CN117607286A - 一种精神活性物质检测方法、荧光探针及其应用 - Google Patents

一种精神活性物质检测方法、荧光探针及其应用 Download PDF

Info

Publication number
CN117607286A
CN117607286A CN202311494017.2A CN202311494017A CN117607286A CN 117607286 A CN117607286 A CN 117607286A CN 202311494017 A CN202311494017 A CN 202311494017A CN 117607286 A CN117607286 A CN 117607286A
Authority
CN
China
Prior art keywords
fluorescence
detecting
rose bengal
fluorescent probe
psychoactive substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311494017.2A
Other languages
English (en)
Inventor
余筱筱
宋杰
高建红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Branch Of National Drug Laboratory Zhejiang Drug Technology Center
Hubei Normal University
Original Assignee
Zhejiang Branch Of National Drug Laboratory Zhejiang Drug Technology Center
Hubei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Branch Of National Drug Laboratory Zhejiang Drug Technology Center, Hubei Normal University filed Critical Zhejiang Branch Of National Drug Laboratory Zhejiang Drug Technology Center
Priority to CN202311494017.2A priority Critical patent/CN117607286A/zh
Publication of CN117607286A publication Critical patent/CN117607286A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • G01N30/8679Target compound analysis, i.e. whereby a limited number of peaks is analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/065Preparation using different phases to separate parts of sample

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本申请涉及一种精神活性物质检测方法、荧光探针及其应用,方法为基于荧光分析法,对精神活性物质进行检测;其中,所述荧光分析法中的荧光探针为孟加拉玫瑰红。本申请提供的精神活性物质检测方法,创造性地将孟加拉玫瑰红作为荧光探针,建立对含量低、基质复杂、缺少活性位点、氧化还原性较弱的精神活性物质的荧光传感方法,实现对其的快速有效检测;相对于大型仪器的精神活性物质的检测,本申请基于孟加拉玫瑰红的荧光检测方法,具有成本低、操作简单并且响应速度快的特点。

Description

一种精神活性物质检测方法、荧光探针及其应用
技术领域
本申请涉及精神活性物质检测技术领域,具体涉及一种精神活性物质检测方法。
背景技术
利培酮(C23H27FN4O2)是新一代苯并异噁唑类抗精神病药物,可有效治疗急性、慢性精神分裂症及精神分裂相关的情感性障碍;奥氮平(C17H20N4S)是一种用于治疗精神分裂症和双相情感障碍抗第二代精神病药物;阿立哌唑(C23H27Cl2N3O2)是一种用于治疗精神分裂症的第三代抗精神病药物;芬太尼(C22H28N2O)是具有精神活性效果的阿片类受体激动剂,临床上常被用作强效的镇痛剂和麻醉剂。以上这些精神活性物质在人体内的浓度过低会导致治疗失败;过高则会导致不良反应。因此,监测患者体内的精神活性物质浓度,有利于为患者的精准用药提供依据,在准确反映疗效和不良反应发生率的临床诊断研究中具有重要意义。
然而,这些精神活性物质在实际样品中的含量低且基质复杂,目前检测方法主要依托样品前处理技术结合液质联用等大型分析仪器进行测定,但是仪器昂贵、操作繁琐,不利于临床推广。同时在仪器和试剂的获取、维护和人员培训方面也较为昂贵。因此,临床一线迫切需要开发能在短时间内出具结果且成本低廉的即时检测方法。
荧光分析法是基于荧光特殊的性质,利用荧光分光光度仪将荧光现象转换为荧光光谱,并根据荧光光谱波长及强度的变化,可以实现对待测物的定性和定量分析。具有操作简便、取样量少、灵敏度高、应用范围广和检出限低等优点,常用于痕量物质的分析检测。但是这些精神活性物质的活性位点较少、氧化还原性较弱,能建立的荧光传感方法特别少。
孟加拉玫瑰红的学名为酸性红94,易于获得、成本低廉,还具有抗菌性等优点,现有技术中,其主要用作银量法的吸附指示剂和生活染色剂,用于抗肿瘤和抗病毒综合症的治疗。
发明内容
基于上述表述,本申请提供了精神活性物质检测方法,以解决现有技术中精神活性物质的检测存在的仪器、试剂、维护和人员培训方面成本昂贵,操作繁琐、不利于临床推广的技术问题。
本申请解决上述技术问题的技术方案如下:
一种精神活性物质检测方法,基于荧光分析法,对精神活性物质进行检测;
其中,所述荧光分析法中的荧光探针为孟加拉玫瑰红;
所述精神活性物质为利培酮、奥氮平、阿立哌唑或芬太尼。
本申请创造性地将孟加拉玫瑰红作为荧光探针应用于生物样本中的精神活性物质的荧光分析中。
一些实施例中,本申请提供的精神活性物质检测方法,基于荧光分析法对生物样本或药片中的精神活性物质进行检测。优选地,所述生物样本为尿液。一些实施例中,所述荧光分析法中的缓冲溶液为酸性缓冲溶液;优选地,所述酸性缓冲溶液为氨基乙酸-HCl溶液、氯乙酸-NaOH溶液、甲酸-NaOH溶液、CH3COOH-CH3COONa溶液或H2PO4+HPO4 2-溶液;优选地,所述荧光分析法中的缓冲溶液为醋酸-醋酸钠缓冲溶液。
一些实施例中,所述醋酸-醋酸钠缓冲溶液的PH值为2-6.5。优选地,所述醋酸-醋酸钠缓冲溶液的PH值为3-5。更优选地,所述醋酸-醋酸钠缓冲溶液的PH值为3.9。较具体地,在25℃下用容量瓶配制1M醋酸钠溶液100mL和1M的醋酸溶液500mL,取90mL醋酸钠溶液和410mL的醋酸溶液配制成500mL的缓冲溶液,并用PH计调节至3.9,制得所述醋酸-醋酸钠缓冲溶液。
本申请选择黄杂蒽型染料孟加拉玫瑰红作为荧光探针,它由芳香族碳-卤键和含氧共轭骨架组成,在特定pH条件下,具体地,在酸性条件下呈现亲水性的单阴离子结构,可以与此pH条件下利培酮、奥氮平、阿立哌唑或芬太尼等精神活性物质呈现强正电荷的氢原子发生氢键缔合作用形成复合物,使其荧光猝灭,在一定浓度范围内具有线性关系,达到检测这四种精神活性物质的目的。
一些实施例中,所述荧光分析法中的激发光谱的波长范围为480nm-530nm。优选地,所述荧光分析法中的激发光谱的波长范围为500nm-510nm。更优选地,所述荧光分析法中的激发光谱的波长为504nm。
第二方面,本申请提供了一种荧光探针,为孟加拉玫瑰红。
第三方面,本申请提供了孟加拉玫瑰红荧光探针在精神活性物质检测领域中的应用;优选地,本申请提供了孟加拉玫瑰红荧光探针在精神活性物质检测领域中的应用;更优选地,本申请提供了孟加拉玫瑰红荧光探针在尿液或药片中精神活性物质检测方面的应用。
本申请提供的精神活性物质检测方法,创造性地将孟加拉玫瑰红作为荧光探针,建立对含量低、基质复杂、缺少活性位点、氧化还原性较弱的精神活性物质的荧光传感方法,实现对其的快速有效检测;
相对于大型仪器的精神活性物质的检测,本申请基于孟加拉玫瑰红的荧光检测方法,具有成本低、操作简单以及响应速度快的特点。
附图说明
图1为孟加拉玫瑰红的荧光光谱、发射光谱和紫外吸收光谱图;
图2为本申请实施例提供的孟加拉玫瑰红检测利培酮的荧光光谱及性能分析标准曲线图;
图3为本申请实施例提供的孟加拉玫瑰红检测奥氮平的荧光光谱及性能分析标准曲线图;
图4为本申请实施例提供的孟加拉玫瑰红检测阿立哌唑的荧光光谱及性能分析标准曲线图;
图5为本申请实施例提供的孟加拉玫瑰红检测芬太尼的性能分析标准曲线图;
图6为本申请实施例提供的通过LC-MS/MS检测实际样品尿液和药片的色谱图;
图7为本申请实施例提供的孟加拉玫瑰红检测精神活性物质的离子干扰性能检测图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的实施例对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
孟加拉玫瑰红的荧光光谱、发射光谱和紫外吸收光谱如图1所示,荧光最大激发波长为λex为504nm、荧光最大发射波长λem为573nm,紫外-可见吸收波长Abs介于两者之间。
下面结合实施例对本申请提供的技术方案进行详细说明。
实施例1
采用本申请提供的精神活性物质检测方法对不同浓度的利培酮溶液进行荧光分析检测,具体包括以下步骤:
步骤S1、配制孟加拉玫瑰红母液:
称取适量的孟加拉玫瑰红固体,使用超纯水稀释至1mM,将孟加拉玫瑰红母液置于棕色瓶中避光保存待用;
步骤S2、配制利培酮溶液:
称取适量的利培酮固体,使用乙醇稀释至1mg·mL-1,将利培酮母液置于4℃的冰箱中以备进一步使用。
步骤S3、配制酸性缓冲溶液:
在25℃下用容量瓶配制1M醋酸钠溶液100mL和1M的醋酸溶液500mL,取90mL醋酸钠溶液和410mL的醋酸溶液配制成500mL的缓冲溶液,并用pH计调节溶液pH值到3.9。
上述步骤S1-步骤S3没有先后之分。
步骤S4、在各试管中分别加入pH值为3.9的醋酸和醋酸钠缓冲溶液,100μL 1mM的孟加拉玫瑰红,再往上述试管中分别加入不同体积的利培酮母液,配制至所需浓度,最终的体系溶液的体积为4mL;以未加精神活性物质的其它溶液作为空白样品。涡旋后在室温下放置10min后,在504nm的激发光下,用荧光分光光度计检测所有标准样品的荧光光谱,计算得到标准溶液样品的浓度与573nm处荧光强度与空白样品的差值。
图2中,图2(a)为基于孟加拉玫瑰红的荧光传感法检测不同浓度利培酮溶液的荧光光谱;
图2(b)为基于孟加拉玫瑰红的荧光传感法检测不同浓度利培酮溶液的性能分析标准曲线图;
在最佳条件下,基于孟加拉玫瑰红的荧光传感方法检测不同浓度利培酮溶液的性能分析标准曲线图。图2(b)为不同浓度利培酮加入时,F0-F与利培酮浓度建立的标准曲线,F0-F=14.18c+8069,结果可知利培酮的线性范围为300μg·L-1-1500μg·L-1,检出限(LODLimit Of Detection)为103μg·L-1,相对标准偏差(RSD)=1.9%(n=11,300μgL-1)。
实施例2
采用本申请提供的精神活性物质检测方法对不同浓度的奥氮平溶液进行荧光分析检测,具体包括以下步骤:
实施例2与实施例1相同,区别在于被荧光传感检测的对象为奥氮平溶液。
图3中,图3(a)为基于孟加拉玫瑰红的荧光传感法检测奥氮平的荧光光谱;
图3(b)为基于孟加拉玫瑰红的荧光传感法检测奥氮平的性能分析标准曲线图,F0-F与奥氮平浓度建立的标准曲线,F0-F=17.80c+3437,结果可知奥氮平的线性范围为200-800μg·L-1,LOD为82μg·L-1,RSD=0.88%(n=11,200μg·L-1)。
实施例3
采用本申请提供的精神活性物质检测方法对不同浓度的阿立哌唑溶液进行荧光分析检测,具体包括以下步骤:
实施例3与实施例1相同,区别在于被荧光传感检测的精神活性物质为阿立哌唑溶液。
图4中,图4(a)为基于孟加拉玫瑰红的荧光传感法检测不同浓度的阿立哌唑的荧光光谱图;
图4(b)为基于孟加拉玫瑰红的荧光传感法检测不同浓度的阿立哌唑的性能分析标准曲线图,F0-F与阿立哌唑浓度建立的标准曲线,
F0-F=18.03c+6066,结果可知阿立哌唑的线性范围为200-2000μg·L-1,LOD为81μg·L-1,RSD=1.3%(n=11,200μg·L-1)。
实施例4
采用本申请提供的精神活性物质检测方法对不同浓度的芬太尼溶液进行荧光分析检测,具体包括以下步骤:
实施例4与实施例1相同,区别在于被荧光传感检测的对象为芬太尼溶液。
图5中,图5(a)为基于孟加拉玫瑰红的荧光传感法检测芬太尼的荧光光谱;
图5(b)为基于孟加拉玫瑰红的荧光传感法检测芬太尼的性能分析标准曲线图,F0-F与芬太尼浓度建立的荧光标准曲线,F0-F=24.33c-410,结果可知芬太尼的线性范围为125-500μg·L-1,LOD为60μg·L-1,RSD=1.7%(n=11,125μg·L-1)。
实施例5
采用本申请提供的精神活性物质检测方法对尿液样本进行荧光分析检测,具体包括以下步骤:
实施例5与实施例1相同,区别在于步骤S2,精神活动物质溶液为生物样本尿液,由正常人自愿提供,尿液样品参照文献方法处理:
通过高速离心后,将上清液再用0.22μm的水性滤头过滤,用醋酸和醋酸钠缓冲稀释至100倍检测,在室温下放置10min后,在504nm的激发下,用荧光分光光度计检测所有标准样品的荧光光谱。
阿立哌唑口崩片(每片含5mg阿立哌唑)购买自当地药店。
取4片阿立哌唑用研钵研磨成细粉,取适量阿立哌唑口崩片粉末用乙醇稀释为50mg·L-1,超声20分钟后,用0.22μm的水性滤头过滤,用醋酸和醋酸钠缓冲稀释至100倍检测。在室温下放置10min后,在504nm的激发下,用荧光分光光度计检测所有标准样品的荧光光谱。
在最佳实验条件下,利用孟加拉玫瑰红荧光探针对生物样品尿液中精神活性物质含量进行分析,验证该方法的实际可行性。表1为生物样品尿液中精神活性物质含量检测结果及加标回收率。正常尿液中,利培酮的加标回收率为85.5%-101.3%,相对标准偏差(RSD)在2.7%-5.6%之间;奥氮平的加标回收率为86.8%-109.2%,RSD在3.2%-6.9%之间;阿立哌唑的加标回收率为92.4%-110.3%,RSD在3.5%-5.4%之间。
表1人体尿液中精神活性物质的分析结果
在最佳实验条件下,用于LC-MS/MS阿立哌唑口崩片标样,利用孟加拉玫瑰红荧光探针对阿立哌唑口崩片中阿立哌唑含量进行分析,验证该方法的实际可行性。结果列于表2,在配制好的阿立哌唑溶液中测出了阿立哌唑的含量,通过换算得到每片阿立哌唑口崩片中含有5.27±0.23mg的阿立哌唑。采用t检验法考察了本申请提供的精神活性物质检测方法的检测值与标准参考值之间是否存在显著性差异,经计算获得的t值小于t检验临界值2.78(t0.05,4),本申请提供的精神活性物质检测方法的测定值与标准参考值吻合性良好,具有良好的准确性,结果表明孟加拉玫瑰红荧光探针具有检测尿液和药片中的精神活性物质方面的潜力。
为了印证本申请提供的精神活性物质检测方法的准确性,将采用本申请基于孟加拉玫瑰红进行荧光检测的方法与LC-MS/MS(Liquid chromatography-tandem massspectrometry液相色谱-串联质谱)液质联用检测方法的检测结果进行了对比。
图6为采用LC-MS/MS方法检测实际样品药片和尿液的色谱图,从结果上可以看出,尿液中没有检测出这四种精神活性物质,检测出每片阿立哌唑口崩片中含有5.54±0.04mg的阿立哌唑,与本申请中的荧光检测结果一致。
表2采用荧光分析法以及液质联用检测方法检测阿立哌唑口崩片中阿立哌唑的结果对比表
在最佳实验条件下,分别研究了5μg mL-1精神活性物质(利培酮,奥氮平,阿立哌唑,芬太尼),100μg mL-1阳离子(Na+,K+,Ca2+,Hg2+,Mg2+,Cu2+),100μg mL-1阴离子(NO3-,Cl-,SO4 2-,PO4 3-,CO3 2-)对RB检测精神活性物质的影响;同时在尿液基体样品中,存在多种生物小分子,故进一步考察了尿素,葡萄糖,甘氨酸,苏氨酸,缬氨酸,亮氨酸,苯丙氨酸,丙氨酸和异亮氨酸这些可能共存的生物小分子(0.2mM)对RB检测精神活性物质的影响,如图7所示,图中F0为荧光探针初始荧光强度,F为代表初始荧光探针加入以上组分后的荧光强度,结果表明,这些物质几乎无明显干扰,孟加拉玫瑰红荧光探针对精神活性物质表现出较高选择性。
在本说明书的描述中,参考术语“一个实施例/方式”、“一些实施例/方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例/方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例/方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例/方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例/方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例/方式或示例以及不同实施例/方式或示例的特征进行结合和组合。
需要说明的是,在本申请中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。在本申请中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的规定。
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (9)

1.一种精神活性物质检测方法,其特征在于,基于荧光分析法,对精神活性物质进行检测;
其中,所述荧光分析法中的荧光探针为孟加拉玫瑰红。
2.如权利要求1所述的精神活性物质检测方法,其特征在于,所述荧光分析法中的缓冲溶液为醋酸-醋酸钠缓冲溶液。
3.如权利要求2所述的精神活性物质检测方法,其特征在于,所述缓冲溶液的PH值为2-6.5。
4.如权利要求3所述的精神活性物质检测方法,其特征在于,所述缓冲溶液的PH值为3.9。
5.如权利要求1所述的精神活性物质检测方法,其特征在于,所述荧光分析法中的激发光谱的波长范围为480nm-530nm。
6.如权利要求5所述的精神活性物质检测方法,其特征在于,所述荧光分析法中的激发光谱波长范围为500nm-510nm。
7.如权利要求1所述的精神活性物质检测方法,其特征在于,所述精神活性物质为利培酮、奥氮平、阿立哌唑或芬太尼。
8.一种荧光探针,其特征在于,为孟加拉玫瑰红。
9.如权利要求8所述的荧光探针在精神活性物质检测领域中的应用。
CN202311494017.2A 2023-11-09 2023-11-09 一种精神活性物质检测方法、荧光探针及其应用 Pending CN117607286A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311494017.2A CN117607286A (zh) 2023-11-09 2023-11-09 一种精神活性物质检测方法、荧光探针及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311494017.2A CN117607286A (zh) 2023-11-09 2023-11-09 一种精神活性物质检测方法、荧光探针及其应用

Publications (1)

Publication Number Publication Date
CN117607286A true CN117607286A (zh) 2024-02-27

Family

ID=89945317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311494017.2A Pending CN117607286A (zh) 2023-11-09 2023-11-09 一种精神活性物质检测方法、荧光探针及其应用

Country Status (1)

Country Link
CN (1) CN117607286A (zh)

Similar Documents

Publication Publication Date Title
Guo et al. Azithromycin detection in cells and tablets by N, S co-doped carbon quantum dots
Parham et al. Solid phase extraction–spectrophotometric determination of salicylic acid using magnetic iron oxide nanoparticles as extractor
Overholser et al. Determination of gatifloxacin in human serum and urine by high-performance liquid chromatography with ultraviolet detection
Omar et al. Spectrophotometric and spectrofluorimetric methods for determination of certain biologically active phenolic drugs in their bulk powders and different pharmaceutical formulations
Cazedey et al. A first-derivative spectrophotometric method for the determination of ciprofloxacin hydrochloride in ophthalmic solution
Li et al. Sensitive determination of phenothiazines in pharmaceutical preparation and biological fluid by flow injection chemiluminescence method using luminol–KMnO4 system
Hamad A green fluorescence turn-off system for meclofenoxate determination by Cilefa Pink B dye
Qi et al. Development of a surface plasmon resonance biosensor for accurate and sensitive quantitation of small molecules in blood samples
Salem et al. Utility of gold nanoparticles for spectrofluorimetric and spectrophotometric determination of sildenafil citrate, dapoxetine, vardenafil and tadalafil in their dosage forms and biological fluids
Murillo et al. Resolution of ofloxacin–ciprofloxacin and ofloxacin–norfloxacin binary mixtures by flow-injection chemiluminescence in combination with partial least squares multivariate calibration
Wang et al. Flow-injection chemiluminescence determination of aminomethylbenzoic acid and aminophylline based on N-bromosuccinimide–luminol reaction
Shah et al. Sensitive spectrofluorimetric method for determination of fluoroquinolones through charge-transfer complex formation
Song et al. Ultrasensitive assay of azithromycin in medicine and bio-Fluids based on its enhanced luminol–H2O2 chemiluminescence reaction using flow injection technique
Ruiz-Medina et al. A flow-through optosensing device with fluorimetric transduction for rapid and sensitive determination of dipyridamole in pharmaceuticals and human plasma
CN117607286A (zh) 一种精神活性物质检测方法、荧光探针及其应用
Ciborowski et al. FI-chemiluminometric study of thiazides by on-line photochemical reaction
Kaur et al. Highly sensitive synchronous fluorescence measurement of danofloxacin in pharmaceutical and milk samples using aluminium (III) enhanced fluorescence
Kormosh et al. Determination of diclofenac in pharmaceuticals and urine samples using a membrane sensor based on the ion associate of diclofenac with Rhodamine B
CN102788863B (zh) 复方珊瑚姜溶液尿素咪康唑软膏复合制剂的检测方法
Alarfaj et al. A high throughput gold nanoparticles chemiluminescence detection of opioid receptor antagonist naloxone hydrochloride
Song et al. In vitro detecting ultra-trace novalgin in medicine and human urine by chemiluminescence
Siddappa et al. Development and validation of spectrophotometric method for the determination of cyclophosphamide in bulk drug and its pharmaceutical dosage form
Fu et al. Urinary NOx, a novel potential biomarker for autism spectrum disorder
Wongsinsup et al. Simple extraction and determination of ofloxacin in human plasma by high-performance liquid chromatography with fluorescence detector
Zhang et al. Flow-injection on-line oxidizing fluorimetry and solid phase extraction for determination of thioridazine hydrochloride in human plasma

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination