CN117633539A - A groundwater drought identification method and device for uneven site distribution - Google Patents
A groundwater drought identification method and device for uneven site distribution Download PDFInfo
- Publication number
- CN117633539A CN117633539A CN202410102915.7A CN202410102915A CN117633539A CN 117633539 A CN117633539 A CN 117633539A CN 202410102915 A CN202410102915 A CN 202410102915A CN 117633539 A CN117633539 A CN 117633539A
- Authority
- CN
- China
- Prior art keywords
- groundwater
- drought
- data
- groundwater level
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003673 groundwater Substances 0.000 title claims abstract description 372
- 238000000034 method Methods 0.000 title claims abstract description 97
- 238000009826 distribution Methods 0.000 title claims abstract description 33
- 238000011160 research Methods 0.000 claims abstract description 47
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 39
- 238000012544 monitoring process Methods 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000001556 precipitation Methods 0.000 claims abstract description 19
- 238000010801 machine learning Methods 0.000 claims abstract description 11
- 230000008569 process Effects 0.000 claims description 24
- 238000004891 communication Methods 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 17
- 238000004590 computer program Methods 0.000 claims description 15
- 238000010276 construction Methods 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 10
- 238000000605 extraction Methods 0.000 claims description 5
- 230000009897 systematic effect Effects 0.000 abstract description 3
- 230000004044 response Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 238000004364 calculation method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000009933 burial Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000007476 Maximum Likelihood Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000011425 standardization method Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/10—Pre-processing; Data cleansing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Medical Informatics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域Technical field
本申请涉及干旱管理与应对的技术领域,具体而言,涉及一种面向不均匀站点分布的地下水干旱识别方法及装置。The present application relates to the technical field of drought management and response, specifically, to a groundwater drought identification method and device for uneven site distribution.
背景技术Background technique
地下水具有分布广泛、水温稳定、水质较优、易于开采的特点,是我国地表水资源匮乏及诸多城市的重要供水水源。随着气候变化和人类活动加剧,极端气象水文事件发生频繁,地下水干旱也时有发生。一旦发生长历时地下水干旱事件,将极大影响生态系统和经济社会的用水保障,因此准确有效地识别地下水干旱具有现实意义。Groundwater has the characteristics of wide distribution, stable water temperature, good water quality, and easy extraction. It is an important water supply source for many cities in my country where surface water resources are scarce. As climate change and human activities intensify, extreme meteorological and hydrological events occur frequently, and groundwater droughts also occur from time to time. Once a long-lasting groundwater drought event occurs, it will greatly affect the water security of the ecosystem and economic society. Therefore, it is of practical significance to accurately and effectively identify groundwater drought.
地下水监测站点作为水文站网的重要组成部分,在动态掌握地下水位和水量变化,促进地下水资源优化配置和科学管理等方面提供重要的基础数据支撑。然而,我国地下水监测站点密度依然偏小、空间分布仍不均匀,造成区域地下水监测结果不准确,无法全面了解地下水系统的状况和变化趋势。As an important part of the hydrological station network, groundwater monitoring stations provide important basic data support in dynamically grasping changes in groundwater levels and water volumes, and promoting optimal allocation and scientific management of groundwater resources. However, the density of groundwater monitoring sites in my country is still small and the spatial distribution is still uneven, resulting in inaccurate regional groundwater monitoring results and an inability to fully understand the status and changing trends of the groundwater system.
大量事实表明,浅层地下水位与地面高程密切相关,同时受降水年内分布和灌溉、生活等人类活动用水影响,浅层地下水位变化具有一定的规律性和周期性。面向不均匀地下水监测站点空间分布,如何充分利用站点基础信息和实测信息,建立一种地下水干旱时空识别方法,是准确、有效开展地下水干旱特征分析、合理优化配置地下水资源的重要前提。A large number of facts show that shallow groundwater levels are closely related to ground elevation. At the same time, affected by the annual distribution of precipitation and water use for irrigation, living and other human activities, changes in shallow groundwater levels have certain regularity and periodicity. Facing the uneven spatial distribution of groundwater monitoring sites, how to make full use of basic site information and actual measurement information to establish a spatiotemporal identification method of groundwater drought is an important prerequisite for accurately and effectively analyzing groundwater drought characteristics and rationally optimizing the allocation of groundwater resources.
发明内容Contents of the invention
本申请实施例的目的在于提供一种面向不均匀站点分布的地下水干旱识别方法及装置,用以解决了当前基于不均匀地下水监测站点数据进行区域地下水位插值存在系统误差,地下水干旱识别准确性差等问题。The purpose of the embodiments of this application is to provide a groundwater drought identification method and device for uneven site distribution, so as to solve the current problems of systematic errors in regional groundwater level interpolation based on uneven groundwater monitoring site data, poor groundwater drought identification accuracy, etc. question.
第一方面,提供了一种面向不均匀站点分布的地下水干旱识别方法,该方法可以包括:In the first aspect, a groundwater drought identification method for uneven site distribution is provided. The method can include:
获取目标研究区域在历史时间段的地下水数据;所述地下水数据是基于预设历史时间点的高程系对所述目标研究区域内历史时间段的原始监测地下水数据进行转换后得到的;所述地下水数据包括采集位置、采集时间、地下水高程和地下水位值;Obtain the groundwater data of the target research area in the historical time period; the groundwater data is obtained by converting the original monitoring groundwater data of the historical time period in the target research area based on the elevation system of the preset historical time point; the groundwater Data include collection location, collection time, groundwater elevation, and groundwater table values;
在对所述目标研究区域进行网格化后,基于机器学习算法和反距离插值法,对所述历史时间段内各网格点的地下水位数据进行重构,得到所述目标研究区域的区域地下水位序列;After gridding the target research area, based on the machine learning algorithm and inverse distance interpolation method, the groundwater level data of each grid point in the historical time period is reconstructed to obtain the area of the target research area. Groundwater level sequence;
基于预设的标准化降水指数构建算法,对所述区域地下水位序列进行标准化,得到标准化地下水位指数序列;Based on the preset standardized precipitation index construction algorithm, standardize the regional groundwater level sequence to obtain a standardized groundwater level index sequence;
基于游程理论,对所述标准化地下水位指数序列进行处理,确定目标研究区域内地下水干旱事件,并确定地下水干旱事件特征。Based on the run theory, the standardized groundwater level index sequence is processed to determine the groundwater drought events in the target study area and determine the characteristics of the groundwater drought events.
在一个可能的实现中,获取目标研究区域在历史时间段的地下水数据之前,所述方法还包括:In a possible implementation, before obtaining the groundwater data of the target study area in the historical time period, the method further includes:
获取所述目标研究区域内历史时间段的原始监测地下水数据;Obtain original monitoring groundwater data for the historical time period in the target research area;
采用3sigma处理算法,对所述原始监测地下水数据进行异常值处理,得到所述地下水数据。The 3sigma processing algorithm is used to perform outlier processing on the original monitored groundwater data to obtain the groundwater data.
在一个可能的实现中,对所述历史时间段内各网格点的地下水位数据进行处理,得到所述目标研究区域的区域地下水位序列,包括:In a possible implementation, the groundwater level data of each grid point in the historical time period is processed to obtain the regional groundwater level sequence of the target research area, including:
将所述历史时间段内各网格点的地下水位数据,输入训练好的XGBoost算法模型,得到所述XGBoost算法模型输出的区域地下水位月际序列,所述区域地下水位月际序列包括所述历史时间段内每个月的地下水位数据;The groundwater level data of each grid point in the historical time period is input into the trained XGBoost algorithm model to obtain the regional groundwater level monthly sequence output by the XGBoost algorithm model. The regional groundwater level monthly sequence includes the Groundwater level data for each month during the historical period;
采用反距离插值法,对所述目标研究区域中距离最近的n个地下水位监测站点对应的地下水数据进行计算,得到各网格点对应的日地下水数据;The inverse distance interpolation method is used to calculate the groundwater data corresponding to the n nearest groundwater level monitoring stations in the target research area, and obtain the daily groundwater data corresponding to each grid point;
基于所述各网格点对应的日地下水数据,计算月移动平均水位值,再用各网格点对应的日地下水位值减去月移动平均水位值,获取所述目标研究区域的区域地下水位月内序列,所述区域地下水位月内序列包括所述历史时间段内去月尺度趋势的地下水位月内波动数据;Based on the daily groundwater data corresponding to each grid point, calculate the monthly moving average water level value, and then subtract the monthly moving average water level value from the daily groundwater level value corresponding to each grid point to obtain the regional groundwater level of the target study area. Intra-monthly series, the intra-monthly series of regional groundwater levels includes intra-monthly fluctuation data of groundwater levels trending on a monthly scale within the historical time period;
将所述区域地下水位月际序列与所述区域地下水位月内序列中相应位置的数据相加,得到所述目标研究区域的区域地下水位序列,所述区域地下水位序列包括所述历史时间段内各网格点的逐日地下水位数据。The regional groundwater level intermonthly sequence and the data of the corresponding position in the regional groundwater level intramonthly sequence are added to obtain the regional groundwater level sequence of the target research area, and the regional groundwater level sequence includes the historical time period. Daily groundwater level data for each grid point within the grid.
在一个可能的实现中,基于预设的标准化降水指数构建算法,对所述区域地下水位序列进行处理,得到标准化地下水位指数序列,包括:In a possible implementation, based on a preset standardized precipitation index construction algorithm, the regional groundwater level sequence is processed to obtain a standardized groundwater level index sequence, including:
基于所述区域地下水位序列中各网格点对应的地下水位数据,计算多年移动平均水位值,再用各网格点对应的地下水位值减去多年移动平均水位值,获取所述目标研究区域的去年趋势的地下水位序列,所述去年趋势的地下水位序列包括去掉年趋势的地下水位波动数据;Based on the groundwater level data corresponding to each grid point in the regional groundwater level sequence, calculate the multi-year moving average water level value, and then subtract the multi-year moving average water level value from the groundwater level value corresponding to each grid point to obtain the target research area Last year's trend of groundwater level series, said last year's trend of groundwater level series includes groundwater level fluctuation data with the annual trend removed;
将所述去趋势的地下水位序列标准化后,参照标准化降水指数的构建流程,对标准化的去趋势的地下水位序列进行处理,得到标准化地下水位指数序列。After the detrended groundwater level sequence is standardized, the standardized detrended groundwater level sequence is processed with reference to the construction process of the standardized precipitation index to obtain a standardized groundwater level index sequence.
在一个可能的实现中,基于游程理论,对所述标准化地下水位指数序列进行处理,确定目标研究区域内地下水干旱事件,包括:In a possible implementation, based on run theory, the standardized groundwater level index sequence is processed to determine groundwater drought events in the target study area, including:
基于所述游程理论,若所述标准化地下水位指数序列中各时间点的标准化地下水位指标值小于或等于预设干旱阈值,则将相应标准化地下水位指标值对应的网格点确定为干旱格点;Based on the run theory, if the standardized groundwater level index value at each time point in the standardized groundwater level index sequence is less than or equal to the preset drought threshold, then the grid point corresponding to the corresponding standardized groundwater level index value is determined as a drought grid point ;
遍历目标研究区域,将对确定的干旱格点中的目标干旱格点进行空间合并,得到干旱斑块,其中,所述目标干旱格点为相邻的干旱格点;Traverse the target research area, and spatially merge the target drought grid points in the determined drought grid points to obtain drought patches, where the target drought grid points are adjacent drought grid points;
对相邻时间节点的干旱斑块在空间上进行叠加,确定出重叠区域的重叠面积,并将所述重叠面积大于预设面积的干旱斑块确定为同一地下水干旱事件,并赋予相同的干旱事件编号。The drought patches at adjacent time nodes are spatially superimposed to determine the overlapping area of the overlapping area, and the drought patches whose overlapping area is greater than the preset area are determined to be the same groundwater drought event and assigned the same drought event. serial number.
在一个可能的实现中,所述方法还包括:In a possible implementation, the method further includes:
对间隔时间为1个月的两个地下水干旱事件,若前一场地下水干旱事件的结束时间点与后一场地下水干旱事件的开始时间点之间存在空间交集,且在间隔月份的空间并集的干旱指数值小于第一干旱指数阈值R0,则将这两个地下水干旱事件合并为同一场地下水干旱事件;For two groundwater drought events with an interval of one month, if there is a spatial intersection between the end time point of the previous groundwater drought event and the start time point of the subsequent groundwater drought event, and the spatial union of the interval months The drought index value is less than the first drought index threshold R0, then the two groundwater drought events will be merged into the same groundwater drought event;
将干旱历时仅为1个月的地下水干旱事件,若干旱指数值大于第二干旱指数阈值R2,则将该场地下水干旱事件剔除。For a groundwater drought event that lasts only one month, if the drought index value is greater than the second drought index threshold R2, the groundwater drought event will be eliminated.
在一个可能的实现中,确定地下水干旱事件特征,包括:In one possible implementation, characterizing groundwater drought events includes:
对所述地下水干旱事件进行特征提取,得到地下水干旱事件特征;Perform feature extraction on the groundwater drought event to obtain characteristics of the groundwater drought event;
所述地下水干旱事件特征包括干旱开始时间、干旱结束时间、干旱历时、干旱平均面积、干旱最大面积、干旱笼罩面积、干旱平均强度、干旱最大强度和干旱烈度。The groundwater drought event characteristics include drought start time, drought end time, drought duration, average drought area, maximum drought area, drought coverage area, average drought intensity, maximum drought intensity and drought intensity.
第二方面,提供了一种面向不均匀站点分布的地下水干旱识别装置,该装置可以包括:In the second aspect, a groundwater drought identification device for uneven site distribution is provided. The device may include:
获取单元,用于获取目标研究区域在历史时间段的地下水数据;所述地下水数据是基于预设历史时间点的高程系对所述目标研究区域内历史时间段的原始监测地下水数据进行转换后得到的;所述地下水数据包括采集位置、采集时间、地下水高程和地下水位值;The acquisition unit is used to obtain the groundwater data of the target research area in the historical time period; the groundwater data is obtained by converting the original monitoring groundwater data of the historical time period in the target research area based on the elevation system of the preset historical time point. ; the groundwater data includes collection location, collection time, groundwater elevation and groundwater level value;
处理单元,用于在对所述目标研究区域进行网格化后,基于机器学习算法和反距离插值法,对所述历史时间段内各网格点的地下水位数据进行重构,得到所述目标研究区域的区域地下水位序列;The processing unit is used to reconstruct the groundwater level data of each grid point in the historical time period based on the machine learning algorithm and the inverse distance interpolation method after gridding the target research area to obtain the Regional groundwater level series for the target study area;
以及,基于预设的标准化降水指数构建算法,对所述区域地下水位序列进行标准化,得到标准化地下水位指数序列;And, based on a preset standardized precipitation index construction algorithm, standardize the regional groundwater level sequence to obtain a standardized groundwater level index sequence;
确定单元,用于基于游程理论,对所述标准化地下水位指数序列进行处理,确定目标研究区域内地下水干旱事件,并确定地下水干旱事件特征。The determination unit is used to process the standardized groundwater level index sequence based on run theory, determine groundwater drought events in the target study area, and determine characteristics of groundwater drought events.
第三方面,提供了一种电子设备,该电子设备包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;In a third aspect, an electronic device is provided. The electronic device includes a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory complete communication with each other through the communication bus;
存储器,用于存放计算机程序;Memory, used to store computer programs;
处理器,用于执行存储器上所存放的程序时,实现上述第一方面中任一所述的方法步骤。The processor is used to implement any of the method steps described in the first aspect when executing a program stored in the memory.
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面中任一所述的方法步骤。In a fourth aspect, a computer-readable storage medium is provided. A computer program is stored in the computer-readable storage medium. When the computer program is executed by a processor, the method steps described in any one of the above-mentioned first aspects are implemented.
本申请提供的一种面向不均匀站点分布的地下水干旱识别方法需要获取目标研究区域在历史时间段的地下水数据;地下水数据是基于预设历史时间点的高程系对目标研究区域内历史时间段的原始监测地下水数据进行转换后得到的;地下水数据包括采集位置、采集时间、地下水高程和地下水位值;在对目标研究区域进行网格化后,基于机器学习算法和反距离插值法,对历史时间段内各网格点的地下水位数据进行重构,得到目标研究区域的区域地下水位序列;基于预设的标准化降水指数构建算法,对区域地下水位序列进行标准化,得到标准化地下水位指数序列;基于游程理论,对标准化地下水位指数序列进行处理,确定目标研究区域内地下水干旱事件,并确定地下水干旱事件特征。该方法解决了当前基于不均匀地下水监测站点数据进行区域地下水位插值存在系统误差,地下水干旱识别准确性差等问题。The groundwater drought identification method provided by this application for uneven site distribution needs to obtain the groundwater data of the target study area in the historical time period; the groundwater data is based on the elevation system of the preset historical time point for the historical time period in the target study area. The original monitoring groundwater data is obtained after conversion; the groundwater data includes collection location, collection time, groundwater elevation and groundwater level value; after gridding the target research area, based on the machine learning algorithm and inverse distance interpolation method, the historical time The groundwater level data of each grid point in the segment is reconstructed to obtain the regional groundwater level sequence of the target research area; based on the preset standardized precipitation index construction algorithm, the regional groundwater level sequence is standardized to obtain the standardized groundwater level index sequence; based on Run theory is used to process the standardized groundwater level index sequence, determine groundwater drought events in the target study area, and determine the characteristics of groundwater drought events. This method solves the current problems of systematic errors in regional groundwater level interpolation based on uneven groundwater monitoring site data and poor groundwater drought identification accuracy.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings required to be used in the embodiments of the present application will be briefly introduced below. It should be understood that the following drawings only show some embodiments of the present application, therefore This should not be regarded as limiting the scope. For those of ordinary skill in the art, other relevant drawings can be obtained based on these drawings without exerting creative efforts.
图1为本申请实施例提供的一种面向不均匀站点分布的地下水干旱识别方法的流程示意图;Figure 1 is a schematic flow chart of a groundwater drought identification method for uneven site distribution provided by an embodiment of the present application;
图2为本申请实施例提供的另一种面向不均匀站点分布的地下水干旱识别方法的流程示意图;Figure 2 is a schematic flow chart of another groundwater drought identification method for uneven site distribution provided by the embodiment of the present application;
图3为本申请实施例提供的一种基于XGBoost算法的最优模型的预测数据与测试数据比对示意图;Figure 3 is a schematic diagram comparing prediction data and test data of an optimal model based on the XGBoost algorithm provided by the embodiment of the present application;
图4为本申请实施例提供的一种地下水位与地面高程的关系示意图;Figure 4 is a schematic diagram of the relationship between groundwater level and ground elevation provided by an embodiment of the present application;
图5为本申请实施例提供的一种面向不均匀站点分布的地下水干旱识别装置的结构示意图;Figure 5 is a schematic structural diagram of a groundwater drought identification device for uneven site distribution provided by an embodiment of the present application;
图6为本申请实施例提供的一种电子设备的结构示意图。FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,并不是全部的实施例。基于本申请实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are only some of the embodiments of the present application, not all of them. Based on the embodiments of this application, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of this application.
以下结合说明书附图对本申请的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本申请,并不用于限定本申请,并且在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。The preferred embodiments of the present application are described below in conjunction with the accompanying drawings. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present application, and are not used to limit the present application. In the absence of conflict, the present application The embodiments and features of the embodiments may be combined with each other.
图1为本申请实施例提供的一种面向不均匀站点分布的地下水干旱识别方法的流程示意图。如图1所示,该方法可以包括:Figure 1 is a schematic flowchart of a groundwater drought identification method for uneven site distribution provided by an embodiment of the present application. As shown in Figure 1, the method may include:
步骤S110、获取目标研究区域在历史时间段的地下水数据。Step S110: Obtain groundwater data of the target research area in the historical time period.
具体实施中,收集目标研究区域内历史时间段的地下水监测站点经度、纬度、高程等位置信息,以及,相应地下水监测站点监测到的采集位置、采集时间、地下水高程、地下水位值和埋深等原始地下水数据,以获取目标研究区域内历史时间段的原始地下水数据。In the specific implementation, the longitude, latitude, elevation and other location information of groundwater monitoring stations in the historical time period in the target research area are collected, as well as the collection location, collection time, groundwater elevation, groundwater level value and burial depth monitored by the corresponding groundwater monitoring station. Raw groundwater data to obtain raw groundwater data for historical time periods in the target study area.
之后,对收集的原始监测地下水数据进行清理,具体的:After that, the collected original monitoring groundwater data is cleaned, specifically:
首先,对原始地下水数据进行合理性检查,包括年、月、日、经纬度范围、高程范围等。对地下水水位或埋深监测数据异常值进行判断处理,移除或更改明显错误的离群数据点。First, conduct a rationality check on the original groundwater data, including year, month, day, longitude and latitude range, elevation range, etc. Judge and process outliers in groundwater level or burial depth monitoring data, and remove or change obviously erroneous outlier data points.
在一个具体的实施例中,采用3sigma处理算法,对原始地下水数据进行异常值处理,得到地下水数据。即,当X>μ+3σ或X<μ-3σ时,初步判断数据为异常值,其中μ为站点数据平均值,σ为站点数据标准差。In a specific embodiment, a 3sigma processing algorithm is used to perform outlier processing on the original groundwater data to obtain groundwater data. That is, when X>μ+3σ or X<μ-3σ, the data are initially judged to be outliers, where μ is the site data mean and σ is the site data standard deviation.
其次,基于预设历史时间点的高程系对目标研究区域内历史时间段的原始监测地下水数据进行转换,即将地面高程数据和地下水监测数据统一转换为同一高程系的地面高程和地下水水位数据,得到可进行处理的地下水数据。Secondly, the original monitored groundwater data of the historical time period in the target study area is converted based on the elevation system of the preset historical time point, that is, the ground elevation data and groundwater monitoring data are uniformly converted into the ground elevation and groundwater level data of the same elevation system, and we get Groundwater data available for processing.
步骤S120、在对目标研究区域进行网格化后,基于机器学习算法和反距离插值法,对历史时间段内各网格点的地下水位数据进行重构,得到目标研究区域的区域地下水位序列。Step S120: After gridding the target research area, reconstruct the groundwater level data of each grid point in the historical time period based on the machine learning algorithm and the inverse distance interpolation method to obtain the regional groundwater level sequence of the target research area. .
具体实施中,执行以下步骤:In specific implementation, perform the following steps:
步骤1、对目标研究区域进行网格化后,综合考虑计算机性能、时间成本等因素,选择合适的监督学习算法。以年、月、经度、纬度、地面高程作为输入特征,以浅层地下水位作为标签数据,训练并筛选模型参数。将研究区域研究时段内的年、月、经度、纬度、地面高程等基本信息网格化,输入到训练好的模型中,计算得到各网格点重构的地下水位月尺度数据。其中,可以选择的监督学习算法包括多元线性回归、决策树、支持向量机、神经网络等。Step 1. After gridding the target research area, select an appropriate supervised learning algorithm by comprehensively considering computer performance, time cost and other factors. Use year, month, longitude, latitude, and ground elevation as input features, and shallow groundwater level as label data to train and filter model parameters. Basic information such as year, month, longitude, latitude, and ground elevation within the study area during the study period is gridded and input into the trained model to calculate the reconstructed monthly scale data of groundwater levels at each grid point. Among them, the supervised learning algorithms that can be selected include multiple linear regression, decision trees, support vector machines, neural networks, etc.
本申请采用分布式梯度增强库XGBoost。XGBoost是梯度提升树模型的一种,串行地生成模型,取所有模型的和为输出。同时,将损失函数作二阶泰勒展开,利用损失函数的二阶导数信息,优化损失函数,根据损失函数是否减小来贪心的选择是否分裂节点。具体构建模型时,采用网格搜索和5折交叉验证方法,对树的最大深度和树的总数进行参数优选,并根据决定系数R2选择最优参数,R2的计算公式如下所示:This application uses the distributed gradient enhancement library XGBoost. XGBoost is a kind of gradient boosting tree model. It generates models serially and takes the sum of all models as the output. At the same time, perform a second-order Taylor expansion of the loss function, use the second-order derivative information of the loss function to optimize the loss function, and greedily choose whether to split the node according to whether the loss function decreases. When specifically building the model, grid search and 5-fold cross-validation methods were used to optimize parameters for the maximum depth of the tree and the total number of trees, and the optimal parameters were selected based on the determination coefficient R 2. The calculation formula for R 2 is as follows:
式中,yi是验证集中的实际值,ypred是模型预测值。In the formula, y i is the actual value in the validation set, and y pred is the model predicted value.
具体的,将历史时间段内各网格点的地下水位数据,输入训练好的XGBoost算法模型,得到XGBoost算法模型输出的区域地下水位月际序列,其中,区域地下水位月际序列可以包括历史时间段内每个月的地下水位数据。Specifically, the groundwater level data of each grid point in the historical time period is input into the trained XGBoost algorithm model to obtain the monthly series of regional groundwater levels output by the XGBoost algorithm model. The monthly series of regional groundwater levels can include historical time. Groundwater level data for each month in the segment.
步骤2、采用反距离插值法,对目标研究区域中距离最近的n个地下水位监测站点对应的地下水数据进行计算,得到各网格点对应的日地下水数据;基于各网格点对应的日地下水数据,计算月移动平均水位值,再用各网格点对应的日地下水位值减去月移动平均水位值,获取目标研究区域的区域地下水位月内序列。Step 2. Use the inverse distance interpolation method to calculate the groundwater data corresponding to the n nearest groundwater level monitoring stations in the target study area, and obtain the daily groundwater data corresponding to each grid point; based on the daily groundwater data corresponding to each grid point Data, calculate the monthly moving average water level value, and then subtract the monthly moving average water level value from the daily groundwater level value corresponding to each grid point to obtain the monthly sequence of regional groundwater levels in the target study area.
具体的,可以采用移动平均法,计算各网格点对应的移动平均水位值,如各网格点30日移动平均水位值,再用各网格点地下水位值减去移动平均值,最终得到去月尺度趋势的地下水位月内波动值。Specifically, the moving average method can be used to calculate the moving average water level value corresponding to each grid point, such as the 30-day moving average water level value of each grid point, and then subtract the moving average from the groundwater level value of each grid point, and finally obtain Intra-month fluctuation values of groundwater levels detrended on a monthly scale.
其中,移动平均法的计算公式如下所示:Among them, the calculation formula of the moving average method is as follows:
式中,MAt是在时间点t处的移动平均值,Xt是在时间点t处的序列值,n是移动平均窗口的大小,表示计算平均值时考虑的数据点数量。该步骤中t取30(约1个月)。In the formula, MA t is the moving average at time point t, X t is the sequence value at time point t, and n is the size of the moving average window, indicating the number of data points considered when calculating the average. In this step, t is taken as 30 (about 1 month).
步骤3、将区域地下水位月际序列与区域地下水位月内序列中相应位置的数据相加,得到目标研究区域的区域地下水位序列。Step 3: Add the regional groundwater level intermonthly series and the regional groundwater level intramonthly series data at corresponding positions to obtain the regional groundwater level series of the target study area.
其中,该区域地下水位序列可以包括历史时间段内各网格点的逐日地下水位数据。Among them, the groundwater level series in this region can include daily groundwater level data of each grid point in the historical time period.
步骤S130、基于预设的标准化降水指数构建算法,对区域地下水位序列进行标准化,得到标准化地下水位指数序列。Step S130: Standardize the regional groundwater level sequence based on a preset standardized precipitation index construction algorithm to obtain a standardized groundwater level index sequence.
受长时间地下水开采等人为因素影响,地下水位可能会持续下降,给地下水干旱识别造成困难。采用移动平均法,计算各网格点多年移动平均水位值,具体的:将移动平均法公式中的t取1100(约3年),即可得到各网格点多年移动平均水位值。Affected by human factors such as long-term groundwater extraction, groundwater levels may continue to decline, making it difficult to identify groundwater droughts. The moving average method is used to calculate the multi-year moving average water level value of each grid point. Specifically: taking t in the moving average method formula as 1100 (about 3 years), the multi-year moving average water level value of each grid point can be obtained.
之后,基于各网格点对应的多年移动平均水位值和区域地下水位序列中各地下水位数据,获取目标研究区域的去年趋势的地下水位序列,具体的,将区域地下水位序列中各地下水位数据(各网格点地下水位数据)减去多年移动平均水位值,最终得到去掉多年趋势的地下水位波动值,以此去除长期的人类活动因素影响,即去年趋势的地下水位序列可以包括去掉年趋势的地下水位波动数据。After that, based on the multi-year moving average water level value corresponding to each grid point and each groundwater level data in the regional groundwater level sequence, the last year's trend of groundwater level series in the target study area is obtained. Specifically, each groundwater level data in the regional groundwater level series is obtained. (Groundwater level data at each grid point) is subtracted from the multi-year moving average water level value, and finally the groundwater level fluctuation value with the multi-year trend removed is obtained to remove the influence of long-term human activity factors. That is, the groundwater level series with last year's trend can include removing the annual trend. groundwater level fluctuation data.
之后,将去趋势的地下水位序列标准化后,参照标准化降水指数的构建流程,对标准化的去趋势的地下水位序列进行处理,得到标准化地下水位指数序列。Afterwards, after standardizing the detrended groundwater level sequence, refer to the construction process of the standardized precipitation index, process the standardized detrended groundwater level sequence to obtain the standardized groundwater level index sequence.
具体的,标准化地下水位指数的构建流程为:以各网格点为基本空间单元,选取Gamma和皮尔逊Ⅲ型作为基本分布类型。Specifically, the construction process of the standardized groundwater level index is as follows: taking each grid point as the basic spatial unit, and selecting Gamma and Pearson III type as the basic distribution type.
首先,对各旬地下水平均水位进行拟合,比较均方误差以优选分布并采用极大似然法估计参数;First, the average groundwater level in each decade was fitted, the mean square errors were compared to optimize the distribution, and the maximum likelihood method was used to estimate parameters;
再,将地下水旬平均水位的累积分布转化为标准正态分布,通过逆标准化,求得标准化地下水位指数。其中,Gamma分布的概率密度函数如下:Then, the cumulative distribution of the ten-day average groundwater level is converted into a standard normal distribution, and the standardized groundwater level index is obtained through inverse normalization. Among them, the probability density function of the Gamma distribution is as follows:
式中,x是随机变量的取值,α是形状参数,β是尺度参数,是Gamma函数,它是形状参数α的阶乘的推广。In the formula, x is the value of the random variable, α is the shape parameter, β is the scale parameter, is the Gamma function, which is the factorial generalization of the shape parameter α.
皮尔逊Ⅲ型分布的概率密度函数如下所示:The probability density function of the Pearson type III distribution is as follows:
式中,x是随机变量的取值,a是形状参数,b是尺度参数,c是偏斜参数。In the formula, x is the value of the random variable, a is the shape parameter, b is the scale parameter, and c is the skew parameter.
均方误差用于衡量模型预测值与实际观测值之间的差异的平方和,计算公式如下所示:The mean square error measures the sum of squares of the differences between model predictions and actual observations, and is calculated as follows:
式中,Yi是第i个观测数据点的实际值,是第i个观测数据点的模型预测值,n是观测数据点的数量。In the formula, Y i is the actual value of the i-th observation data point, is the model predicted value of the i-th observed data point, and n is the number of observed data points.
步骤S140、基于游程理论,对标准化地下水位指数序列进行处理,确定目标研究区域内地下水干旱事件,并确定地下水干旱事件特征。Step S140: Based on the run theory, process the standardized groundwater level index sequence to determine the groundwater drought event in the target research area and determine the characteristics of the groundwater drought event.
具体实施中,参照标准化降水指数的干旱等级划分标准,设置预设干旱阈值R1。In the specific implementation, the preset drought threshold R1 is set with reference to the drought grade classification standard of the standardized precipitation index.
依托游程理论,筛选出各时间点地下水干旱格点,并利用n×n栅格,遍历研究区域:若标准化地下水位指数序列中各时间点的标准化地下水位指标值大于预设干旱阈值R1,则将相应标准化地下水位指标值对应的当前网格点确定为非干旱格点。Based on the run theory, the groundwater drought grid points at each time point are screened out, and the n×n grid is used to traverse the study area: if the standardized groundwater level index value at each time point in the standardized groundwater level index sequence is greater than the preset drought threshold R1, then The current grid point corresponding to the corresponding standardized groundwater level index value is determined as a non-drought grid point.
若标准化地下水位指数序列中各时间点的标准化地下水位指标值小于或等于预设干旱阈值,则将相应标准化地下水位指标值对应的当前网格点确定为干旱格点。If the standardized groundwater level index value at each time point in the standardized groundwater level index sequence is less than or equal to the preset drought threshold, the current grid point corresponding to the corresponding standardized groundwater level index value is determined as a drought grid point.
此时遍历目标研究区域,若相邻格点对应要素仍为干旱格点,则合并形成干旱斑块,并保留各时间点大于预设最小斑块面积的干旱斑块;At this time, the target research area is traversed. If the corresponding elements of adjacent grid points are still drought grid points, they will be merged to form drought patches, and drought patches that are larger than the preset minimum patch area at each time point will be retained;
将相邻时间点的干旱斑块,在空间上进行叠加,确定出重叠区域的重叠面积;Dry patches at adjacent time points are spatially superimposed to determine the overlapping area of the overlapping areas;
若重叠面积大于预设最小重叠面积,则确定相邻时间点的干旱斑块属于一场地下水干旱事件,并赋予相同的干旱事件编号。If the overlapping area is greater than the preset minimum overlapping area, the drought patches at adjacent time points are determined to belong to a groundwater drought event and given the same drought event number.
其中,预设最小重叠面积可以根据如下公式确定:Among them, the preset minimum overlap area can be determined according to the following formula:
式中,1和0分别表示本场地下水干旱事件与上一场地下水干旱事件存在和不存在空间上的重叠;At和At-1分别表示本场地下水干旱事件和上一场地下水干旱事件的斑块面积;AST表示研究区域面积;MinAt,t-1表示本场干旱事件与上一场地下水干旱事件斑块面积的最小重合面积;α表示基于研究区域面积的最小重合百分比;β表示基于干旱事件面积的最小重合百分比。In the formula, 1 and 0 respectively represent the existence and non-existence of spatial overlap between the current groundwater drought event and the previous groundwater drought event; A t and A t-1 respectively represent the current groundwater drought event and the previous groundwater drought event. The patch area of Represents the minimum coincidence percentage based on drought event area.
在一些实施例中,该方法还可以包括:In some embodiments, the method may further include:
对间隔时间为1个月的两个地下水干旱事件,若前一场地下水干旱事件的结束时间点与后一场地下水干旱事件的开始时间点之间存在空间交集,且在间隔月份的空间并集的干旱指数值小于第一干旱指数阈值R0,则将这两个地下水干旱事件合并为同一场地下水干旱事件;For two groundwater drought events with an interval of one month, if there is a spatial intersection between the end time point of the previous groundwater drought event and the start time point of the subsequent groundwater drought event, and the spatial union of the interval months The drought index value is less than the first drought index threshold R0, then the two groundwater drought events will be merged into the same groundwater drought event;
将干旱历时仅为1个月的地下水干旱事件,若干旱指数值大于第二干旱指数阈值R2,则将该场地下水干旱事件剔除。For a groundwater drought event that lasts only one month, if the drought index value is greater than the second drought index threshold R2, the groundwater drought event will be eliminated.
在一些实施例中,确定目标研究区域内地下水干旱事件之后,还可以对地下水干旱事件进行特征提取,得到地下水干旱事件特征;In some embodiments, after determining the groundwater drought event in the target study area, feature extraction of the groundwater drought event can also be performed to obtain the characteristics of the groundwater drought event;
地下水干旱事件特征可以包括干旱开始时间、干旱结束时间、干旱历时、干旱平均面积、干旱最大面积、干旱笼罩面积、干旱平均强度、干旱最大强度和干旱烈度。Groundwater drought event characteristics can include drought start time, drought end time, drought duration, average drought area, maximum drought area, drought envelope area, average drought intensity, maximum drought intensity and drought intensity.
其中,干旱历时为一场地下水干旱事件从开始到结束所经历的全部时间;干旱平均面积为一场地下水干旱事件历时内各时间点占据面积的平均值;干旱最大面积为一场地下水干旱事件历时内各时间点占据面积的最大值;干旱笼罩面积为一场地下水干旱事件历时内各时间点占据网格点的并集面积;干旱烈度为一场地下水干旱事件历时内各时间点各网格点干旱指数的累计值;干旱平均强度为一场地下水干旱事件的干旱烈度与干旱历时的比;干旱最大强度为一场干旱事件历时内各时间点各网格点干旱指数的最小值。Among them, the drought duration is the entire time from the beginning to the end of a groundwater drought event; the average drought area is the average area occupied at each time point during the duration of a groundwater drought event; the maximum drought area is the duration of a groundwater drought event The maximum value of the area occupied by each time point in The cumulative value of the drought index; the average drought intensity is the ratio of the drought intensity of a groundwater drought event to the drought duration; the maximum drought intensity is the minimum value of the drought index at each grid point at each time point within the duration of a drought event.
在一个例子中,如图2所示的另一种不均匀站点分布的地下水干旱识别方法的流程示意图,该方法可以包括:In one example, as shown in Figure 2 is a flow diagram of another groundwater drought identification method with uneven site distribution, the method may include:
(1)选取淮北平原作为研究区域,收集2005~2020年《中国地质环境监测地下水位年鉴》,筛选河南、山东、安徽、江苏4省浅层地下水资料。由于所有地下水监测站点均具有较详细的地址、高程、地下水位或埋深信息,但仅部分地下水监测站点存在经纬度信息,因此采用谷歌地图等平台提供的地理编码服务将地下水监测站点地址信息转换为WGS84经纬度坐标信息。(1) Select the Huaibei Plain as the research area, collect the "China Geological Environment Monitoring Groundwater Level Yearbook" from 2005 to 2020, and screen shallow groundwater data in the four provinces of Henan, Shandong, Anhui, and Jiangsu. Since all groundwater monitoring sites have relatively detailed address, elevation, groundwater level or burial depth information, but only some groundwater monitoring sites have latitude and longitude information, geocoding services provided by platforms such as Google Maps are used to convert the address information of groundwater monitoring sites into WGS84 latitude and longitude coordinate information.
(2)对地下水监测站点基础信息和监测信息的原始数据进行合理性检查,包括年、月、日、经纬度范围、高程范围等。采用3sigma方法筛选地下水水位或埋深监测数据异常值,并逐个进行判断处理,移除或更改明显错误的离群数据点。将地面高程数据和地下水监测数据统一转换为1985年黄海高程系的地面高程和地下水水位数据。(2) Conduct a rationality check on the basic information of groundwater monitoring sites and the original data of monitoring information, including year, month, day, longitude and latitude range, elevation range, etc. Use the 3sigma method to screen outliers in groundwater level or burial depth monitoring data, and perform judgment and processing one by one to remove or change obviously erroneous outlier data points. The ground elevation data and groundwater monitoring data are uniformly converted into the ground elevation and groundwater level data of the 1985 Yellow Sea elevation system.
(3)基于XGBoost算法,重构区域地下水位月际序列,以年、月、经度、纬度、地面高程作为输入特征,以浅层地下水位作为标签数据,采用网格搜索和5折交叉验证方法,对树的最大深度和树的总数进行参数优选,其中树的最大深度选取范围为1~10,树的总数选取范围为100~1000,参数优选过程如表1所示。通过对比100组参数的测试结果可知,当最大深度取7,树的总数取300时,模型效果最好,最优模型的预测数据与测试数据比对如图3所示。将研究区域研究时段内的年、月、经度、纬度、地面高程等基本信息网格化(空间分辨率为0.25°×0.25°),输入到训练好的模型中,计算得到各网格点重构的地下水位月尺度数据。(3) Based on the XGBoost algorithm, reconstruct the monthly series of regional groundwater levels, using year, month, longitude, latitude, and ground elevation as input features, using shallow groundwater levels as label data, and using grid search and 5-fold cross-validation methods. , perform parameter optimization on the maximum depth of the tree and the total number of trees. The maximum depth of the tree is selected in the range of 1 to 10, and the total number of trees is selected in the range of 100 to 1000. The parameter optimization process is shown in Table 1. By comparing the test results of 100 sets of parameters, it can be seen that when the maximum depth is 7 and the total number of trees is 300, the model has the best effect. The prediction data and test data of the optimal model are compared as shown in Figure 3. The basic information such as year, month, longitude, latitude, and ground elevation within the study area during the study period is gridded (spatial resolution is 0.25° × 0.25°), input into the trained model, and the weight of each grid point is calculated. Monthly data on groundwater levels of the structure.
表1XGBoost算法参数优选Table 1 XGBoost algorithm parameter selection
(4)针对研究区域内各网格点,搜寻距离最近的8个浅层地下水位监测站点,采用反距离插值法计算各网格点地下水位。在此基础上,采用移动平均法计算各网格点30日移动平均水位值,再用各网格点地下水位值减去移动平均值最终得到去月尺度趋势的地下水位月内波动值。(4) For each grid point in the study area, search for the 8 nearest shallow groundwater level monitoring stations, and use the inverse distance interpolation method to calculate the groundwater level at each grid point. On this basis, the moving average method is used to calculate the 30-day moving average water level value of each grid point, and then the groundwater level value of each grid point is subtracted from the moving average value to finally obtain the monthly fluctuation value of the groundwater level trend on a monthly scale.
(5)将基于机器学习算法重构的区域地下水位月际序列与基于反距离插值法重构的区域地下水位月内序列相加,计算得到重构的区域地下水位序列。(5) Add the intermonthly series of regional groundwater levels reconstructed based on the machine learning algorithm and the intramonthly series of regional groundwater levels reconstructed based on the inverse distance interpolation method to calculate the reconstructed regional groundwater level series.
(6)采用移动平均法计算各网格点1100日(约3年)的移动平均水位值,再用各网格点地下水位值减去移动平均值得到去掉多年趋势的地下水位波动值。采用Min-Max标准化方法,将去趋势的地下水位时间序列标准化。选取Gamma和皮尔逊Ⅲ型作为基本分布类型,对各网格点各旬标准化地下水位平均值进行拟合,根据拟合的均方误差优选分布并采用极大似然法估计参数,将地下水旬平均水位的累积频率分布转化为标准正态分布,通过逆标准化求得标准化地下水位指数。(6) Use the moving average method to calculate the moving average water level value of each grid point for 1100 days (about 3 years), and then subtract the moving average value from the groundwater level value of each grid point to obtain the groundwater level fluctuation value minus the multi-year trend. The detrended groundwater level time series was standardized using the Min-Max standardization method. Gamma and Pearson type III were selected as the basic distribution types, and the standardized groundwater level averages of each grid point in each decade were fitted. The distribution was optimized based on the fitted mean square error and the maximum likelihood method was used to estimate the parameters. The cumulative frequency distribution of the mean water level is transformed into a standard normal distribution, and the standardized groundwater level index is obtained by inverse normalization.
(7)参照《气象干旱等级》(GB/T 20481—2017)标准化降水指数的无旱与轻旱划分界限设置阈值R1为-0.5,依托游程理论,筛选出各时间点地下水干旱格点,并利用3×3栅格遍历研究区域,若相邻格点对应要素仍为干旱格点,则合并形成干旱斑块,参考《区域性干旱过程监测评估方法》(QX/T597—2021),仅保留研究区域各时间点大于10个网格的干旱斑块(约为研究区域面积的5%)。将相邻时间点的干旱斑块在空间上进行叠加,参考《区域性干旱过程监测评估方法》(QX/T597-2021)及相关文献,将α设定为1%,β设定为20%,若重叠面积大于最小重叠面积,则认为二者属于同一场干旱事件,并赋予相同的干旱事件编号。(7) Referring to the "Meteorological Drought Level" (GB/T 20481-2017) standardized precipitation index to divide the boundaries between no drought and light drought, set the threshold R1 to -0.5, and rely on the run theory to screen out the groundwater drought grid points at each time point, and Use a 3×3 grid to traverse the study area. If the corresponding elements of adjacent grid points are still drought grid points, they will be merged to form drought patches. Refer to the "Regional Drought Process Monitoring and Assessment Method" (QX/T597-2021), and only retain Dry patches larger than 10 grids at each time point in the study area (approximately 5% of the study area). Drought patches at adjacent time points are spatially superimposed. Refer to the "Regional Drought Process Monitoring and Assessment Method" (QX/T597-2021) and related literature, and set α to 1% and β to 20%. , if the overlapping area is greater than the minimum overlapping area, they are considered to belong to the same drought event and given the same drought event number.
(8)参照《气象干旱等级》(GB/T 20481—2017)标准化降水指数的轻旱与中旱划分界限设置阈值R2为-1.0,R0设置为0。(8) Set the threshold R2 as -1.0 and R0 as 0 for the division of light drought and moderate drought based on the standardized precipitation index of "Meteorological Drought Levels" (GB/T 20481-2017).
对于间隔时间为1个月的2个干旱事件,若前一场干旱事件的最后一个干旱时点与后一场干旱事件的第一个干旱时点之间存在空间交集,且在间隔月份的空间并集干旱指数值小于0,则将这2个干旱事件合并为1个干旱事件。对于干旱历时仅为1个月的干旱事件,若指数值大于-1.0,则该干旱事件被剔除。For two drought events with an interval of one month, if there is a spatial intersection between the last drought time point of the previous drought event and the first drought time point of the subsequent drought event, and in the space of the interval month If the union drought index value is less than 0, these two drought events will be merged into one drought event. For drought events that last only one month, if the index value is greater than -1.0, the drought event will be eliminated.
(9)依托游程理论,提取地下水干旱事件特征,包括开始时间、结束时间、历时、平均面积、最大面积、笼罩面积、平均强度、最大强度、烈度等。(9) Relying on the run theory, extract the characteristics of groundwater drought events, including start time, end time, duration, average area, maximum area, coverage area, average intensity, maximum intensity, intensity, etc.
由于浅层地下水位与地面高程具有很好的相关性,因此如图4所示,通过重现浅层地下水位Water table(纵轴)与地面高程DEM(横轴)的关系说明本申请识别方法的优势,其中,实测的浅层地下水位数据为obs、反距离插值法计算得到的数据为idw、XGBoost算法计算得到的数据为xgboost、本文算法计算得到的数据为xgboost_idw。从图中可知,根据实测数据关系,绝大多数浅层地下水位低于地面高程(在1:1线下方),但反距离插值法计算得到的地下水位变动范围大,存在大量地下水位高于地面高程的情况,不合理。XGBoost算法的计算结果基本在实测数据的覆盖范围内,反映了客观规律但对时间波动性体现不足。本文方法同时吸收了XGBoost算法和反距离插值方法的优点,既能正确解析浅层地下水位与地面高程、经纬度、年、月之间的关系,体现浅层地下水位随时间的中长期变化,又能较好地反映浅层地下水位随时间的短时波动。从图4上看,本申请的计算结果大多在实测数据的覆盖范围内,且与XGBoost算法相比,本申请的计算结果对实测数据的覆盖范围更广、波动性更强,体现了本文方法的优势。Since the shallow groundwater level has a good correlation with the ground elevation, as shown in Figure 4, the identification method of this application is illustrated by reproducing the relationship between the shallow groundwater level Water table (vertical axis) and the ground elevation DEM (horizontal axis). The advantages of It can be seen from the figure that according to the relationship between measured data, the vast majority of shallow groundwater levels are lower than the ground elevation (below the 1:1 line), but the range of groundwater levels calculated by the inverse distance interpolation method is large, and there are a large number of groundwater levels higher than The ground elevation is unreasonable. The calculation results of the XGBoost algorithm are basically within the coverage of the measured data, reflecting the objective laws but insufficiently reflecting the time fluctuation. The method in this paper absorbs the advantages of the XGBoost algorithm and the inverse distance interpolation method at the same time. It can not only correctly analyze the relationship between shallow groundwater levels and ground elevation, longitude and latitude, year, and month, but also reflect the medium and long-term changes of shallow groundwater levels over time. It can better reflect the short-term fluctuation of shallow groundwater level over time. From Figure 4, most of the calculation results of this application are within the coverage of the measured data. Compared with the XGBoost algorithm, the calculation results of this application have a wider coverage of the measured data and are more volatile, which reflects the method of this article. The advantages.
在重构淮北平原浅层地下水位序列的基础上,开展淮北平原地下水干旱的时空识别,2005~2020年淮北平原地下水干旱时空识别结果如表2所示。On the basis of reconstructing the shallow groundwater level sequence of the Huaibei Plain, the spatiotemporal identification of groundwater drought in the Huaibei Plain was carried out. The results of the spatiotemporal identification of groundwater drought in the Huaibei Plain from 2005 to 2020 are shown in Table 2.
表2Table 2
经过干旱时空识别分析,获取淮北平原历时超过3旬的地下水干旱事件共37场,根据《中国水旱灾害防御公报》《中国气候公报》《中国气象灾害年鉴》《中国气象年鉴》等文献资料,获取与“淮北”、“黄淮”、“黄淮冬麦区”、“河南”、“山东”、“安徽”、“江苏”等地区有关的实际干旱事件共26场(大多指向降水量偏低、土壤失墒、农作物减产等气象和农业干旱);以实际干旱事件作为比较基准,经时空识别的地下水干旱事件能够完全覆盖17场实际干旱事件的发生时段(占比65.4%),部分覆盖5场实际干旱事件的发生时段(占比19.2%),4场实际干旱事件的发生时段未能覆盖(占比15.4%),识别的地下水干旱事件对实际干旱事件的发生体现良好。After drought spatial and temporal identification analysis, a total of 37 groundwater drought events lasting more than 30 years in the Huaibei Plain were obtained. According to the "China Flood and Drought Disaster Prevention Bulletin", "China Climate Bulletin", "China Meteorological Disaster Yearbook", "China Meteorological Yearbook" and other literature, A total of 26 actual drought events related to "Huaibei", "Huanghuai", "Huanghuai Winter Wheat Area", "Henan", "Shandong", "Anhui", "Jiangsu" and other regions were obtained (mostly pointing to low precipitation, Soil moisture loss, crop yield reduction and other meteorological and agricultural droughts); using actual drought events as the comparison benchmark, the groundwater drought events identified through time and space can completely cover the occurrence period of 17 actual drought events (accounting for 65.4%), and partially cover 5 events. The occurrence period of actual drought events (accounting for 19.2%) was not covered by the occurrence period of 4 actual drought events (accounting for 15.4%). The identified groundwater drought events reflected the occurrence of actual drought events well.
与上述方法对应的,本申请实施例还提供一种面向不均匀站点分布的地下水干旱识别装置,如图5所示,该装置包括:Corresponding to the above method, embodiments of the present application also provide a groundwater drought identification device for uneven site distribution. As shown in Figure 5, the device includes:
获取单元510,用于获取目标研究区域在历史时间段的地下水数据;所述地下水数据是基于预设历史时间点的高程系对所述目标研究区域内历史时间段的原始监测地下水数据进行转换后得到的;所述地下水数据包括采集位置、采集时间、地下水高程和地下水位值;The acquisition unit 510 is used to obtain the groundwater data of the target research area in the historical time period; the groundwater data is converted from the original monitoring groundwater data in the historical time period in the target research area based on the elevation system of the preset historical time point. Obtained; the groundwater data includes collection location, collection time, groundwater elevation and groundwater level value;
处理单元520,用于在对所述目标研究区域进行网格化后,基于机器学习算法和反距离插值法,对所述历史时间段内各网格点的地下水位数据进行重构,得到所述目标研究区域的区域地下水位序列;The processing unit 520 is configured to, after gridding the target research area, reconstruct the groundwater level data of each grid point in the historical time period based on the machine learning algorithm and the inverse distance interpolation method to obtain the Describe the regional groundwater level sequence of the target study area;
以及,基于预设的标准化降水指数构建算法,对所述区域地下水位序列进行标准化,得到标准化地下水位指数序列;And, based on a preset standardized precipitation index construction algorithm, standardize the regional groundwater level sequence to obtain a standardized groundwater level index sequence;
确定单元530,用于基于游程理论,对所述标准化地下水位指数序列进行处理,确定目标研究区域内地下水干旱事件,并确定地下水干旱事件特征。The determination unit 530 is configured to process the standardized groundwater level index sequence based on the run theory, determine the groundwater drought event in the target study area, and determine the characteristics of the groundwater drought event.
本申请上述实施例提供的面向不均匀站点分布的地下水干旱识别装置的各功能单元的功能,可以通过上述各方法步骤来实现,因此,本申请实施例提供的面向不均匀站点分布的地下水干旱识别装置中的各个单元的具体工作过程和有益效果,在此不复赘述。The functions of each functional unit of the groundwater drought identification device for uneven site distribution provided by the above embodiments of the present application can be realized through the above method steps. Therefore, the groundwater drought identification for uneven site distribution provided by the embodiment of the present application The specific working processes and beneficial effects of each unit in the device will not be described again here.
本申请实施例还提供了一种电子设备,如图6所示,包括处理器610、通信接口620、存储器630和通信总线640,其中,处理器610,通信接口620,存储器630通过通信总线640完成相互间的通信。The embodiment of the present application also provides an electronic device, as shown in Figure 6 , including a processor 610, a communication interface 620, a memory 630, and a communication bus 640. The processor 610, the communication interface 620, and the memory 630 communicate through the communication bus 640. complete mutual communication.
存储器630,用于存放计算机程序;Memory 630, used to store computer programs;
处理器610,用于执行存储器630上所存放的程序时,实现如下步骤:The processor 610 is used to execute the program stored on the memory 630 to implement the following steps:
获取目标研究区域在历史时间段的地下水数据;所述地下水数据是基于预设历史时间点的高程系对所述目标研究区域内历史时间段的原始监测地下水数据进行转换后得到的;所述地下水数据包括采集位置、采集时间、地下水高程和地下水位值;Obtain the groundwater data of the target research area in the historical time period; the groundwater data is obtained by converting the original monitoring groundwater data of the historical time period in the target research area based on the elevation system of the preset historical time point; the groundwater Data include collection location, collection time, groundwater elevation, and groundwater table values;
在对所述目标研究区域进行网格化后,基于机器学习算法和反距离插值法,对所述历史时间段内各网格点的地下水位数据进行重构,得到所述目标研究区域的区域地下水位序列;After gridding the target research area, based on the machine learning algorithm and inverse distance interpolation method, the groundwater level data of each grid point in the historical time period is reconstructed to obtain the area of the target research area. Groundwater level sequence;
基于预设的标准化降水指数构建算法,对所述区域地下水位序列进行标准化,得到标准化地下水位指数序列;Based on the preset standardized precipitation index construction algorithm, standardize the regional groundwater level sequence to obtain a standardized groundwater level index sequence;
基于游程理论,对所述标准化地下水位指数序列进行处理,确定目标研究区域内地下水干旱事件,并确定地下水干旱事件特征。Based on the run theory, the standardized groundwater level index sequence is processed to determine the groundwater drought events in the target study area and determine the characteristics of the groundwater drought events.
上述提到的通信总线可以是外设部件互连标准(Peripheral ComponentInterconnect,PCI)总线或扩展工业标准结构(Extended Industry StandardArchitecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。The communication bus mentioned above may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc. The communication bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
通信接口用于上述电子设备与其他设备之间的通信。The communication interface is used for communication between the above-mentioned electronic devices and other devices.
存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。The memory may include random access memory (Random Access Memory, RAM) or non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory. Optionally, the memory may also be at least one storage device located far away from the aforementioned processor.
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital SignalProcessing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。The above-mentioned processor can be a general-purpose processor, including a central processing unit (CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (Digital SignalProcessing, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
由于上述实施例中电子设备的各器件解决问题的实施方式以及有益效果可以参见图1所示的实施例中的各步骤来实现,因此,本申请实施例提供的电子设备的具体工作过程和有益效果,在此不复赘述。Since the problem-solving implementation and beneficial effects of each component of the electronic device in the above embodiments can be achieved by referring to the steps in the embodiment shown in FIG. 1, therefore, the specific working process and beneficial effects of the electronic device provided by the embodiments of the present application are The effect will not be described in detail here.
在本申请提供的又一实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述实施例中任一所述的面向不均匀站点分布的地下水干旱识别方法。In yet another embodiment provided by this application, a computer-readable storage medium is also provided. The computer-readable storage medium stores instructions, which when run on a computer, cause the computer to execute any one of the above embodiments. The described groundwater drought identification method for uneven site distribution.
在本申请提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中任一所述的面向不均匀站点分布的地下水干旱识别方法。In yet another embodiment provided by the present application, a computer program product containing instructions is also provided, which when run on a computer causes the computer to perform the groundwater analysis for uneven site distribution described in any of the above embodiments. Drought identification methods.
本领域内的技术人员应明白,本申请实施例中的实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例中可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例中可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments in the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the embodiments of the present application may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, embodiments of the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code. .
本申请实施例中是参照根据本申请实施例中实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine, such that the instructions executed by the processor of the computer or other programmable data processing device produce a use A device for realizing the functions specified in a process or processes in a flowchart and/or a block or blocks in a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions The device implements the functions specified in a process or processes in the flowchart and/or in a block or blocks in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device. Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
尽管已描述了本申请实施例中的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附本申请意欲解释为包括优选实施例以及落入本申请实施例中范围的所有变更和修改。Although the preferred embodiments among the embodiments of the present application have been described, those skilled in the art may make additional changes and modifications to these embodiments once the basic inventive concepts are understood. Therefore, the appended application is intended to be construed to include the preferred embodiments and all changes and modifications that fall within the scope of the embodiments of the application.
显然,本领域的技术人员可以对本申请实施例中实施例进行各种改动和变型而不脱离本申请实施例中实施例的精神和范围。这样,倘若本申请实施例中实施例的这些修改和变型属于本申请实施例中及其等同技术的范围之内,则本申请实施例中也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the embodiments of the present application without departing from the spirit and scope of the embodiments of the present application. In this way, if these modifications and variations of the embodiments of the present application fall within the scope of the embodiments of the present application and equivalent technologies, then the embodiments of the present application are also intended to include these modifications and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410102915.7A CN117633539B (en) | 2024-01-25 | 2024-01-25 | Underground water drought identification method and device for uneven site distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410102915.7A CN117633539B (en) | 2024-01-25 | 2024-01-25 | Underground water drought identification method and device for uneven site distribution |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117633539A true CN117633539A (en) | 2024-03-01 |
CN117633539B CN117633539B (en) | 2024-04-12 |
Family
ID=90035795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410102915.7A Active CN117633539B (en) | 2024-01-25 | 2024-01-25 | Underground water drought identification method and device for uneven site distribution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117633539B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180165616A1 (en) * | 2016-12-13 | 2018-06-14 | John Sun | System and Method for Producing and Distributing Information Relevant to Water Events |
KR102073768B1 (en) * | 2019-10-16 | 2020-02-05 | 한국수자원공사 | Drought information supply system based on portal |
CN111504425A (en) * | 2020-04-24 | 2020-08-07 | 中国水利水电科学研究院 | Method and device for estimating ecological underground water level in arid plain area |
CN112765808A (en) * | 2021-01-15 | 2021-05-07 | 黄河勘测规划设计研究院有限公司 | Ecological drought monitoring and evaluating method |
CN112837169A (en) * | 2021-01-11 | 2021-05-25 | 黄河勘测规划设计研究院有限公司 | A method for comprehensive monitoring, early warning and assessment of drought in gridded drought process |
EP3986128A1 (en) * | 2019-06-24 | 2022-04-27 | BASF Agro Trademarks GmbH | Decision system for crop efficiency product application using remote sensing based soil parameters |
CN115081952A (en) * | 2022-07-28 | 2022-09-20 | 中国农业大学 | Regional agricultural drought identification method and system |
CA3154014A1 (en) * | 2021-03-30 | 2022-09-30 | Climate Check, Inc. | Climate-based risk rating |
CN116805439A (en) * | 2023-06-27 | 2023-09-26 | 武汉大学 | A drought forecasting method and system based on artificial intelligence and atmospheric circulation mechanism |
CN116842435A (en) * | 2023-06-07 | 2023-10-03 | 广西大学 | SWAP-based field drought three-dimensional measurement and time-space evolution visualization method |
-
2024
- 2024-01-25 CN CN202410102915.7A patent/CN117633539B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180165616A1 (en) * | 2016-12-13 | 2018-06-14 | John Sun | System and Method for Producing and Distributing Information Relevant to Water Events |
EP3986128A1 (en) * | 2019-06-24 | 2022-04-27 | BASF Agro Trademarks GmbH | Decision system for crop efficiency product application using remote sensing based soil parameters |
KR102073768B1 (en) * | 2019-10-16 | 2020-02-05 | 한국수자원공사 | Drought information supply system based on portal |
CN111504425A (en) * | 2020-04-24 | 2020-08-07 | 中国水利水电科学研究院 | Method and device for estimating ecological underground water level in arid plain area |
CN112837169A (en) * | 2021-01-11 | 2021-05-25 | 黄河勘测规划设计研究院有限公司 | A method for comprehensive monitoring, early warning and assessment of drought in gridded drought process |
CN112765808A (en) * | 2021-01-15 | 2021-05-07 | 黄河勘测规划设计研究院有限公司 | Ecological drought monitoring and evaluating method |
CA3154014A1 (en) * | 2021-03-30 | 2022-09-30 | Climate Check, Inc. | Climate-based risk rating |
CN115081952A (en) * | 2022-07-28 | 2022-09-20 | 中国农业大学 | Regional agricultural drought identification method and system |
CN116842435A (en) * | 2023-06-07 | 2023-10-03 | 广西大学 | SWAP-based field drought three-dimensional measurement and time-space evolution visualization method |
CN116805439A (en) * | 2023-06-27 | 2023-09-26 | 武汉大学 | A drought forecasting method and system based on artificial intelligence and atmospheric circulation mechanism |
Also Published As
Publication number | Publication date |
---|---|
CN117633539B (en) | 2024-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zohaib et al. | Satellite-based global-scale irrigation water use and its contemporary trends | |
CN112200358B (en) | Landslide level prediction method, landslide level prediction device, landslide level prediction equipment and storage medium | |
Smithers et al. | A methodology for the estimation of short duration design storms in South Africa using a regional approach based on L-moments | |
CN113344291B (en) | Urban inland inundation range forecasting method, device, medium and equipment | |
Ramirez et al. | Extending SC-PDSI-PM with neural network regression using GLDAS data and Permutation Feature Importance | |
CN112200354A (en) | Landslide prediction method, device, equipment and storage medium | |
Jiang et al. | Predictability of precipitation over the conterminous US based on the CMIP5 multi-model ensemble | |
Yao et al. | Projection of suitability for the typical agro-ecological types in Central Asia under four SSP-RCP scenarios | |
CN117784290B (en) | A sudden drought early warning method and system based on Bayesian neural network | |
Carvalho et al. | Spatio-Temporal modeling of data imputation for daily rainfall series in Homogeneous Zones | |
CN116796649A (en) | A method and device for spatial downscaling of SPEI coarse-resolution data based on machine learning | |
CN110008439A (en) | A spatiotemporal integrated interpolation algorithm for rainfall data based on matrix decomposition | |
CN116341841A (en) | Runoff forecast error correction method, device, equipment, medium and program product | |
CN112668238A (en) | Rainfall processing method, device, equipment and storage medium | |
CN118797355B (en) | Training method of rainfall runoff prediction model apparatus, device, medium, and product | |
Schilling et al. | Evaluation of flood metrics across the Mississippi-Atchafalaya River Basin and their relation to flood damages | |
CN112347706B (en) | Runoff reconstruction method, apparatus, computer equipment and storage medium | |
CN112016744B (en) | Forest fire prediction method and device based on soil moisture and storage medium | |
CN117668768B (en) | Vegetation restoration potential evaluation method based on sliding window similar habitat potential model | |
CN118917483A (en) | Flood runoff forecasting method and system based on deep learning | |
Ghamghami et al. | Modeling a drought index using a nonparametric approach | |
CN118916695A (en) | Global drought space-time variation AI prediction method, system and equipment | |
CN117633539A (en) | A groundwater drought identification method and device for uneven site distribution | |
CN115689067A (en) | Solar irradiance prediction method, device and storage medium | |
Munshi | The Hurst exponent of precipitation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |