位姿误差阈值,确定任一匹配帧与查询关键帧的配准结果满足要求。In response to the pose error being greater than the pose error threshold, it is determined that the registration result between any matching frame and the query key frame meets the requirements.
在一种可能的实现方式中,将目标网格确定为存在重影的网格之后,还包括:In a possible implementation, after determining the target mesh as a mesh with ghosts, the following steps are also included:
将存在重影的网格合并,根据合并后的网格确定重影的区域;Merge the meshes with ghosts and determine the ghosting area based on the merged meshes;
对重影的区域所包括的点云轨迹进行修复。Repair the point cloud trajectories included in the ghosted area.
另一方面,提供了一种点云地图的重影检测装置,装置包括:On the other hand, a ghost detection device for point cloud maps is provided, and the device includes:
划分模块,用于将待检测的点云地图划分多个网格,点云地图包括多帧点云轨迹,每个网格包括多帧点云轨迹中的局部点云轨迹;The division module is used to divide the point cloud map to be detected into multiple grids. The point cloud map includes multi-frame point cloud trajectories, and each grid includes local point cloud trajectories in the multi-frame point cloud trajectories;
确定模块,用于从目标网格包括的局部点云轨迹中确定查询关键帧;A determination module for determining query key frames from the local point cloud trajectory included in the target grid;
确定模块,还用于在多帧点云轨迹中确定查询关键帧的至少一个匹配帧,匹配帧是查询关键帧所在的参考范围内的局部点云轨迹;The determination module is also used to determine at least one matching frame of the query key frame in the multi-frame point cloud trajectory, where the matching frame is the local point cloud trajectory within the reference range where the query key frame is located;
确定模块,还用于确定查询关键帧和查询关键帧的各个匹配帧的配准结果;The determination module is also used to determine the registration results of the query key frame and each matching frame of the query key frame;
确定模块,还用于响应于存在满足要求的配准结果,将目标网格确定为存在重影的网格。The determining module is also configured to determine the target grid as a grid with ghosting in response to the existence of a registration result that meets the requirements.
在一种可能的实现方式中,确定模块,用于确定目标网格中的道路层数;从目标网格包括的局部点云轨迹中确定参考数量个点云轨迹作为查询关键帧,参考数量基于道路层数确定。In a possible implementation, the determination module is used to determine the number of road layers in the target grid; determine a reference number of point cloud trajectories as query key frames from the local point cloud trajectories included in the target grid, and the reference number is based on The number of road layers is determined.
在一种可能的实现方式中,装置还包括:筛选模块,用于从多帧点云轨迹中筛选出参考范围内的局部点云轨迹;In a possible implementation, the device further includes: a screening module, used to filter out local point cloud trajectories within the reference range from multi-frame point cloud trajectories;
确定模块,用于响应于参考范围内包括多个局部点云轨迹,将多个局部点云轨迹中满足时间间隔的局部点云轨迹确定为查询关键帧的匹配帧。A determination module, configured to determine, in response to the reference range including multiple local point cloud trajectories, the local point cloud trajectories that satisfy the time interval among the multiple local point cloud trajectories as matching frames of the query key frame.
在一种可能的实现方式中,确定模块,用于确定查询关键帧的子图,查询关键帧的子图基于查询关键帧包括的点云轨迹得到;对于查询关键帧与任一匹配帧,确定任一匹配帧的子图,任一匹配帧的子图基于任一匹配帧包括的点云轨迹得到;基于查询关键帧的子图以及任一匹配帧的子图确定多个位姿变换矩阵,任一位姿变换矩阵包括将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个;In a possible implementation, the determination module is used to determine the subgraph of the query key frame. The subgraph of the query key frame is obtained based on the point cloud trajectory included in the query key frame; for the query key frame and any matching frame, determine The subgraph of any matching frame is obtained based on the point cloud trajectory included in any matching frame; multiple pose transformation matrices are determined based on the subgraph of the query key frame and the subgraph of any matching frame, Any pose transformation matrix includes at least one of a rotation transformation parameter and a translation transformation parameter that transforms the query key frame into any matching frame;
装置还包括:计算模块,用于将多个位姿变换矩阵中满足要求的位姿变换矩阵进行均值计算,将计算得到的结果作为查询关键帧与任一匹配帧的配准结果。The device also includes: a calculation module for averaging the pose transformation matrices that meet the requirements among the multiple pose transformation matrices, and using the calculated result as a registration result between the query key frame and any matching frame.
在一种可能的实现方式中,装置还包括:合并模块,用于将查询关键帧包括的点云轨迹以及查询关键帧的相关点云轨迹进行合并,得到查询关键帧的子图,查询关键帧的相关点云轨迹包括目标网格内与查询关键帧时间戳相邻的点云轨迹。In a possible implementation, the device further includes: a merging module for merging the point cloud trajectories included in the query key frame and the relevant point cloud trajectories of the query key frame to obtain a subgraph of the query key frame, and the query key frame The relevant point cloud trajectories include point cloud trajectories adjacent to the query keyframe timestamp within the target grid.
在一种可能的实现方式中,合并模块,用于将任一匹配帧包括的点云轨迹与任一匹配帧的相关点云轨迹进行合并,得到任一匹配帧的子图,任一匹配帧的相关点云轨迹包括任一匹配帧所在的网格内与任一匹配帧时间戳相邻的点云轨迹。In a possible implementation, the merging module is used to merge the point cloud trajectory included in any matching frame with the relevant point cloud trajectory of any matching frame to obtain a sub-image of any matching frame. The relevant point cloud trajectories include point cloud trajectories adjacent to the timestamp of any matching frame within the grid where any matching frame is located.
在一种可能的实现方式中,确定模块,用于确定查询关键帧的子图对应的多组局部点云数据以及任一匹配帧的子图对应的全局点云数据;In one possible implementation, the determination module is used to determine multiple sets of local point cloud data corresponding to the sub-image of the query key frame and global point cloud data corresponding to the sub-image of any matching frame;
装置还包括:配准模块,用于将多组局部点云数据分别与全局点云数据进行配准,得到多个位姿变换矩阵,一组局部点云数据对应一个位姿变换矩阵,任一组局部点云数据对应的位姿变换矩阵包括通过任一组局部点云数据将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个。The device also includes: a registration module, used to register multiple sets of local point cloud data with global point cloud data to obtain multiple pose transformation matrices. A set of local point cloud data corresponds to a pose transformation matrix. Any one The pose transformation matrix corresponding to the set of local point cloud data includes at least one of a rotation transformation parameter and a translation transformation parameter that transforms the query key frame into any matching frame through any set of local point cloud data.
在一种可能的实现方式中,筛选模块,用于在查询关键帧的子图包括的全局点云数据中,按照不同区域筛选出满足比例要求的点云数据,将各个区域筛选出的满足比例要求的点云数据作为查询关键帧的子图对应的一组局部点云数据。In a possible implementation, the filtering module is used to filter out the point cloud data that meets the proportion requirements according to different regions from the global point cloud data included in the sub-graph of the query key frame, and filter out the point cloud data that meets the proportion requirements in each region. The required point cloud data is used as a set of local point cloud data corresponding to the subgraph of the query key frame.
在一种可能的实现方式中,计算模块,还用于对于任一匹配帧,根据查询关键帧与任一匹配帧的配准结果与配准变换矩阵计算查询关键帧的位姿误差,配准变换矩阵包括通过查询关键帧的全局点云数据将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个;In a possible implementation, the calculation module is also used to calculate, for any matching frame, the pose error of the query key frame based on the registration result and the registration transformation matrix between the query key frame and any matching frame. The transformation matrix includes at least one of a rotation transformation parameter and a translation transformation parameter that transforms the query key frame into any matching frame through the global point cloud data of the query key frame;
确定模块,还用于响应于位姿误差大于位姿误差阈值,确定任一匹配帧与查询关键帧的配准结果满足要求。The determination module is also used to determine that the registration result of any matching frame and the query key frame meets the requirements in response to the pose error being greater than the pose error threshold.
在一种可能的实现方式中,确定模块,还用于将存在重影的网格合并,根据合并后的网格确定重影的区域;In one possible implementation, the determination module is also used to merge meshes with ghosts, and determine the ghost area based on the merged meshes;
装置还包括:修复模块,用于对重影的区域所包括的点云轨迹进行修复。The device also includes: a repair module for repairing the point cloud trajectory included in the ghost area.
另一方面,提供了一种计算机设备,计算机设备包括处理器和存储器,存储器中存储有至少一条计算机程序,至少一条计算机程序由处理器加载并执行,以使计算机设备实现上述任一的点云地图的重影检测方法。On the other hand, a computer device is provided. The computer device includes a processor and a memory. At least one computer program is stored in the memory. The at least one computer program is loaded and executed by the processor, so that the computer device implements any of the above point clouds. Ghost detection method for maps.
另一方面,还提供了一种计算机可读存储介质,计算机可读存储介质中存储有至少一条计算机程序,至少一条计算机程序由处理器加载并执行,以使计算机实现上述任一的点云地图的重影检测方法。On the other hand, a computer-readable storage medium is also provided. At least one computer program is stored in the computer-readable storage medium. The at least one computer program is loaded and executed by the processor to enable the computer to implement any of the above point cloud maps. Ghost detection method.
另一方面,还提供了一种计算机程序产品或计算机程序,计算机程序产品或计算机程序包括计算机指令,计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取计算机指令,处理器执行计算机指令,使得计算机设备执行上述任一的点云地图的重影检测方法。On the other hand, a computer program product or computer program is also provided, the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium. The processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device performs any of the above ghost detection methods of the point cloud map.
本申请实施例提供的技术方案至少带来如下有益效果:The technical solutions provided by the embodiments of this application at least bring the following beneficial effects:
通过将点云地图划分网格,将大范围的点云地图转化为多个小范围的网格内的点云轨迹,实现了点云地图中重影检测的全覆盖,检测粒度更细。选取查询关键帧和匹配帧,通过将查询关键帧与匹配帧进行配准,提高检测的准确性,从而基于重影检测后的点云地图可以构建准确的高精地图,进而基于准确的高精地图保证自动驾驶车辆的正常行驶,由于无需提取特定元素,减小了场景对重影检测的限制。By dividing the point cloud map into grids and converting the large-scale point cloud map into point cloud trajectories in multiple small-scale grids, full coverage of ghost detection in the point cloud map is achieved, and the detection granularity is finer. Select the query key frame and the matching frame, and improve the detection accuracy by registering the query key frame and the matching frame, so that an accurate high-precision map can be constructed based on the point cloud map after ghost detection, and then based on the accurate high-precision map The map ensures the normal driving of autonomous vehicles. Since there is no need to extract specific elements, it reduces the scene's restrictions on ghost detection.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings needed to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without exerting creative efforts.
图1是本申请实施例提供的一种实施环境的示意图;Figure 1 is a schematic diagram of an implementation environment provided by an embodiment of the present application;
图2是本申请实施例提供的一种点云地图的重影检测方法的流程图;Figure 2 is a flow chart of a ghost detection method for point cloud maps provided by an embodiment of the present application;
图3是本申请实施例提供的一种点云地图网格划分的示意图;Figure 3 is a schematic diagram of a point cloud map grid division provided by an embodiment of the present application;
图4是本申请实施例提供的一种生成中心局部点云数据的示意图;Figure 4 is a schematic diagram of generating central local point cloud data provided by an embodiment of the present application;
图5是本申请实施例提供的一种生成外轮廓局部点云数据的示意图;Figure 5 is a schematic diagram of generating local point cloud data of an outer contour provided by an embodiment of the present application;
图6是本申请实施例提供的一种生成上下局部点云数据的示意图;Figure 6 is a schematic diagram of generating upper and lower local point cloud data provided by an embodiment of the present application;
图7是本申请实施例提供的一种生成左右局部点云数据的示意图;Figure 7 is a schematic diagram of generating left and right local point cloud data provided by an embodiment of the present application;
图8是本申请实施例提供的一种生成左斜对角局部点云数据的示意图;Figure 8 is a schematic diagram of generating left diagonal local point cloud data provided by an embodiment of the present application;
图9是本申请实施例提供的一种生成右斜对角局部点云数据的示意图;Figure 9 is a schematic diagram of generating right diagonal local point cloud data provided by an embodiment of the present application;
图10是本申请实施例提供的一种确定存在重影的网格之后的点云地图示意图;Figure 10 is a schematic diagram of a point cloud map after determining the presence of ghosts in the grid provided by the embodiment of the present application;
图11是本申请实施例提供的一种点云地图的重影检测装置示意图;Figure 11 is a schematic diagram of a ghost detection device for point cloud maps provided by an embodiment of the present application;
图12是本申请实施例提供的一种服务器的结构示意图;Figure 12 is a schematic structural diagram of a server provided by an embodiment of the present application;
图13是本申请实施例提供的一种点云地图的重影检测设备结构示意图。Figure 13 is a schematic structural diagram of a ghost detection device for point cloud maps provided by an embodiment of the present application.
具体实施方式Detailed ways
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。In order to make the purpose, technical solutions and advantages of the present application clearer, the embodiments of the present application will be further described in detail below with reference to the accompanying drawings.
本申请实施例提供了一种点云地图的重影检测方法,请参考图1,其示出了本申请实施例提供的方法实施环境的示意图。该实施环境可以包括:终端11和服务器12。The embodiment of the present application provides a method for detecting ghosts in point cloud maps. Please refer to Figure 1 , which shows a schematic diagram of the implementation environment of the method provided by the embodiment of the present application. The implementation environment may include: a terminal 11 and a server 12 .
其中,终端11安装有能够检测重影应用程序或者网页,当该应用程序或者网页需要检测重影时,可应用本申请实施例提供的方法进行展示。服务器12可以对需要检测的点云地图进行存储,终端11可以从服务器12上获取需要检测的点云地图。当然,终端11上也可以对获取的需要检测的点云地图进行存储。Among them, the terminal 11 is installed with an application or web page capable of detecting ghosting. When the application or web page needs to detect ghosting, the method provided by the embodiment of the present application can be used for display. The server 12 can store the point cloud map that needs to be detected, and the terminal 11 can obtain the point cloud map that needs to be detected from the server 12 . Of course, the acquired point cloud map that needs to be detected can also be stored on the terminal 11 .
可选地,终端11可以是诸如手机、平板电脑、个人计算机等的智能设备。服务器12可以是一台服务器,也可以是由多台服务器组成的服务器集群,或者是一个云计算服务中心。终端11与服务器12通过有线或无线网络建立通信连接。Alternatively, the terminal 11 may be a smart device such as a mobile phone, a tablet computer, a personal computer, etc. The server 12 may be one server, a server cluster composed of multiple servers, or a cloud computing service center. The terminal 11 and the server 12 establish a communication connection through a wired or wireless network.
可选地,终端11可以是任何一种可与用户通过键盘、触摸板、触摸屏、遥控器、语音交互或手写设备等一种或多种方式进行人机交互的电子产品,例如PC(PersonalComputer,个人计算机)、手机、智能手机、PDA(Personal Digital Assistant,个人数字助手)、可穿戴设备、PPC(Pocket PC,掌上电脑)、平板电脑、智能车机、智能电视、智能音箱等。服务器12可以是一台服务器,也可以是由多台服务器组成的服务器集群,或者是一个云计算服务中心。终端11与服务器12通过有线或无线网络建立通信连接。Optionally, the terminal 11 can be any electronic product that can perform human-computer interaction with the user through one or more methods such as keyboard, touch pad, touch screen, remote control, voice interaction or handwriting device, such as PC (Personal Computer, Personal computers), mobile phones, smartphones, PDA (Personal Digital Assistant, personal digital assistant), wearable devices, PPC (Pocket PC, handheld computer), tablet computers, smart cars, smart TVs, smart speakers, etc. The server 12 may be one server, a server cluster composed of multiple servers, or a cloud computing service center. The terminal 11 and the server 12 establish a communication connection through a wired or wireless network.
本领域技术人员应能理解上述终端11和服务器12仅为举例,其他现有的或今后可能出现的终端或服务器如可适用于本申请,也应包含在本申请保护范围以内,并在此以引用方式包含于此。Those skilled in the art should understand that the above-mentioned terminal 11 and server 12 are only examples. If other existing or possible terminals or servers that may appear in the future are applicable to this application, they should also be included in the protection scope of this application, and are hereby referred to as References are included here.
本申请实施例提供一种点云地图的重影检测方法,该点云地图的重影检测方法的流程图如图2所示。该方法可基于上述图1所示的实施环境实现,该点云地图的重影检测方法可由终端或服务器执行,也可以由终端和服务器交互实现。本申请实施例以服务器执行该方法为例进行说明,参见图2,该方法包括步骤201-步骤205。An embodiment of the present application provides a method for detecting ghosts in point cloud maps. The flow chart of the method for detecting ghosts in point cloud maps is shown in Figure 2. This method can be implemented based on the implementation environment shown in Figure 1 above. The ghost detection method of the point cloud map can be executed by the terminal or the server, or can also be implemented by the interaction between the terminal and the server. This embodiment of the present application takes the server executing the method as an example to illustrate. Referring to Figure 2, the method includes steps 201 to 205.
步骤201,将待检测的点云地图划分多个网格。Step 201: Divide the point cloud map to be detected into multiple grids.
在本申请实施例中,对地图进行重影检测之前,先获取点云地图。点云地图包括多帧点云轨迹,每个网格包括多帧点云轨迹中的局部点云轨迹。本申请实施例不对点云地图的获取方式进行限定,例如,通过雷达多次扫描需要构建地图的区域,每完成一次扫描,输出一帧点云轨迹,多帧点云轨迹组成该区域的点云地图。In the embodiment of this application, before ghost detection is performed on the map, the point cloud map is first obtained. The point cloud map includes multi-frame point cloud trajectories, and each grid includes local point cloud trajectories in the multi-frame point cloud trajectories. The embodiments of the present application do not limit the acquisition method of the point cloud map. For example, the area to be constructed is scanned multiple times through radar. Each time a scan is completed, a frame of point cloud trajectory is output. Multiple frame point cloud trajectories constitute the point cloud of the area. map.
在将点云地图划分网格时,包括但不限于根据点云地图跨越的范围和所需的点云地图的精度,确定划分网格的数量和尺寸。按照确定的数量和尺寸,将点云地图划分为数量多个网格。每个网格中包括网格区域内所有的局部点云轨迹,每个网格中包括的局部点云轨迹数量为至少一个,各网格内包含的局部点云轨迹数量可以相同,也可以不同。When dividing the point cloud map into meshes, this includes but is not limited to determining the number and size of the meshes based on the range spanned by the point cloud map and the required accuracy of the point cloud map. Divide the point cloud map into a number of grids according to the determined number and size. Each grid includes all local point cloud trajectories within the grid area. The number of local point cloud trajectories included in each grid is at least one. The number of local point cloud trajectories contained in each grid can be the same or different. .
将待检测的点云地图划分为多个网格,可以将大范围的点云地图缩小为多个小范围的网格,分别对网格内的包括的小范围的点云轨迹进行重影检测,检测的粒度更细,从而可以提高重影检测的准确性,实现重影检测的全覆盖。By dividing the point cloud map to be detected into multiple grids, the large-scale point cloud map can be reduced into multiple small-scale grids, and ghost detection can be performed on the small-scale point cloud trajectories included in the grid. , the detection granularity is finer, which can improve the accuracy of ghost detection and achieve full coverage of ghost detection.
以图3所示的点云地图网格划分示意图为例,图内的所有点云轨迹组成该区域的点云地图。在点云地图的范围内,按照长H米,宽W米,将点云地图划分为多个网格。Taking the point cloud map grid division diagram shown in Figure 3 as an example, all point cloud trajectories in the figure constitute the point cloud map of the area. Within the scope of the point cloud map, the point cloud map is divided into multiple grids according to the length H meters and the width W meters.
可选地,在雷达完成一次扫描,输出一帧点云轨迹之后,可以通过建图优化算法对每一帧点云轨迹进行优化,提高每一帧点云轨迹中点云位姿的精确度。其中,建图优化算法是指去除点云位姿的偏差,得到准确的点云位姿的算法。点云位姿用于表述世界坐标系和相机坐标系之间的变换关系,包括旋转和平移两种变换参数,通常用矩阵表示。世界坐标系是在进行扫描之前定义的坐标系,可作为扫描和构建轨迹时的参考。相机坐标系是指以雷达为原点构建的坐标系,由于雷达在扫描的过程中是运动的,相机坐标系也跟随雷达的运动而变化,所以同一帧点云在世界坐标系中的坐标和相机坐标系中的坐标是不同的,且存在对应的变换关系。Optionally, after the radar completes a scan and outputs a frame of point cloud trajectory, the point cloud trajectory of each frame can be optimized through a mapping optimization algorithm to improve the accuracy of the point cloud pose in each frame of point cloud trajectory. Among them, the mapping optimization algorithm refers to an algorithm that removes the deviation of the point cloud pose and obtains an accurate point cloud pose. Point cloud pose is used to express the transformation relationship between the world coordinate system and the camera coordinate system, including two transformation parameters, rotation and translation, usually represented by a matrix. The world coordinate system is a coordinate system defined before scanning and serves as a reference when scanning and building trajectories. The camera coordinate system refers to the coordinate system constructed with the radar as the origin. Since the radar moves during the scanning process, the camera coordinate system also changes with the movement of the radar. Therefore, the coordinates of the same frame point cloud in the world coordinate system are the same as those of the camera. The coordinates in the coordinate system are different, and there are corresponding transformation relationships.
步骤202,从目标网格包括的局部点云轨迹中确定查询关键帧。Step 202: Determine the query key frame from the local point cloud trajectory included in the target grid.
查询关键帧是目标网格包括的局部点云轨迹中的任意一帧点云轨迹,目标网格为多个网格中的任意一个网格。在本申请实施例中,每个网格内的查询关键帧的数量并不一定相同,网格内的查询关键帧的数量可依据网格内包括的局部点云轨迹和检测所需要的数量确定。可选地,确定查询关键帧的方法包括但不限于步骤2021-2022。The query key frame is any point cloud trajectory among the local point cloud trajectories included in the target grid, and the target grid is any grid among multiple grids. In the embodiment of this application, the number of query key frames in each grid is not necessarily the same. The number of query key frames in the grid can be determined based on the local point cloud trajectories included in the grid and the number required for detection. . Optionally, the method of determining the query key frame includes but is not limited to steps 2021-2022.
步骤2021,确定目标网格中的道路层数。Step 2021: Determine the number of road layers in the target grid.
本申请实施例不对确定目标网格中的道路层数的方式进行限定,包括但不限于根据目标网格包括的点云轨迹对应的雷达扫描区域,确定区域内所包含的道路层数L。例如,一目标网格包括的点云轨迹对应的雷达扫描区域内,存在一座3层高架桥和一常见的双向多车道,则确定该目标网格中的道路层数L为3。The embodiments of the present application do not limit the method of determining the number of road layers in the target grid, including but not limited to determining the number of road layers L contained in the area based on the radar scanning area corresponding to the point cloud trajectory included in the target grid. For example, if there is a three-story viaduct and a common two-way multi-lane in the radar scanning area corresponding to the point cloud trajectory included in a target grid, then the number of road layers L in the target grid is determined to be 3.
步骤2022,从目标网格包括的局部点云轨迹中确定参考数量个点云轨迹作为查询关键帧,参考数量基于道路层数确定。Step 2022: Determine a reference number of point cloud trajectories as query key frames from the local point cloud trajectories included in the target grid, and the reference number is determined based on the number of road layers.
在一种可能的实现方式中,从目标网格包括的局部点云轨迹中确定参考数量个点云轨迹作为查询关键帧,包括:基于目标网格中的道路层数L,在目标网格内包括的所有点云轨迹中选取L*K帧点云轨迹作为该目标网格的L*K个查询关键帧。其中,K可以是调节系数,例如,根据网格内点云轨迹的复杂程度选定。In one possible implementation, determining a reference number of point cloud trajectories as query key frames from the local point cloud trajectories included in the target grid includes: based on the number of road layers L in the target grid, within the target grid Select L*K frame point cloud trajectories from all included point cloud trajectories as L*K query key frames of the target grid. Among them, K can be an adjustment coefficient, for example, selected according to the complexity of the point cloud trajectory in the grid.
可选地,如果目标网格包括的点云轨迹对应的雷达扫描区域内没有道路,也可以直接选取K帧点云轨迹作为该目标网格的K个查询关键帧。Optionally, if there is no road in the radar scanning area corresponding to the point cloud trajectory included in the target grid, K frames of point cloud trajectories can also be directly selected as the K query key frames of the target grid.
步骤203,在多帧点云轨迹中确定查询关键帧的至少一个匹配帧,匹配帧是查询关键帧所在的参考范围内的局部点云轨迹。Step 203: Determine at least one matching frame of the query key frame in the multi-frame point cloud trajectory. The matching frame is a local point cloud trajectory within the reference range where the query key frame is located.
本申请实施例对确定查询关键帧的匹配帧的数量的方法不做限定,例如可以根据查询关键帧包含的点云数量确定,也可以由目标网格的大小确定。可选地,确定至少一个匹配帧的方法包括但不限于步骤2031-2032。The embodiment of the present application does not limit the method of determining the number of matching frames of the query key frame. For example, it can be determined based on the number of point clouds contained in the query key frame, or it can also be determined by the size of the target grid. Optionally, the method of determining at least one matching frame includes but is not limited to steps 2031-2032.
步骤2031,从多帧点云轨迹中筛选出参考范围内的局部点云轨迹。Step 2031: Filter out the local point cloud trajectories within the reference range from the multi-frame point cloud trajectories.
本申请实施例不对参考范围进行限定,参考范围可以大于目标网格的面积,也可以小于目标网格的面积。示例性地,按照能够保证多帧轨迹之间建立关联的标准设置第一数值,以目标查询关键帧为圆心,第一数值为半径,确定筛选局部点云轨迹的参考范围。The embodiment of the present application does not limit the reference range. The reference range may be larger than the area of the target grid or smaller than the area of the target grid. For example, the first value is set according to the standard that can ensure the establishment of association between multiple frame trajectories, with the target query key frame as the center of the circle, the first value as the radius, and the reference range for filtering the local point cloud trajectories is determined.
从多帧点云轨迹中筛选出参考范围内的局部点云轨迹时,可以按照确定的参考范围,在雷达扫描区域的几何空间内,筛选查询关键帧附近的局部点云轨迹,筛选出的局部点云轨迹可以为目标网格内除查询关键帧以外的局部点云轨迹,也可以为目标网格的临近网格内的局部点云轨迹。When filtering out the local point cloud trajectories within the reference range from the multi-frame point cloud trajectories, you can filter the local point cloud trajectories near the query key frame in the geometric space of the radar scanning area according to the determined reference range, and filter out the local point cloud trajectories. The point cloud trajectory can be the local point cloud trajectory in the target grid except the query key frame, or it can be the local point cloud trajectory in the adjacent grid of the target grid.
示例性地,设置第一数值为50米,以第一数值作为半径,查询关键帧为圆心,确定筛选查询关键帧附近的局部点云轨迹的参考范围,该半径能够覆盖常见双向多车道场景,并且能够建立多帧轨迹之间的关联,使得重影检测的覆盖度更完备。For example, set the first value to 50 meters, use the first value as the radius, and the query key frame as the center of the circle to determine the reference range for filtering local point cloud trajectories near the query key frame. This radius can cover common two-way multi-lane scenarios, And it can establish the correlation between multiple frame trajectories, making the coverage of ghost detection more complete.
步骤2032,响应于参考范围内包括多个局部点云轨迹,将多个局部点云轨迹中满足时间间隔的局部点云轨迹确定为查询关键帧的匹配帧。Step 2032: In response to the reference range including multiple local point cloud trajectories, determine the local point cloud trajectories that satisfy the time interval among the multiple local point cloud trajectories as matching frames of the query key frame.
可选地,在确定满足时间间隔的局部点云轨迹之前,设置选择匹配帧的时间间隔阈值T。如果筛选出的所有局部点云轨迹中,任两个局部点云轨迹的时间间隔小于T,则认为这两个局部点云轨迹包含的点云相似,从而在选择查询关键帧的匹配帧时,选择这两个局部点云轨迹中的任意一个局部点云轨迹作为查询关键帧的匹配帧。如果筛选出的所有局部点云轨迹中,任两个局部点云轨迹的时间间隔大于T,则认为所有局部点云轨迹中包含的点云不相似,筛选出的所有局部点云轨迹都可以作为查询关键帧的匹配帧。Optionally, before determining the local point cloud trajectory that satisfies the time interval, set a time interval threshold T for selecting matching frames. If among all the local point cloud trajectories filtered out, the time interval between any two local point cloud trajectories is less than T, the point clouds contained in the two local point cloud trajectories are considered to be similar, so when selecting the matching frame of the query key frame, Select any one of the two local point cloud trajectories as the matching frame of the query key frame. If the time interval between any two local point cloud trajectories among all filtered local point cloud trajectories is greater than T, the point clouds contained in all local point cloud trajectories are considered to be dissimilar, and all filtered local point cloud trajectories can be used as Query the matching frames of key frames.
无论任两个局部点云轨迹的时间间隔是否小于T,在筛选出的查询关键帧附近的局部点云轨迹中,选择至少一个满足时间间隔的局部点云轨迹作为查询关键帧的匹配帧。Regardless of whether the time interval between any two local point cloud trajectories is less than T, among the local point cloud trajectories near the filtered query key frame, at least one local point cloud trajectory that satisfies the time interval is selected as the matching frame of the query key frame.
示例性地,在查询关键帧q的参考范围内依次筛选出局部点云轨迹o、局部点云轨迹s、局部点云轨迹p这3个局部点云轨迹,其中,筛选出局部点云轨迹o和局部点云轨迹s的时间间隔小于T,筛选出局部点云轨迹o和局部点云轨迹p的时间间隔大于T,则去除局部点云轨迹s,选择局部点云轨迹o和局部点云轨迹p作为查询关键帧q的两个匹配帧。For example, within the reference range of the query key frame q, three local point cloud trajectories, namely local point cloud trajectory o, local point cloud trajectory s, and local point cloud trajectory p, are sequentially filtered out. Among them, local point cloud trajectory o is filtered out. The time interval between the local point cloud trajectory s and the local point cloud trajectory s is less than T. If the time interval between the local point cloud trajectory o and the local point cloud trajectory p is greater than T, then the local point cloud trajectory s is removed and the local point cloud trajectory o and the local point cloud trajectory are selected. p serves as the two matching frames of the query key frame q.
步骤204,确定查询关键帧和查询关键帧的各个匹配帧的配准结果。Step 204: Determine the registration results of the query key frame and each matching frame of the query key frame.
在确定查询关键帧的至少一个匹配帧之后,需要确定查询关键帧与各个匹配帧的配准结果,以反映查询关键帧与各个匹配帧之间的匹配度。查询关键帧和任一匹配帧的配准结果是指能够反映查询关键帧和任一匹配帧之间的变换关系的矩阵,包括平移变换的参数和旋转变化的参数中的至少一个。可选地,确定配准结果的方法包括但不限于步骤2041-2044。After determining at least one matching frame of the query key frame, the registration result of the query key frame and each matching frame needs to be determined to reflect the matching degree between the query key frame and each matching frame. The registration result between the query key frame and any matching frame refers to a matrix that can reflect the transformation relationship between the query key frame and any matching frame, including at least one of a translation transformation parameter and a rotation change parameter. Optionally, the method of determining the registration result includes but is not limited to steps 2041-2044.
步骤2041,确定查询关键帧的子图,查询关键帧的子图基于查询关键帧包括的点云轨迹得到。Step 2041: Determine the subgraph of the query key frame. The subgraph of the query key frame is obtained based on the point cloud trajectory included in the query key frame.
在一种可能的实现方式中,将查询关键帧包括的点云轨迹以及查询关键帧的相关点云轨迹进行合并,得到查询关键帧的子图,查询关键帧的相关点云轨迹包括目标网格内与查询关键帧时间戳相邻的点云轨迹。In one possible implementation, the point cloud trajectories included in the query key frame and the relevant point cloud trajectories of the query key frame are merged to obtain a subgraph of the query key frame. The relevant point cloud trajectories of the query key frame include the target grid. Point cloud trajectories adjacent to the query keyframe timestamp.
其中,时间戳可以是指格林威治时间1970年1月1日00时00分00秒(北京时间1970年1月1日08时00分00秒)起至现在的总秒数,通过使用数字签名技术产生数据,签名的对象包括了原始文件信息、签名参数、签名时间等信息。Among them, the timestamp can refer to the total number of seconds from 00:00:00 on January 1, 1970 Greenwich Time (08:00:00 on January 1, 1970, Beijing time) to the present. By using numbers Signature technology generates data, and the objects of the signature include original file information, signature parameters, signature time and other information.
将查询关键帧以及目标网格中与查询关键帧时间戳相邻的局部点云轨迹合并,得到查询关键帧子图。相较于单帧的查询关键帧,生成的查询关键帧的子图点云稠密,空间结构完整,范围更广,共视区域更多,有利于构建线面约束。The query keyframe and the local point cloud trajectories adjacent to the query keyframe timestamp in the target grid are merged to obtain the query keyframe subgraph. Compared with the query keyframe of a single frame, the sub-image point cloud of the generated query keyframe is dense, the spatial structure is complete, the scope is wider, and the common view area is more, which is conducive to the construction of line and surface constraints.
示例性地,将查询关键帧q以及目标网格中与其时间戳相邻的局部点云轨迹合并,生成查询关键帧的子图Sq。Exemplarily, the query key frame q and the local point cloud trajectories adjacent to its timestamp in the target grid are merged to generate a subgraph S q of the query key frame.
步骤2042,对于查询关键帧的任一匹配帧,确定任一匹配帧的子图,任一匹配帧的子图基于任一匹配帧包括的点云轨迹得到。Step 2042: For any matching frame of the query key frame, determine the sub-image of any matching frame. The sub-image of any matching frame is obtained based on the point cloud trajectory included in any matching frame.
在一种可能的实现方式中,与上述得到查询关键帧的子图的方法一致,将任一匹配帧包括的点云轨迹与任一匹配帧的相关点云轨迹进行合并,得到任一匹配帧的子图,任一匹配帧的相关点云轨迹包括任一匹配帧所在的网格内与任一匹配帧时间戳相邻的点云轨迹。In a possible implementation, consistent with the above method of obtaining the subgraph of the query key frame, the point cloud trajectory included in any matching frame is merged with the relevant point cloud trajectory of any matching frame to obtain any matching frame The subgraph of , the relevant point cloud trajectory of any matching frame includes the point cloud trajectory adjacent to the timestamp of any matching frame within the grid where any matching frame is located.
示例性地,将匹配帧p以及该匹配帧所在的网格中与其时间戳相邻的局部点云轨迹合并,生成匹配帧的子图Sp。For example, the matching frame p and the local point cloud trajectories adjacent to its timestamp in the grid where the matching frame is located are merged to generate a subgraph S p of the matching frame.
步骤2043,基于查询关键帧的子图以及任一匹配帧的子图确定多个位姿变换矩阵,任一位姿变换矩阵包括将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个。Step 2043: Determine multiple pose transformation matrices based on the sub-image of the query key frame and the sub-image of any matching frame. Any pose transformation matrix includes rotation transformation parameters and translation transformations that transform the query key frame into any matching frame. at least one of the parameters.
在一种可能的实现方式中,位姿变换矩阵基于查询关键帧的子图对应的多组局部点云数据和任一匹配帧的子图对应的全局点云数据确定,本申请不对确定查询关键帧的子图对应的多组局部点云数据以及任一匹配帧的子图对应的全局点云数据的方法进行限定。In a possible implementation, the pose transformation matrix is determined based on multiple sets of local point cloud data corresponding to the sub-image of the query key frame and global point cloud data corresponding to the sub-image of any matching frame. This application does not determine the query key. Multiple sets of local point cloud data corresponding to the sub-images of the frame and global point cloud data corresponding to any sub-image of the matching frame are defined.
其中,查询关键帧的子图对应的多组局部点云数据是指查询关键帧的子图包括的全局点云数据中满足比例要求的任一个或任多个区域内的点云数据,点云数据包括但不限于点云的数量和这些点云中各个点的位姿。示例性地,比例要求可以是提前设定的比例阈值,根据所需要的地图精度确定。相应的,任一匹配帧的子图对应的全局点云数据,包括但不限于该匹配帧的全局点云的数量和这些点云中各个点的位姿。Among them, the multiple sets of local point cloud data corresponding to the sub-image of the query key frame refer to the point cloud data in any one or any multiple areas that meet the proportion requirements in the global point cloud data included in the sub-image of the query key frame. The point cloud The data includes but is not limited to the number of point clouds and the pose of each point in these point clouds. For example, the scale requirement may be a scale threshold set in advance, determined according to the required map accuracy. Correspondingly, the global point cloud data corresponding to the sub-image of any matching frame includes but is not limited to the number of global point clouds of the matching frame and the pose of each point in these point clouds.
在一种可能的实现方式中,确定查询关键帧的子图对应的多组局部点云数据时,可以在查询关键帧的子图包括的全局点云数据中,按照不同区域筛选出满足比例要求的点云数据,将各个区域筛选出的满足比例要求的点云数据作为查询关键帧的子图对应的一组局部点云数据。In a possible implementation, when determining multiple sets of local point cloud data corresponding to the sub-image of the query key frame, the global point cloud data included in the sub-image of the query key frame can be filtered out according to different areas to meet the proportion requirements. The point cloud data that meets the proportion requirements are filtered out in each area as a set of local point cloud data corresponding to the subgraph of the query key frame.
在对查询关键帧和任一匹配帧分别生成查询关键帧的子图和该匹配帧的子图之后,对查询关键帧的子图生成至少两组局部点云数据,每组局部点云数据对应查询关键帧的子图的不同区域。生成的每组局部点云数据对应查询关键帧的子图的至少一个区域,不同区域对应不同的生成方式,包括但不限于中心、外轮廓、上下、左右、左斜对角、右斜对角的生成方式。在选择局部点云数据的生成方式时,要保证生成的局部点云数据中的点云分布相对均匀,防止出现某一维度点云缺失导致位姿求解偏差过大的情况。使用局部点云数据进行配准,可以避免因点云轨迹中某一区域结构丰富,在配准中占主导地位而降低其他区域的权重,导致配准结果不正确。After generating a sub-image of the query key frame and a sub-image of the matching frame respectively for the query key frame and any matching frame, at least two sets of local point cloud data are generated for the sub-image of the query key frame, and each set of local point cloud data corresponds to Query different regions of a subgraph for keyframes. Each set of local point cloud data generated corresponds to at least one area of the subgraph of the query key frame. Different areas correspond to different generation methods, including but not limited to center, outer contour, top and bottom, left and right, left diagonal, and right diagonal. way of generating. When choosing a method to generate local point cloud data, it is necessary to ensure that the point cloud distribution in the generated local point cloud data is relatively uniform to prevent the lack of point clouds in a certain dimension from causing excessive deviations in pose solutions. Using local point cloud data for registration can avoid reducing the weight of other areas because a certain area in the point cloud trajectory is rich in structure and dominates the registration, resulting in incorrect registration results.
以图4所示的生成中心局部点云数据的示意图为例,图4中间被虚线框选的点云,即为根据查询关键帧的子图生成的一组中心局部点云,这些点云所包含的数据,即为该组中心局部点云数据。参见图5-图9,分别示出了利用外轮廓、上下、左右、左斜对角、右斜对角的生成方式对查询关键帧的子图生成局部点云数据的结果,图5-图9中被虚线框选的点云数据即为根据查询关键的子图帧生成的外轮廓、上下、左右、左斜对角、右斜对角局部点云数据。Take the schematic diagram of generating central local point cloud data shown in Figure 4 as an example. The point clouds selected by the dotted line in the middle of Figure 4 are a set of central local point clouds generated based on the subgraph of the query key frame. These point clouds are The data contained is the local point cloud data in the center of the group. Referring to Figures 5 to 9, the results of generating local point cloud data for the subgraph of the query key frame using the outer contour, upper and lower, left and right, left diagonal, and right diagonal generation methods are shown respectively. Figure 5-Fig. The point cloud data selected by the dotted line in 9 is the outer contour, upper and lower, left and right, diagonal left and diagonal right local point cloud data generated based on the key sub-image frame of the query.
示例性地,在按照不同的区域,即不同的生成方式生成查询关键帧的子图的至少两组局部点云数据之后,筛选出满足比例要求的多组局部点云数据。可选地,在筛选出满足比例要求的多组局部点云数据之前,根据所需的地图精度设置任一组局部点云数据与匹配帧的子图的重叠区域比例阈值作为比例要求。Exemplarily, after generating at least two sets of local point cloud data of the subgraph of the query key frame according to different areas, that is, different generation methods, multiple sets of local point cloud data that meet the proportion requirements are filtered out. Optionally, before filtering out multiple sets of local point cloud data that meet the scale requirement, set the overlapping area scale threshold of any set of local point cloud data and the submap of the matching frame as the scale requirement according to the required map accuracy.
在一种可能的实现方式中,在筛选满足比例要求的多组局部点云数据之前,需要计算查询关键帧的子图的各组局部点云数据与查询关键帧的任一匹配帧的子图的重叠区域比例。计算重叠区域比例的方式,包括但不限于如下步骤1-步骤3。In one possible implementation, before filtering multiple sets of local point cloud data that meet the scale requirements, it is necessary to calculate each set of local point cloud data of the sub-image of the query key frame and the sub-image of any matching frame of the query key frame. proportion of overlapping areas. The method of calculating the proportion of overlapping areas includes but is not limited to the following steps 1 to 3.
步骤1,确定查询关键帧的子图对应的任一组局部点云数据中的每个点,根据查询关键帧与任一匹配帧对应的配准变换矩阵,计算目标局部点云数据中的每个点在上述匹配帧子图中的投影点。其中,配准变换矩阵是指在确定查询关键帧和各个匹配帧之后,通过建图优化算法计算得到的查询关键帧与各个匹配帧之间的变换关系,包括旋转变换的参数和平移变换的参数中的至少一个。查询关键帧与各个匹配帧之间的关系不一定相同,因此,查询关键帧与任一匹配帧都有对应的配准变换矩阵。Step 1: Determine each point in any set of local point cloud data corresponding to the subgraph of the query key frame, and calculate each point in the target local point cloud data based on the registration transformation matrix corresponding to the query key frame and any matching frame. The projection point of the point in the above matching frame subgraph. Among them, the registration transformation matrix refers to the transformation relationship between the query key frame and each matching frame calculated through the mapping optimization algorithm after determining the query key frame and each matching frame, including the parameters of rotation transformation and translation transformation. at least one of them. The relationship between the query key frame and each matching frame is not necessarily the same. Therefore, the query key frame and any matching frame have corresponding registration transformation matrices.
步骤2,在上述匹配帧子图的全局点云数据中,确定每个投影点的最近邻点。计算每个投影点与其最近邻点的空间距离,并将每个空间距离与设定的空间距离阈值比较,通过筛选得到小于空间距离阈值的所有空间距离。如果计算得到的任一空间距离大于设定的空间距离阈值,则认为该空间距离对应的最近邻点与该最近邻点对应的投影点不存在对应关系,并舍弃该空间距离。Step 2: Determine the nearest neighbor point of each projection point in the global point cloud data of the above matching frame subgraph. Calculate the spatial distance between each projection point and its nearest neighbor point, compare each spatial distance with the set spatial distance threshold, and obtain all spatial distances smaller than the spatial distance threshold through filtering. If any calculated spatial distance is greater than the set spatial distance threshold, it is considered that there is no correspondence between the nearest neighbor point corresponding to the spatial distance and the projection point corresponding to the nearest neighbor point, and the spatial distance is discarded.
步骤3,确定筛选出的小于空间距离阈值的空间距离的个数,将筛选出的空间距离的个数与该组局部点云数据中的点的数量的比值确定为该组局部点云数据和匹配帧子图的重叠区域的比例。Step 3: Determine the number of filtered spatial distances that are smaller than the spatial distance threshold, and determine the ratio of the number of filtered spatial distances to the number of points in the set of local point cloud data as the set of local point cloud data and The proportion of the overlapping area of the matching frame subgraphs.
示例性地,上述查询关键帧q与匹配帧p确定匹配关系之后,利用建图优化算法,确定查询关键帧q到匹配帧p的配准变换矩阵Tpq。根据查询关键帧的子图Sq按照中心、上下、左右、外轮廓的方式生成4个局部点云数据。确定查询关键帧的子图Sq的中心局部点云数据Sq1中有4个点,分别为A1、A2、A3、A4,按照A’=TpqA计算每个点在匹配帧的子图Sp中的投影点A1’、A2’、A3’、A4’。Illustratively, after the above-mentioned matching relationship between the query key frame q and the matching frame p is determined, a mapping optimization algorithm is used to determine the registration transformation matrix T pq from the query key frame q to the matching frame p. According to the sub-image S q of the query key frame, four local point cloud data are generated in the form of center, upper and lower, left and right, and outer contour. Determine the central local point cloud data S q1 of the sub-image S q of the query key frame. There are 4 points in the matching frame, namely A 1 , A 2 , A 3 , and A 4 . Calculate the position of each point in the matching frame according to A'=TpqA. Projection points A 1 ', A 2 ', A 3 ', A 4 ' in the subgraph S p .
示例性地,在完成上述匹配帧子图Sp中所有投影点的计算之后,确定在匹配帧子图Sp中A1’的最近邻点为B1、A2’的最近邻点为B2、A3’的最近邻点为B3、A4’的最近邻点为B4,计算每个投影点与对应的最近邻点之间的空间距离分别为d1、d2、d3、d4。将计算得到的每个空间距离与设定的空间距离阈值进行比较,舍弃大于空间距离阈值的d4。确定筛选出的空间距离的个数为3,该组局部点云数据中点云的数量为4,得到中心局部点云数据Sq1与匹配帧子图Sp的重叠区域比例为 For example, after completing the above calculation of all projection points in the matching frame sub-image Sp , it is determined that the nearest neighbor point of A 1 ' in the matching frame sub-image Sp is B 1 and the nearest neighbor point of A 2 ' is B 2. The nearest neighbor point of A 3 ' is B 3 and the nearest neighbor point of A 4 ' is B 4 . Calculate the spatial distance between each projection point and the corresponding nearest neighbor point as d 1 , d 2 and d 3 respectively. , d4 . Compare each calculated spatial distance with the set spatial distance threshold, and discard d 4 that is greater than the spatial distance threshold. Determine the number of filtered spatial distances to be 3, and the number of point clouds in this set of local point cloud data to be 4. The proportion of the overlapping area between the central local point cloud data S q1 and the matching frame sub-image S p is obtained as
可选地,在确定查询关键帧的子图的所有局部点云数据与该匹配帧的子图的重叠区域比例之后,筛选出满足比例要求的局部点云数据,确定为查询关键帧的子图对应的多组局部点云数据。Optionally, after determining the overlapping area ratio between all local point cloud data of the sub-image of the query key frame and the sub-image of the matching frame, filter out the local point cloud data that meets the proportion requirements and determine it as the sub-image of the query key frame. Corresponding multiple sets of local point cloud data.
在一种可能的实现方式中,如果计算得到的任一组局部点云数据和匹配帧子图的重叠区域的比例大于比例要求,则认为该组局部点云数据与匹配帧子图进行配准计算的结果有可信度;如果计算得到的局部点云数据和匹配帧子图的重叠区域的比例小于比例阈值,则认为由于重叠区域小,该局部点云数据与匹配帧子图进行配准计算的结果不可信。因此,将每一组的局部点云数据与匹配帧子图的重叠区域比例大于比例要求的局部点云数据,作为查询关键帧的子图的一组对应的局部点云数据,所有重叠区域比例大于比例要求的局部点云数据确定为查询关键帧的子图对应的多组局部点云数据。In a possible implementation, if the calculated proportion of the overlapping area between any set of local point cloud data and the matching frame sub-image is greater than the proportion requirement, then the set of local point cloud data and the matching frame sub-image are considered to be registered. The calculated results have credibility; if the calculated ratio of the overlapping area between the local point cloud data and the matching frame sub-image is less than the proportion threshold, it is considered that the local point cloud data is registered with the matching frame sub-image due to the small overlapping area. The calculated results are unreliable. Therefore, the local point cloud data of each group of local point cloud data and the matching frame sub-image whose overlapping area ratio is greater than the ratio requirement are used as a corresponding set of local point cloud data for the sub-image of the query key frame. The ratio of all overlapping areas is The local point cloud data that is larger than the proportion requirement is determined as multiple sets of local point cloud data corresponding to the sub-image of the query key frame.
示例性地,上述确定局部点云数据与匹配帧子图的重叠区域比例的步骤需要重复4次,即查询关键帧子图Sq生成的4个局部点云数据都需要计算局部点云数据与匹配帧子图的重叠区域比例。经计算,中心局部点云数据Sq1、上下局部点云数据Sq2、左右局部点云数据的Sq3这三组局部点云数据与匹配帧子图Sp的重叠区域比例大于比例要求,确定这三组局部点云数据为查询关键帧的子图Sq对应的三组局部点云数据。外轮廓局部点云数据Sq4与匹配帧子图Sp的重叠区域小于重叠阈值,从而舍弃外轮廓局部点云数据Sq4。For example, the above steps of determining the proportion of the overlapping area between the local point cloud data and the matching frame sub-image need to be repeated four times, that is, the four local point cloud data generated by querying the key frame sub-image S q need to calculate the local point cloud data and The proportion of overlapping areas of matching frame subgraphs. After calculation, the proportion of the overlapping area between the three sets of local point cloud data S q1 of the center local point cloud data S q1 , the upper and lower local point cloud data S q2 , and the left and right local point cloud data S q3 and the matching frame sub-image S p is greater than the proportion requirement, and it is determined that These three sets of local point cloud data are three sets of local point cloud data corresponding to the sub-image S q of the query key frame. The overlapping area of the outer contour local point cloud data S q4 and the matching frame sub-image S p is smaller than the overlap threshold, so the outer contour local point cloud data S q4 is discarded.
对于上述确定的查询关键帧的子图对应的多组局部点云数据和任一匹配帧的子图的全局点云数据,将多组局部点云数据分别与全局点云数据进行配准,得到多个位姿变换矩阵,一组局部点云数据对应一个位姿变换矩阵,任一组局部点云数据对应的位姿变换矩阵包括通过任一组局部点云数据将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个。For the multiple sets of local point cloud data corresponding to the sub-image of the query key frame determined above and the global point cloud data of the sub-image of any matching frame, register the multiple sets of local point cloud data with the global point cloud data respectively, and obtain Multiple pose transformation matrices. A set of local point cloud data corresponds to a pose transformation matrix. The pose transformation matrix corresponding to any set of local point cloud data includes transforming the query key frame into any one through any set of local point cloud data. At least one of a rotation transformation parameter and a translation transformation parameter of the matching frame.
示例性地,对于查询关键帧的子图对应的多组局部点云数据和任一匹配帧的子图的全局点云数据,使用配准算法进行点云配准。在一种可能的实现方式中,配准时使用查询关键帧的子图对应的多组局部点云数据和任一匹配帧的子图的全局点云数据,而不是任一匹配帧的子图的局部点云数据,可以避免因查询关键帧的子图对应的多组局部点云数据与任一匹配帧的子图的局部点云数据之间的重叠区域过小,而导致配准结果不可信的现象。本申请实施例不对配准方法进行限定,例如配准方法可以为:点到面ICP(IterativeClosest Point,迭代最近点)、点到点ICP、GICP(Generalized Iterative Closest Point,全面的迭代最近点)等传统方法和D3Feat(Dense Detection and Description Feat,密集检测和描述功能)、FCGF(Fully Convolutional Geometric Features,全卷积几何特征)、PREDATOR(低重叠三维点云的配准方法)等深度学习方法。查询关键帧的子图对应的每组局部点云数据和任一匹配帧子图的全局点云数据经过上述任一种配准算法的配准计算,得到一个对应的位姿变换矩阵,任一组局部点云数据对应的位姿变换矩阵包括通过任一组局部点云数据将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个。For example, for the multiple sets of local point cloud data corresponding to the sub-image of the query key frame and the global point cloud data of the sub-image of any matching frame, a registration algorithm is used to perform point cloud registration. In one possible implementation, multiple sets of local point cloud data corresponding to the sub-image of the query key frame and global point cloud data of the sub-image of any matching frame are used during registration, instead of the sub-image of any matching frame. Local point cloud data can avoid the registration results being unreliable due to the small overlap area between the multiple sets of local point cloud data corresponding to the sub-image of the query key frame and the local point cloud data of the sub-image of any matching frame. The phenomenon. The embodiments of this application do not limit the registration method. For example, the registration method can be: point-to-surface ICP (IterativeClosest Point, iterative closest point), point-to-point ICP, GICP (Generalized Iterative Closest Point, comprehensive iterative closest point), etc. Traditional methods and deep learning methods such as D3Feat (Dense Detection and Description Feat, dense detection and description function), FCGF (Fully Convolutional Geometric Features, full convolutional geometric features), PREDATOR (registration method of low-overlap three-dimensional point cloud). Each set of local point cloud data corresponding to the sub-image of the query key frame and the global point cloud data of any matching frame sub-image are subjected to the registration calculation of any of the above registration algorithms to obtain a corresponding pose transformation matrix. The pose transformation matrix corresponding to the set of local point cloud data includes at least one of a rotation transformation parameter and a translation transformation parameter that transforms the query key frame into any matching frame through any set of local point cloud data.
步骤2044,将多个位姿变换矩阵中满足要求的位姿变换矩阵进行均值计算,将计算得到的结果作为查询关键帧与任一匹配帧的配准结果。Step 2044: Calculate the mean value of the pose transformation matrix that meets the requirements among the multiple pose transformation matrices, and use the calculated result as the registration result of the query key frame and any matching frame.
根据得到的查询关键帧的子图对应的每组局部点云数据和任一匹配帧子图的全局点云数据经过上述任一种配准算法的配准计算,得到一个对应的位姿变换矩阵,计算查询关键帧与该匹配帧的所有位姿变换矩阵的第一平均变换矩阵,分别计算每个位姿变换矩阵与第一平均变换矩阵的差。将每个位姿变换矩阵与第一平均变换矩阵的差与变换矩阵阈值进行比较,筛选出与第一平均变换矩阵的差小于变换矩阵阈值的位姿变换矩阵,并根据筛选出的位姿变换矩阵重新计算均值,得到查询关键帧与任一匹配帧的配准结果。According to each set of local point cloud data corresponding to the sub-image of the query key frame and the global point cloud data of any matching frame sub-image, a corresponding pose transformation matrix is obtained through the registration calculation of any of the above registration algorithms. , calculate the first average transformation matrix of all pose transformation matrices of the query key frame and the matching frame, and calculate the difference between each pose transformation matrix and the first average transformation matrix respectively. Compare the difference between each pose transformation matrix and the first average transformation matrix with the transformation matrix threshold, filter out the pose transformation matrix whose difference with the first average transformation matrix is less than the transformation matrix threshold, and transform the pose according to the filtered out The matrix recalculates the mean to obtain the registration result of the query key frame and any matching frame.
示例性地,查询关键帧与该查询关键帧的任一匹配帧经计算能够得到一个配准结果,查询关键帧的匹配帧的数量即为该查询关键帧最终得到的配准结果的数量。For example, a registration result can be obtained by calculation between the query key frame and any matching frame of the query key frame, and the number of matching frames of the query key frame is the number of registration results finally obtained for the query key frame.
其中,对于出现的特殊情况,例如当查询关键帧的子图对应的局部点云数据中只有两组局部点云数据与匹配帧的子图的全局点云数据的重叠区域比例满足比例要求,且得到的两个位姿变换矩阵与第一平均变换矩阵的差均超过变换矩阵阈值,此时,选择重叠区域比例最大的局部点云数据对应的位姿变换矩阵的作为配准结果。Among them, for special situations that occur, for example, when only the overlapping area ratio of two sets of local point cloud data in the local point cloud data corresponding to the sub-image of the query key frame and the global point cloud data of the sub-image of the matching frame meets the proportion requirements, and The differences between the two obtained pose transformation matrices and the first average transformation matrix both exceed the transformation matrix threshold. At this time, the pose transformation matrix corresponding to the local point cloud data with the largest overlap area is selected as the registration result.
在一种可能的实现方式中,在确定查询关键帧和查询关键帧的各个匹配帧的配准结果之后,对于任一匹配帧,根据查询关键帧与任一匹配帧的配准结果与配准变换矩阵计算查询关键帧的位姿误差,配准变换矩阵包括通过查询关键帧的全局点云数据将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个。In a possible implementation, after determining the registration results of the query key frame and each matching frame of the query key frame, for any matching frame, according to the registration result of the query key frame and any matching frame and the registration The transformation matrix calculates the pose error of the query key frame, and the registration transformation matrix includes at least one of a rotation transformation parameter and a translation transformation parameter that transforms the query key frame into any matching frame through the global point cloud data of the query key frame.
在一种可能的实现方式中,将配准变换矩阵的逆矩阵与查询关键帧的任一配准结果相乘,得到查询关键帧与该配准结果对应的匹配帧的位姿误差。In one possible implementation, the inverse matrix of the registration transformation matrix is multiplied by any registration result of the query key frame to obtain the pose error of the matching frame corresponding to the query key frame and the registration result.
示例性地,基于上述查询关键帧q的匹配帧p的配准结果Tf,按照Tdiff=(Tpq)-1Tf计算查询关键帧q与匹配帧p的位姿误差Tdiff,包括旋转误差和平移误差。Illustratively, based on the above registration result T f of the matching frame p of the query key frame q, the pose error T diff of the query key frame q and the matching frame p is calculated according to T diff = (T pq ) -1 T f , including Rotation error and translation error.
在得到查询关键帧与查询关键帧的各匹配帧的位姿误差之后,响应于位姿误差大于位姿误差阈值,确定任一匹配帧与查询关键帧的配准结果满足要求。After obtaining the pose error between the query key frame and each matching frame of the query key frame, in response to the pose error being greater than the pose error threshold, it is determined that the registration result of any matching frame and the query key frame meets the requirements.
将查询关键帧的每个位姿误差与位姿误差阈值进行比较,筛选出位姿误差最大值超过位姿误差阈值的查询关键帧。位姿误差阈值是指根据所需的地图精度提前设置的数值,包括旋转阈值和平移阈值,例如旋转阈值为角度阈值。对于得到的位姿误差内的旋转误差,首先将旋转矩阵转换为欧拉角,若三个方向的欧拉角中其中一个方向的误差大于旋转阈值,则认为位姿误差超过位姿误差阈值;对于得到的位姿误差内的平移误差,若xyz三个方向其中一个方向的误差大于平移阈值,则认为位姿误差超过位姿误差阈值。在一种可能的实现方式中,如果得到的位姿误差内的旋转误差和平移误差中的至少一个误差大于其对应的旋转阈值或平移阈值,即认为计算得到该位姿误差的配准结果满足要求。Compare each pose error of the query key frame with the pose error threshold, and filter out the query key frames whose maximum pose error exceeds the pose error threshold. The pose error threshold refers to a value set in advance according to the required map accuracy, including rotation threshold and translation threshold. For example, the rotation threshold is the angle threshold. For the rotation error within the obtained pose error, first convert the rotation matrix into Euler angles. If the error in one of the three directions of Euler angles is greater than the rotation threshold, the pose error is considered to exceed the pose error threshold; For the translation error within the obtained pose error, if the error in one of the three directions xyz is greater than the translation threshold, the pose error is considered to exceed the pose error threshold. In a possible implementation, if at least one of the rotation error and translation error within the obtained pose error is greater than its corresponding rotation threshold or translation threshold, it is considered that the calculated registration result of the pose error satisfies Require.
步骤205,响应于存在满足要求的配准结果,将目标网格确定为存在重影的网格。Step 205: In response to the existence of a registration result that meets the requirements, determine the target grid as a grid with ghosting.
在一种可能的实现方式中,应用本申请实施例提供的方法确定存在重影的网格之后,可将存在重影的网格合并,根据合并后的网格确定重影的区域。In a possible implementation, after applying the method provided by the embodiment of the present application to determine the grids with ghosts, the grids with ghosts can be merged, and the ghost areas can be determined based on the merged grids.
例如,在确定任一匹配帧与查询关键帧的配准结果满足要求之后,将目标网格,即该查询关键帧所在的网格确定为存在重影的网格。确定点云地图中所有存在重影的网格之后,合并点云地图中相邻的重影网格,得到点云地图中存在重影的区域。For example, after it is determined that the registration result of any matching frame and the query key frame meets the requirements, the target grid, that is, the grid where the query key frame is located, is determined as a grid with ghosting. After determining all the grids with ghosts in the point cloud map, merge the adjacent ghost grids in the point cloud map to obtain the areas with ghosts in the point cloud map.
以图10所示的确定存在重影的网格之后的点云地图示意图为例,存在交叉符号的网格即为确定存在重影的网格。将点云地图中相邻的存在重影的网格进行合并,确定为多个存在重影的区域,对应图中粗实线框选的区域。Taking the schematic diagram of the point cloud map after the grid where ghosting is determined as shown in Figure 10 as an example, the grid where cross symbols exist is the grid where ghosting is determined to exist. Merge adjacent grids with ghosts in the point cloud map to determine multiple regions with ghosts, corresponding to the areas selected by the thick solid lines in the figure.
可选地,本申请实施例提供的方法还包括:对重影的区域所包括的点云轨迹进行修复。例如,在确定点云地图中存在重影的区域之后,根据重影区域确定对应的雷达扫描区域。在该区域内,雷达重新进行多次扫描,以修复该区域所对应的点云轨迹,去除点云轨迹内的重影,保证点云地图的质量。Optionally, the method provided by the embodiment of the present application also includes: repairing the point cloud trajectory included in the ghost area. For example, after determining the area where ghosting exists in the point cloud map, the corresponding radar scanning area is determined based on the ghosting area. In this area, the radar re-scans multiple times to repair the point cloud trajectory corresponding to the area, remove ghosts in the point cloud trajectory, and ensure the quality of the point cloud map.
综上,本申请实施例提供的方法,通过将点云地图划分为网格,将大范围的点云地图转化为多个小范围的网格内的点云轨迹,粒度更细,实现了点云地图中重影检测的全覆盖。选取查询关键帧和匹配帧,合成查询关键帧子图和匹配帧子图,并将查询关键帧子图的至少一个局部点云数据与匹配帧子图进行多轮配准计算,完成点云地图的重影检测,多次配准提高了检测的准确性,从而基于重影检测后的点云地图可以构建准确的高精地图,进而基于准确的高精地图保证自动驾驶车辆的正常行驶。通过配准算法进行重影检测,由于无需对特定元素进行提取,减小了场景对重影检测的限制。In summary, the method provided by the embodiments of the present application divides the point cloud map into grids and converts the large-scale point cloud map into point cloud trajectories in multiple small-scale grids with finer granularity, thereby achieving point cloud mapping. Full coverage of ghost detection in cloud maps. Select the query key frame and the matching frame, synthesize the query key frame sub-image and the matching frame sub-image, and conduct multiple rounds of registration calculations between at least one local point cloud data of the query key frame sub-image and the matching frame sub-image to complete the point cloud map Ghost detection and multiple registrations improve the accuracy of detection, so that an accurate high-precision map can be constructed based on the point cloud map after ghost detection, and then the normal driving of autonomous vehicles can be ensured based on the accurate high-precision map. Ghost detection is performed through the registration algorithm. Since there is no need to extract specific elements, the scene restrictions on ghost detection are reduced.
参见图11,本申请实施例提供了一种点云地图的重影检测装置,该装置包括:Referring to Figure 11, an embodiment of the present application provides a ghost detection device for point cloud maps. The device includes:
划分模块1101,用于将待检测的点云地图划分多个网格,点云地图包括多帧点云轨迹,每个网格包括多帧点云轨迹中的局部点云轨迹;The dividing module 1101 is used to divide the point cloud map to be detected into multiple grids. The point cloud map includes multi-frame point cloud trajectories, and each grid includes local point cloud trajectories in the multi-frame point cloud trajectories;
确定模块1102,用于从目标网格包括的局部点云轨迹中确定查询关键帧;Determining module 1102, used to determine the query key frame from the local point cloud trajectory included in the target grid;
确定模块1102,还用于在多帧点云轨迹中确定查询关键帧的至少一个匹配帧,匹配帧是查询关键帧所在的参考范围内的局部点云轨迹;The determination module 1102 is also used to determine at least one matching frame of the query key frame in the multi-frame point cloud trajectory, where the matching frame is the local point cloud trajectory within the reference range where the query key frame is located;
确定模块1102,还用于确定查询关键帧和查询关键帧的各个匹配帧的配准结果;The determination module 1102 is also used to determine the registration results of the query key frame and each matching frame of the query key frame;
确定模块1102,还用于响应于存在满足要求的配准结果,将目标网格确定为存在重影的网格。The determination module 1102 is also configured to determine the target grid as a grid with ghosting in response to the existence of a registration result that meets the requirements.
在一种可能的实现方式中,确定模块1102,用于确定目标网格中的道路层数;从目标网格包括的局部点云轨迹中确定参考数量个点云轨迹作为查询关键帧,参考数量基于道路层数确定。In a possible implementation, the determination module 1102 is used to determine the number of road layers in the target grid; determine a reference number of point cloud trajectories as query key frames from the local point cloud trajectories included in the target grid. The reference number Determined based on the number of road layers.
在一种可能的实现方式中,装置还包括:筛选模块,用于从多帧点云轨迹中筛选出参考范围内的局部点云轨迹;In a possible implementation, the device further includes: a filtering module for filtering out local point cloud trajectories within the reference range from multi-frame point cloud trajectories;
确定模块1102,用于响应于参考范围内包括多个局部点云轨迹,将多个局部点云轨迹中满足时间间隔的局部点云轨迹确定为查询关键帧的匹配帧。The determination module 1102 is configured to determine, in response to the reference range including multiple local point cloud trajectories, the local point cloud trajectories that satisfy the time interval among the multiple local point cloud trajectories as matching frames of the query key frame.
在一种可能的实现方式中,确定模块1102,用于确定查询关键帧的子图,查询关键帧的子图基于查询关键帧包括的点云轨迹得到;对于查询关键帧与任一匹配帧,确定任一匹配帧的子图,任一匹配帧的子图基于任一匹配帧包括的点云轨迹得到;基于查询关键帧的子图以及任一匹配帧的子图确定多个位姿变换矩阵,任一位姿变换矩阵包括将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个;In a possible implementation, the determination module 1102 is used to determine the subgraph of the query key frame. The subgraph of the query key frame is obtained based on the point cloud trajectory included in the query key frame; for the query key frame and any matching frame, Determine the subgraph of any matching frame, which is obtained based on the point cloud trajectory included in any matching frame; determine multiple pose transformation matrices based on the subgraph of the query key frame and the subgraph of any matching frame , any pose transformation matrix includes at least one of a rotation transformation parameter and a translation transformation parameter that transforms the query key frame into any matching frame;
装置还包括:计算模块,用于将多个位姿变换矩阵中满足要求的位姿变换矩阵进行均值计算,将计算得到的结果作为查询关键帧与任一匹配帧的配准结果。The device also includes: a calculation module for averaging the pose transformation matrices that meet the requirements among the multiple pose transformation matrices, and using the calculated result as a registration result between the query key frame and any matching frame.
在一种可能的实现方式中,合并模块,用于将查询关键帧包括的点云轨迹以及查询关键帧的相关点云轨迹进行合并,得到查询关键帧的子图,查询关键帧的相关点云轨迹包括目标网格内与查询关键帧时间戳相邻的点云轨迹。In a possible implementation, the merging module is used to merge the point cloud trajectories included in the query key frame and the relevant point cloud trajectories of the query key frame, to obtain a subgraph of the query key frame, and the relevant point cloud of the query key frame. The trajectories include point cloud trajectories within the target mesh adjacent to the query keyframe timestamp.
在一种可能的实现方式中,合并模块,用于将任一匹配帧包括的点云轨迹与任一匹配帧的相关点云轨迹进行合并,得到任一匹配帧的子图,任一匹配帧的相关点云轨迹包括任一匹配帧所在的网格内与任一匹配帧时间戳相邻的点云轨迹。In a possible implementation, the merging module is used to merge the point cloud trajectory included in any matching frame with the relevant point cloud trajectory of any matching frame to obtain a sub-image of any matching frame. The relevant point cloud trajectories include point cloud trajectories adjacent to the timestamp of any matching frame within the grid where any matching frame is located.
在一种可能的实现方式中,确定模块1102,用于确定查询关键帧的子图对应的多组局部点云数据以及任一匹配帧的子图对应的全局点云数据;In a possible implementation, the determination module 1102 is used to determine multiple sets of local point cloud data corresponding to the sub-image of the query key frame and global point cloud data corresponding to the sub-image of any matching frame;
装置还包括:配准模块,用于将多组局部点云数据分别与全局点云数据进行配准,得到多个位姿变换矩阵,一组局部点云数据对应一个位姿变换矩阵,任一组局部点云数据对应的位姿变换矩阵包括通过任一组局部点云数据将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个。The device also includes: a registration module, used to register multiple sets of local point cloud data with global point cloud data to obtain multiple pose transformation matrices. A set of local point cloud data corresponds to a pose transformation matrix. Any one The pose transformation matrix corresponding to the set of local point cloud data includes at least one of a rotation transformation parameter and a translation transformation parameter that transforms the query key frame into any matching frame through any set of local point cloud data.
在一种可能的实现方式中,筛选模块,用于在查询关键帧的子图包括的全局点云数据中,按照不同区域筛选出满足比例要求的点云数据,将各个区域筛选出的满足比例要求的点云数据作为查询关键帧的子图对应的一组局部点云数据。In a possible implementation, the filtering module is used to filter out the point cloud data that meets the proportion requirements according to different regions from the global point cloud data included in the sub-graph of the query key frame, and filter out the point cloud data that meets the proportion requirements in each region. The required point cloud data is used as a set of local point cloud data corresponding to the subgraph of the query key frame.
在一种可能的实现方式中,计算模块,还用于对于任一匹配帧,根据查询关键帧与任一匹配帧的配准结果与配准变换矩阵计算查询关键帧的位姿误差,配准变换矩阵包括通过查询关键帧的全局点云数据将查询关键帧变换到任一匹配帧的旋转变换参数和平移变换参数中的至少一个;In a possible implementation, the calculation module is also used to calculate, for any matching frame, the pose error of the query key frame based on the registration result and the registration transformation matrix between the query key frame and any matching frame. The transformation matrix includes at least one of a rotation transformation parameter and a translation transformation parameter that transforms the query key frame into any matching frame through the global point cloud data of the query key frame;
确定模块1102,还用于响应于位姿误差大于位姿误差阈值,确定任一匹配帧与查询关键帧的配准结果满足要求。The determination module 1102 is also configured to determine that the registration result of any matching frame and the query key frame meets the requirements in response to the pose error being greater than the pose error threshold.
在一种可能的实现方式中,确定模块1102,还用于将存在重影的网格合并,根据合并后的网格确定重影的区域;In a possible implementation, the determination module 1102 is also used to merge grids with ghosts, and determine the ghost area based on the merged grids;
装置还包括:修复模块,用于对重影的区域所包括的点云轨迹进行修复。The device also includes: a repair module for repairing the point cloud trajectory included in the ghost area.
本申请实施例提供的装置,通过将点云地图划分为网格,将大范围的点云地图转化为多个小范围的网格内的点云轨迹,粒度更细,实现了点云地图中重影检测的全覆盖。选取查询关键帧和匹配帧,合成查询关键帧子图和匹配帧子图,并将查询关键帧子图的至少一个局部点云数据与匹配帧子图进行多轮配准计算,完成点云地图的重影检测,多次配准提高了检测的准确性,从而基于重影检测后的点云地图可以构建准确的高精地图,进而基于准确的高精地图保证自动驾驶车辆的正常行驶。通过配准算法进行重影检测,由于无需对特定元素进行提取,减小了场景对重影检测的限制。The device provided by the embodiment of the present application divides the point cloud map into grids and converts the large-scale point cloud map into point cloud trajectories in multiple small-scale grids with finer granularity, thereby realizing the point cloud map in the point cloud map. Full coverage of ghost detection. Select the query key frame and the matching frame, synthesize the query key frame sub-image and the matching frame sub-image, and conduct multiple rounds of registration calculations between at least one local point cloud data of the query key frame sub-image and the matching frame sub-image to complete the point cloud map Ghost detection and multiple registrations improve the accuracy of detection, so that an accurate high-precision map can be constructed based on the point cloud map after ghost detection, and then the normal driving of autonomous vehicles can be ensured based on the accurate high-precision map. Ghost detection is performed through the registration algorithm. Since there is no need to extract specific elements, the scene restrictions on ghost detection are reduced.
需要说明的是,上述实施例提供的装置在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。It should be noted that when the device provided in the above embodiment implements its functions, only the division of the above functional modules is used as an example. In actual application, the above functions can be allocated to different functional modules according to needs, that is, the equipment The internal structure is divided into different functional modules to complete all or part of the functions described above. In addition, the apparatus and method embodiments provided in the above embodiments belong to the same concept, and the specific implementation process can be found in the method embodiments, which will not be described again here.
需要说明的是,本申请的说明书和权利要求书中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。It should be noted that the terms "first", "second", etc. (if present) in the description and claims of this application are used to distinguish similar objects and are not necessarily used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the application described herein can be practiced in sequences other than those illustrated or described herein. The implementations described in the following exemplary embodiments do not represent all implementations consistent with this application. Rather, they are merely examples of apparatus and methods consistent with aspects of the application as detailed in the appended claims.
图12是本申请实施例提供的一种服务器的结构示意图,该服务器可因配置或性能不同而产生比较大的差异,可以包括一个或多个处理器1201和一个或多个存储器1202。处理器1201例如为CPU(Central Processing Units,中央处理器)。其中,该一个或多个存储器1202中存储有至少一条计算机程序,该至少一条计算机程序由该一个或多个处理器1201加载并执行,以使该服务器实现上述各个方法实施例提供的点云地图的重影检测方法。当然,该服务器还可以具有有线或无线网络接口、键盘以及输入输出接口等部件,以便进行输入输出,该服务器还可以包括其他用于实现设备功能的部件,在此不做赘述。Figure 12 is a schematic structural diagram of a server provided by an embodiment of the present application. The server may vary greatly due to different configurations or performance, and may include one or more processors 1201 and one or more memories 1202. The processor 1201 is, for example, a CPU (Central Processing Units, central processing unit). Among them, at least one computer program is stored in the one or more memories 1202, and the at least one computer program is loaded and executed by the one or more processors 1201, so that the server implements the point cloud map provided by the above method embodiments. Ghost detection method. Of course, the server can also have components such as wired or wireless network interfaces, keyboards, and input and output interfaces to facilitate input and output. The server can also include other components for implementing device functions, which will not be described again here.
图13是本申请实施例提供的一种点云地图的重影检测设备结构示意图。该设备可以为终端,例如可以是:智能手机、平板电脑、笔记本电脑或台式电脑。终端还可能被称为用户设备、便携式终端、膝上型终端、台式终端等其他名称。Figure 13 is a schematic structural diagram of a ghost detection device for point cloud maps provided by an embodiment of the present application. The device may be a terminal, for example, a smartphone, a tablet, a laptop or a desktop computer. The terminal may also be called user equipment, portable terminal, laptop terminal, desktop terminal, and other names.
通常,终端包括有:处理器1301和存储器1302。Generally, the terminal includes: a processor 1301 and a memory 1302.
处理器1301可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器1301可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器1301也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central ProcessingUnit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器1301可以集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器1301还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关机器学习的计算操作。The processor 1301 may include one or more processing cores, such as a 4-core processor, an 8-core processor, etc. The processor 1301 can adopt at least one hardware form among DSP (Digital Signal Processing, digital signal processing), FPGA (Field-Programmable Gate Array, field programmable gate array), and PLA (Programmable Logic Array, programmable logic array). accomplish. The processor 1301 may also include a main processor and a co-processor. The main processor is a processor used to process data in the wake-up state, also called CPU (Central Processing Unit, central processing unit); the co-processor is A low-power processor used to process data in standby mode. In some embodiments, the processor 1301 may be integrated with a GPU (Graphics Processing Unit, image processor), and the GPU is responsible for rendering and drawing content to be displayed on the display screen. In some embodiments, the processor 1301 may also include an AI (Artificial Intelligence, artificial intelligence) processor, which is used to process computing operations related to machine learning.
存储器1302可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器1302还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器1302中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器1301所执行,以使该终端实现本申请中方法实施例提供的重影检测的方法。Memory 1302 may include one or more computer-readable storage media, which may be non-transitory. Memory 1302 may also include high-speed random access memory, and non-volatile memory, such as one or more disk storage devices, flash memory storage devices. In some embodiments, the non-transitory computer-readable storage medium in the memory 1302 is used to store at least one instruction, and the at least one instruction is used to be executed by the processor 1301 to enable the terminal to implement the method embodiments of the present application. Provided ghost detection method.
在一些实施例中,终端还可选包括有:外围设备接口1303和至少一个外围设备。处理器1301、存储器1302和外围设备接口1303之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口1303相连。具体地,外围设备包括:射频电路1304、显示屏1305、摄像头组件1306、音频电路1307、定位组件1308和电源1309中的至少一种。In some embodiments, the terminal optionally further includes: a peripheral device interface 1303 and at least one peripheral device. The processor 1301, the memory 1302 and the peripheral device interface 1303 may be connected through a bus or a signal line. Each peripheral device can be connected to the peripheral device interface 1303 through a bus, a signal line, or a circuit board. Specifically, the peripheral device includes: at least one of a radio frequency circuit 1304, a display screen 1305, a camera component 1306, an audio circuit 1307, a positioning component 1308 and a power supply 1309.
外围设备接口1303可被用于将I/O(Input/Output,输入/输出)相关的至少一个外围设备连接到处理器1301和存储器1302。在一些实施例中,处理器1301、存储器1302和外围设备接口1303被集成在同一芯片或电路板上;在一些其他实施例中,处理器1301、存储器1302和外围设备接口1303中的任意一个或两个可以在单独的芯片或电路板上实现,本实施例对此不加以限定。The peripheral device interface 1303 may be used to connect at least one I/O (Input/Output) related peripheral device to the processor 1301 and the memory 1302 . In some embodiments, the processor 1301, the memory 1302, and the peripheral device interface 1303 are integrated on the same chip or circuit board; in some other embodiments, any one of the processor 1301, the memory 1302, and the peripheral device interface 1303 or Both of them can be implemented on separate chips or circuit boards, which is not limited in this embodiment.
射频电路1304用于接收和发射RF(Radio Frequency,射频)信号,也称电磁信号。射频电路1304通过电磁信号与通信网络以及其他通信设备进行通信。射频电路1304将电信号转换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。可选地,射频电路1304包括:天线系统、RF收发器、一个或多个放大器、调谐器、振荡器、数字信号处理器、编解码芯片组、用户身份模块卡等等。射频电路1304可以通过至少一种无线通信协议来与其它终端进行通信。该无线通信协议包括但不限于:城域网、各代移动通信网络(2G、3G、4G及5G)、无线局域网和/或WiFi(Wireless Fidelity,无线保真)网络。在一些实施例中,射频电路1304还可以包括NFC(Near Field Communication,近距离无线通信)有关的电路,本申请对此不加以限定。The radio frequency circuit 1304 is used to receive and transmit RF (Radio Frequency, radio frequency) signals, also called electromagnetic signals. Radio frequency circuit 1304 communicates with communication networks and other communication devices through electromagnetic signals. The radio frequency circuit 1304 converts electrical signals into electromagnetic signals for transmission, or converts received electromagnetic signals into electrical signals. Optionally, the radio frequency circuit 1304 includes: an antenna system, an RF transceiver, one or more amplifiers, a tuner, an oscillator, a digital signal processor, a codec chipset, a user identity module card, and the like. Radio frequency circuitry 1304 can communicate with other terminals through at least one wireless communication protocol. The wireless communication protocol includes but is not limited to: metropolitan area network, various generations of mobile communication networks (2G, 3G, 4G and 5G), wireless local area network and/or WiFi (Wireless Fidelity, wireless fidelity) network. In some embodiments, the radio frequency circuit 1304 may also include NFC (Near Field Communication) related circuits, which is not limited in this application.
显示屏1305用于显示UI(User Interface,用户界面)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。当显示屏1305是触摸显示屏时,显示屏1305还具有采集在显示屏1305的表面或表面上方的触摸信号的能力。该触摸信号可以作为控制信号输入至处理器1301进行处理。此时,显示屏1305还可以用于提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。在一些实施例中,显示屏1305可以为一个,设置在终端的前面板;在另一些实施例中,显示屏1305可以为至少两个,分别设置在终端的不同表面或呈折叠设计;在另一些实施例中,显示屏1305可以是柔性显示屏,设置在终端的弯曲表面上或折叠面上。甚至,显示屏1305还可以设置成非矩形的不规则图形,也即异形屏。显示屏1305可以采用LCD(Liquid Crystal Display,液晶显示屏)、OLED(Organic Light-Emitting Diode,有机发光二极管)等材质制备。The display screen 1305 is used to display UI (User Interface, user interface). The UI can include graphics, text, icons, videos, and any combination thereof. When display screen 1305 is a touch display screen, display screen 1305 also has the ability to collect touch signals on or above the surface of display screen 1305 . The touch signal can be input to the processor 1301 as a control signal for processing. At this time, the display screen 1305 can also be used to provide virtual buttons and/or virtual keyboards, also called soft buttons and/or soft keyboards. In some embodiments, there may be one display screen 1305, which is disposed on the front panel of the terminal; in other embodiments, there may be at least two display screens 1305, which are respectively disposed on different surfaces of the terminal or in a folding design; in another In some embodiments, the display screen 1305 may be a flexible display screen disposed on a curved surface or a folding surface of the terminal. Even, the display screen 1305 can also be set in a non-rectangular irregular shape, that is, a special-shaped screen. The display screen 1305 can be made of LCD (Liquid Crystal Display, liquid crystal display), OLED (Organic Light-Emitting Diode, organic light-emitting diode) and other materials.
摄像头组件1306用于采集图像或视频。可选地,摄像头组件1306包括前置摄像头和后置摄像头。通常,前置摄像头设置在终端的前面板,后置摄像头设置在终端的背面。在一些实施例中,后置摄像头为至少两个,分别为主摄像头、景深摄像头、广角摄像头、长焦摄像头中的任意一种,以实现主摄像头和景深摄像头融合实现背景虚化功能、主摄像头和广角摄像头融合实现全景拍摄以及VR(Virtual Reality,虚拟现实)拍摄功能或者其它融合拍摄功能。在一些实施例中,摄像头组件1306还可以包括闪光灯。闪光灯可以是单色温闪光灯,也可以是双色温闪光灯。双色温闪光灯是指暖光闪光灯和冷光闪光灯的组合,可以用于不同色温下的光线补偿。The camera component 1306 is used to capture images or videos. Optionally, the camera assembly 1306 includes a front camera and a rear camera. Usually, the front camera is set on the front panel of the terminal, and the rear camera is set on the back of the terminal. In some embodiments, there are at least two rear cameras, one of which is a main camera, a depth-of-field camera, a wide-angle camera, and a telephoto camera, so as to realize the integration of the main camera and the depth-of-field camera to realize the background blur function. Integrated with a wide-angle camera to achieve panoramic shooting and VR (Virtual Reality, virtual reality) shooting functions or other fusion shooting functions. In some embodiments, camera assembly 1306 may also include a flash. The flash can be a single color temperature flash or a dual color temperature flash. Dual color temperature flash refers to a combination of warm light flash and cold light flash, which can be used for light compensation under different color temperatures.
音频电路1307可以包括麦克风和扬声器。麦克风用于采集用户及环境的声波,并将声波转换为电信号输入至处理器1301进行处理,或者输入至射频电路1304以实现语音通信。出于立体声采集或降噪的目的,麦克风可以为多个,分别设置在终端的不同部位。麦克风还可以是阵列麦克风或全向采集型麦克风。扬声器则用于将来自处理器1301或射频电路1304的电信号转换为声波。扬声器可以是传统的薄膜扬声器,也可以是压电陶瓷扬声器。当扬声器是压电陶瓷扬声器时,不仅可以将电信号转换为人类可听见的声波,也可以将电信号转换为人类听不见的声波以进行测距等用途。在一些实施例中,音频电路1307还可以包括耳机插孔。Audio circuitry 1307 may include a microphone and speakers. The microphone is used to collect sound waves from the user and the environment, and convert the sound waves into electrical signals that are input to the processor 1301 for processing, or to the radio frequency circuit 1304 to implement voice communication. For the purpose of stereo collection or noise reduction, there can be multiple microphones, which are respectively installed at different parts of the terminal. The microphone can also be an array microphone or an omnidirectional collection microphone. The speaker is used to convert electrical signals from the processor 1301 or the radio frequency circuit 1304 into sound waves. The loudspeaker can be a traditional membrane loudspeaker or a piezoelectric ceramic loudspeaker. When the speaker is a piezoelectric ceramic speaker, it can not only convert electrical signals into sound waves that are audible to humans, but also convert electrical signals into sound waves that are inaudible to humans for purposes such as ranging. In some embodiments, audio circuitry 1307 may also include a headphone jack.
定位组件1308用于定位终端的当前地理位置,以实现导航或LBS(Location BasedService,基于位置的服务)。定位组件1308可以是基于美国的GPS(Global PositioningSystem,全球定位系统)、中国的北斗系统、俄罗斯的格雷纳斯系统或欧盟的伽利略系统的定位组件。The positioning component 1308 is used to locate the current geographical location of the terminal to implement navigation or LBS (Location Based Service). The positioning component 1308 may be a positioning component based on the American GPS (Global Positioning System, Global Positioning System), China's Beidou system, Russia's Galileo system, or the European Union's Galileo system.
电源1309用于为终端中的各个组件进行供电。电源1309可以是交流电、直流电、一次性电池或可充电电池。当电源1309包括可充电电池时,该可充电电池可以支持有线充电或无线充电。该可充电电池还可以用于支持快充技术。The power supply 1309 is used to power various components in the terminal. Power source 1309 may be AC, DC, disposable batteries, or rechargeable batteries. When the power source 1309 includes a rechargeable battery, the rechargeable battery may support wired charging or wireless charging. The rechargeable battery can also be used to support fast charging technology.
在一些实施例中,终端还包括有一个或多个传感器1310。该一个或多个传感器1310包括但不限于:加速度传感器1311、陀螺仪传感器1312、压力传感器1313、指纹传感器1314、光学传感器1315以及接近传感器1316。In some embodiments, the terminal also includes one or more sensors 1310. The one or more sensors 1310 include, but are not limited to: an acceleration sensor 1311, a gyroscope sensor 1312, a pressure sensor 1313, a fingerprint sensor 1314, an optical sensor 1315, and a proximity sensor 1316.
加速度传感器1311可以检测以终端建立的坐标系的三个坐标轴上的加速度大小。比如,加速度传感器1311可以用于检测重力加速度在三个坐标轴上的分量。处理器1301可以根据加速度传感器1311采集的重力加速度信号,控制显示屏1305以横向视图或纵向视图进行用户界面的显示。加速度传感器1311还可以用于游戏或者用户的运动数据的采集。The acceleration sensor 1311 can detect the acceleration on the three coordinate axes of the coordinate system established by the terminal. For example, the acceleration sensor 1311 can be used to detect the components of gravity acceleration on three coordinate axes. The processor 1301 can control the display screen 1305 to display the user interface in a horizontal view or a vertical view according to the gravity acceleration signal collected by the acceleration sensor 1311. The acceleration sensor 1311 can also be used to collect game or user motion data.
陀螺仪传感器1312可以检测终端的机体方向及转动角度,陀螺仪传感器1312可以与加速度传感器1311协同采集用户对终端的3D动作。处理器1301根据陀螺仪传感器1312采集的数据,可以实现如下功能:动作感应(比如根据用户的倾斜操作来改变UI)、拍摄时的图像稳定、游戏控制以及惯性导航。The gyro sensor 1312 can detect the body direction and rotation angle of the terminal, and the gyro sensor 1312 can cooperate with the acceleration sensor 1311 to collect the user's 3D movements on the terminal. Based on the data collected by the gyro sensor 1312, the processor 1301 can implement the following functions: motion sensing (such as changing the UI according to the user's tilt operation), image stabilization during shooting, game control, and inertial navigation.
压力传感器1313可以设置在终端的侧边框和/或显示屏1305的下层。当压力传感器1313设置在终端的侧边框时,可以检测用户对终端的握持信号,由处理器1301根据压力传感器1313采集的握持信号进行左右手识别或快捷操作。当压力传感器1313设置在显示屏1305的下层时,由处理器1301根据用户对显示屏1305的压力操作,实现对UI界面上的可操作性控件进行控制。可操作性控件包括按钮控件、滚动条控件、图标控件、菜单控件中的至少一种。The pressure sensor 1313 may be provided on the side frame of the terminal and/or on the lower layer of the display screen 1305 . When the pressure sensor 1313 is disposed on the side frame of the terminal, it can detect the user's holding signal of the terminal, and the processor 1301 performs left and right hand identification or quick operation based on the holding signal collected by the pressure sensor 1313. When the pressure sensor 1313 is provided on the lower layer of the display screen 1305, the processor 1301 controls the operability controls on the UI interface according to the user's pressure operation on the display screen 1305. The operability control includes at least one of a button control, a scroll bar control, an icon control, and a menu control.
指纹传感器1314用于采集用户的指纹,由处理器1301根据指纹传感器1314采集到的指纹识别用户的身份,或者,由指纹传感器1314根据采集到的指纹识别用户的身份。在识别出用户的身份为可信身份时,由处理器1301授权该用户执行相关的敏感操作,该敏感操作包括解锁屏幕、查看加密信息、下载软件、支付及更改设置等。指纹传感器1314可以被设置在终端的正面、背面或侧面。当终端上设置有物理按键或厂商Logo(商标)时,指纹传感器1314可以与物理按键或厂商Logo集成在一起。The fingerprint sensor 1314 is used to collect the user's fingerprint. The processor 1301 identifies the user's identity based on the fingerprint collected by the fingerprint sensor 1314, or the fingerprint sensor 1314 identifies the user's identity based on the collected fingerprint. When the user's identity is recognized as a trusted identity, the processor 1301 authorizes the user to perform relevant sensitive operations. The sensitive operations include unlocking the screen, viewing encrypted information, downloading software, making payments, and changing settings. The fingerprint sensor 1314 may be provided on the front, back or side of the terminal. When a physical button or manufacturer's logo (trademark) is provided on the terminal, the fingerprint sensor 1314 can be integrated with the physical button or manufacturer's logo.
光学传感器1315用于采集环境光强度。在一个实施例中,处理器1301可以根据光学传感器1315采集的环境光强度,控制显示屏1305的显示亮度。具体地,当环境光强度较高时,调高显示屏1305的显示亮度;当环境光强度较低时,调低显示屏1305的显示亮度。在另一个实施例中,处理器1301还可以根据光学传感器1315采集的环境光强度,动态调整摄像头组件1306的拍摄参数。The optical sensor 1315 is used to collect ambient light intensity. In one embodiment, the processor 1301 can control the display brightness of the display screen 1305 according to the ambient light intensity collected by the optical sensor 1315. Specifically, when the ambient light intensity is high, the display brightness of the display screen 1305 is increased; when the ambient light intensity is low, the display brightness of the display screen 1305 is decreased. In another embodiment, the processor 1301 can also dynamically adjust the shooting parameters of the camera assembly 1306 according to the ambient light intensity collected by the optical sensor 1315.
接近传感器1316,也称距离传感器,通常设置在终端的前面板。接近传感器1316用于采集用户与终端的正面之间的距离。在一个实施例中,当接近传感器1316检测到用户与终端的正面之间的距离逐渐变小时,由处理器1301控制显示屏1305从亮屏状态切换为息屏状态;当接近传感器1316检测到用户与终端的正面之间的距离逐渐变大时,由处理器1301控制显示屏1305从息屏状态切换为亮屏状态。The proximity sensor 1316, also called a distance sensor, is usually provided on the front panel of the terminal. The proximity sensor 1316 is used to collect the distance between the user and the front of the terminal. In one embodiment, when the proximity sensor 1316 detects that the distance between the user and the front of the terminal gradually becomes smaller, the processor 1301 controls the display screen 1305 to switch from the bright screen state to the closed screen state; when the proximity sensor 1316 detects that the user When the distance from the front of the terminal gradually increases, the processor 1301 controls the display screen 1305 to switch from the screen-off state to the screen-on state.
本领域技术人员可以理解,图13中示出的结构并不构成对终端的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。Those skilled in the art can understand that the structure shown in Figure 13 does not constitute a limitation of the terminal, and may include more or fewer components than shown, or combine certain components, or adopt different component arrangements.
在示例性实施例中,还提供了一种计算机设备,该计算机设备包括处理器和存储器,该存储器中存储有至少一条计算机程序。该至少一条计算机程序由一个或者一个以上处理器加载并执行,以使该计算机设备实现上述任一种重影检测的方法。In an exemplary embodiment, a computer device is also provided. The computer device includes a processor and a memory, and at least one computer program is stored in the memory. The at least one computer program is loaded and executed by one or more processors, so that the computer device implements any of the above ghost detection methods.
在示例性实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条计算机程序,该至少一条计算机程序由计算机设备的处理器加载并执行,以使计算机实现上述任一种重影检测的方法。In an exemplary embodiment, a computer-readable storage medium is also provided. At least one computer program is stored in the computer-readable storage medium. The at least one computer program is loaded and executed by a processor of the computer device, so that the computer Methods to implement any of the above ghost detection methods.
在一种可能实现方式中,上述计算机可读存储介质可以是只读存储器(Read-OnlyMemory,ROM)、随机存取存储器(Random Access Memory,RAM)、只读光盘(Compact DiscRead-Only Memory,CD-ROM)、磁带、软盘和光数据存储设备等。In a possible implementation, the computer-readable storage medium may be a read-only memory (Read-OnlyMemory, ROM), a random access memory (Random Access Memory, RAM), a read-only compact disc (Compact DiscRead-Only Memory, CD). -ROM), tapes, floppy disks and optical data storage devices, etc.
在示例性实施例中,还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述任一种重影检测的方法。In an exemplary embodiment, a computer program product or computer program is also provided, the computer program product or computer program including computer instructions stored in a computer-readable storage medium. The processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device performs any of the above ghost detection methods.
需要说明的是,本申请所涉及的信息(包括但不限于用户设备信息、用户个人信息等)、数据(包括但不限于用于分析的数据、存储的数据、展示的数据等)以及信号,均为经用户授权或者经过各方充分授权的,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。例如,本申请中涉及到的网格、查询关键帧、匹配帧都是在充分授权的情况下获取的。It should be noted that the information (including but not limited to user equipment information, user personal information, etc.), data (including but not limited to data used for analysis, stored data, displayed data, etc.) and signals involved in this application, All are authorized by the user or fully authorized by all parties, and the collection, use and processing of relevant data need to comply with relevant laws, regulations and standards of relevant countries and regions. For example, the grids, query key frames, and matching frames involved in this application were all obtained with full authorization.
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。It should be understood that "plurality" mentioned in this article means two or more. "And/or" describes the relationship between associated objects, indicating that there can be three relationships. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. The character "/" generally indicates that the related objects are in an "or" relationship.
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above are only exemplary embodiments of the present application and are not intended to limit the present application. Any modifications, equivalent substitutions, improvements, etc. made within the principles of the present application shall be included in the protection scope of the present application. Inside.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211063801.3A CN117670785B (en) | 2022-08-31 | Ghost Detection Method for Point Cloud Map |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211063801.3A CN117670785B (en) | 2022-08-31 | Ghost Detection Method for Point Cloud Map |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117670785A true CN117670785A (en) | 2024-03-08 |
CN117670785B CN117670785B (en) | 2025-02-25 |
Family
ID=
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150254857A1 (en) * | 2014-03-10 | 2015-09-10 | Sony Corporation | Image processing system with registration mechanism and method of operation thereof |
CN108694882A (en) * | 2017-04-11 | 2018-10-23 | 百度在线网络技术(北京)有限公司 | Method, apparatus and equipment for marking map |
CN111462072A (en) * | 2020-03-30 | 2020-07-28 | 北京百度网讯科技有限公司 | Dot cloud picture quality detection method and device and electronic equipment |
CN111771229A (en) * | 2019-01-30 | 2020-10-13 | 百度时代网络技术(北京)有限公司 | Point cloud ghost effect detection system for automatic driving vehicle |
CN111795704A (en) * | 2020-06-30 | 2020-10-20 | 杭州海康机器人技术有限公司 | Method and device for constructing visual point cloud map |
EP3731181A1 (en) * | 2019-04-24 | 2020-10-28 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method and apparatus for point cloud registration, server and computer readable medium |
CN112241010A (en) * | 2019-09-17 | 2021-01-19 | 北京新能源汽车技术创新中心有限公司 | Positioning method, apparatus, computer equipment and storage medium |
CN112882056A (en) * | 2021-01-15 | 2021-06-01 | 西安理工大学 | Mobile robot synchronous positioning and map construction method based on laser radar |
CN113192197A (en) * | 2021-05-24 | 2021-07-30 | 北京京东乾石科技有限公司 | Method, device, equipment and storage medium for constructing global point cloud map |
US20210374904A1 (en) * | 2020-05-26 | 2021-12-02 | Baidu Usa Llc | Depth-guided video inpainting for autonomous driving |
CN113866779A (en) * | 2020-06-30 | 2021-12-31 | 上海商汤智能科技有限公司 | Point cloud data fusion method and device, electronic equipment and storage medium |
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150254857A1 (en) * | 2014-03-10 | 2015-09-10 | Sony Corporation | Image processing system with registration mechanism and method of operation thereof |
CN108694882A (en) * | 2017-04-11 | 2018-10-23 | 百度在线网络技术(北京)有限公司 | Method, apparatus and equipment for marking map |
CN111771229A (en) * | 2019-01-30 | 2020-10-13 | 百度时代网络技术(北京)有限公司 | Point cloud ghost effect detection system for automatic driving vehicle |
US20210327128A1 (en) * | 2019-01-30 | 2021-10-21 | Baidu Usa Llc | A point clouds ghosting effects detection system for autonomous driving vehicles |
EP3731181A1 (en) * | 2019-04-24 | 2020-10-28 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method and apparatus for point cloud registration, server and computer readable medium |
CN112241010A (en) * | 2019-09-17 | 2021-01-19 | 北京新能源汽车技术创新中心有限公司 | Positioning method, apparatus, computer equipment and storage medium |
CN111462072A (en) * | 2020-03-30 | 2020-07-28 | 北京百度网讯科技有限公司 | Dot cloud picture quality detection method and device and electronic equipment |
US20210374904A1 (en) * | 2020-05-26 | 2021-12-02 | Baidu Usa Llc | Depth-guided video inpainting for autonomous driving |
CN111795704A (en) * | 2020-06-30 | 2020-10-20 | 杭州海康机器人技术有限公司 | Method and device for constructing visual point cloud map |
CN113866779A (en) * | 2020-06-30 | 2021-12-31 | 上海商汤智能科技有限公司 | Point cloud data fusion method and device, electronic equipment and storage medium |
CN112882056A (en) * | 2021-01-15 | 2021-06-01 | 西安理工大学 | Mobile robot synchronous positioning and map construction method based on laser radar |
CN113192197A (en) * | 2021-05-24 | 2021-07-30 | 北京京东乾石科技有限公司 | Method, device, equipment and storage medium for constructing global point cloud map |
Non-Patent Citations (2)
Title |
---|
姜俊奎;张焱;李鹏宇;: "基于3D激光点云的同步定位与建图研究", 测绘与空间地理信息, no. 11, 25 November 2018 (2018-11-25) * |
殷江;林建德;孔令华;邹诚;游通飞;易定容;: "基于激光雷达的移动机器人三维建图与定位", 福建工程学院学报, no. 04, 25 August 2020 (2020-08-25) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11978219B2 (en) | Method and device for determining motion information of image feature point, and task performing method and device | |
WO2020253655A1 (en) | Method for controlling multiple virtual characters, device, apparatus, and storage medium | |
CN110599593B (en) | Data synthesis method, device, equipment and storage medium | |
CN111680758B (en) | Image training sample generation method and device | |
CN112150560B (en) | Method, device and computer storage medium for determining vanishing point | |
CN112396076B (en) | License plate image generation method, device and computer storage medium | |
CN110705614A (en) | Model training method and device, electronic equipment and storage medium | |
CN111192072A (en) | User grouping method and device and storage medium | |
CN110737692A (en) | data retrieval method, index database establishment method and device | |
WO2021218926A1 (en) | Image display method and apparatus, and computer device | |
CN112135256A (en) | Method, device and equipment for determining movement track and readable storage medium | |
CN117665740A (en) | LiDAR data processing method and device | |
CN117670785A (en) | Ghost detection method for point cloud maps | |
CN110660031B (en) | Image sharpening method and device and storage medium | |
CN113033590B (en) | Image feature matching method, device, image processing equipment and storage medium | |
CN114594885A (en) | Application icon management method, apparatus, device, and computer-readable storage medium | |
CN117670785B (en) | Ghost Detection Method for Point Cloud Map | |
CN117670986B (en) | Point cloud annotation method | |
CN111523876A (en) | Payment mode display method, device and system and storage medium | |
CN111444945A (en) | Sample information filtering method and device, computer equipment and storage medium | |
CN117635786B (en) | Point cloud processing method, device, equipment and storage medium | |
US12111998B2 (en) | Touch control method and apparatus, device and storage medium | |
CN113590877B (en) | Method and device for acquiring annotation data | |
CN113052408B (en) | Method and device for community aggregation | |
CN113409235B (en) | Vanishing point estimation method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |