CN117594228A - Health star-level intelligent evaluation method, system and storage medium - Google Patents
Health star-level intelligent evaluation method, system and storage medium Download PDFInfo
- Publication number
- CN117594228A CN117594228A CN202310422318.8A CN202310422318A CN117594228A CN 117594228 A CN117594228 A CN 117594228A CN 202310422318 A CN202310422318 A CN 202310422318A CN 117594228 A CN117594228 A CN 117594228A
- Authority
- CN
- China
- Prior art keywords
- index
- star
- health
- indexes
- following
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000036541 health Effects 0.000 title claims abstract description 49
- 238000011156 evaluation Methods 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 36
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 14
- 238000004364 calculation method Methods 0.000 claims description 21
- 230000009466 transformation Effects 0.000 claims description 13
- 210000002966 serum Anatomy 0.000 claims description 9
- 235000016709 nutrition Nutrition 0.000 claims description 7
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 claims description 6
- 210000004369 blood Anatomy 0.000 claims description 6
- 239000008280 blood Substances 0.000 claims description 6
- 230000035764 nutrition Effects 0.000 claims description 6
- 108090000623 proteins and genes Proteins 0.000 claims description 6
- 230000035479 physiological effects, processes and functions Effects 0.000 claims description 5
- 238000007781 pre-processing Methods 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 claims description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 4
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 claims description 4
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 239000000575 pesticide Substances 0.000 claims description 3
- 238000003900 soil pollution Methods 0.000 claims description 3
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 claims description 2
- 108010082126 Alanine transaminase Proteins 0.000 claims description 2
- 208000019901 Anxiety disease Diseases 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- 102000012406 Carcinoembryonic Antigen Human genes 0.000 claims description 2
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 claims description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 2
- 102000001554 Hemoglobins Human genes 0.000 claims description 2
- 108010054147 Hemoglobins Proteins 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 108010048233 Procalcitonin Proteins 0.000 claims description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 2
- 238000008050 Total Bilirubin Reagent Methods 0.000 claims description 2
- 102000013394 Troponin I Human genes 0.000 claims description 2
- 108010065729 Troponin I Proteins 0.000 claims description 2
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 claims description 2
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 102000013529 alpha-Fetoproteins Human genes 0.000 claims description 2
- 108010026331 alpha-Fetoproteins Proteins 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 230000036506 anxiety Effects 0.000 claims description 2
- 210000001772 blood platelet Anatomy 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 238000004590 computer program Methods 0.000 claims description 2
- 229940109239 creatinine Drugs 0.000 claims description 2
- 210000003743 erythrocyte Anatomy 0.000 claims description 2
- 239000008103 glucose Substances 0.000 claims description 2
- 229960000890 hydrocortisone Drugs 0.000 claims description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 2
- 210000000265 leukocyte Anatomy 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011572 manganese Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- CWCXERYKLSEGEZ-KDKHKZEGSA-N procalcitonin Chemical compound C([C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)NCC(O)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCSC)NC(=O)[C@H]1NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@@H](N)CSSC1)[C@@H](C)O)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 CWCXERYKLSEGEZ-KDKHKZEGSA-N 0.000 claims description 2
- 235000018102 proteins Nutrition 0.000 claims description 2
- 102000004169 proteins and genes Human genes 0.000 claims description 2
- 239000011669 selenium Substances 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 229960003604 testosterone Drugs 0.000 claims description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 claims description 2
- 229940116269 uric acid Drugs 0.000 claims description 2
- 210000002700 urine Anatomy 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 230000005484 gravity Effects 0.000 claims 1
- 230000000284 resting effect Effects 0.000 claims 1
- 230000002159 abnormal effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000003862 health status Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000003915 air pollution Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- BPYKTIZUTYGOLE-UHFFFAOYSA-N billirubin-IXalpha Natural products N1C(=O)C(C)=C(C=C)C1=CC1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(C=C3C(=C(C=C)C(=O)N3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
本发明属于健康管理技术领域,具体涉及一种健康星级智能评估方法、系统和存储介质。本发明的方法包括如下步骤:步骤1,收集和输入受试者的指标;步骤2,采用HE算法模型对所述指标进行计算,得到受试者的健康差距指数。本发明构建了的HE算法模型能够在健康评估中排除主观因素的影响,兼顾结果的更加全面、客观,具有很好的应用前景。
The invention belongs to the technical field of health management, and specifically relates to a health star intelligent evaluation method, system and storage medium. The method of the present invention includes the following steps: step 1, collect and input the indicators of the subject; step 2, use the HE algorithm model to calculate the indicators to obtain the health gap index of the subject. The HE algorithm model constructed by the present invention can eliminate the influence of subjective factors in health assessment, take into account the more comprehensive and objective results, and has good application prospects.
Description
技术领域Technical field
本发明属于健康管理技术领域,具体涉及一种健康星级智能评估方法、系统和存储介质。The invention belongs to the technical field of health management, and specifically relates to a health star intelligent evaluation method, system and storage medium.
背景技术Background technique
健康评估是系统地收集和分析患者的健康资料,以明确其健康状况、所存在的健康问题及其可能的原因,进而辅助医生得到后续护理诊断结果的过程。健康评估是实施整体护理的基础和保证,是医护人员必备的能力。关键在于全面、系统、准确、动态地对患者的健康相关资料进行收集、分析和整理,确定其现存或潜在的问题,便于后续诊断。Health assessment is the process of systematically collecting and analyzing a patient's health information to clarify their health status, existing health problems and their possible causes, and then assist doctors in obtaining follow-up care diagnosis results. Health assessment is the basis and guarantee for the implementation of overall nursing care, and is an essential ability for medical staff. The key is to comprehensively, systematically, accurately and dynamically collect, analyze and organize patients' health-related information to determine existing or potential problems to facilitate subsequent diagnosis.
目前较为流行的几种健康评估方法有:Several currently popular health assessment methods include:
(1)BMI(身体质量指数,Body Mass Index)是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准。计算公式为:BMI=体重÷身高2。(体重单位:千克;身高单位:米。)。(1)BMI (Body Mass Index) is a standard commonly used in the world to measure the body's fatness and thinness and whether it is healthy. The calculation formula is: BMI = weight ÷ height 2 . (Unit of weight: kilogram; unit of height: meter.).
(2)HRA健康风险评估:采用生物电感应技术,结合人体电阻抗测量技术,应用计时电流统计分析法,对人体组织器官进行3D重建,可直观的看到全身脏器变化趋向,判断早期疾病,从而对人体健康状况作出评估。(2) HRA health risk assessment: Using bioelectric induction technology, combined with human body electrical impedance measurement technology, and applying chronoamperostatistic analysis method, 3D reconstruction of human tissues and organs can be intuitively seen to change trends of body organs, and early diseases can be judged , thereby assessing human health status.
(3)现阶段问卷设计评估项目机制相对较多,比如SF-36量表、体力活动筛查采用PAR-Q、饮食调查回顾、心理如scl-90等手段进行相应筛查。用于多维评估客户健康。(3) There are relatively many mechanisms for questionnaire design and evaluation at this stage, such as the SF-36 scale, physical activity screening using PAR-Q, dietary survey review, and psychological methods such as SCL-90 for corresponding screening. For multidimensional assessment of client health.
根据WHO(世界健康组织)的定义,健康是一种在身体、精神和社会适应各方面都具备的良好状态。单纯身体没有疾病不能评判为健康。因此现有健康评估技术主要有以下两个缺点:According to the definition of WHO (World Health Organization), health is a state of good physical, mental and social well-being. The mere absence of disease in the body cannot be judged as healthy. Therefore, existing health assessment technologies mainly have the following two shortcomings:
(1)很多特殊行业准入,对个人身体状况要求非常高,需要有一个综合性的健康状况等级评估方法,现有方法都是单个、零星、片面的实测指标和标准指标的单纯对比,通过这种方法仅仅反映出健康的某一个侧面存在的问题,得到的评估结果无疑是片面且不准确的。但是因为健康指标非常多,对于一个人总体的健康状况评估的方法是缺失的。(1) Entry into many special industries has very high requirements on personal physical condition and requires a comprehensive health status assessment method. The existing methods are single, sporadic and one-sided simple comparisons of measured indicators and standard indicators. This method only reflects problems in a certain aspect of health, and the evaluation results obtained are undoubtedly one-sided and inaccurate. However, because there are so many health indicators, there is a lack of methods to evaluate a person's overall health status.
(2)单个指标的集合在高维空间中很难作出直观的对比,因此现在一般使用人工和专家确定的权重来进行指标汇总,从而给出综合得分,但此种方法存在高度的任意性、不确定性。(2) It is difficult to make an intuitive comparison of a single set of indicators in a high-dimensional space. Therefore, weights determined by humans and experts are generally used to summarize indicators to give a comprehensive score. However, this method is highly arbitrary and Uncertainty.
基于上述问题,对个体的健康评估中,如何兼顾评价结果的全面性和客观性是本领域亟需解决的问题。Based on the above problems, how to take into account the comprehensiveness and objectivity of the evaluation results in individual health assessment is an urgent problem that needs to be solved in this field.
发明内容Contents of the invention
基于现有技术的问题,本发明提供一种健康星级智能评估方法、系统和存储介质,目的在于提供一种指标全面,且无须人为确定指标及其权重的健康评估方法,实现全面、客观的个人健康评估。Based on the problems of the existing technology, the present invention provides a health star intelligent assessment method, system and storage medium. The purpose is to provide a health assessment method that has comprehensive indicators and does not require artificial determination of indicators and their weights to achieve comprehensive and objective Personal health assessment.
一种健康星级智能评估方法,包括如下步骤:A health star intelligent assessment method includes the following steps:
步骤1,收集和输入受试者的指标;Step 1, collect and enter subjects’ indicators;
步骤2,采用HE算法模型对所述指标进行计算,得到受试者的健康差距指数;Step 2: Use the HE algorithm model to calculate the indicator to obtain the health gap index of the subject;
其中,所述HE算法模型的计算过程包括如下步骤:The calculation process of the HE algorithm model includes the following steps:
步骤a,对所述指标中的负向指标进行取反和归一化的预处理;Step a: Perform inversion and normalization preprocessing on the negative indicators among the indicators;
步骤b,对所述指标中的区间指标,进行如下预处理:Step b: Perform the following preprocessing on the interval indicators among the indicators:
假设当某指标表现正常的条件为满足x∈[a,b],对该指标做如下变换:Assume that when an indicator performs normally, the condition satisfies x∈[a,b], and the indicator is transformed as follows:
其中,x′i′为变换后的指标,xi为变换前的指标;Among them, x′ i ′ is the index after transformation, and x i is the index before transformation;
步骤c,假设每个健康指标都根据其最佳权重进行计算,计算理想值,计算公式为:Step c, assuming that each health indicator is calculated according to its optimal weight, the ideal value is calculated, and the calculation formula is:
其中,maxVj为所述理想值,yij是第j个体检人的第i个指标,wi是第i个指标的权重,wi+a是第i+a个指标的权重,wr是第r个指标的权重,m是指标的个数,n是受评体检人的个数,ba为可自定义的0-1之间的常数,用于当需要自定义某个权重时,可以加入关于权重的先验知识wi-wi+a≥ba,s.t.表示约束条件;Among them, maxV j is the ideal value, y ij is the i-th indicator of the j-th physical examination person, w i is the weight of the i-th indicator, w i+a is the weight of the i+a-th indicator, w r is the weight of the r-th indicator, m is the number of indicators, n is the number of people undergoing physical examination, b a is a customizable constant between 0 and 1, used when a certain weight needs to be customized , you can add a priori knowledge about the weight w i -w i+a ≥ b a , st represents the constraint condition;
步骤d,找到离理想值V*(w)距离最近的V(w),计算公式为:In step d, find the V(w) closest to the ideal value V * (w). The calculation formula is:
其中,min为最小值运算,D2为2范式距离函数,V(w)为离理想点V*(w)距离最近的点,W为所有权重的集合,Vj *是步骤c得到的maxVj。Among them, min is the minimum value operation, D 2 is the 2-normal distance function, V (w) is the point closest to the ideal point V * (w), W is the set of all weights, and V j * is the maxV obtained in step c j .
优选的,所述负向指标进行取反的方法是取其倒数,并用该倒数取代原指标数据。Preferably, the negative indicator is inverted by taking its reciprocal and replacing the original indicator data with the reciprocal.
优选的,所述负向指标进行归一化的方法为:Preferably, the method for normalizing the negative indicators is:
其中,x′为变换后的指标,x为变换前的指标,μ为指标的平均值,xmax为指标的最大值,xmin为指标的最小值。Among them, x′ is the index after transformation, x is the index before transformation, μ is the average value of the indicator, x max is the maximum value of the indicator, and x min is the minimum value of the indicator.
优选的,当需要手动调整指标的权重时,在约束条件中加入关于权重的先验知识wi-wi+a≥ba。Preferably, when the weight of the indicator needs to be manually adjusted, a priori knowledge about the weight w i -w i+a ≥ b a is added to the constraint conditions.
优选的,所述指标的种类包括如下指标中的至少一种:用于评价基因、生理、心理、运动、营养、环境的指标。Preferably, the types of indicators include at least one of the following indicators: indicators used to evaluate genes, physiology, psychology, exercise, nutrition, and environment.
优选的,所述用于评价生理的指标包括如下指标中的至少一种:血红蛋白、红细胞、白细胞、血小板计数、空腹血糖、血清总胆固醇、血清三酰甘油、血尿酸、肌钙蛋白I、肌酐、丙氨酸氨基转移酶、血清总胆红素、血清结合胆红素、血清非结合胆红素、癌胚抗原、甲胎蛋白、类风湿因子、反应蛋白、降钙素原;Preferably, the indicators used to evaluate physiology include at least one of the following indicators: hemoglobin, red blood cells, white blood cells, platelet count, fasting blood glucose, serum total cholesterol, serum triacylglycerol, blood uric acid, troponin I, creatinine , alanine aminotransferase, serum total bilirubin, serum conjugated bilirubin, serum unconjugated bilirubin, carcinoembryonic antigen, alpha-fetoprotein, rheumatoid factor, reactive protein, procalcitonin;
所述用于评价心理的指标包括如下指标中的至少一种:智力量表、他评量表、焦虑自评量表、抑郁自评量表;The indicators used to evaluate psychology include at least one of the following indicators: intelligence scale, other rating scale, anxiety self-rating scale, and depression self-rating scale;
所述用于评价营养的指标包括如下指标中的至少一种:钠、钾、镁、钙、磷、锌、碘、硒、锰;The indicators used to evaluate nutrition include at least one of the following indicators: sodium, potassium, magnesium, calcium, phosphorus, zinc, iodine, selenium, and manganese;
所述用于评价运动的指标包括如下指标中的至少一种:体重指数、脉搏、清晨安静状态下血总睾酮、测定、血浆皮质醇、CD4/CD8、IgA、IgM、IgG、血氨、尿比重;The indicators used to evaluate exercise include at least one of the following indicators: body mass index, pulse, total blood testosterone in the morning at rest, measurement, plasma cortisol, CD4/CD8, IgA, IgM, IgG, blood ammonia, urine proportion;
所述用于评价环境的指标包括如下指标中的至少一种:农药污染、大气污染、土壤污染。The indicators used to evaluate the environment include at least one of the following indicators: pesticide pollution, air pollution, and soil pollution.
优选的,所述健康差距指数用于按照如下阈值进行分级:Preferably, the health disparity index is used for classification according to the following thresholds:
五星级:指标差距指数≥90;Five-star rating: indicator gap index ≥90;
四星级:90>指标差距指数≥75;Four stars: 90>Indicator gap index ≥75;
三星级:75>指标差距指数≥60;Three stars: 75>Indicator gap index ≥60;
二星级:60>指标差距指数≥45;Two stars: 60> indicator gap index ≥ 45;
一星级:45>指标差距指数。One star: 45>Indicator Gap Index.
本发明还提供一种健康星级智能评估系统,包括:The invention also provides a health star intelligent evaluation system, including:
输入模块,用于输入受试者的指标;Input module, used to input subjects’ indicators;
计算模块,用于按照上述健康星级智能评估方法进行计算;The calculation module is used to calculate according to the above-mentioned health star intelligent evaluation method;
输出模块,用于输出计算模块的计算结果。The output module is used to output the calculation results of the calculation module.
本发明还提供一种计算机可读存储介质,其上存储有:用于实现上述健康评估方法的计算机程序。The present invention also provides a computer-readable storage medium on which is stored a computer program for implementing the above health assessment method.
在本发明中,“负向指标”是指数值越小则反映出受试者健康状态越好的指标;“区间指标”是指指标的衡量标准是当某个指标满足一定的范围时,表现为正常或异常。In the present invention, "negative index" is an index that indicates that the smaller the index value is, the better the health status of the subject is; "interval index" means that the measurement standard of the index is that when an index meets a certain range, the performance as normal or abnormal.
需要特别说明的是,本发明的健康评估方法最终得到的结果是一个客观的健康评估分数(健康差距指数),其只能够作为一个辅助参数供使用者和医生参考,并不能够独立、直接地作为具体某种疾病诊断的依据。It should be noted that the final result obtained by the health assessment method of the present invention is an objective health assessment score (health gap index), which can only be used as an auxiliary parameter for reference by users and doctors, and cannot be used independently and directly. As a basis for diagnosis of a specific disease.
本发明针对个人的健康评估,提供了HE算法,该算法将综合评价模型计算分为两阶段:第一阶段,利用数据包络分析法来获得每个受评体检人的最优的评分;第二阶段,以第一阶段获得的最优评分作为理想点,在权重的可行域进行回归分析,得到全体受评体检人利益最大化的同一权重,从而解决了上述数据包络分析模型存在的问题。通过上述计算,可以在不引入人工确定权重的步骤的前提下对多指标进行综合评分,避免了人为主观因素的影响,得到更加全面、客观的健康评估分数。因此,本发明具有很好的应用前景。The present invention provides a HE algorithm for personal health assessment. This algorithm divides the calculation of the comprehensive evaluation model into two stages: the first stage uses the data envelopment analysis method to obtain the optimal score of each person being evaluated for physical examination; the second stage In the second stage, the optimal score obtained in the first stage is used as the ideal point, and regression analysis is performed in the feasible region of the weight to obtain the same weight that maximizes the interests of all evaluated medical examinees, thus solving the problems existing in the above-mentioned data envelopment analysis model. . Through the above calculation, multiple indicators can be comprehensively scored without introducing the steps of manually determining weights, avoiding the influence of human subjective factors and obtaining a more comprehensive and objective health assessment score. Therefore, the present invention has good application prospects.
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。Obviously, according to the above content of the present invention, according to the common technical knowledge and common means in the field, without departing from the above basic technical idea of the present invention, various other forms of modifications, replacements or changes can also be made.
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。The above contents of the present invention will be further described in detail below through specific implementation methods in the form of examples. However, this should not be understood to mean that the scope of the above subject matter of the present invention is limited to the following examples. All technologies implemented based on the above contents of the present invention belong to the scope of the present invention.
附图说明Description of drawings
图1为本发明实施例1的流程示意图。Figure 1 is a schematic flow chart of Embodiment 1 of the present invention.
具体实施方式Detailed ways
需要特别说明的是,实施例中未具体说明的数据采集、传输、储存和处理等步骤的算法,以及未具体说明的硬件结构、电路连接等均可通过现有技术已公开的内容实现。It should be noted that the algorithms for data collection, transmission, storage, and processing steps that are not specified in the embodiments, as well as the hardware structures, circuit connections, etc. that are not specified in the embodiments can all be implemented by what has been disclosed in the prior art.
实施例1健康评估方法和系统Embodiment 1 Health Assessment Method and System
本实施例提供的系统包括:The system provided by this embodiment includes:
输入模块,用于输入受试者的指标;Input module, used to input subjects’ indicators;
计算模块,用于进行受试者健康评估结果的计算;Calculation module, used to calculate subject health assessment results;
输出模块,用于输出计算模块的计算结果。The output module is used to output the calculation results of the calculation module.
基于上述系统,本实施例进行受试者健康评估的方法流程如图1所示,具体的:Based on the above system, the method flow of subject health assessment in this embodiment is shown in Figure 1, specifically:
收集受试者的相关指标,包括基因、生理、心理、运动、营养、环境六大方面,其中包含1525项指标和5946项多单基因遗传病指标。需要说明的是,此处的指标收集以全面、系统为目标进行。Relevant indicators of subjects were collected, including six major aspects: genes, physiology, psychology, exercise, nutrition, and environment, including 1,525 indicators and 5,946 indicators of multiple single-gene genetic diseases. It should be noted that the indicator collection here aims to be comprehensive and systematic.
具体的受试体检人健康评估指标体系如下表所示:The specific subject health assessment index system is shown in the following table:
表1健康评估指标体系Table 1 Health Assessment Index System
为了科学评估指标在动态变化中对健康状况的影响与作用,采用HE模型。与人为确定权重的传统方法相比,该方法的优点是通过模型计算出权重,给出评分,即完全数据驱动的方法。该算法模型得到受试者的健康差距指数的具体步骤包括:In order to scientifically evaluate the impact and role of indicators on health conditions in dynamic changes, the HE model is used. Compared with the traditional method of artificially determining weights, the advantage of this method is that the weights are calculated through the model and a score is given, which is a completely data-driven method. The specific steps for this algorithm model to obtain the subject's health disparity index include:
第一步:数据预处理Step one: data preprocessing
①首先把负向指标(即越小越好的指标)取其倒数,并取代原指标数据。对环境的各项指标同样做取反操作。最后用平均归一化方法消除量纲,该方法是为了重新调整数据范围,缩放到[0,1]的范围内。一般公式如下:① First, take the reciprocal of the negative indicator (that is, the smaller the better indicator) and replace the original indicator data. The same inverse operation is performed on various indicators of the environment. Finally, the average normalization method is used to eliminate the dimensions. This method is to re-adjust the data range and scale it to the range of [0,1]. The general formula is as follows:
其中,x′为变换后的指标,x为变换前的指标,μ为指标的平均值,xmax为指标的最大值,xmin为指标的最小值。Among them, x′ is the index after transformation, x is the index before transformation, μ is the average value of the indicator, x max is the maximum value of the indicator, and x min is the minimum value of the indicator.
最终得到处理完的数据方便输入算法模型进行计算。Finally, the processed data is obtained to facilitate input into the algorithm model for calculation.
②除此之外,由于体检指标数据比较特殊,多数为区间指标,即指标的衡量标准通常是当某个指标满足一定的范围时,表现为正常或异常。故针对体检指标数据做以下特殊的预处理。② In addition, due to the special nature of physical examination indicator data, most of them are interval indicators, that is, the measurement standard of indicators is usually when an indicator meets a certain range, it is normal or abnormal. Therefore, the following special preprocessing is performed for the physical examination index data.
假设当某指标表现正常的条件为满足x∈[a,b],对该指标做如下变换:Assume that when an indicator performs normally, the condition satisfies x∈[a,b], and the indicator is transformed as follows:
其中,xi′为变换后的指标,xi为变换前的指标;Among them, xi ′ is the index after transformation, and xi is the index before transformation;
第二步:假设每个指标都根据其最佳权重进行计算,计算理想值maxVj.Step 2: Calculate the ideal value maxV j assuming each indicator is calculated according to its optimal weight.
其中,maxVj为所述理想值,yij是第j个体检人的第i个指标,wi是第i个指标的权重,wi+a是第i+a个指标的权重,wr是第r个指标的权重,m是指标的个数,n是受评体检人的个数,ba为可自定义的0-1之间的常数,用于当需要自定义某个权重时,可以加入关于权重的先验知识wi-wi+a≥ba,s.t.表示约束条件;Among them, maxV j is the ideal value, y ij is the i-th indicator of the j-th physical examination person, w i is the weight of the i-th indicator, w i+a is the weight of the i+a-th indicator, w r is the weight of the r-th indicator, m is the number of indicators, n is the number of people undergoing physical examination, b a is a customizable constant between 0 and 1, used when a certain weight needs to be customized , you can add a priori knowledge about the weight w i -w i+a ≥ b a , st represents the constraint condition;
第三步:third step:
第二步使每个指标都根据其自身最佳权重进行计算,则为第j个评价单元的理想值,则向量/>是理想点,由于这种情况在实际应用中很难达到,因此我们的目标是找到离理想点V*(w)距离最近的V(w)。为此,我们需要一个距离函数,用于测量它们之间的距离。这个距离最小时,即可得到最接近理想值的V(w)。因此我们可以通过最小化距离函数,从而计算出权重w=(w1,…,wm)。The second step causes each indicator to be calculated according to its own optimal weight, then is the ideal value of the jth evaluation unit, then the vector/> is the ideal point. Since this situation is difficult to achieve in practical applications, our goal is to find the V(w) closest to the ideal point V * (w). To do this, we need a distance function that measures the distance between them. When this distance is minimum, the V(w) closest to the ideal value can be obtained. Therefore, we can calculate the weight w=(w 1 ,...,w m ) by minimizing the distance function.
s.t.w∈Ws.t.w∈W
其中,min为最小值运算,D2为2范式距离函数,V(w)为离理想点V*(w)距离最近的点,W为所有权重的集合,是步骤c得到的maxVj。其它变量定义与之前的步骤相同。Among them, min is the minimum value operation, D 2 is the 2-normal distance function, V (w) is the point closest to the ideal point V * (w), and W is the set of all weights. is the maxV j obtained in step c. Other variable definitions are the same as in the previous steps.
要使用HE模型,数据必须满足以下几条原则:To use the HE model, the data must meet the following principles:
①数据必须为正数;①The data must be positive numbers;
②输出数据必须越大越好;②The output data must be as large as possible;
③指标必须有代表性和重要性。③Indicators must be representative and important.
计算得到健康差距指数(1-100分)后,通过如下阈值划分的方式进行分级:After calculating the health disparity index (1-100 points), it is graded through the following threshold division:
五星级:指标差距指数≥90,在同龄人中所有指标均正常;Five stars: indicator gap index ≥90, all indicators are normal among peers;
四星级:90>指标差距指数≥75,部分指标异常,但不影响正常生活和工作;Four stars: 90>Indicator gap index ≥75, some indicators are abnormal, but it does not affect normal life and work;
三星级:75>指标差距指数≥60,部分指标异常,影响工作;Three stars: 75> Indicator gap index ≥ 60, some indicators are abnormal, affecting work;
二星级:60>指标差距指数≥45,部分指标异常,需服药,影响工作和生活;Two stars: 60> Indicator gap index ≥ 45, some indicators are abnormal, medication is required, affecting work and life;
一星级:45>指标差距指数,需不定期到医院住院治疗。One star: 45> indicator gap index, requiring hospitalization from time to time in the hospital.
作为示例,本实施例选取了其中45项常见指标进行实验,其中包括19项生理指标、0项基因指标、4项心理指标、9项营养指标、10项运动指标、3项环境指标。收集了50个体检人的体检指标信息,其中男性25人,女性25人。数据格式如下表所示:As an example, this embodiment selected 45 common indicators for experiments, including 19 physiological indicators, 0 genetic indicators, 4 psychological indicators, 9 nutritional indicators, 10 exercise indicators, and 3 environmental indicators. The physical examination indicator information of 50 individuals who underwent physical examination was collected, including 25 males and 25 females. The data format is as shown in the following table:
表2实验数据格式Table 2 Experimental data format
需要说明的是,上表中,农药污染、大气污染和土壤污染的量化方法为:受试者受到该项污染则取值为1,未受到该项污染则取值为0。It should be noted that in the above table, the quantification method of pesticide pollution, air pollution and soil pollution is: if the subject is affected by this pollution, the value is 1, and if the subject is not affected by this pollution, the value is 0.
按这个数据格式输入HE算法模型,可直接通过数据驱动计算得出每个指标的权重,定权重的过程不需要人为参与,得出的权重如下表所示:By inputting the HE algorithm model according to this data format, the weight of each indicator can be calculated directly through data-driven calculation. The process of determining the weight does not require human participation. The resulting weight is as shown in the following table:
表3各指标权重Table 3 Weight of each indicator
通过算法得出的权重,计算每个体检人的最终得分以及健康等级,最终结果如下表所示:Using the weights derived from the algorithm, the final score and health grade of each physical examination person are calculated. The final results are as shown in the following table:
表4实验结果Table 4 Experimental results
本实施例提出的HE模型与人为确定权重的传统方法相比,优点是通过模型计算出权重,给出评分,即完全数据驱动的方法。Compared with the traditional method of artificially determining weights, the HE model proposed in this embodiment has the advantage that the weights are calculated through the model and scores are given, which is a completely data-driven method.
通过上述实施例可以看到,本发明构建了一种HE算法模型,能够在健康评估中排除主观因素的影响,兼顾结果的更加全面、客观,具有很好的应用前景。It can be seen from the above embodiments that the present invention constructs a HE algorithm model, which can eliminate the influence of subjective factors in health assessment, take into account the more comprehensive and objective results, and has good application prospects.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310422318.8A CN117594228A (en) | 2023-04-19 | 2023-04-19 | Health star-level intelligent evaluation method, system and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310422318.8A CN117594228A (en) | 2023-04-19 | 2023-04-19 | Health star-level intelligent evaluation method, system and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117594228A true CN117594228A (en) | 2024-02-23 |
Family
ID=89912134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310422318.8A Pending CN117594228A (en) | 2023-04-19 | 2023-04-19 | Health star-level intelligent evaluation method, system and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117594228A (en) |
-
2023
- 2023-04-19 CN CN202310422318.8A patent/CN117594228A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sheean et al. | Utilizing multiple methods to classify malnutrition among elderly patients admitted to the medical and surgical intensive care units (ICU) | |
Wyrwich et al. | Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life | |
Zhang et al. | Using CatBoost algorithm to identify middle-aged and elderly depression, national health and nutrition examination survey 2011–2018 | |
Al-Dmour et al. | A fuzzy logic–based warning system for patients classification | |
Dai et al. | Wheeze trajectories: Determinants and outcomes in the CHILD Cohort Study | |
CN108573752A (en) | A kind of method and system of the health and fitness information processing based on healthy big data | |
Harrison et al. | Computerised adaptive testing accurately predicts CLEFT-Q scores by selecting fewer, more patient-focused questions | |
CN112768074A (en) | Artificial intelligence-based serious disease risk prediction method and system | |
Jang et al. | Assessment of Frailty Index at 66 years of Age and Association with Age-Related diseases, disability, and Death over 10 years in Korea | |
Liu et al. | TOP-Net prediction model using bidirectional long short-term memory and medical-grade wearable multisensor system for tachycardia onset: algorithm development study | |
CN107145715B (en) | A clinical medical intelligent discrimination device based on recommendation algorithm | |
Ribeiro et al. | A machine learning early warning system: multicenter validation in Brazilian hospitals | |
KR101255477B1 (en) | Distinction method based on four-phase constitution | |
Turkat et al. | Development and validation of the Illness Behavior Inventory | |
Kalpana et al. | Prediction of heart disease using machine learning | |
CN106909790A (en) | Scale generation method and device | |
CN118098621B (en) | Chinese and western medicine combined disease animal model data acquisition system and processing method thereof | |
Kim et al. | Automatic diagnosis of medical conditions using deep learning with Symptom2VEC | |
Thangarasu et al. | Prediction of hidden knowledge from clinical database using data mining techniques | |
CN117594228A (en) | Health star-level intelligent evaluation method, system and storage medium | |
CN113972003A (en) | Method for constructing diabetes risk model based on scoring system | |
Jiang et al. | Diabetes prediction model for unbalanced community follow-up data set based on optimal feature selection and scorecard | |
Hasumi et al. | Heart failure grading using single-lead electrocardiography | |
CN115312196A (en) | A Novel Model Construction Evaluation Method for Screening Risk Factors of Pressure Injury and Its Application | |
Khalaf et al. | Predicting acute respiratory failure using fuzzy classifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |